[1] Ansari, A.R., Bakr, S.A. and Shishkin, G.I. A parameter-robust finite difference method for singularly perturbed delay parabolic partial differ-ential equations, J. Comput. and Appl. Math. 205(1) (2007), 552–566.
[2] Babu, G. and Bansal, K. A high order robust numerical scheme for sin-gularly perturbed delay parabolic convection diffusion problems, J. Appl. Math. Comput. 68(1) (2022), 363–389.
[3] Das, A. and Natesan, S. Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection–diffusion problems on Shishkin mesh, Appl. Math. Comput. 271 (2015), 168–186.
[4] Das, A. and Natesan, S. Second-order uniformly convergent numerical method for singularly perturbed delay parabolic partial differential equa-tions, Int. J. Comput. Math. 95(3) (2018), 490–510.
[5] Ejere, A.H., Dinka, T.G., Woldaregay, M.M. and Duressa, G.F. A ten-sion spline fitted numerical scheme for singularly perturbed reaction-diffusion problem with negative shift, BMC Res. Notes. 16(1) (2023), 112.
[6] Ejere, A.H., Duressa, G.F., Woldaregay, M.M. and Dinka, T.G. A ro-bust numerical scheme for singularly perturbed differential equations with spatio-temporal delays, Front. Appl. Math. Stat. 9 (2023), 1125347.
[7] Govindarao, L. and Mohapatra, J. A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput. 36(2) (2018), 420–444.
[8] Gowrisankar, S. and Natesan, S. ε-Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equa-tions, Int. J. Comput. Math. 94(5) (2017), 902–921.
[9] Hassen Z.I. and Duressa, G.F. New approach of convergent numerical method for singularly perturbed delay parabolic convection-diffusion prob-lems, Res. Math. 10(1) (2023), 1–14.
[10] Kellogg, R.B. and Tsan, A. Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32(144) (1978), 1025–1039.
[11] Khan, I. and Tariq, A. Tension spline method for second-order singularly perturbed boundary-value problems, Int. J. Comput. Math. 82(12) (2005), 1547–1553.
[12] Kumar, D. and Kumari, P. A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay, J. Appl. Math. Comput. 59(1-2) (2019), 179–206.
[13] Kumar, K., Gupta, T., Chakravarthy, P.P. and Rao, R.N. An adaptive mesh selection strategy for solving singularly perturbed parabolic par-tial differential equations with a small delay, Appl. Math. Sci. Comput. (2019) 67–76.
[14] Kumar, K., Podila, P.C., Das, P. and Ramos, H. A graded mesh refine-ment approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems, Math. Methods Appl. Sci. 44(16) (2021), 12332–12350.
[15] Negero, N.T. and Duressa, G.F. An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag, J. Math. Model. (2021), 1–18.
[16] Negero, N.T. and Duressa, G.F. A method of line with improved accuracy for singularly perturbed parabolic convection-diffusion problems with large temporal lag. Results Appl. Math. 11 (2021), 100–174.
[17] Negero, N.T. and Duressa, G.F. Uniform Convergent Solution of Singu-larly Perturbed Parabolic Differential Equations with General Temporal-Lag, Iran. J. Sci. Technol. Trans. A Sci. (2022), 1–18.
[18] O’malley, R.E. Singular perturbation methods for ordinary differential equations, Springer, 1991, 89.
[19] Oruç, Ö. A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations, Comput. Math. with Appl. 77(7) (2019), 1799–1820.
[20] Podila, P.C. and Kumar, K. A new stable finite difference scheme and its convergence for time-delayed singularly perturbed parabolic PDES, Comput. Appl. Math. 39(3) (2020), 1–16.
[21] Protter M. and Weinberger, H. Maximum principles in differential equa-tions, Englewood Cliffs, New Jersey: Prentice-Hall Inc. 1967.
[22] Sahoo, S.K. and Gupta, V. Parameter robust higher-order finite differ-ence method for convection-diffusion problem with time delay, Numer. Methods Partial. Differ. Equ. 39(6) (2023), 4145–4173.
[23] Salama, A. and Al-Amery, D. A higher order uniformly convergent method for singularly perturbed delay parabolic partial differential equa-tions, Int. J. Comput. Math. 94(12) (2017), 2520–2546.
[24] Shishkin, G.I. and Shishkina, L.P. Difference methods for singularly per-turbed problems, CRC, 2008.
[25] Tesfaye, S.K., Woldaregay, M.M., Dinka, T.G. and Duressa, G.F. Fitted computational method for solving singularly perturbed small time lag problem, BMC Res. Notes. 15(1) (2022), 1–10.
[26] Wang, P.K.C. Asymptotic stability of a time-delayed diffusion system, (1963) 500–504.
[27] Woldaregay, M.M., Aniley, W.T. and Duressa, G.F. Novel numerical scheme for singularly perturbed time delay convection-diffusion equation, Adv. Math. Phys. 2021 (2021).
Send comment about this article