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Abstract

We develop a fitted tension spline numerical scheme for singularly per-

turbed parabolic problems with a large temporal lag. A priori bounds and
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Fitted tension spline method for singularly perturbed parabolic problem ...

properties of the continuous solution are discussed. Due to the problem’s
small parameter e, as a multiple diffusion term, the solution possesses a
multi-scale character in the boundary layer region, which is exhibited on
the right side of the domain. This results in a challenging duty to solve
such problems analytically or using classical numerical methods. Classi-
cal numerical methods cause spurious nonphysical oscillations unless an
unacceptable number of mesh points is considered, which requires a high
computational cost. To handle this difficulty, the method comprises the
Crank—Nicolson method in the temporal direction and the fitted spline
method in the spatial direction on uniform meshes. The stability of the
method is studied using the discrete maximum principle and discrete solu-
tion bounds. We proved that the proposed scheme is uniformly convergent,
with an order one in the space and an order two in the time directions. Two
numerical examples are considered to validate the efficiency and applica-
bility of the proposed scheme. Furthermore, the boundary layer behavior

of the solutions is given graphically.

AMS subject classifications (2020): Primary 65M06; Secondary 65M12, 65M15.

Keywords: Singularly perturbed, Delay differential equation; Exponentially

fitted finite difference; Tension spline; Uniform convergence.

1 Introduction

Delay differential equations in which its higher order derivative term is mul-
tiplied by a small perturbation parameter (0 < ¢ < 1) and contains at least
one delay parameter on the term different from the highest derivative term is
known as singularly perturbed delay differential equations (SPDDEs); oth-
erwise it is known as neutral delay differential equations. A singularly per-
turbed problem, which arises as a time delay, occurs in many application
areas of science and engineering. A simplified example of a time-delayed
mathematical model, which is used in the automatic control system of a

furnace to produce metal sheets, is given as [26]

0z(s,1)

z(s 22(s
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where z denotes the temperature distribution in a metal sheet, and f and v
denote the heat source and the velocity with which the metal sheet is moving,
respectively. Both f and v are dependent on the term z(s,t — ¢). The time
delay of fixed length ( is induced because of the finite speed of the controlling
device. The existence of perturbation parameter in the problem the solution
exhibits a boundary layer. The boundary layer is an asymptotically narrow
region located on the left side or right side of the domain depending on
the sign of the convection term, where the solution has a steep gradient
as € tends to zero [1]. Due to the presence of this layer, one encounters
computational difficulties in treating a singularly perturbed problem using
analytical or classical numerical schemes [12]. Classical numerical schemes
lead to spurious nonphysical oscillations in the numerical solution, unless
an unacceptably large number of mesh points are considered, which leads
to a massive computational cost [3]. In response to this stiffness behavior,
different authors have to look for sounding numerical schemes, which converge

uniformly regardless of e.

Recently, Gowrisankar and Natesan [8] applied the upwind finite differ-
ence scheme on a piecewise uniform mesh. In [3, 7], a hybrid scheme of
the midpoint upwind in the outer layer region and the central difference
scheme in the layer region is proposed. In [4], the upwind finite difference
method on Shishkin mesh is used. In [13, 14], an adaptive mesh refinement
approach is employed using the concept of entropy function. An exponen-
tially fitted finite difference scheme is used in [9, 25, 27]. The nonstandard
finite difference scheme is considered by [2]. An exponentially fitted spline-
based difference scheme is discussed in [15]. In [23], the authors proposed
the Crank—Nicolson method in the time direction and the operator compact
implicit (OCI) method on the Shishkin mesh in the space direction. The
backward-Euler in the time direction and method of line following Micken’s
type discretization for the space derivatives are used in [16]. Podila and Ku-
mar [20] used a stable finite difference method, which works on a uniform
mesh and an adaptive mesh. Sahoo and Gupta [22] used a higher-order fi-
nite difference method with an identity expansion on a piecewise uniform
mesh. The authors [12, 17] proposed the numerical schemes that work for

both cases when the delay term is large or small. A fitted tension spline
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287 Fitted tension spline method for singularly perturbed parabolic problem ...

method for reaction-diffusion problem with negative shift is used in [5]. A
robust numerical scheme for spatio-temporal delays problem is discussed in

[6]. A nonuniform Haar wavelet method is discussed in [19].

To the best of the authors’ knowledge, the fitted tension spline scheme has
not been developed for solving singularly perturbed parabolic problems with
a large temporal lag. As stated in [24], constructing uniformly convergent
numerical methods regardless of ¢ is an active study area. This motivated us
to look for a sounding numerical scheme that converges uniformly regardless
of €. In this study, we propose a numerical method that comprises the Crank—
Nicolson scheme in the time direction and fitted tension spline scheme in
the spatial direction on uniform meshes. Thus, the main objective is to
develop a more accurate, stable, and uniformly convergent numerical scheme

for singularly perturbed parabolic problems with a large temporal lag.

