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Abstract

Leishmania is an infectious disease that is difficult to control and has an
impact on morbidity and mortality around the world. This study investi-
gates the dynamics of cutaneous Leishmania and optimal control measures,
particularly in regards to human immigration. Applying a mathematical
model to evaluate the dynamics of human immigration and sand flies pop-
ulation. The human population is classified into four compartments: sus-
ceptible, exposed, infectious, and recovered. The sand fly population is
divided into three categories: susceptible, exposed, and infectious. The
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mathematical analysis involves positivity, existence and the uniqueness of
the solution. We analyzed the global stability of the system around the
endemic equilibrium point by contracting the Lyapunov function. Optimal
control measures are used to reduce the number of infected and exposed
individuals among humans, sand flies, and migrants. These techniques
are described using Pontryagin’s Maximum Principle to derive necessary
conditions for optimal control. The numerical simulations confirm the the-
oretical results by showing that following these controls effectively reduces
the spread of the disease, and immigration has a major impact on the
spread of human-borne Leishmania.

AMS subject classifications (2020): Primary 93A30, Secondary 03C45, 49J15.

Keywords: Leishmania, mathematical model, immigration, stability, opti-
mal control.

1 Introduction

Humans have suffered from skin diseases since antiquity, that is around the
tenth century. Al-Bukhari, an Iranian physician of that era, reported this
skin disease, and Ibn Sina identified it as a sand flies bite[10, 7]. In 1882, Mc-
Naught made the first modern clinical description; three years later, Kouzem
discovered parasites in a sample of the eastern button; in 1898, the military
doctor mentioned Borowski protozoa ulcer samples without specifying their
taxonomic status; and in 1900, Sir William Aleishman discovered parasites
in the swabs of the spleen of a soldier who died in Dum Dum, a municipality
in close proximity to the city of Calcutta [19]. In 1903, Charles Donoval
identified the same parasite in a spleen biopsy and named it Leishemania
dovani, which has since been known as Leishmania [7, 31]. Leishmania is a
vector-borne infection carried by phlebotomine sand flies (Dipetra: Psychodi-
dae) and transmitted by members of the Leishmania genus (Kinetoplashida:
Trypanosomatidae) [12]. The disease is common in tropical and subtropical
regions of 98 countries in America, Europe, Africa, and Asia [2].

Leishmania has three major forms: Visceral, cutaneous, and mucocuta-
neous.
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Moreover, 1.5 to 2.5 million fresh clinical cases are recorded annually [33].
Today, living in Leishmania-endemic areas puts over 1 billion individuals at
risk of contracting the disease. Yearly, there are reportedly over a million
new cases of Leishmania of the skin, along with approximately 30,000 new
cases of Leishmania of the viscera [35].

The predominant type of Leishmania, cutaneous Leishmania (CL), leads
to the formation of skin lesions on parts of the body, often in the form
of ulcers, that are exposed. It may result in serious limitations or stigma
plus lifelong scars [36]. During 2001 and 2021, according to WHO-collected
accounts of 105545 cases of the two types of CL and mucosal Leishmania
(ML), an average of 52, 645 cases per year [25]. A lot of factors contribute to
the rise in Leishmania cases, including lack of housing, sanitary conditions,
and clean drinking water in populated regions, among other things that make
the environment conducive to the growth of Leishmania. In addition, the
main contributing variables are population shifts climate and environmental
changes [36].

This research highlights the main risk factors for Leishmania incidence
and prevalence, including environment, socioeconomic level, demographics,
and human behaviors [34, 28]. The global incidence of Leishmania has in-
creased due to man-made risks such as growing immigration, urbanization,
forest clearing, and immunosuppression. Changes in the environment and
population immigration can increase human exposure to infected sand flies
[3].

Leishmania mostly affects rural impoverished communities, and outbreaks
typically happen during harvest times [4]. Due to agricultural improvements
in the region in the late 1970s, a significant number of migrant workers from
the lowlands were sent to the endemic regions in order to harvest crops. The
aforementioned demographic shifts subsequently facilitated the dissemination
of visceral Leishmania, thereby giving rise to elevated rates of morbidity and
mortality [11].

CL, considered a parasitic disease, can pose a significant concern for trav-
elers and tourists, particularly those engaging in outdoor activities in re-
gions where the disease is prevalent. This condition is commonly diagnosed
among a diverse range of individuals, including tourists, workers in the con-
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struction industry, immigrants, researchers, military men, and expatriates.
Those involved in high-risk activities such as ecotourism, adventure travel,
forestry work, and nighttime research are particularly vulnerable. A study
conducted over a period of 5.3 years, focusing on American CL among US
travelers, revealed that 39% of cases happened among travelers and 46% of
scientists traversing South and Central America. Even short-term travel ex-
poses individuals to the risk of contracting the disease, with male travelers
accounting for 64 − 71% of reported cases due to their higher participation
in dangerous outside pursuits. Around 80% of traveler cases of imported
Leishmania contain CL, often acquired in rural or forested regions, partic-
ularly the Amazon basin in Bolivia. Although mucocutaneous Leishmania
(ML) is less frequently reported; there is a growing trend of its identifica-
tion among travelers to South America, primarily in the Amazon basin. The
delayed diagnosis of ML and CL in homecoming voyagers, frequently after
the beginning of symptoms, even years or months, highlights the absence of
knowledge among international travelers regarding the disease and appropri-
ate protective measures. Inadequate management of Leishmania cases is also
prevalent, resulting in unnecessary medical procedures and expenses. Travel
and immigration can introduce new Leishmania species to areas where the
disease is not endemic, potentially leading to public health consequences such
as the importation of canine visceral Leishmania to new regions. Promoting
awareness, educating travelers, and implementing preventive measures are
critical to reducing the risk of CL transmission during travel and avoiding its
introduction into non-endemic regions [27].

