[1] Bai, F.S., Wu, Z.Y. and Zhu, D.L. Sequential Lagrange multiplier con-dition for ε-optimal solution in convex programming, Optimization. 57 (2008), 669–680.
[2] Bard, J.F. Practical Bilevel Optimization: Algorithms and Applications, Springer Science and Business Media. 30, 2013.
[3] Boţ, R.I., Csetnek, E.R. and Wanka, G. Sequential optimality conditions for composed convex optimization problems, J. Math. Anal. Appl. 342(2) (2008), 1015–1025.
[4] Dinkelbach, W. On nonlinear fractional programming, Manage. Sci. 13 (1967), 492–498.
[5] EL Maghri, M. Pareto-Fenchel ε-subdifferential sum rule ε-efficiency, Optim. Lett. 6(4) (2012), 763–781.
[6] El Maghri, M. Pareto-Fenchel ε-subdifferential composition rule and ε-efficiency, Numer. Funct. Anal. Optim. 35(1) (2014), 1–19.
[7] El Maghri, M. and Laghdir, M. Pareto subdifferential calculus for convex vector mappings and applications to vector optimization, SIAM J. Optim. 19 (2008), 1970–1994.
[8] Jeyakumar, V., Lee, G.M. and Dinh, N. New sequential Lagrange mul-tiplier conditions characterizing optimality without constraint qualifica-tions for convex programs, SIAM J. Optim. 14(2) (2003), 534–547.
[9] Jeyakumar, V., Lee, G.M. and Dinh, N. Liberating the subgradient op-timality conditions from constraint qualifications, J. Glob. Optim. 36 (2006), 127–137.
[10] Kim, M.H., Kim, G.S. and Lee, G.M. On ε-optimality conditions for multiobjective fractional optimization problems, Fixed Point Theory Appl.(2011), 1–13.
[11] Kohli, B. Sequential optimality conditions for multiobjective fractional programming problems, Math Sci. 8(2) (2014), 128.
[12] Luhandjula, M.K. Fuzzy approach for multiple objective linear fractional programming problems, Fuzzy Sets Syst. 13(1) (1984), 11–23.
[13] Moustaid, M.B., Laghdir, M., Dali, I. and Rikouane, A. Sequential op-timality conditions for multi objective fractional programming problems via sequential subdifferential calculus, Le Matematiche. 76(1) (2021), 79–96.
[14] Moustaid, M.B., Rikouane, A., Dali, I. and Laghdir, M. Sequential approximate weak optimality conditions for multiobjective fractional programming problems via sequential calculus rules for the Brndsted-Rockafellar approximate subdifferential, Rend. Circ. Mat. Palermo, II. Ser. (2022), 337–754.
[15] Stancu-Minasian, I.M. Fractional programming : Theory, Methodsand Applica- tions, Springer Science and Business Media. 409, 2012.
[16] Stancu-Minasian, I.M. A ninth bibliography of fractional programming, Optimization. 68(11) (2019) 2125–2169.
[17] Sun, G.Z. An economic approach to some classical theorem in optimiza-tion theory, Optim. Lett. 2(2) (2008), 281–286.
[18] Sun, X.K., Long, X.J. and Chai, Y. Sequential optimality conditions for fractional optimization with applications to vector optimization, J Optim. Theory. Appl. 164(2) (2015), 479–499.
[19] Thibault, L. Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control. Optim. 35(4) (1997), 1434–1444.
[20] Zappone, A. and Jorswieck, E. Energy efficiency in wireless networks via fractional programming theory, Found. Trends Commun. Inf. Theory, 11 (2015), 185–396.
Send comment about this article