In this study, C is used as a generic positive constant that is indepen-
dent of the mesh parameters and €. The norm |||, denoted by ||f|| =

max(, )ep | £(s,1)], is the maximum norm.

2 Continuous problem

On the rectangular domain D = Q x A = (0, 1) x (0, T], we consider a singu-

larly perturbed problem of the form

ze(s,t) + Lez(s,t) = —p(s, t)z(s,t — ) + f(s,t), (s,t) €D,

2(8715) = ¢b(87t)7 (Svt) €M = [01 1] X [_Cvo}a
2(0,t) = u(2), on n = {0} x [0, T],
2(1,t) = (1), onn. = {1} x [0,T],

(2)
where L.z(s,t) = —ez45(s,t) + k(8)zs(s, 1) + v(s,t)z(s,t).
Moreover, 0 < ¢ < 1 and ¢ > 0 are given constants, the functions
R(5),7(5,8), 15, ),
f(s,t) on D = Q@ x A = [0,1] x [0,T], and ¥s(s,t), ¥i(t), ¥-(t) on
n = n Un, Un, are sufficiently smooth and bounded that satisfy 0 < w <
v(s,t), 0 <0 < u(s,t), 0 < B < k(s),(s,t) € D. Under these assumptions,
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the solution of the problem (2) exhibits a boundary layer of width O(e) along
s=113].

2.1 A priori bounds
The existence and uniqueness of the solution of (2) can be ensured by the suf-

ficiently smoothness of ¥, (s,t), ¥;(t), ¥.(t), and the compatibility conditions

of the corner points and the delay term [21], which are stated as

'(/)l(()) = %(070)7 wr(()) = %(170)7 (3>
d 0? 0
) TGO ) 228000, 004(0,0) = — (0, 00 (0, )
+ £(0,0),
dip, Oy (1, (1,
00 TGO ey 2P0 1 01,0) = — (1, 0p(1, )
+ f(1,0).
(4)
Taking € = 0 in (2), we obtain reduced problem of the form
270 4 w(5) 2 o (s,8)20(5) = —pls,1)20(5,t = Q) + f(s,8),
20(57t) = qub(svt)? (Svt) € M, (5)
20(0,t) = i (t), teA,

where 2°(s,t) is reduced problem solution.

Lemma 1 (Maximum principle). [3]Let ¢(s,t) € C?(D) N C%(D), given that
¢(s,t) >0 forall (s,t) € pand (2 + L:)d(s,t) > 0, for all (s,t) € D; then
¢(s,t) >0, for all (s,t) € D.

Lemma 2. [3, 7] Let z(s, t) be the solution of (2); then the following estimate
holds:

|2(s,t) —hp(s,0)| < Ct,  (s,t) €D.

Lemma 3. [3, 7] The solution z(s,t) of (2) is estimated as

|z(s, )] < C, (s,t) € D.
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Lemma 4 (Stability result). [12] The solution z(s,t) of (2) is estimated as

|2(s,8)] < @™ L £l + max{|y ()], [u(s, )], [ (B[},

where @w < (s, t).

Lemma 5. [3, 23] Let z(s, t) be the solution of (2); then its derivative satisfies
the estimate
0Pz(s,t - -
‘Zii’)‘ §C<1+€pexp <f(15))), (s,t) € D, p=0(1)4,
‘ OFz(s,t)

atk‘ <C, (s,t) €D, k=0(1)2,

where § < k(s).

3 Numerical scheme

3.1 Temporal discretization

The time interval [0, T] is discretized uniformly with step size At as AM =
{t; = jAt,j=0,1,2,..., Mty = T,At = T/M} and A7* = {t; = jAt,j =
0,1,2,...,m,t, = (,At = {/m} with M mesh points in [0, T] and m mesh
points in [—(,0]. We have T = r( for some positive integer r. The ap-
proximation of z(s,t) at the grid point j + 1 is given as Z/*1(s). Using the
Crank—Nicolson approach for semi-discretizing of (2), we get
At ,

(1 + 2@“) 77+ 1(s) (7)
(1 - Aztﬁem) Z3(s) — Atp(s, tji1/2)0s(s)
+ALf(s,t41/2), forj=0,1,2,...,m,s € Q,
- (1 - Aztﬁam) Z3(s) — Atp(s, tjp12) 231127 (s) (8)
+ALf(s,tj41/2), forj=m+1,.... M —1,5€Q,
Z7H0) = iltye1),  Z7TH(L) = Pe(tye), 0S5 <M,
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where L2170+ (s) = —5% + n(s)% + v(s,tj41) 27 (s) and
Z(s) = Zit(s) ~ z(s,tj11). The local error is defined as e;ji1(s) =

2(s,tj41) — Z9TY(s), j = 0(1) M.
Lemma 6. The local error estimate at t;4 is given as
lej1ll < C(AL)?, 9)
and the global error bound at j 4+ 1th time level is given as
|yl € CARE,  j=1(1)M — 1. (10)

Proof. From the local error estimate, it follows that

Jj+1

S

=1
<CiT(At)*>  since (j+1)At<T,
=C(At)?, where T =20,

1)1l = <llexll + llezll + llesll + - + llejll

where C is constant independent of € and At. O

Lemma 7. For j =0(1)M — 1, p = 0(1)4, then the derivative of the solution

of (7) satisfies the estimate

dPZi+1(s)
dsP

§C<1+€_pexp(—f(1—s)>), s€q. (11)

Proof. For the proof see [10]. O

3.2 Spatial discretization

The spatial domain [0, 1] into N equal number of sub-intervals with the length
of h is given by 0 = sg, $1,...,8xy =1 and s; = ih, i = 0(1)N.