To date, research on Leishmania has primarily focused on a singular or
limited set of parameters, predominantly carried out in regions where Leish-
mania is prevalent. Consequently, there exists an imperative need to un-
dertake more comprehensive investigations into environmental conditions,
including clinical, resistance predictors, and co-infection of Leishmania in
endemic areas. Presently, Leishmania exhibits a broader geographical dis-
tribution than in previous times, continuing to be one of the most ignored
illnesses in the world that disproportionately impacts impoverished and de-
veloping nations [24].
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The transfer or displacement of people or groups from one geographic lo-
cation to another, either from one with good health conditions to one with a
high frequency of illnesses, or vice versa, is known as human immigration [14].
As a result, population growth or immigration becomes the main driving force
behind the fast spread of numerous diseases [16]. Several research papers have
since looked at the various ways that immigration affects the transmission
of infectious illnesses. The one of concrete example is the work of Fared
Braurer [8] employed the popular SI and SIS models, which are frequently
used in analyzing infectious illnesses, to analyze the likelihood of infected
people relocating. He made the erroneous assumption that immigration was
steady. His study’s findings clearly imply that it is essential to keep infected
migrants isolated. Li, Zhang, and Ma [22] studied the SIR and SIRS epidemic
models, especially looking at general contact rates and ongoing immigration
for each class. The study investigates endemic and disease-free equilibriums
and provides requirements for global asymptotic stability. Article [21] cen-
ters its research on an SEIR epidemic model that takes into account the
infectious force in multiple stages. Additionally, it considers constant immi-
gration rates for exposed and susceptible individuals. The primary objective
is to investigate the conditions that lead to make the endemic equilibrium
and their global stability. Article [17] examines the influence of immigration
on dynamics of tuberculosis transmission, as a case study, using theoretical
frameworks and numerical simulations to underscore its significant influence
on disease persistence. Additionally, a myriad of other scholarly articles delve
into the intricacies of mathematical modeling of diseases and their correlation
with immigration [30, 32]. Similarly, more articles study the mathematical
modeling regarding Leishmania [13, 9].

To study the presence of potential strategies and the impact of these
strategies on the any model had population, a mere examination and anal-
ysis of epidemic models’ dynamics is inadequate. Hence, the original model
incorporates control variables that encompass possible intervention methods,
like vaccination,treatment, and also confinement. Consequently, the task of
determining the appropriate assigned values for these introduced variables,
with the aim of minimizing the densities of all the compartments of popu-
lations exactly the exposed and infected individuals while maximizing the
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person population take immunity agianst the disease, is handled by finding
the required optimality criteria and solving an infinite-dimensional optimiza-
tion problem. There has been a great deal of research done on finding the
best control measures for time-dependent epidemic models, and many writers
have emphasized the benefits of treatment and vaccine, for example, the re-
sults presented in [29, 5, 20]. As more researchers studied the optimal control
for Leishmania disease [1, 37]

The remainder of the paper is organized as follows: The formulation and
description of the model are in Section 2. Section 3 contains the basic prop-
erties of the model. Analyzing the model to show the equilibrium points
describes in Section 4. The global stability at the endemic equilibrium point
of the system is in Section 5. In Section 6, we apply Pontryagin’s maximum
principle to analysis and determine the optimal control strategy for the Leish-
mania disease. In Section 7, numerical simulations are reported to verify the
analysis results. Finally, the paper ends with a conclusion in Section 8.

2 The mathematical model description

The analysis will use the Leishmania model by Zamir, Zaman, and Alshom-
rani [37], focusing on the dynamics of Zoonotic CL, a disease affecting humans
and sand flies, using a formal mathematical model with an invariant region.
The study categorizes the human population into four compartments: sus-
ceptible (Sh), exposed (Eh), infectious (Ih), and recovered (Rh). The total
human population can be represented as the sum of these compartments
during a specific time frame: Nh = Sh + Eh + Ih + Rh. Sand flies are
divided into three compartments: Susceptible (Ss), exposed (Es), and infec-
tious (Is), which account for variations in their role in the disease transmis-
sion cycle, and the total sand flies population at any given time is defined as
Ns = Ss +Es + Is. A mathematical model will be developed to describe the
dynamics of Zoonotic CL by completely dividing the populations involved,
accounting for interactions and transitions within and between these com-
partments. The goal of this model is to get a knowledge of the disease and
the interactions among all of these groups. The rate Γh represents the addi-
tion of new members to the human population, interpreted as recruitment.
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Among these new individuals, it is assumed that a fraction PS is susceptible,
PE is exposed, and PI is infected. Susceptible hosts become exposed through
being bitten by infectious sand flies, which is modeled by the incidence func-
tion Shf(Is) =

ab1IsSh

Nh
. Therefore, those who have been exposed to radiation

heal naturally at a rate of θ, whereas those who have not are infectious at a
rate of k1, where Γs is the sand fly recruitment rate. Disease transmission
from sick individuals to sand flies occurs at a rate of ??.

The rate at which sand flies get infected following contact with human
carriers is Ssg(Ih) =

ac1IhSs

Nh
, where c1 is the chance of sand flies receiving CL

from people. When the incubation period ends, the parameter k2 indicates
that the sand flies got infected. The system can be represented as follows:

Ṡh = PSΛI + Γh − Shf(Is)− µhSh,

Ėh = PEΛI + Shf(Is)− (k1 + θ + µh)Eh,

İh = PIΛI + k1Eh − (µh)Ih,

Ṙh = θEh − µhRh,

Ṡs = Γs − Ssg(Ih)− µsSs,

Ės = Ssg(Ih)− (µs + k2)Es,

İs = k2Es − µsIs,

(1)

where

Ph + PI + PE = 1, PhΛI + PIΛI + PEΛI = ΛI ,

Nh = Sh + Eh + Ih +Rh, Ns = Ss + Es + Is.

f(Is) =
ab1Is
Nh

,

g(Ih) =
ac1Ih
Nh

,
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with

Sh(0) = Sh0, Eh(0) = Eh0, Ih(0) = Ih0, Rh(0) = Rh0,

Ss(0) = Ss0, Es(0) = Es0, Is(0) = Is0.

It is assumed that all parameters have positive values, whereas the values
of PS , PE , and PI are constrained to a range of 0 to 1. Table 1 presents the
model’s parameter definitions based on their biological meaning.

3 Basic proprieties of the model

3.1 Positivity of solutions

Theorem 1. On the conditions that Sh(0), Eh(0), Ih(0), Rh(0), Ss(0),
Es(0), and Is(0), the solutions of every compartment of the system (1) are
positive for all t ≥ 0.

Proof. Based on the initial equation of the system (1), we have

Ṡh = PSΛI + Γh − ab1IsSh

Nh
− µhSh,

Ṡh ≥ −ab1IsSh

Nh
− µhSh.

