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Abstract

The main focus of this work is to develop and implement an efficient lo-
cal discontinuous Galerkin scheme for acquiring the numerical solution of
the (1 + 1)-dimensional nonlinear Kolmogorov–Petrovskii–Piskunov equa-
tion. The proposed framework employs a local discontinuous Galerkin
discretization technique in the spatial direction and a higher-order total
variation diminishing Runge–Kutta scheme in the temporal direction. The
L2 stability of the local discontinuous Galerkin method, which is ensured
by carefully selecting the interface numerical fluxes, is discussed in detail.
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The Kudryashov technique is also employed in this work to acquire the an-
alytical traveling wave solution of the governing Kolmogorov–Petrovskii–
Piskunov equation. Furthermore, the comparison between the obtained
analytical and numerical solutions is demonstrated by computing the L2

and L∞ error norms. The accuracy and efficacy of the numerical local
discontinuous Galerkin method solutions are validated by comparing them
with analytical Kudryashov method solutions. For a more comprehensive
understanding of the obtained analytical solutions, various graphical il-
lustrations are presented in both two-dimensional and three-dimensional
representations.

AMS subject classifications (2020): 35B35, 35G30, 65M60, 65N30.

Keywords: The Kolmogorov–Petrovskii–Piskunov equation; Kudryashov
method; Local discontinuous Galerkin method; Total variation diminishing
Runge–Kutta method; Stability analysis.

1 Introduction

Seeking analytical and numerical solutions for higher-order nonlinear evolu-
tion equations (NLEEs) has been an appealing and widely discussed topic for
a long time. It has a significant impact on understanding the evolution of nu-
merous nonlinear physical phenomena and is crucial when investigating non-
linear optics, coastal structures, plasma physics, biology, fluid physics, and
other interrelated disciplines [3]. Over time, numerous researchers have devel-
oped a number of efficient and powerful methods for solving diverse nonlinear
models, both analytically and numerically [25, 21, 1, 9]. Yan and Zhang [25]
obtained new explicit solitary wave solutions of the WBK equation in shallow
waters by a new generalized transformation based on the well-known Riccati
equation. In their study, Santra and Mohapatra [21] employed a highly ef-
fective recursive numerical method to solve the multi-term time-fractional
nonlinear KdV equation. Akkilic et al. [1] investigated the Jaulent-Miodek
evolution equation using the (m + 1/G′)-expansion and the rational sine-
cosine methods. Ghosh and Mohapatra [9] utilized the Daftardar-Gejji and
Jafari technique to address a fractional-order nonlinear diffusion model. In
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the current work, we consider the (1+1)-dimensional nonlinear Kolmogorov–
Petrovskii–Piskunov (KPP) equation, which is given in the following form:

ut − uxx + µu+ νu2 + δu3 = 0, (x, t) ∈ (a, b)× (0, T ] (1)

with an initial condition

u(x, 0) = u0(x), (2)

and boundary conditions

u(a, t) = Ψ1(t)andu(b, t) = Ψ2(t), t ≥ 0, (3)

where µ, ν, and δ are arbitrary real parameters, and u(x, t) represents the
state evolution over the spatial-temporal domain specified by the x and t co-
ordinates. The nonlinear KPP equation [19] which encompasses the Fisher,
Newell–Whitehead, and Fitzhugh–Nagumo equation under certain condi-
tions, is a mathematical model for studying many physical, chemical, and
biological phenomena. When µ = −1, ν = 1, δ = 0, the KPP (1) yields the
Fisher equation [13]. When µ = −1, ν = 0, δ = 1, the KPP (1) reduces to the
Newell–Whitehead equation [12]. For ν = −(µ+ 1), δ = 1; the KPP (1) rep-
resents the Fitzhugh-Nagumo equation [20]. Over the years, many powerful
analytical and numerical methods [8, 2, 14], have been implemented to solve
the governing nonlinear KPP (1). Feng et al. [8] implemented the (G′/G)-
expansion method in their study to acquire the traveling wave solutions of
the nonlinear KPP (1). The Hermite collocation and SSPRK schemes are
employed by Athanasakis, Papadopoulou, and Saridakis [2] to solve a gener-
alized KPP equation numerically. Khater, Attia, and Lu [14] implemented
the modified Khater method and B-spline schemes to solve a fractional model
of the governing KPP (1).