3.2.1 Description of the method

A function &(s,7) in C(€) interpolates z(s) at the mesh points s; that de-
pends on the compression parameter 7 and reduces to a cubic spline on Q as
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T — 0 is referred as a parametric cubic spline function [11]. For each interval
[$iy 8i+1] ;4 = 1(1)N — 1 the spline function &(s,7) = &(s) has the form

(s, tj41) = 76 (5, 1) =[Gua(sis 1) = TS (i, j41)] T2
s —8;

h )

(12)

+ [Gss(sit1,tj11) — 76(sit1,t511)]
where &(s;,t;11) = Z/T" for 7 > 0 is called cubic spline in tension [5].
Putting /7 = ¢ and from the homogeneous part of (12), we get

61(8, tj+1) = Q‘e%(sisi) + %6%(81‘*’175), (13)

for arbitrary constants 2 and 8. Let the nonhomogeneous part be given as

Si+1 — S
h
S—Si) (14)

h

6, (s,tj11) = = 1/7([Sss(sistj1) — 76(sistj41)]

+ [Gss(sit1,tj+1) — T6(Si1,tj41)]

Thus, we have
h 2 « 2 j+17Si+1 — S
Sulstis) = (o) = (5 )z =2

h\* o\’ j+175 — Si
-2 (D41 — 7 Zi] T

where E)JTZ = Gss(siatj+1) and mi+1 = Gss(si—i-lytj—&-l)- USng (13) and (15),

we get

(15)

2 2
(s, 1;41) —RAef (=50 4 e (sm1—s) _ <h> o — (a) ZiE e
h\* o\’ 11,8 — 5
- (&) - (3) 2

From (16), the arbitrary constants can be determined from the interpolation

(16)

conditions &(s;,tj41) and &(s;41,t;41). Then

2 — a. . _
S(s,t501) = [mt,-+1 sinh (o‘(shs)> + 90, sinh (W)]

o?sinh o

h 1, h 1,
- Légimi - hZfH} (si41—8) = |:a29ﬁi+1 - thill] (s = si).

(17)
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The derivative of (17) at (s;,t;+1) on the interval [s;, s;41] is

Zj+1 . Zj+1 h
G(Sj,tj_,'_l) = H‘ITZ_E[WZ‘_,J(I—&CSC}LQH—DJ%(& cotha—1)], (18)

and on the interval [s;_1,s;] is

Zj"rl _ Z~j+1 h
S(s;  tjy1) = ZTH—%E[EDL-W coth a—1)+M;_1 (1—acscha)]. (19)

Equating (18) and (19) at the point s;, we get

zZIM -2z Zfrll ~ M1 (1 — acscha) N 200 (accoth o — 1)

h? a? a? (20)
Miy1(1 — acscha)

+ 5 .

!
Simplifying we obtain

j+1 j+1 j+1
Zit) 227t 4 7]
h2

=M1 + 2029 + 1M1, 1=1(1)N —1,
(21)

where a1 = a~2?(1 — acscha) and as = a~2?(acotha — 1). The continuity

condition in (21) ensures the continuity of the first derivative of &(s) at

interior nodes. From (7), at the grid point j + 1 we determine Z;' =M; =

Gss(Sistjq1) as

(22)

’

—eM; = —k(8:)Z; — (50, tj41) Zi + R(si, tj41),
—eMir1 = —k(8i+1)Zie1 — V(Six1:tjg1) Zit1 + R(Six1, tjs1),

where

—0.5Atu(s;, tj41)p(s:) + 0.5ALf (i, t541),
forj=0,1,2,...,m,s €,

R(si tj41) = —0.5Atu(si7tj+1)Zg+lfm + 0.5Atf(sistj11),
forj=m+1,..., M —1,5€Q,

Z71H0) = tu(tj41), 277N (1) = p(tj41), 0<j < M.