Then

Ṡh + (ab1IsSh

Nh
+ µhSh) ≥ 0.

Therefore
Ṡh + (ab1IsNh

+ µh)Sh ≥ 0.

Noted that F (t) = ab1Is(t)
Nh

+ µh.

By multiplying the two sides of the above inequality by
∫ t

0

F (s)ds, we
obtain

exp(
∫ t
0
F (s)ds) Ṡh + F (t) exp(

∫ t
0
F (s)ds) Sh(t) ≥ 0.
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Then

exp
(∫ t

0

F (s)ds

)
Ṡh + F (t) exp

(∫ t

0

F (s)ds

)
Sh(t) =

d

dt

(
Sh(t) exp

(∫ t

0

F (s)ds

))
.

Integrating the inequality from 0 to t yields

∫ t

0

d

ds

(
Sh(s) exp

(∫ t

0

(
ab1Is
Nh

+ µh

)
ds

))
≥ 0,

Sh(t) exp
(∫ t

0

(
ab1Is
Nh

+ µh

)
ds

)
− Sh(0) ≥ 0,

Sh(t) ≥ Sh(0) exp
(
−
∫ t

0

(
ab1Is
Nh

+ µh

)
ds
)
,

Sh(t) ≥ Sh(0) exp
(
−
∫ t

0
F (s)ds

)
,

Sh(t) ≥ 0.

Similarly, it can be proven that Eh(t), Ih(t), Rh(t), Ss(t), Es(t), and Is(t)

of system (1) are positive for all t ≥ 0.

3.2 Invariant region

Theorem 2. The set
E = {(Sh, Eh, Ih, Rh, Ss, Es, Is) ∈ R+

7 : Nh ≤ ΛI+Γh

µh
, Ns ≤ Γs

µs
} is posi-

tively invariant under system (1) with initial condition Sh(0), Eh(0), Ih(0),
Rh(0), Ss(0), Es(0), and Is(0).

Proof. Adding the first four equations of system (1) yields
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Ṅh(t) = Ṡh(t) + Ėh(t) + İh(t) + Ṙh(t),

Ṅh(t) = ΛI + Γh − µhNh,

Thus, that implies

Nh(t) = Nh(0) exp−µh(t) +(ΛI+Γh

µh
)(1− exp−µh(t)).

As t −→ +∞, then Nh(t) −→ ΛI+Γh

µh
. Similarly, Ns(t) −→ Γs

µs
as t −→ +∞.

3.3 Existence and uniqueness of the solution

Theorem 3. There is only one solution for the system (1) that meets the
initial condition (Sh(0), Eh(0), Ih(0), Rh(0), Ss(0), Es(0), Is(0)).

Proof.

Let X =



Sh(t)

Eh(t)

Ih(t)

Rh(t)

Ss(t)

Es(t)

Is(t)


and ρ(X) =



Ṡh(t)

Ėh(t)

İh(t)

Ṙh(t)

Ṡs(t)

Ės(t)

İs(t)


.

Thus, the system (1) may be reformulated as follows:

ρ(X) = AX +B(X), (2)

where
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A =



−µh 0 0 0 0 0 0

0 −(k1 + θ + µh) 0 0 0 0 0

0 k1 −(µh) 0 0 0 0

0 θ 0 −µh 0 0 0

0 0 0 0 −µs 0 0

0 0 0 0 0 −(µs + k2) 0

0 0 0 0 0 k2 −µs


and

B(X) =



PSΛI + Γh − ab1IsSh

Nh

PEΛI +
ab1IsSh

Nh

PIΛI

0

−ac1IhSs

Nh

ac1IhSs

Nh

0


,

|B(X1)−B(X2)| = 2(|ab1Iv2Sh2

Nh
− ab1Iv1Sh1

Nh
+

ac1Ih2
Sv2

Nh
− ac1Ih1

Sv1

Nh
|)

≤ 2 Z
µh

(|| b1
Nh

|Sh2 − Sh1 |+ | b1
Nh

||Iv2 − Iv1 |

+| c1
Nh

||Sv2 − Sv1 |+ | c1
Nh

||Ih2 − Ih1 |)

≤ M ||X2 −X1||,

where M = 2 Z
µh

(| b1
Nh

|+ | c1
Nh

|; | b1
Nh

|+ | c1
Nh

|).

Therefore
|ρ(X1)− ρ(X2)| ≤ Ω||X1 −X2||, (3)

where Ω = max{M, ||A||} < ∞. The constraint is Sh(t) ≥ 0, Eh(t) ≥ 0,
Ih(t) ≥ 0, Rh(t) ≥ 0, Ss(t) ≥ 0, Es(t) ≥ 0, and Is(t) ≥ 0. Moreover, ρ is
uniformly Lipschitz continuous. Thus, a solution exists for the system (1)
[6].
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4 Analysis of the model

To investigate disease transmission, the model (1) is constructed, considering
the flow of immigrants. The model does not have a disease-free equilibrium,
resulting in the following theorem.

Theorem 4. The system (1) shows only endemic equilibrium points without
a disease-free equilibrium.

Proof. Let each equation in (1) equal 0. Then we get

PSΛI + Γh − ab1IsSh

Nh
− µhSh = 0,

PEΛI +
ab1IsSh

Nh
− (k1 + θ + µh)Eh = 0,

PIΛI + k1Eh − (µh)Eh = 0,

θEh − µhRh = 0,

Γs − ac1IhSs

Nh
− µsSs = 0,

ac1IhSs

Nh
− (µs + k2)Es = 0,

k2Es − µsIs = 0.