This work implements the Kudryashov and the local discontinuous Galerkin
(LDG) methods to acquire the analytical and numerical solutions for the non-
linear (1+1)-dimensional KPP equation. The analytical Kudryashov method
was introduced and subsequently named after Kudryashov [15, 16] to con-
struct exact traveling wave solutions for a wide range of nonlinear models.
The Kudryashov method is based on implementation a special version of the
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singularity manifold within the truncation procedure. This method enables
us to reduce the challenge of acquiring exact solutions by solving the overde-
termined system of algebraic equations. The key advantage of utilizing the
Kudryashov technique is based on its remarkable ability to construct exact
analytical solutions for higher-order NLEEs.

The LDG technique is one of the discontinuous Galerkin (DG) finite ele-
ment methods that was initially proposed by Cockburn and Shu in a series
of articles, which are listed in the review paper [23]. The LDG method is
a highly appealing tool for solving a wide range of partial differential equa-
tions due to its versatility and success in handling mesh and shape functions.
The LDG finite element approach is particularly noteworthy for its efficient
handling of meshes with hanging nodes, elements of arbitrary structures, and
variable local spaces. This feature enables effective hp-adaptivity, which leads
to the interfacial layers and the complicated geometric structures of the solu-
tion being solved with high accuracy. The fundamental principle of the LDG
technique, as outlined in this article, involves converting a given model with
second-order derivatives into a system consisting only of first-order deriva-
tives by employing auxiliary dependent variables. Following the discretiza-
tion of the generated first-order system using the DG finite element spatial
discretization scheme, a set of ordinary differential equations (ODEs) is pro-
duced. The ODEs are further discretized in time using the nonlinearly stable
third-order total variation diminishing Runge–Kutta (TVD-RK3) methods
[10] to obtain the desired numerical results. One notable advantage of the
present LDG method framework is its provable L2 stability, which is ensured
by careful selection of the interface numerical fluxes that result from inte-
gration by parts. Chand and Saha Ray [5, 4] have successfully implemented
the LDG technique to construct numerical solutions for the Allen–Cahn and
Rosenau–Hyman equations. In addition, the LDG approach is used to exam-
ine various relevant equations in [24, 6, 7, 22, 11, 18].

This work represents the very first application of the numerical LDG
scheme to the governing nonlinear KPP (1), thereby offering a novel contribu-
tion to the field. The present article is organized as follows: A comprehensive
overview is presented in section 1. The analytical Kudryashov technique and
its application in constructing an exact solution to the governing KPP (1)
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are outlined in section 2. In section 3, the formulation and implementation
of the LDG scheme algorithm, as well as spatial and TVD-RK3 temporal dis-
cretization techniques, are discussed in detail. The L2 stability of the LDG
method for governing KPP (1) is also established. Moreover, numerical sim-
ulations are included in section 4 to validate the accuracy and efficacy of the
numerical LDG scheme in solving the nonlinear KPP (1). Finally, section 5
offers the conclusion of this work.

2 The Kudryashov method

This section presents the analytical solution of the governing KPP (1) using
the Kudryashov technique. Consider the following traveling wave transforma-
tion by taking the combination of real variables x and t into a single variable
ξ,

u(x, t) = U(ξ), ξ = kx+ ct, (4)

where c and k are nonzero constants. The nonlinear KPP (1) is then reduced
to the the following ODE for u = U(ξ) using (4) as follows:

c
dU
dξ − k2

d2U

dξ2 + µU + νU2 + δU3 = 0. (5)

2.1 Application of the Kudryashov method to the KPP
equation

Let the solution U(ξ) of ODE (5) be expressed as a finite expansion:

U(ξ) =

N∑
i=0

aiΦ
i(ξ), Φ(ξ) =

1

1 + exp(ξ) , (6)

where ai(i = 0, · · · , N, aN ̸= 0) denotes as-yet-undetermined constants and
the positive integer N denotes the pole order for the general solution of (5).
The function Φ(ξ) satisfies the first-order Riccati equation dΦ

dξ = Φ2 − Φ.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 79–98



Chand and Mohapatra 84

Balancing U3 and d2U
dξ2 in (5), it yields the pole for the general solution is

of the first order, that is, N = 1. Hence, the analytical solution U(ξ) of (5)
has the following form:

U(ξ) = a0 + a1Φ, a1 ̸= 0. (7)

By plugging (7) and its derivatives into (5), it yields a polynomial in Φ(ξ)

as follows:(
−2a1k

2 + a31δ
)
Φ3 +

(
a1c+ 3a1k

2 + 3a0a
2
1δ + a21ν

)
Φ2

+
(
−a1c− a1k

2 + 3a20a1δ + a1µ+ 2a0a1ν
)
Φ+

(
a30δ + a0µ+ a20ν

)
. (8)

Now, equating the coefficients of Φi(i = 0, 1, . . . , 3) to zero in (8) yields
the set of simultaneous algebraic equations as follows:

Φ0 : a30δ + a0µ+ a20ν,

Φ1 : −a1c− a1k
2 + 3a20a1δ + a1µ+ 2a0a1ν,

Φ2 : a1c+ 3a1k
2 + 3a0a

2
1δ + a21ν,

Φ3 : −2a1k
2 + a31δ. (9)

The family of nontrivial solutions of the set of algebraic equations (9) is
as follows:

a0 =
−ν −

√
Ω

2δ
, a1 =

9µ
√
Ω− 2ν2

√
Ω

δ

9δµ− 2ν2
, c =

ν
√
Ω

2δ
, k = −

√
Ω

2δ
, (10)

where Ω = ν2−4δµ. So, by plugging (10) into expression (7) and simplifying
the resulting equation, the analytical traveling wave solution of the governing
KPP (1) is obtained as

u(x, t) =
1

2δ

(
−ν +

√
Ω tanh

( (√2x
√
δ − tν)

√
Ω

4δ

))
,

Ω = ν2 − 4δµ,

(11)

where µ, ν, and δ are arbitrary constants.
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3 Numerical simulations for the KPP equation

An in-depth analysis of the LDGmethod for the governing KPP (1), including
its algorithm development and practical implementation, is detailed in this
section.

3.1 The LDG method for the KPP equation

Let the computational spatial domain I = [a, b] be uniformly partitioned into
the M nonoverlapping regular cells Im =

[
xm− 1

2
, xm+ 1

2

]
, for m = 1, . . . ,M,

as follows:
a = x 1

2
< x 3

2
< · · · < xM+ 1

2
= b.

The cell center of Im is xm = 1
2

(
xm− 1

2
+ xm+ 1

2

)
, and the local mesh

spacing is defined by δxm =
(
xm+ 1

2
− xm− 1

2

)
, with maximal mesh being

δx = max
m

δxm. Here, regular meshes signify that during the mesh refine-
ment process, the mesh size ratio remains bounded. For formulating the
LDG method algorithm, consider the solution and the test function space
V k
δx to be defined as the following discontinuous finite element space:

V k
δx = {vlm(x) : vlm(x) ∈ Pk(Im), forx ∈ Im, 1 ⩽ m ⩽ M; 0 ⩽ l ⩽ k}, (12)

where Pk(Im) represents the set of all polynomials with degrees no more than
k(≥ 0), on each cell Im. Here, the piecewise scaled Legendre polynomials
{vlm(x), l = 0, 1, . . . , k}, are used as the basis functions for the discontinuous
solution space V k

δx.
The numerical solution of the governing nonlinear KPP (1) is represented

by uh, with uh ∈ V k
δx and is defined as follows:

uh(x, t) =

k∑
l=0

ul
m(t)vlm(x) = V T (x)Uh(t), forx ∈ Im, (13)

where V (x) = (v0m, v1m, . . . , vkm)T and Uh(t) denotes the degree of freedom
across cell Im. The u±

m+1/2 = uh(x
±
m+1/2, t) represents the right and left

limits of uh at the element boundary xm+1/2.
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3.2 Spatial discretization