(23)
The local truncation error %1 (h) obtained from (21) is
h4 1 h4
Ti(h) = E(—Qal + az)k(s:)Z (s;) + ﬁ(l —1201)k(s:)eZ@ (s5) + O(hS),
(24)
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293 Fitted tension spline method for singularly perturbed parabolic problem ...

for any choice of oy and e whose sum is 1/2. For the choice ay = 1/12 and
as =5/12, we have

eh®

=—7 2
240 (25)

T1(h) ©) (s4), 5i € [8i—1,Si41)-

We approximate Z;ﬂ and Z; as

"o Zix1—Zi
~ 2h ’
o 32142+ Zi
N T (26)
! ~ —Ziv1+4Z;—3Z; 1
i—1 7 2h :

N NN

Substituting (26) and (22) into (21) and rearranging, we get

At ; At ;
(1+ 7@&’}1)23“ =(1- 7ﬁsm’h)zf + o1 (R(si-1, ;) + R(si-1,t41))

+ 202(R(si, £5) + R(si, tj41)) + a1(R(sis1, ;)

+R(siv1,t541))s

where

At L Ap by il —EAL g i+1 i+1 a1 Atk(si—1) i1
(1+7Ls s =w(sz1 -2z} +Z{+1)+T(_3fo1

j+1 i+1y , Q2AR(si) 41 j+1
+4zlT -zl + —— Lzl -2

a1 Ats(sit1) 41 j+1 j+1
T(fol—‘izf +3Z11)

+ o (1 +0.5Aty(si—1,tj41)) 2] 4]
+02(2 + Aty(si, tj1)) 2]

+ o1 (14050t (sip1,t541)) 201 (28)

To handle the steep gradient of the solution, we introduce the exponential

fitting factor 0. Now, multiplying term containing ¢ of (28) by o, we obtain
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—O'EAt 1 i1 1 OélAtK/(Si_]_) i1 i1 1
o (ZIt —2zit™ v ZITH + T(—:azgjl +4zIt -z
o Atk(s;) 1 a1 Atk(Siq1) s 1 1
+ T(sz—tl Zz]+11) + T(szjll - 4Zf+ + 32311 )

+ (14 058y (siq1,ti11)) 200 + a2+ Aty(siga, tj1)) 20
+ 011(1 + 0.5At")/(5¢+1, tj—i-l))ZiJ,-l = 0[1%(81'_1, tj+1) + 20[2%(81', tj+1)
+ o R(Sig1,tj41)-
(29)

From [18], the zero-order asymptotic solution of problem (7) about s =1 is

given as

Z(si) = Z(ih) = Zo(1) + (¥r — Zo(1)) exp(=£(1)ip), (30)

where p = % Multiplying (29) by h and taking a limit as A — 0, which gives

1
— g lim (Zifl — 2ZZ + Zi+1) + M lim(—BZi,1 + 4Zz - Zi+1)
p h—0 2  h—0 (31)
1
+ OZQH(].) lim (Zi+1 - Zi—l) + %() lim (Zi—l - 4Z1 + 3Zi+1) = 0,
h—0 2 h—0

limp0(Z((i — 1)h) — 2Z(ih) + Z((i + 1)h))
Uy — Zo(l))e(—ﬂ(l)ip)(eﬁ(l)/) 4+ erp _ 2),
3Z((i—1)h) +4Z(ih) — Z((i+ 1)h))

(
=(
limy, 0(—
= (¢ — Zo(1))e 1)w)( 3er(Wp _ o—r(Lp L 4),
(
= (
(

- (32)
limy_0(Z((i — 1)h) — 4Z(ih) + 3Z((i + 1)h))
Uy — Zo(l))e ”(1)10)( k(1)p + 3e—rw(p _ 4)7
limy, o(Z((i + 1)) — Z((i — 1)h))
= (¢ — Zo(1))elrie) (=R _ r(1)p),

Substituting (32) into (31), we obtain

pfﬁ(l)).

o = pk(1)(aq + ag) coth( 5

(33)
The variable exponential fitting factor is given as

o; = pr(s;) (a1 + asg) coth(pﬁési) ). (34)

Using (34) and (27) for s = 1(1)N — 1 and j = 1(1)M — 1, we have

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 284-310
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At ; At ;
(1+ jﬁem’h)Zzﬁl =(1- 7ﬁem’h)zf + o1 (R(si-1,15) + R(si-1,t541))
+ 2012 (ER(S,-, tj) + %(Si, tj+1))

+ a1 (R(si41,t5) + R(sit1,541)),

(35)
where
(1+ %ﬁgmvh)zf“ E_Z‘th(szf —2zI* + zZHh
a1AtZ]ES¢—1) (=3Zit1 4 az7+ — Z{if)
+ 280 it 2
N alAtZ}(LSHl) (21— 4zt 3Zgj:11) (36)
+ a1 (1 + 0.5A8y(si1,tj41)) 201!
+ a2+ Aty(si,tj41)) 23t
+ar(1+ 0.5Ay(si41,tj41)) 21
Finally, (35) can be written as a system of equation
;21 02T o 2T =erZ) |+ 7] v efz),,
+ o (R(si-1,15) + R(si-1,t541)) 37