(4)

Let the endemic equilibrium of the system (4) be E = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
s , E

∗
s , I

∗
s ),

S∗
h =

PsΛI

T1I∗s + µh
,

E∗
h =

PEΛI

k1 + θ + µh
+

T1I
∗
sS

∗
h

k1 + θ + µh
,

I∗h =
PIΛI

µh
+

k1PEΛI

(µh)(k1 + θ + µh)
+

k1T1I
∗
sS

∗
h

(µh)(k1 + θ + µh)
,

R∗
h =

θE∗
h

µh
,

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 311–345



323 Analysis of the dynamics and optimal control of cutaneous Leishmania ...

S∗
s =

Γs

T2I∗h + µs
,

E∗
s =

T2I
∗
hS

∗
s

k2 + µs
,

I∗s =
k2E

∗
s

µs
,

where T1 = ab1
Nh

, T2 = ac1
Nh

.
By substituting I∗h and S∗

s in E∗
s and also by substituting E∗

s in I∗s , we
found the cubic equation

F1(I
∗
s )

3 + F2(I
∗
s )

2 + F3I
∗
s + F4 = 0, (5)

where

F1 = T 2
1 T2

PIΛI

µh
+ T 2

1 T2
k1

(µh)(k1 + θ + µh)
(PEΛI + PSΛI + Γh), (6)

F2 = T1T2
PIΛI

µh

(
2µh − k2

µs(µs + k2)

)
+

T1T2k1
µh(k1 + θ + µh)

(PEΛI + PSΛI + Γh)

(
µh − k2

µs(µs + k2)

)
,

(7)

F3 =
T2PIΛI

µh
(µ2

h−
2Γsk2

µs(µs + k2)
)+

T2µhk1PEΛI

(µh)(k1 + θ + µh)
(µh−

2Γsk2T1

µs(µs + k2)
), (8)

F4 = − Γsµ
2
hk2T2

µs(µs + k2)(µh)
(PIΛI +

k1PEΛI

k1 + θ + µh
). (9)

Moreover, F1 is positive, while F4 is negative. To determine the signs of
F2 and F3, use Descartes’ rules of signs to determine all scenarios as shown
in the following theorem.

Theorem 5. The polynomial equation (5) with odd degree, has at least one
real root with sign opposite to the sign of the last term.

• Case I: If F2 > 0 and F3 > 0, then there is one root with positive sign.

• Case II: If F2 < 0 and F3 < 0, then there is exactly one root with
positive sign.
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• Case III: If F2 > 0 and F3 < 0, then there is exactly one root with
positive sign.

• Case IV: If F2 < 0 and F3 > 0, then there is more than one root with
positive sign (exactly three roots).

5 Global stability analysis

In this section, the global stability of the disease-free equilibrium point was
determined by constructing the Lyapunov function V in the following ap-
proach:

Theorem 6. For the mathematical model (1), the endemic equilibrium E is
globally asymptotically stable.

Proof. Consider the following function:

Ψ(x) = x− 1− ln(x).

For the endemic equilibrium E, the Lyapunov function V is provided by

V =n1S
∗
hΨ(

Sh

S∗
h

) + n2E
∗
hΨ(

Eh

E∗
h

) + n3I
∗
hΨ(

Ih
I∗h

) + n4S
∗
sΨ(

Ss

S∗
s

) + n5E
∗
sΨ(

Es

E∗
s

)

+ n6I
∗
sΨ(

Is
I∗s

),

with n1 = n2 = 1, n3 =
T1I

∗
sS

∗
h

k1E∗
h
, n4 =

T1I
∗
sS

∗
h

T2I∗
hS

∗
s
, n5 =

T1I
∗
sS

∗
h

T2I∗
hS

∗
s
, and n6 =

T1I
∗
sS

∗
h

k2E∗
s
,

(1− S∗
h

Sh
)Ṡh = (1− S∗

h

Sh
)(PSΛI + Γh − T1IsSh − µhSh)

= (1− S∗
h

Sh
)(T1I

∗
sS

∗
h + µhS

∗
h − T1IsSh − µhSh)

= (1− S∗
h

Sh
)T1I

∗
sS

∗
h(1−

IsSh

I∗
sS

∗
h
) + µhS

∗
h(1−

S∗
h

Sh
)(1− Sh

S∗
h
)

= T1I
∗
sS

∗
h

(
1− IsSh

I∗
sS

∗
h
− S∗

h

Sh
+ Is

I∗
s

)
− µh

(Sh−S∗
h)

2

ShS∗
h

,
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(1− E∗
h

Eh
)Ėh = (1− E∗

h

Eh
)(PEΛI + T1IsSh − (k1 + θ + µh)Eh)

= (1− S∗
h

Sh
)(PEΛI + T1IsSh − (

PEΛI+T1I
∗
sS

∗
h

E∗
h

)Eh)

= T1I
∗
sS

∗
h

(
1− Eh

E∗
h
+ IsSh

I∗
sS

∗
h
− E∗

hIsSh

EhI∗
sS

∗
h

)
− PEΛI

(Eh−E∗
h)

2

EhE∗
h

,

(1− I∗
h

Ih
)İh = (1− I∗

h

Ih
)(PIΛI + k1Eh − (µh)Eh)

= (1− I∗
h

Ih
)(PIΛI + k1Eh − PIΛI+k1E

∗
h

I∗
h

Ih)

= k1E
∗
h

(
1 + Eh

E∗
h
− EhI

∗
h

E∗
hIh

− Ih
I∗
h

)
− PIΛI

(Ih−I∗
h)

2

IhI∗
h

,

(1− S∗
s

Ss
)Ṡs = (1− S∗

s

Ss
)(Γs − T2IhSs − µsSs)

= (1− S∗
h

Sh
)(T2I

∗
hS

∗
s + µsS

∗
s − T2IhSs − µsSs)

= T2I
∗
hS

∗
s

(
1− IhSs

I∗
hS

∗
s
+ Ih

I∗
h
− S∗

s

S∗
s

)
− µs

(S∗
s−Ss)

2

Ss
,

(1− E∗
s

Es
)Ės = (1− E∗

s

Es
)(T2IhSs − (µs + k2)Es)

= (1− E∗
s

Es
)(T2I

∗
hS

∗
s − (

T2I
∗
hS

∗
s

E∗
s

)Es)

= T2I
∗
hS

∗
s

(
IhSs

I∗
hS

∗
s
− Es

E∗
s
− E∗

s IhSs

EsI∗
hS

∗
s
+ 1

)
,

(1− I∗
s

Is
)İs = (1− I∗

s

Is
)(k2Es − µsIs)

= (1− I∗
s

Is
)(k2Es − (

k2E
∗
s

I∗
s

)Is)

= k2E
∗
s (

Es

E∗
s
− Is

I∗
s
− I∗

sEs

IsE∗
s
+ 1).

