[1] Agusto, F.B., and ELmojtaba, I.M. Optimal control and cost-effective analysis of malaria/visceral Leishmaniasis co-infection, PLoS One, 12(2) (2017), e0171102.
[2] Alvar, J., Vélez, I.D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jan-nin, J., and den Boer, M. Leishmaniasis worldwide and global estimates of its incidence, PLoS One, 7(5) (2012), e35671.
[3] Assimina, Z., Charilaos, K. and Fotoula, B., Leishmaniasis: An over-looked public health concern, Health Sci. J., 2(4) (2008) 196–205.
[4] Bashaye, S., Nombela, N., Argaw, D., Mulugeta, A., Herrero, M., Nieto, J., Chicharro, C., Cañavate, C., Aparicio, P., and Vélez, I.D. Risk factors for visceral Leishmaniasis in a new epidemic site in Amhara Region, Ethiopia, Am. J. Trop. Med. Hyg., 81(1) (2009), 34.
[5] Benahmadi, L., Lhous, M., Tridane, A., Zakary, O., and Rachik, M. Modeling the Impact of the Imperfect Vaccination of the COVID-19 with Optimal Containment Strategy, Axioms, 11(3) (2022), 124.
[6] Birkhoff, G.and Rota, G.-C. Ordinary differential equations, New York: John Wiley & Sons, 1989.
[7] Boussaa, S. Épidémiologie des leishmanioses dans la région de Mar-rakech, Maroc: Effet de l’urbanisation sur la répartition spatio-temporelle des phlébotomes et caractérisation moléculaire de leurs populations, Doc-toral Dissertation, Université de Strasbourg, 2008.
[8] Brauer, F. Models for transmission of disease with immigration of infec-tives, Math. Biosci., 171(2) (2001), 143–154.
[9] Burattini, M.N., Coutinho, F.A.B., Lopez, L.F., and Massad, E. Mod-elling the dynamics of Leishmaniasis considering human, animal host and vector populations, J. Biol. Syst., 6(4) (1998), 337–356.
[10] Cox, F.E.G. History of human parasitology, Clin. Microbiol. Rev., 15(4)(2002), 595–612.
[11] Desta, A., Shiferaw, S., Kassa, A., Shimelis, T., and Dires, S. Module on Leishmaniasis for the Ethiopian health center team, Debub University, Ethiopia, (2005).
[12] Echchakery, M., Chicharro, C., Boussaa, S., Nieto, J., Carrillo, E., Ortega, S., Moreno, J., and Boumezzough, A. Molecular detection of Leishmania infantum and Leishmania tropica in rodent species from endemic cutaneous Leishmaniasis areas in Morocco, Parasites Vectors, 10(1) (2017), 1–8.
[13] ELmojtaba, I.M. Mathematical model for the dynamics of visceral Leishmaniasis–malaria co-infection, Math. Methods Appl. Sci., 39(15) (2016), 4334–4353.
[14] Findlater, A., and Bogoch, I.I. Human mobility and the global spread of infectious diseases: a focus on air travel, Trends Parasitol., 34(9) (2018), 772–783.
[15] Fleming, W.H. and Rishel, R.W. Deterministic and Stochastic Optimal Control, Springer New York, 2012.
[16] Ibáñez, A.M., Rozo, S.V., and Urbina, M.J. Forced migration and the spread of infectious diseases, J. Health Econ., 79 (2021), 102491.
[17] Jia, Z.-W., Tang, G.-Y., Jin, Z., Dye, C., Vlas, S.J., Li, X.-W., Feng, D., Fang, L.-Q., Zhao, W.-J., and Cao, W.-C. Modeling the impact of immigration on the epidemiology of tuberculosis, Theor. Popul. Biol., 73(3) (2008), 437–448.
[18] Khan, A., Zarin, R., Inc, M., Zaman, G., and Almohsen, B. Stability analysis of Leishmania epidemic model with harmonic mean type inci-dence rate, Eur. Phys. J. Plus, 135(6) (2020), 528.
[19] Leishman, W.B., On the possibility of the occurrence of trypanosomiasis in India, British Medical Journal, 1(2213) (1903) 1252.
[20] Lhous, M., Rachik, M., and Larrache, A. Free optimal time control prob-lem for a SEIR-epidemic model with immigration of infective, Int. J. Comput. Appl., 159(3) (2017), 1–5.
[21] Li, G., Wang, W., and Jin, Z. Global stability of an SEIR epidemic model with constant immigration, Chaos Solitons Fractals, 30(4) (2006), 1012–1019.
[22] Li, J., Zhang, J., and Ma, Z. Global analysis of some epidemic models with general contact rate and constant immigration, Appl. Math. Mech., 25 (2004), 396–404.
[23] Nadeem, F., Zamir, M., and Tridane, A. Modeling and control of zoonotic cutaneous Leishmaniasis, Punjab Univ. J. Math., 51(2) (2020).
[24] Oryan, A., and Akbari, M. Worldwide risk factors in Leishmaniasis, Asian Pac. J. Trop. Med., 9(10) (2016), 925–932.
[25] Pan American Health Organization, ”Leishmaniasis,” Pan American Health Organization. Available:
https://www.paho.org/en/topics/ Leishmaniasis. Accessed on 2023.
[26] Pantha, B., Agusto, F.B., and Elmojtaba, I.M. Optimal control applied to a visceral Leishmaniasis model, Technical Report, Department of Math-ematics, Texas State University, 2020.
[27] Pavli, A., and Maltezou, H.C. Leishmaniasis, an emerging infection in travelers, Int. J. Infect. Dis., 14(12) (2010), e1032–e1039.
[28] Reveiz, L., Maia-Elkhoury, A.N.S., Nicholls, R.S., Sierra Romero, G.A., and Yadon, Z.E. Interventions for American cutaneous and mucocu-taneous Leishmaniasis: a systematic review update, PLoS One, 8(4) (2013), e61843.
[29] Sakkoum, A., Lhous, M., and Magri, E.M. A mathematical simulation and optimal control of a VIH model with different infectious level, J. Math. Comput. Sci., 12 (2022), Article-ID 117.
[30] Sigdel, R.P., and McCluskey, C.C. Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684–689.
[31] Steverding, D. The history of Leishmaniasis, Parasites Vectors, 10(1) (2017), 1–10.
[32] Traoré, A. Analysis of a vector-borne disease model with human and vectors immigration, J. Appl. Math. Comput., 64(1-2) (2020), 411–428.
[33] Vannier-Santos, M. A., Martiny, A., and Souza, W. de. Cell biology of Leishmania spp.: invading and evading, Curr. Pharm. Des., 8(4) (2002), 297–318.
[34] Votýpka, J., Kasap, O.E., Volf, P., Kodym, P., and Alten, B. Risk factors for cutaneous Leishmaniasis in Cukurova region, Turkey, Trans. R. Soc. Trop. Med. Hyg., 106(3) (2012), 186–190.
[35] World Health Organization, ”Leishmaniasis,” World Health Orga-nization, 2023. Available:
https://www.who.int/health-topics/ Leishmaniasis#tab=tab_1.
[36] World Health Organization, ”Leishmaniasis,” World Health Or-ganization, 2023. Available:
https://www.who.int/news-room/ fact-sheets/detail/Leishmaniasis. Accessed on 12 January 2023.
[37] Zamir, M., Zaman, G., and Alshomrani, A.S. Sensitivity analysis and optimal control of anthroponotic cutaneous Leishmania, PLoS One, 11(8) (2016), e0160513.
Send comment about this article