+ 200(R(si, t5) + R(sis tj11))
+ a1 (R(si41,t5) + R(siv1, j41)),

where
”D; _ —;Zé _ 3a1n4(’;97;71) _ a2;}(bsl-) + a1m5jj+1) + 0.5(11’7(Si—1atj+1) + %,
@? = EhUQi + Oélli(}fz‘—l) _ a1/€(}fi+1) + a2’7<5i,tj+1) + %7
Df = —gop — canleicn) | oar(e) 4 Soarlsin) 40 5oy (s, t00) + 4,
(38)
¢ = £9 Baik(si—1) | azr(si) _ oar(sip1) 0.5 i tj X
i =gt an + =32 4h Sary(si-1tie) + 5
€0 = —55 — i) g o) (s, 1) + 25,
¢ = ggp 4 cunleimy) _ oapden) _ Seuslin) 0 500 q(siqa, ) + 53,
(39)
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—0.5u(si, tj+1)¥n(si) +0.5f(sistj41),
forj=0,1,2,...,m,s €,
—0.5A (50, t01) 20T T 0.5f (si,tj41),
forj=m+1,... M—-1,s€Q, 0<j<M.
(40)

R(si tj+1) =

3.3 Convergence analysis

Lemma 8 (Discrete maximum principle). Assume that Z(J)‘+1 >0, Z]];,H >0
and (1 + 4tL.AMMZIT > 0, foralli = 1(1)N — 1; then Z/T' >
0, foralli=0(1)N.

Proof. Assume there is k € {0,1,2,..., N} such that Zi“ = ming<;<n

Zin < 0. Assume that Z,i“ < 0 and from the assumption, it is shown that
k ¢ {0,1}. So that, we have Z{1} — Z]*!' > 0 and Z}™' — Z{*} < 0. Then,
we get (1+ %AC:EAt’h)ZZ-jJrl < 0 for k = 1(1)N —1. So, the assumption Z/*' <
0 for all ¢ = 0(1)NV is wrong. Therefore, Zin >0, foralli=0(1)N. O

Lemma 9 (Stability result). The solution Zl-j 1 of the scheme in (35) satisfies

| (145t 20

»
|2 < S + masc{lr(t0)]; [ (6401
&[}EAt,h Z'.j+1
Proof. Let 11 = N0EZ L 020y mmac{un(t4.1) |, [ (t1)1}, and set the

barrier functions 19;%].4_1 as ﬁfj-&-l =11+ 7!

/", On the boundaries, we have

+ j+1
Uy =1+ Zy
I+ AL Az
1+ %w

+max{|Yy(ti1)l], [¥r(tie)]} £ i(tj1)

>0

and
+ j+1
19N7j+1 =1+ Z?V

Az
1+%w

+ max{ [ty (tj1)], [r (tj10)} £ Yr(tivr)
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> 0.
On the discretized domain s;, i = 1(1)N — 1, we have

(1 4 At e h>19;ij+1 =M+ 7/ — (coi) s At

5 o (HiZj*f — o+ Z/th

+HiZgi11>+ 1At (81h1)<—3(HiZf+11)

+4M+ 27 -+ ijf))

At ;h) (Hizgjf (I + Z{jf))

ar At (ff];“) (H + 7 4 2

At ;
+3(IT & Zﬁf)) + 70417(31'—17 tj1) (£ Z5)
+ Aty (s, tit1) (H + ZijJrl)

At

+ 7a1’7(81+17 J+1)<H + Zg_tll)

At
=(1+ 7017(5i—1atj+1) + Atagy(si, tjr1)

At

At ;
+ 70417(51“, ]+1))H + ( 2£€At,h> Zf“

At
:(1 —+ ?aly(si_l,tj+1) —+ AtOéQ’}/(Si,tj_;,_l)

| (Lt 4te otz
1+ %w

At
+ 7041’7(81'“7 tj+1)) (

+ max{|¢(tj41)] Wr(tj-i-l)'})
+ (1 - 7£ At h)zﬂ“ > 0.

(41)

From Lemma 8, we get ﬁfjﬂ > 0, i = 0(1)N. Hence, the necessary
bound is satisfied. O

Using Taylor’s series approximation, we have the bounds
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d . A4 ZI+1(s;)
(L g2 zitisy)| <on?| 1)
(d52 S) (s1)] <C ds*
A2 (sim0) (=ZLE + 420 32T | | P27 (s:)
ds 2h - ds?
A7t (si1) (320 -4z v 2] <o €25
ds 2h - ds3
d A d3Zi+1(s;) : d*Z7 (s4)
= 50 ) gt Il < Ch2|| 222V |52 79+ Dl <c e S VA
'(ds 5> (s)‘ - ds3 e (5:)] < ds? ’
(42)
where || Z7, (s:)]| = maxe,<s, <o [ 2551 (s0)] 10 = 2,3, 4.
For the constants p > 0, C; and Cs, we have
P’ P
< h(p) —1< . 4
Clp+1_ﬂ00t (p) _Czp+1 (43)
Following (43), we have
pr(), o C(hf? | 2 (s:)
}e[pﬁ;(l)(al + ag) coth( 3 ) —1]6z 27 (sl)| <e hje+1 75
_COh? ||d?Z71 (sy)
h+e ds? ’
(44)

since a + g < 1/2.