Therefore,

1− IsSh

I∗sS
∗
h

− S∗
h

Sh
+

Is
I∗s

= −Ψ(
S∗
h

Sh
)−Ψ(

IsSh

I∗sS
∗
h

) + Ψ(
Is
I∗s

), (10)
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1− Ih
I∗h

− EhI
∗
h

E∗
hIh

+
Eh

E∗
h

= −Ψ(
Ih
I∗h

)−Ψ(
EhI

∗
h

E∗
hIh

) + Ψ(
Eh

E∗
h

), (11)

1− Eh

E∗
h

− E∗
hIsSh

EhI∗sS
∗
h

+
IsSh

I∗sS
∗
h

= −Ψ(
Eh

E∗
h

)−Ψ(
E∗

hIsSh

EhI∗sS
∗
h

) + Ψ(
IsSh

I∗sS
∗
h

), (12)

1− S∗
s

Ss
− IhSs

I∗hS
∗
s

+
Ih
I∗h

= −Ψ(
S∗
s

Ss
)−Ψ(

IhSs

I∗hS
∗
s

) + Ψ(
Ih
I∗h

), (13)

1− Es

E∗
s

− E∗
s IhSs

EsI∗hS
∗
s

+
IhSs

I∗hS
∗
s

= −Ψ(
Es

E∗
s

)−Ψ(
E∗

s IhSs

EsI∗hS
∗
s

) + Ψ(
IhSs

I∗hS
∗
s

), (14)

1− Is
I∗s

+
Es

E∗
s

− I∗sEs

IsE∗
s

= −Ψ(
Is
I∗s

) + Ψ(
Es

E∗
s

)−Ψ(
I∗sEs

IsE∗
s

). (15)

By substitution, we obtained

V̇ = T1I
∗
sS

∗
h

[
−Ψ

(
S∗
h

Sh

)
−Ψ

(
IsSh

I∗sS
∗
h

)
+Ψ

(
Is
I∗s

)
−Ψ

(
Ih
I∗h

)
−Ψ

(
EhI

∗
h

E∗
hIh

)
+Ψ

(
Eh

E∗
h

)
−Ψ

(
Eh

E∗
h

)
−Ψ

(
E∗

hIsSh

EhI∗sS
∗
h

)
+Ψ

(
IsSh

I∗sS
∗
h

)
−Ψ

(
S∗
s

Ss

)
−Ψ

(
IhSs

I∗hS
∗
s

)
+Ψ

(
Ih
I∗h

)
−Ψ

(
Es

E∗
s

)
−Ψ

(
E∗

s IhSs

EsI∗hS
∗
s

)
+Ψ

(
IhSs

I∗hS
∗
s

)
−Ψ

(
Is
I∗s

)
+Ψ

(
Es

E∗
s

)
−Ψ

(
I∗sEs

IsE∗
s

)]

− µh
(Sh − S∗

h)
2

Sh
− n2PEΛI

(Eh − E∗
h)

2

EhE∗
h

− n3PIΛI
(Ih − I∗h)

2

IhI∗h
− n4µs

(Ss − S∗
s )

2

Ss
,

(16)
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V̇ = T1I
∗
sS

∗
h

[
−Ψ

(
S∗
h

Sh

)
−Ψ

(
EhI

∗
h

E∗
hIh

)
−Ψ

(
E∗

hIsSh

EhI∗sS
∗
h

)

−Ψ

(
S∗
s

Ss

)
−Ψ

(
E∗

s IhSs

EsI∗hS
∗
s

)
−Ψ

(
I∗sEs

IsE∗
s

)]

− µh
(Sh − S∗

h)
2

Sh
− n2PEΛI

(Eh − E∗
h)

2

EhE∗
h

− n3PIΛI
(Ih − I∗h)

2

IhI∗h
− n4µs

(Ss − S∗
s )

2

Ss
.

(17)

We have the function Ψ, which is positive, and it can be observed that
Ψ attains a strict global minimum at Ψ(1) with a value of 0. Finally, we get
V̇ < 0, which implies that the system (1) is globally stable.

6 Optimal control

6.1 Formulation of the optimal control problem

Four control variables are proposed to minimize exposure and infection risks
in human populations and sand flies, as well as Leishmania transmission and
dissemination. u1; awareness and promoting safety measures, u2; pharmaceu-
tical interventions; u3; various interventions targeting sand flies throughout
their life cycle to reduce their population and reduce Leishmania transmission
in residential areas and animal shelters. Lastly, u4; Leishmania screening. To
manage those variables, the optimal control system, illustrating the impact
of various interventions on our basic model (1), is provided as follows:
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Ṡh = (1− u4)PSΛI + Γh − Sh(1− u1)f(Is)− µhSh,

Ėh = (1− u4)PEΛI + Sh(1− u1)f(Is)− (k1 + θ + µh)Eh,

İh = (1− u4)PIΛI + k1Eh − (u2 + µh)Ih,

Ṙh = θEh + (u2)Ih − µhRh,

Ṡs = Γs − Ss(1− u1)g(Ih)− (µs + u3)Ss,

Ės = Ss(1− u1)g(Ih)− (µs + k2 + u3)Es,

İs = k2Es − (µs + u3)Is,

(18)

with Sh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Ss(0) ≥ 0, Es(0) ≥
0, Is(0) ≥ 0.

6.2 Existence and characterization of optimal control

To reduce the number of individuals exposed and infected by Leishmania in
both populations, we define the objective function to be minimized as:

J(u1, u2, u3, u4) =

∫ T

0

[
g1Eh + g2Ih + g3Es + g4Is +

1

2
(τ1u

2
1 + τ2u

2
2

+ τ3u
2
3 + τ4u

2
4)
]
dt,

where g1 ≥ 0, g2 ≥ 0, g3 ≥ 0, and g4 ≥ 0 are the cost coefficients. They
are chosen in order to determine u1, u2, u3, and u4 relative value at time t,
where T is the end time.

We aim an optimal controls u∗
1, u

∗
2, u

∗
3, and u∗

4 such that the objective
function to minimize

J(u∗
1, u

∗
2, u

∗
3, u

∗
4) = min

(u1,u2,u3,u4)∈UT
ad

J(u1, u2, u3, u4), (19)
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where UT
ad is the set of admissible controls defined by

UT
ad = {(u1, u2, u3, u4)/0 ≤ umin ≤ u1(t), u2(t), u3(t), u4(t) ≤ umax ≤ 1,

with t ∈ [0, T ]}.