To construct the LDG scheme algorithm, first, the governing (1 + 1)-
dimensional KPP (1) that contains higher-order derivatives is transformed
as a first-order system, and then DG finite element space discretization is
implemented. So, by considering the auxiliary variable r = ux, the govern-
ing nonlinear KPP (1) can be written as the following first-order system as
follows:  ut − rx = f (u) ,

r − ux = 0,
(14)

where f (u) = −(µu+ νu2 + δu3) denotes the flux term. Now, the semi-
discrete LDG scheme for the governing KPP (1) is defined as follows: To
find a solution of (14) in terms of piecewise polynomial functions u, r ∈ V k

δx,

which satisfies (14) in a weak sense. So, we multiply (14) with test functions
w, z ∈ V k

δx and integrate by parts over each cell Im to obtain∫
Im

utw dx+

∫
Im

rwx dx− (r̂)m+ 1
2
(w)

−
m+ 1

2
+ (r̂)m− 1

2
(w)

+
m− 1

2

=

∫
Im

f(u)w dx, (15)

∫
Im

rz dx+

∫
Im

uzx dx− (û)m+ 1
2
(z)

−
m+ 1

2
+ (û)m− 1

2
(z)

+
m− 1

2
= 0, (16)

for all m = 1, . . . ,M. The “hat” terms in (15) and (16) denote yet-to-be-
determined “numerical fluxes”, which are single-valued monotone functions
defined on the element boundary xm± 1

2
. The numerical fluxes are specifically

designed to stabilize the LDG method and ensure the local solvability of
auxiliary variables. Here, the following diffusion alternating fluxes [17], û

and r̂, are taken from opposite sides of the interface to ensure provable L2

stability.

û = u−, r̂ = r+. (17)
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It is worth noting that the choice of numerical fluxes, as outlined in (17), need
not be unique. The important step is to select û and r̂ from the opposing
sides. In this study, the boundary fluxes are chosen as follows: û 1

2
= u(a, t), r̂ 1

2
= r+1

2

,

ûM+ 1
2
= u(b, t), r̂M+ 1

2
= r−M+ 1

2

.
(18)

This method is commonly referred to as a “local” DG method since it allows
for the local elimination of the introduced auxiliary variables that approx-
imate the derivatives of the solution. The detailed framework of the LDG
scheme algorithm is now complete.

3.3 The TVD-RK3 temporal discretization

After DG finite element space discretization, the governing nonlinear KPP (1)
yields the following ODE system of freedoms U:

d
dtU = L(U, t), (19)

where U = (U1, U2, . . . , UM)
T . The right-hand side of (19) is derived by

eliminating the auxiliary variable r from (16). In the present work, the semi-
discrete system (19) is time-integrated by utilizing the explicit TVD-RK3
time-stepping scheme [10], as follows:

U(1) = Un + δt L(Un, tn),

U(2) =
3

4
Un +

1

4
U(1) +

1

4
δt L(U(1), tn + δt),

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
δt L(U(2), tn +

1

2
δt),

(20)

where δt denotes the appropriate time step value.
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3.4 Stability analysis

The L2 stability property of the LDG method for nonlinear KPP (1) is dis-
cussed in this subsection. This is similar to the stability results in [24] for
the time-dependent bi-harmonic type equation involving fourth derivatives.

Proposition 1 (L2 stability). The solution to the scheme (15) and (16) with
the choice of numerical fluxes (17) is L2 stable, that is,∫

I

(1
2

d
dtu

2(x, t) + r2(x, t)
)
dx =

∫
I

f(u(x, t))u(x, t) dx. (21)

Proof. First, summing up the two equalities in (15) and (16), we introduce
the notation

Bm(u, r;w, z) =

∫
Im

utw dx+

∫
Im

rwx dx− (r̂)m+ 1
2
(w)

−
m+ 1

2

+(r̂)m− 1
2
(w)

+
m− 1

2
−
∫
Im

f(u)w dx+

∫
Im

rz dx+

∫
Im

uzx dx

− (û)m+ 1
2
(z)

−
m+ 1

2
+ (û)m− 1

2
(z)

+
m− 1

2
. (22)

Since the solutions u, r of the scheme (15)–(17) clearly satisfy

Bm(u, r;w, z) = 0, (23)

for all test functions w, z ∈ V k
δx, we can choose

w = u, z = r.