The next theorem provides the error bound in the space direction for the

boundary layer along s = 1.

Theorem 1. Let Z7+1(s) be the solution of (7). Then the solution Z7 ™" of

(35) satisfies the following error estimate

’EEAt,h(Zj+l(si) _ Zij+1)| < % <1 +e3exp <_ 5(1 — si))) (45)

Proof. In the spatial direction, the local truncation error is given by
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de+1 Si—
+ 041/‘6(81'—1) <dil>

- i
B (‘3251 +427 - 775 ))
2h

£€At,h(Zj+1(si) _ le-‘rl)

+ 2a9k(8;) (Ci — (52) ZjH(si)

de+1 S;
+ 041H(Si+1) <di+1)

ZitY g gzitl gzl
() e

elpr(1)(aq + a2) coth(/ﬁ(l)g) - 1]6§Zj+1(si))’

d? ;
tle( g - 22) 270

ds?
deJrl(Si,l)
+ 04111(51'—1) <d8

(—325*% +4zIt - ZZI%)) ’
2h

<

+ |2a0k(s;) (js — (58) Zj'H(sZ-)’

de+1 S;
+ OA1H(Si+1) (cL(SH)

()]

Using the bounds in (42) and (44), we obtain

LA (23T (s)) — 70+ Shci dQZZ;(Si)H
+ Ch? % + Ceh? ‘142;;(‘91‘)“
+Oh4(—2a1 + ) CFZ:;;(‘%)H
+ Cehd(1 — 1201) WH

From Lemma 7, we obtain
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EeAt,h(Zj+1(Si) _ Zij_H)

Ch? L 8
< — — — S
o €(1+€ exp( 5(1 51>>

+ Ch? [1 +e % exp ( - g(l - sl)>

+a+a—3exp(— g(l - si)ﬂ

+ Ch* (=201 + ay) <1 +e P exp < B é(l - SZ)))

€
+ Ch* (1 — 1201) <€ +e 3 exp ( - é(l - 51)>)
€
Ch?
el 20-4)
since €72 < £73 and obtain the desired bound. O
Lemma 10. For a fixed mesh and as € — 0, it gives
—0s; —6(1 —s;
lim max exp(=fsi/e) =0, lim max exp(=B{ = si)/e) =0, (46)
e—=0 ep e—0 ep

where p=1,2,3,..., s;=ih, i=1(1)N — 1.

Proof. The proof can be done by using L’Hospital’s rule. For details, refer
to [27]. O

Theorem 2. Let Z/™" be the solution of (35). Then we have the following

uniform error bound:

sup max |2/ (s;) — ZIT| < Ch, i =0(1)N. (47)
e€(0,1] *

Proof. Substituting Lemma 10 into (45), we arrive at

Ch?
< .
~ h+e

LAM(ZIH (si) — ZTT) (48)

Hence, the result leads [Z7+1(s;) — ZI ™| < f—ﬁi Using the sup over all
e € (0,1], we get

sup max ’Zjﬂ(si) - ZZH‘ < Ch. (49)
ee(0,1] *
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From the preceding theorem for the case when € > h, the obtained scheme
gives second-order uniformly convergent. For the case when ¢ < h, the

scheme is first order uniformly convergent in spatial direction. O

Theorem 3. Let z and Z be the solutions of (2) and (35), respectively. Then
we have the following uniform error bound:
sup |z — Z| < C(h+ (At)?). (50)
e€(0,1]

Proof. The proof can be done by the combination of Lemma 6 and Theorem
2. O

4 Numerical results and discussions

To show the applicability of the proposed method, two test examples are con-
sidered. Since the exact solutions of the examples are not known, we used a
variant of the double mesh principle for the numerical inquiries. Therefore,

we calculate, the maximum pointwise error by ENM = max, , |Zfan{‘L/[ —

Z2N’2M

2M2M| the e-uniform error by ENV'M = max,, ., (EN-™), the rate of conver-

gence by 7'M = log 2( EN-M | E2N:2M) "and the e-uniform rate of convergence
by TN’]\/I — 10g2(EN’M/E2N’2M).

Example 1. Consider the problem [3, 17] 2= — E% +(2—52)E +s2(s, 1)+
z(s,t — () = 10t? exp(—t)s(1 — s),

(s,t) € (0,1) x (0,2] with interval condition z(s,t) = 0, on (s,t) € [0,1] x
[—1,0] and the boundary conditions z(0,t) = 0 and z(1,t) =0, t € (0,2].

Example 2. Consider the problem [4, 17] % — 5% +(2-5)% 4+ (s+
D)(t+1)2(s,t) +2(s,t —¢) = 10t% exp(—t)s(1 — s), (s,t) € (0,1) x (0,2] with

[0,1] x [~1,0] and the boundary
[0, 2].

interval condition z(s,t) = 0, on (s,t) €
conditions z(0,t) = 0, and 2(1,t) =0, ¢ €

The ENM EN-M " and the corresponding r™™ of the proposed tech-
nique are revealed in Tables 1 and 3 for Examples 1 and 2, respectively, for
different values of ¢ and N. These tables show that for every value of ¢,
the maximum absolute error monotonically decreases as the step sizes de-

crease, and as € approaches zero, the maximum absolute error after getting
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Table 1: EéV’M,ENvM, and ™M for Example 1 for a1 = 1/12 and a2 = 5/12.