6.2.1 Existence of an optimal control

Theorem 7. Consider the control system (18). There exist an optimal
control (u∗

1, u
∗
2, u

∗
3, u

∗
4) ∈ UT

ad

such that J(u∗
1, u

∗
2, u

∗
3, u

∗
4) = min

(u1,u2,u3,u4)∈UT
ad

J(u1, u2, u3, u4).

Proof. We proceed to the conclusion stated in [15] to show that an optimal
control exists. The state and control variables are nonnegative values. This
minimization issue satisfies the convexity condition of the objective func-
tional. The aforementioned control space is closed and convex by definition.
For optimal control to exist, it is crucial that the ideal system be compact.
The optimal system’s boundedness and the necessary compactness dictate
this. Furthermore, the objective function J is a convex integrated on UT

ad.

6.2.2 Characterization of the optimal control

To study the necessary conditions for the optimal control, the Pontryagin’s
maximum principle is applied to the Hamiltonian H(t) at time t defined by

H(t) = g1Eh + g2Ih + g3Es + g4Is +
1

2
(τ1u

2
1 + τ2u

2
2 + τ3u

2
3 + τ4u

2
4)

+ λ1Ṡh + λ2Ėh + λ3İh + λ4Ṙh + λ5Ṡs + λ6Ės + λ7İs. (20)

Theorem 8. Given the optimal controls (u∗
1, u

∗
2, u

∗
3, u

∗
4) and the solution

S∗
h(t), E

∗
h(t), I

∗
h(t), R

∗
h(t), S

∗
s (t), E

∗
s (t), I

∗
s (t) of the corresponding state sys-

tem, the exists adjoint variables λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t)

satisfying

λ̇1(t) =− ∂H(t)

∂Sh(t)
=

a(1− u1)b1I
∗
s (R

∗
h + E∗

h + I∗h)

N∗2
h

(λ1 − λ2)
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+
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

(λ6 − λ5) + µhλ1,

λ̇2(t) =− ∂H(t)

∂Eh(t)
= −g1 + λ2(k1 + θ + µh)− λ3k1 − λ4θ

+
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

(λ2 − λ1) +
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

(λ6 − λ5),

λ̇3(t) =− ∂H(t)

∂Ih(t)
= −g2 + λ3(u2 + µh)− λ4(u2)

+
a(1− u1)c1S

∗
s (S

∗
h + E∗

h +R∗
h)

N∗2
h

(λ5 − λ6) +
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

(λ2 − λ1),

λ̇4(t) =− ∂H(t)

∂Rh(t)
=

a(1− u1)b1I
∗
sS

∗
h

N∗2
h

(λ2 − λ1) + µhλ4

+
a(1− u1)c1S

∗
s I

∗
h

N∗2
h

(λ6 − λ5),

λ̇5(t) =− ∂H(t)

∂Ss(t)
=

a(1− u1)c1I
∗
h

N∗
h

(λ5 − λ6) + λ5(u3 + µv),

λ̇6(t) =− ∂H(t)

∂Es(t)
= −g3 + (u3 + µv + k2)λ6 − k2λ7,

λ̇7(t) =− ∂H(t)

∂Is(t)
= −g4 +

a(1− u1)b1S
∗
h

N∗
h

(λ1 − λ2) + (u3 + µv)λ7,

with the transversality conditions at time T

λ1(T ) = λ4(T ) = λ5(T ) = 0,

λ2(T ) = g1, λ3(T ) = g2, λ6(T ) = g3 and λ7(T ) = g4.

Furthermore, for t ∈ [0, T ], the optimal controls u∗
1, u∗

2, u∗
3, and u∗

4 are given
by

u∗
1 =

1

τ1
(
ab1I

∗
sS

∗
h

N∗
h

(λ2 − λ1) +
ac1I

∗
hS

∗
s

N∗
h

(λ6 − λ5)),

u∗
2 =

1

τ2
(I∗s (λ3 − λ4)),

u∗
3 =

1

τ3
(S∗

sλ5 + E∗
sλ6 + I∗sλ7),

u∗
4 =

ΛI

τ4
(λ1PS + λ2PE + λ3PI).

Proof. To determine the adjoint equations and transversality conditions,
we use Hamiltonian and Pontryagin’s maximum principle. Let Sh(t) =
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S∗
h(t), Eh(t) = E∗

h(t), Ih(t) = I∗h(t), Rh(t) = R∗
h(t), Ss(t) = S∗

s (t), Es(t) =

E∗
s (t), and Is(t) = I∗s (t), to get

λ̇1 =
∂H(t)

∂Sh(t)

= λ1

[
a(1− u1)b1I

∗
s (R

∗
h + E∗

h + I∗h)

N∗2
h

]
− λ2

[
a(1− u1)b1I

∗
s (R

∗
h + E∗

h + I∗h)

N∗2
h

]
+ λ5

[
−a(1− u1)c1I

∗
hS

∗
s

N∗2
h

]
+ λ6

[
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

]
+ µhλ1,

=
a(1− u1)b1I

∗
s (R

∗
h + E∗

h + I∗h)

N∗2
h

(λ1 − λ2) +
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

(λ6 − λ5) + µhλ1,

λ̇2 =
∂H(t)

∂Eh(t)

= −
[
(g1 + λ1(

a(1− u1)b1I
∗
sS

∗
h

N∗2
h

) + λ2(−
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

− (k1 + θ + µh))

+ k1λ3 + θλ4) + λ5

[
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

]
− λ6

[
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

]]
= −g1 + λ2(k1 + θ + µh)− λ3k1 − λ4θ +

a(1− u1)b1I
∗
sS

∗
h

N∗2
h

(λ2 − λ1)

+
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

(λ6 − λ5),

λ̇3 =
∂H(t)

∂Ih(t)

−
[
(g2 + λ1(

a(1− u1)b1I
∗
sS

∗
h

N∗2
h

) + λ2(−
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

)− (u2 + µh)λ3 + (u2)λ4)

+ λ5

[
−a(1− u1)c1I

∗
h(S

∗
h + E∗

h +R∗
h)

N∗2
h

]
+ λ6

[
a(1− u1)c1I

∗
h(S

∗
h + E∗

h +R∗
h)

N∗2
h

]]
= −g2 + λ3(u2 + µh)− λ4(u2) +

a(1− u1)c1S
∗
s (S

∗
h + E∗

h +R∗
h)

N∗2
h

(λ5 − λ6)