With the above choices of test functions, (23) yields

Bm(u, r;u, r) =

∫
Im

utu dx+

∫
Im

rux dx− (r̂)m+ 1
2
(u)

−
m+ 1

2

+(r̂)m− 1
2
(u)

+
m− 1

2
−
∫
Im

f(u)u dx+

∫
Im

r2 dx+

∫
Im

urx dx

− (û)m+ 1
2
(r)

−
m+ 1

2
+ (û)m− 1

2
(r)

+
m− 1

2
= 0. (24)

Now, after simplification, we obtain

1

2

d
dt

∫
Im

u2 dx+

∫
Im

r2 dx+

∫
Im

(ur)x dx−
(
r̂u− + ûr−

)
m+ 1

2
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+
(
r̂u+ + ûr+

)
m− 1

2

=

∫
Im

f(u)u dx. (25)

Next, using the definition (17) of the numerical fluxes and by summing up
the equality (25) over all m, we obtain, after some algebraic manipulations,

1

2

d
dt

∫
I

u2 dx+

∫
I

r2 dx

+

M∑
m=1

[
(r)

+
m− 1

2
(u)

+
m− 1

2
− (r)

+
m+ 1

2
(u)

−
m+ 1

2

]
−

M∑
m=1

[
(u)

−
m+ 1

2
(r)

−
m+ 1

2
− (u)

−
m− 1

2
(r)

+
m− 1

2

]
+

M∑
m=1

[
(u)

−
m+ 1

2
(r)

−
m+ 1

2
− (u)

+
m− 1

2
(r)

+
m− 1

2

]
=

∫
I

f(u)u dx.

This implies,

1

2

d
dt

∫
I

u2 dx+

∫
I

r2 dx+

M∑
m=1

[
(u)

−
m− 1

2
(r)

+
m− 1

2
− (u)

−
m+ 1

2
(r)

+
m+ 1

2

]
=

∫
I

f(u)u dx. (26)

Assuming the boundary conditions are either periodic or compactly sup-
ported, we easily obtain

M∑
m=1

[
(u)

−
m− 1

2
(r)

+
m− 1

2
− (u)

−
m+ 1

2
(r)

+
m+ 1

2

]
= 0,

and hence ∫
I

(1
2

d
dtu

2(x, t) + r2(x, t)
)
dx =

∫
I

f(u(x, t))u(x, t) dx.

4 Illustrative example and results

The numerical results acquired by the LDG technique for the nonlinear
KPP (1) are outlined in this section. Here, the entire space domain is split
into uniform meshes for spatial discretization. The L2 and L∞ error norms
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have been obtained in this work to validate the accuracy of the implemented
numerical scheme. The error norms are defined on the spatial domain as
follows:

L2 = ∥uexact − uappx∥2 =

(M∑
i=1

(uexact(xi, T )− uappx(xi, T ))
2

) 1
2

,

L∞ = ∥uexact − uappx∥∞ = max
1≤i≤M

|uexact(xi, T )− uappx(xi, T )| .

It is demonstrated that the numerical approximations obtained by the
LDG method correspond to the exact traveling wave solutions, and the cur-
rent LDG method studied in this scientific investigation exhibits robust nu-
merical capabilities in solving an array of NLEEs emerging in various physi-
cal, chemical, and biological models.

Example 1. In this example, consider the traveling wave solution (11) ob-
tained by the Kudryashov method for the nonlinear KPP (1) with boundary
conditions on [−5, 5]× [0, 1] given by

u(−5, t) =
1

2δ

(
−ν +

√
ν2 − 4δµ tanh

(
(−5

√
2δ − tν)

√
ν2 − 4δµ

4δ

))
,

u(5, t) =
1

2δ

(
−ν +

√
ν2 − 4δµ tanh

(
(5
√
2δ − tν)

√
ν2 − 4δµ

4δ

))
.

(27)

The exact traveling wave solution is given by

u(x, t) =
1

2δ

(
−ν +

√
ν2 − 4δµ tanh

(
(
√
2x

√
δ − tν)

√
ν2 − 4δµ

4δ

))
.