Number of intervals N = M

el 16 32 64 128 256 512
270 5.0399e-04 1.5987e-04 5.6377e-05 2.2272e-05 9.6656e-06 4.3894e-06
272 2.1240e-03 7.1347e-04 2.6592e-04 1.1006e-04 4.9294e-05 2.3209e-05
274 3.9802e-03 1.3004e-03 4.8076e-04 1.9753e-04 8.7978e-05 4.1282e-05
26 1.0244e-02  3.2295e-03  7.6535e-04 2.7318e-04 1.1175e-04 5.1015e-05
28 1.1878e-02 5.7134e-03  2.4464e-03 7.8054e-04 1.8740e-04 6.6483e-05
2710 1.1882e-02 5.8162e-03 2.8862e-03 1.4139¢-03  6.0782¢-04  1.9424¢-04
2712 1.1882e-02 5.8162e-03 2.8872e-03 1.4413e-03 7.2030e-04 3.5336e-04
2714 1.1882e-02 5.8162e-03 2.8872e-03 1.4413¢-03 7.2055¢-04  3.6032¢-04
2716 1.1882e-02 5.8162e-03 2.8872e-03 1.4413e-03 7.2055e-04  3.6032e-04
2718 1.1882e-02 5.8162¢-03 2.8872e-03 1.4413¢-03 7.2055¢-04  3.6032e-04
2720 1.1882e-02 5.8162e-03 2.8872¢-03 1.4413e-03 7.2055¢-04  3.6032¢-04
ENM o 11882¢-02  5.8162e-03  2.8872e-03  1.4413e-03  7.2055e-04  3.6032e-04
rNM 1.0306 1.0104 1.0023 1.0002 0.99982 —

Table 2: EN'M and rN>M for Example 1 and results in [9, 12, 15, 27].

Number of intervals N = M

Schemes | 16 32 64 128 256 512
Proposed scheme
ENM 1.1882e-02  5.8162e-03  2.8872¢-03 1.4413¢-03  7.2055¢-04  3.6032¢-04
M 1.0306 1.0104 1.0023 1.0002 0.99982 -
Results in [9]
ENM 8.7361e-03  5.1124e-03  2.7590e-3  1.4328¢-03  7.2999e¢-04  3.6844e-04
M 0.7730 0.8899 0.9453 0.9729 0.9865 -
Results in [27]
ENM 1.0409e-02  4.9874e-03  2.6159e-03  1.4219e-03  7.3985e-04  3.7720e-04
M 1.0615 0.9310 0.8795 0.9425 0.9719 -
Results in [15]
ENM — 7.2307¢-03  3.8523¢-03  1.9892¢-03  1.0107e-03  5.0944e-04
PN M - 0.90842 0.95353 0.97683 0.98837 -

Result in [12]
EN.M 3.41e-02 1.84e-02 9.38e-03 4.67e-03 2.31e-03 1.15e-03
rV-M 0.8901 0.9720 1.0062 1.0155 1.0063 -
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Table 3: EéV’M, ENM and MM for Example 2 for a1 = 1/12 and as = 5/12.

N=16 32 64 128 256 512
el M=10 20 40 80 160 320

270 8.1710e-04 3.5168¢-04 1.6053e-04 7.6328¢-05 3.7167e-05 1.8335e-05
272 2.3598¢-03 1.0816e-03 5.1201e-04 2.4851e-04 1.2233e-04 6.0677e-05
271 2.9539¢-03 1.4712e-03 7.3670e-04 3.6814e-04 1.8394e-04 9.1933e-05
276 4.3251e-03 2.0366e-03 7.3922e-04 3.5960e-04 1.9129e-04 9.9512e-05
278 4.1885e-03 2.4284e-03 1.3065¢-03 5.6293e-04 1.9382e-04 9.0346e-05
2710 41877e-03  2.4165e-03 1.3326e-03 7.0702e-04 3.5310e-04 1.4638¢-04
2712 4.1877e-03  2.4165e-03 1.3325e-03 7.0716e-04 3.6542e-04 1.8562e-04
2714 4.1877e-03  2.4165e-03 1.3325e-03  7.0716e-04 3.6542e-04 1.8591e-04
2716 4.1877e-03  2.4165e-03 1.3325e-03 7.0716e-04 3.6542e-04 1.8591e-04
2718 4.1877¢-03  2.4165¢-03 1.3325e-03 7.0716e-04 3.6542e-04 1.8591e-04
2720 4.1877e-03 1.9148e-03 1.3325e-03 7.0716e-04 3.6542e-04 1.8591e-04

ENM - 41885e-03  2.4284e-03  1.3326e-03  7.0716e-04  3.6542e-04  1.8591e-04
pVM 0.7864 0.8658 0.9141 0.9525 0.9750 —

Table 4: EN-M and »N-M for Example 2 and results in [8, 9, 17, 20, 27].