+
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

(λ2 − λ1),

λ̇4 =
∂H(t)

∂Rh(t)

= −
[
λ1(

a(1− u1)b1I
∗
sS

∗
h

N∗2
h

) + λ2(−
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

) + (−µh)λ4

+λ5

[
a(1− u1)c1I

∗
hS

∗
s

N∗2
h

]
+ λ6

[
−a(1− u1)c1I

∗
hS

∗
s

N∗2
h

]]
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=
a(1− u1)b1I

∗
sS

∗
h

N∗2
h

(λ2 − λ1) + µhλ4 +
a(1− u1)c1S

∗
s I

∗
h

N∗2
h

(λ6 − λ5),

λ̇5 =
∂H(t)

∂Ss(t)

= −
[
λ5(−

a(1− u1)c1I
∗
h

N∗
h

− (u3 + µv))− λ6(
a(1− u1)c1I

∗
h

N∗
h

)

]
=

a(1− u1)c1I
∗
h

N∗
h

(λ5 − λ6) + λ5(u3 + µv),

λ̇6 =
∂H(t)

∂Es(t)

= − [g3 + λ6(−(u3 + µv + k2)) + λ7(k2)]

= −g3 + (u3 + µv + k2)λ6 − k2λ7

λ̇7 =
∂H(t)

∂Is(t)

= −
[
g4 + λ1(−

a(a− u1)b1S
∗
h

N∗
h

) + λ2(
a(a− u1)b1S

∗
h

N∗
h

) + λ7(−(u3 + µv))

]
= −g4 +

a(1− u1)b1S
∗
h

N∗
h

(λ1 − λ2) + (u3 + µv)λ7.

Using the optimality conditions, we conclude

u1 =
∂H(t)

∂u1(t)

= τ1u1 + λ1(S
∗
hf(I

∗
h)) + λ2(−S∗

hf(I
∗
h)) + λ5(Ssg(I

∗
h)) + λ6(−S∗

sg(I
∗
h))

= τ1u1 + S∗
hf(I

∗
h)(λ1 − λ2) + S∗

sg(I
∗
h)(λ5 − λ6),

u2 =
∂H(t)

∂u2(t)

= τ2u2 + λ3(−I∗h) + λ4(I
∗
h)

= τ2u2 + I∗h(λ4 − λ3),

u3 =
∂H(t)

∂u3(t)

= τ3u3 + λ5(−S∗
s ) + λ6(−E∗

s ) + λ7(−I∗s )

= τ3u3 − S∗
sλ5 − E∗

sλ6 − I∗sλ7,

u4 =
∂H(t)

∂u4(t)

= τ4u4 + λ1(−PSΛI) + λ2(−PEΛI) + λ3(−PIΛI)
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= τ4u4 − ΛI(λ1PS + λ2PE + λ3PI).

Hence

∂H
u1

= 0 ⇒ u∗
1 = 1

τ1
(
ab1I

∗
sS

∗
h

N∗
h

(λ2 − λ1) +
ac1I

∗
hS

∗
s

N∗
h

(λ6 − λ5)),

∂H
u2

= 0 ⇒ u∗
2 = 1

τ2
(I∗s (λ3 − λ4)),

∂H
u3

= 0 ⇒ u∗
3 = 1

τ3
(S∗

sλ5 + E∗
sλ6 + I∗sλ7),

∂H
u4

= 0 ⇒ u∗
4 = ΛI

τ4
(λ1PS + λ2PE + λ3PI).

Applying the propriety of control space yields the following results:

u∗
1 =



0 if 1

τ1
(
ab1IsSh

Nh
(λ2 − λ1) +

ac1IhSs

Nh
(λ6 − λ5)) ≤ 0,

1

τ1
(
ab1IsSh

Nh
(λ2 − λ1) +

ac1IhSs

Nh
(λ6 − λ5))

if 0 <
1

τ1
(
ab1IsSh

Nh
(λ2 − λ1) +

ac1IhSs

Nh
(λ6 − λ5)) < 1,

1 if 1

τ1
(
ab1IsSh

Nh
(λ2 − λ1) +

ac1IhSs

Nh
(λ6 − λ5)) ≥ 1.

u∗
2 =


0 if 1

τ2
(Is(λ3 − λ4)) ≤ 0,

1
τ2
(Is(λ3 − λ4)) if 0 < 1

τ2
(Is(λ3 − λ4)) < 1,

1 if 1
τ2
(Is(λ3 − λ4)) ≥ 1,

u∗
3 =


0 if 1

τ3
(Ssλ5 + Esλ6 + Isλ7) ≤ 0,

1
τ3
(Ssλ5 + Esλ6 + Isλ7) if 0 < 1

τ3
(Ssλ5 + Esλ6 + Isλ7) < 1,

1 if 1
τ3
(Ssλ5 + Esλ6 + Isλ7) ≥ 1,

u∗
4 =


0 if 1

τ4
(PEΛI(λ2 − λ1) + PIΛI(λ3 − λ1)) ≤ 0,

ΛI

τ4
(λ1PS + λ2PE + λ3PI) if 0 < 1

τ4
(PEΛI(λ2 − λ1) + PIΛI(λ3 − λ1)) < 1,

1 if 1
τ4
(PEΛI(λ2 − λ1) + PIΛI(λ3 − λ1)) ≥ 1.
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Thus, the optimal control can be defined based on the control space prop-
erty. Therefore,

u∗
1 = max{min{ 1

τ1
(ab1IsSh

Nh
(λ2 − λ1) +

ac1IhSs

Nh
(λ6 − λ5)), 1}, 0},

u∗
2 = max{min{ 1

τ2
(Is(λ3 − λ4)), 1}, 0},

u∗
3 = max{min{ 1

τ3
(Ssλ5 + Esλ6 + Isλ7), 1}, 0},

u∗
4 = max{min{ΛI

τ4
(λ1PS + λ2PE + λ3PI), 1}, 0}.

7 Numerical simulations

The model is analyzed numerically to study the behavior of the disease trans-
mission. The parameter values per day with descriptions are derived from
previous research, and others are estimated as shown in Table 1. The 4th-
order Runge–Kutta method is implemented to perform the numerical sim-
ulations using the MATLAB program. The initial values of the state vari-
ables are determined as Sh(0) = 100, Eh(0) = 20, Ih(0) = 20, Rh(0) = 10,
Ss(0) = 1000, Es(0) = 20, and Is(0) = 30 [37]. The values of weight con-
stants utilized in the objective functional are g1 = 70, g2 = 10, g3 = 2, g4 = 5,
τ1 = 2, τ2 = 2, τ1 = 15, and τ1 = 10. The graphs below demonstrate the
impact of optimal strategies applied with and without controls.