In this example, the exact solution (11) of KPP (1) is considered with the
parameters ν = 0.01, µ = −3.1 × 10−4, and δ = 2.7 to demonstrate the nu-
merical capabilities of the implemented LDG scheme. The simulation results
are obtained by uniformly splitting the computational space domain [−5, 5]

into M = 5, M = 10, and M = 20 cells using both piecewise quadratic (P2)
and cubic (P3) elements with time step ∆t = 1 × 10−3 for various values
of t. Tables 1, 2, and 3 display the satisfactory and reasonably minimal L2
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and L∞ errors at time t = 0.8, 0.9, and 1. The data obtained from Tables
1, 2, and 3 clearly demonstrate that the error norms L2 and L∞ drop as the
mesh is refined. That is, as the values of M increase. Figure 1 depicts the
two-dimensional graphical representation of exact and LDG solutions of KPP
(1) for both P2 and P3 elements and M = 10 cells at time t = 0.5. Figure 2
illustrates the three-dimensional absolute error plot for uh(x, t) with P3 ele-
ment and M = 5 cells, whereas Figures 3 and 4 display the three-dimensional
exact and LDG surface solutions using P2 and P3 elements, respectively, for
M = 5 cells.

Table 1: L2 and L∞ errors with CPU time in seconds for KPP (1) at t = 0.8.

Solution M L2(u) L∞(u) CPU time

5 1.0470686E-5 1.0466120E-5 2.749
P2 element 10 1.0296273E-5 9.7705299E-6 3.906

20 8.0518960E-6 6.3148590E-6 7.296

5 6.5980033E-6 6.5921875E-6 4.593
P3 element 10 6.1202357E-6 5.7864110E-6 13.703

20 4.7371412E-6 3.6829625E-6 19.421

Table 2: L2 and L∞ errors with CPU time in seconds for KPP (1) at t = 0.9.

Solution M L2(u) L∞(u) CPU time

5 1.1330156E-5 1.1320364E-5 2.749
P2 element 10 1.0697374E-5 1.0039300E-5 3.906

20 8.2778473E-6 6.3542206E-6 7.296

5 7.0633547E-6 7.0533354E-6 4.593
P3 element 10 6.3281813E-6 5.9154481E-6 13.703

20 4.8423464E-6 3.6823185E-6 19.421
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Table 3: L2 and L∞ errors with CPU time in seconds for KPP (1) at t = 1.

Solution M L2(u) L∞(u) CPU time

5 1.2091493E-5 1.2073014E-5 2.749
P2 element 10 1.1055419E-5 1.0263072E-5 3.906

20 8.4779126E-6 6.3798095E-6 7.296

5 7.4723516E-6 7.4558341E-6 4.593
P3 element 10 6.5113575E-6 6.0190537E-6 13.703

20 4.9320475E-6 3.6738220E-6 19.421

Figure 1: Exact and numerical results of KPP (1) for both P2 and P3 elements at
t = 0.5.
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Figure 2: The 3-D absolute error plot of KPP (1) with P3 element.

(a) Exact surface solution

(b) LDG surface solution

Figure 3: Exact and LDG surface solutions of KPP (1) with P2 element.
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(a) Exact surface solution

(b) LDG surface solution

Figure 4: Exact and LDG surface solutions of KPP (1) with P3 element.
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5 Concluding remarks

This work detailed the numerical simulation of the nonlinear KPP (1) using
the LDG method. The numerical model framework utilized a third-order
TVD-RK discretization technique for the time derivative and a DG finite el-
ement discretization technique for the space derivative to generate acceptable
numerical solutions. This work also employed the Kudryashov technique to
develop exact traveling wave solutions of the governing KPP equation that
include the hyperbolic and exponential functions, all with arbitrary parame-
ters. The numerical solutions produced using the LDG scheme demonstrate
highly accurate results when compared to the solution obtained using the
Kudryashov method. Also, the LDG method for KPP (1) was proved to be
L2 stable by carefully choosing interface numerical fluxes. The selection of
these numerical fluxes played a crucial role in ensuring the L2 stability for the
implemented LDG scheme. The numerical data, comprising L2 and L∞ er-
rors, demonstrated the efficacy and feasibility of the LDG method algorithm
in solving the governing nonlinear KPP (1) and other related NLEEs.
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