Schemes | N=16 32 64 128 256
M=10 20 40 80 60
Proposed scheme
EN.M 4.1885e-03  2.4284e-03  1.3326e-03  7.0716e-04  3.6542e-04
rNM 0.7864 0.8658 0.9141 0.9525 0.9750
Results in[17]
EN.M 6.2345e-03  3.3323e-03  1.7040e-03  8.5888e-04  4.3092e-04
rNM 0.90376 0.96759 0.98840 0.99504 -
Results in [9]
ENM 5.9184e-3 3.2992¢-3 1.7387e-3 8.9106e-4  4.5088e-4
rNM 0.8431 0.9241 0.9644 0.9828 0.9915
Results in [27]
EN.M 5.4832e-03  3.3921e-03  1.8292e-03  9.4367e-04  4.7832e-04
rNM 0.6928 0.8910 0.9549 0.9803 0.9909
Results in [20]
EN.M 7.4252e-03  4.0993e-03  2.1528e-03  1.1033e-03  5.5845e-04
rNM 0.8570 0.9291 0.9644 0.9822 -
Results in [8]
EN.M 1.6119e-02  9.9504e-03  5.8541e-03  3.3439e-03  1.8650e-03
VM 0.6960 0.7653 0.8079 0.8424 0.8660
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Table 5: Eév M and réV’M
el Example 1 Example 2
N=16 64 256 16 64 256
M=16 32 64 16 32 64
278 1.1878e-02  2.8201e-03  4.5728e-04 | 3.1525e-03  1.5003e-03  4.5534e-04
2.0745 2.6246 — 1.0712 1.7202 -
2710 1.1882e-02 3.2531e-03  9.2321e-04 | 3.1516e-03  1.5299e-03  6.4765e-04
1.8689 1.8171 — 1.0426 1.2402 —
2712 1.1882e-02  3.2540e-03  1.0390e-03 | 3.1516e-03  1.5298e-03  6.6540e-04
1.8685 1.6470 - 1.0427 1.2010 -
2714 1.1882e-02  3.2540e-03  1.0393e-03 | 3.1516e-03  1.5298e-03  6.6541e-04
1.8685 1.6466 - 1.0427 1.2010 -
2716 1.1882e-02  3.2540e-03  1.0393e-03 | 3.1516e-03  1.5298e-03  6.6541e-04
1.8685 1.6466 — 1.0427 1.2010 -
2718 1.1882e-02  3.2540e-03  1.0393e-03 | 3.1516e-03  1.5298e-03  6.6541e-04
1.8685 1.6466 - 1.0427 1.2010 -
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large becomes constant, which demonstrates the e-uniform convergence of

EN’M

the proposed scheme. On the other hand, the calculated and the cor-

responding ™M

using the proposed scheme are given in the last two rows,
which confirms that the theoretical finding of the developed scheme is order
one in the space direction. On the other hand, the results revealed in Table
5 confirm that the theoretical finding of the developed scheme is order two
in the temporal direction. The comparison of the results of the developed
method with the existing recently published works is revealed in Tables 2 and
4. From each table, one observed that the developed scheme outperforms ex-
isting methods.

The numerical solutions of the proposed scheme for each example are
revealed in Figures 1 and 2. From Figures 1 and 2, it can be seen that a
strong boundary layer is maintained along s = 1 as ¢ — 0. Furthermore,
to show the effect of € on the steepness of the boundary layer the solutions
are depicted in Figure 3. In each figure, we observe that as € — 0 the width
of the boundary layers decreases, which confirms the desired result, that is,
the boundary layer width of O(g). In addition, in Figure 4, the maximum
pointwise errors of the scheme are plotted by the log-log scale. From these
figures, one can observe that maximum absolute error decreases as the step
sizes decrease for every value of €, which confirms the e-uniform convergence

of the proposed scheme.

5 Conclusion

In this study, we initiated a fitted tension spline numerical scheme for a sin-
gularly perturbed parabolic problem with a large temporal lag. The solution
to the problem exhibited a boundary layer on the right side of the domain.
The proposed scheme comprises the Crank—Nicolson method in the time di-
rection and an exponentially fitted tension spline scheme in the spatial direc-
tion. The efficiency and applicability of the developed scheme are validated.
The computational results are tabulated in terms of ENM ENM and the
corresponding 7V*™ . The effect of £ on the steepness of the boundary layer is
revealed graphically. Furthermore, the computational results are compared

with some of the existing literature and the obtained scheme outperforms ex-
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isting methods. The proposed method contributes a more accurate, stable,

and e-uniform numerical result with a linear order of convergence in space

and second-order convergence in time. The proposed scheme can be extended

for singularly perturbed turning point problems.
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