Figures 1–4 illustrate the dynamics of CL and the impact of control mea-
sures on human populations during a 50-day period, comparing scenarios
with and without control strategies.

Figure 1 shows the dynamics of susceptible human individuals. In the ab-
sence of control measures, the results indicate a steady decline in the number
of susceptible individuals, decreasing from an initial value of 100 to approxi-
mately 46 individuals during 50 days. Conversely, when control strategies are
implemented, the number of susceptible individuals stabilizes over all period.

Figure 2 focuses on the evolution of exposed human individuals. The
results show that, in the absence of control measures, the number of exposed
initially displays a slow increase in the first three days, reaching a peak.
Subsequently, the number steadily decreases, reaching approximately two
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Table 1: Parameter values with description

Parameter Description Value per day Source
ΛI The growth rate of immigration 0.2016 Assumed
PS The proportion of susceptible immigration 0.40 Assumed
PE The proportion of exposed immigration 0.25 Assumed
PI The proportion of infected immigration 0.15 Assumed
Γh The recruitment of humans 0.0000416 [26]
Γs The recruitment of sand flies 0.124 [26]
µh Natural rate of mortality for humans 0.00004 [23]
µs Natural rate of mortality for sand flies 0.189 [23]
a Sand flies biting rate 0.4856 Assumed
b1 Transmission rate of CL from sand flies to humans 0.2856 Assumed
c1 Transmission rate of CL in sand flies from humans 0.28 [23]
θ CL recovery rate from exposed class 0.002 Assumed
k1 Period of CL incubation for humans 0.23 [18]
k2 Period of CL incubation for sand flies 0.2 [23]
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Figure 1: Susceptible human behavior with and without controls with immigration

individuals after 50 days, highlighting a dynamic pattern. However, when
control measures are implemented, the number of exposed individuals slowly
declines, eventually reaching zero on day 23.
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Figure 2: Exposed human behavior with and without controls with immigration
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Figure 3: Infected human behavior with and without controls with immigration

Figure 3 represents the dynamics of infected humans. Without control
measures, the number of infected people increased significantly, from 20 to
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more than 100 for the whole time period. Conversely, the application of
control measures leads to a rapid decrease in the infected individuals, reaching
zero after 10 days.
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Figure 4: Recovered human behavior with and without controls with immigration

Figure 4 shows the trajectory of recovered individuals. In the absence of
control measures, the number of recovered individuals rose from 10 to only
about 11 after 50 days. This gradual increment signifies a natural progres-
sion of recovery. Conversely, when control measures were implemented, the
number of recovered people climbed dramatically, reaching 50 within 50 days.

As a result, there is a need for effective control strategies to control CL,
focusing on reducing infected individuals and improving recovery rates.

Figure 5 shows a significant decrease in susceptible sand fly populations
without control strategies, but when control techniques are used, the decline
is more rapid, surpassing the initial decline.

Figure 6 illustrates the progression of the number of exposed sand flies in-
dividuals. Control measures led to an increase in exposed sand flies, reaching
63 individuals after 4 days, causing a gradual decrease in their population.
This has rapidly decreased after the implementation of control measures.
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Figure 5: Susceptible sand flies behavior with and without controls with immigration
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Figure 6: Exposed sand flies behavior with and without controls with immigration

Figure 7 shows the temporal evolution of infected sand flies populations.
After control measures, the population increases, reaching a peak of 58 indi-
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Figure 7: Infected sand flies behavior with and without controls with immigration

viduals after 7 days. Clearly, control strategies result in a rapid decrease in
the total number of sand flies. In summary, as shown in Figures 5, 6, and
7 the control strategy applied to the model led to a decrease in susceptible,
exposed, and infected sand flies.

In Figure 8, the optimal control u1 is at the upper bound of 100% in the
first week and gradually declines to the lower bound, whereas the control u2

is at the upper bound of 100% in the first 15 days and gradually drops to a
minimum of roughly 10% by the end of the period.

In Figure 9, the control u3 is at the upper bound of 100% in the first
two days and gradually drops to the lower bound in the 30th day, whereas
the control u4 is at the upper bound of 100% in all 47 days and gradually
declines to less than 40% by the end of the period.

To minimize the number of exposed in both population and the number of
infected individuals in humans, the awareness program u1 should remain with
maximum intensity for at least 8 days before steadily decreasing to a lower
bound in the last 40 days. While the pharmaceutical interventions should
be implemented with maximum intensity for the first two weeks and relaxing
gradually to a minimum of 10% by the end of 50 days. This recommend
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Figure 8: The controls u1 and u2
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Figure 9: The controls u3 and u4

that there is a high effort in Leishmania screening control u4, which can
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be implemented for at least 47 days. On the other hand a low effort for
pharmaceutical interventions u3.

8 Conclusion

In this study, a model of human and sand fly populations was considered for
Leishmania disease in the absence of a disease-free equilibrium. The endemic
equilibrium of the model was investigated, and the Lyapunov function was
applied to determine the global stability. Minimizing the objective function
was the main goal. To reduce the spread of Leishmania disease in the human
population and sand flies, four controls were implemented in the system. The
existence and characterization of optimal control were verified, and Pontrya-
gin’s Maximum Principle was applied to find the necessary conditions of the
optimality system. The optimal problem was simulated using the Forward-
Backward Sweep approach. Therefore, the analysis and numerical results
indicated that all of the control measures had a significant impact on de-
creasing the variation of exposed and infected individuals within both the
human and sand fly populations. Leishmania screening control u4 was the
most effective control and should be applied to combat the infection of Leish-
mania disease in humans and sand flies. Implementing high levels of screening
for an extended time frame (up to 47 days) significantly reduced the number
of infected individuals in both populations. This highlighted the need for
early detection and surveillance in preventing disease transmission. Overall,
a combination of these control measures, particularly focusing on awareness,
timely pharmaceutical interventions, various controls, and screening, had the
potential to drastically reduce CL transmission.
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