[1] Akkilic, A.N., Sulaiman, T.A., Shakir, A.P., Ismael, H.F., Bulut, H., Shah, N.A., and Ali, M.R. Jaulent–Miodek evolution equation: Analyti-cal methods and various solutions, Result. Phys. 47 (2023), 106351.
[2] Athanasakis, I., Papadopoulou, E., and Saridakis, Y. Hermite Colloca-tion and SSPRK Schemes for the Numerical Treatment of a General-ized Kolmogorov–Petrovskii–Piskunov Equation, In Proceedings of The World Congress on Engineering, 2015.
[3] Carillo, S., and Ragnisco, O. Nonlinear evolution equations and dynam-ical systems, Springer Berlin, Heidelberg, 2012.
[4] Chand, A., and SahaRay, S. A numerical treatment of the Rosenau–Hyman equation for modeling pattern formation in liquid droplets, Mod-ern Phys, Lett, B 38 (12) (2023), 2450038.
[5] Chand, A., and SahaRay, S. Numerical simulation of Allen–Cahn equa-tion with nonperiodic boundary conditions by the local discontinuous Galerkin method, Int. J. Modern Phys. B 37 (02) (2023), 2350019.
[6] Dehghan, M., and Abbaszadeh, M. Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion, Comput. Method. Appl. Mech. Engin. 300 (2016), 770–797.
[7] Du, Q., Ju, L., and Lu, J. A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems, Math. Com-put. 88 (315) (2019), 123–147.
[8] Feng, J., Li, W., and Wan, Q. Using (G′/G)-expansion method to seek the traveling wave solution of Kolmogorov–Petrovskii–Piskunov equation, Appl. Math. Comput. 217 (12) (2011), 5860–5865.
[9] Ghosh, B., and Mohapatra, J. A novel numerical technique for solving time fractional nonlinear diffusion equations involving weak singularities, Math. Method. Appl. Sci. 46 (12) (2023), 12811–12825.
[10] Gottlieb, S., and Shu, C.W. Total variation diminishing Runge–Kutta schemes, Math. Comput. 67, 221 (1998), 73–85.
[11] Huang, C., An, N., and Yu, X. A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient, Appl. Numer. Math. 151 (2020), 367–379.
[12] Inan, B., Osman, M.S., Ak, T., and Baleanu, D. Analytical and numer-ical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations, Math. Method. Appl. Sci. 43 (5) (2020), 2588–2600.
[13] Jiao, Y., Wang, T., Shi, X., and Liu, W. Mixed Jacobi-Fourier spectral method for Fisher equation, Math. Model. Anal. 23 (2) (2018), 240–261.
[14] Khater, M.M., Attia, R.A., and Lu, D. Computational and numer-ical simulations for the nonlinear fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation, Physica Scripta 95 (5) (2020), 055213.
[15] Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (6) (2012), 2248–2253.
[16] Kudryashov, N.A., and Loguinova, N.B. Extended simplest equation method for nonlinear differential equations, Appl. Math. Comput. 205 (1) (2008), 396–402.
[17] Li, B.Q. Discontinuous finite elements in fluid dynamics and heat transfer, Springer, London, 2006.
[18] Ling, D., Shu, C.W., and Yan, W. Local discontinuous Galerkin meth-ods for diffusive–viscous wave equations, J. Comput. Appl. Math. 419 (2023), 114690.
[19] Ma, W.X., and Fuchssteiner, B. Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation, Int. J. Non-linear Mech. 31(3) (1996), 329–338.
[20] Namjoo, M., and Zibaei, S. Numerical solutions of FitzHugh–Nagumo equation by exact finite-difference and NSFD schemes, Comput. Appl. Math. 37 (2018), 1395–1411.
[21] Santra, S., and Mohapatra, J. Numerical treatment of multi-term time fractional nonlinear KdV equations with weakly singular solutions, Int. J. Model. Simul. 43 (1) (2023), 23–33.
[22] Tao, Q., Xu, Y., and Shu, C.W. An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives, Math. Comput. 89 (326) (2020), 2753–2783.
[23] Xu, Y., and Shu, C.W. Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys. 7 (1) (2010), 1.
[24] Yan, J., and Shu, C.W. Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, J. Sci. Comput.17 (2002), 27–47.
[25] Yan, Z., and Zhang, H. New explicit solitary wave solutions and peri-odic wave solutions for Whitham-Broer-Kaup equation in shallow water, Phys. Let. A 285, (5-6) (2001), 355–362.
Send comment about this article