[1] Babajamali, Z., khabaz, M.K., Aghadavoudi, F., Farhatnia, F., Eftekhari, S.A. and Toghraie, D.Pareto multi-objective optimization oftandem cold rolling settings for reductions and inter stand tensions using NSGA-II ISA Trans. 130 (2022) 399–408.
[2] Bejarano, L.A., Espitia, H.E. and Montenegro, C.E.Clustering analysis for the Pareto optimal front in multi-objective optimization, Comput. 10(3) (2022), 37.
[3] Bin Mohd Zain, M.Z., Kanesan, J., Chuah, J.H., Dhanapal, S. and Kendall, G. A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization, Appl. Soft Comput. 70 (2018) 680–700.
[4] Chiu C.-C. and Lai, C.-M. Multi-objective missile boat scheduling problem using an integrated approach of NSGA-II, MOEAD, and data envelop-ment analysis, Appl. Soft Comput. 127 (2022), 109353.
[5] Coello, C.A.C. and Cortés, N.C. Solving multiobjective optimization problems using an artificial immune system, Genet. Program. Evolvable Mach. 6(2) (2005) 163–190.
[6] Dursun, Y. and Özkaya, U. Çok Hedefli Parçacık Sürü Optimizasyonu için Smith Abağı Yaklaşımı. Akıllı Sistemlerde Yenilikler Ve Uygula-maları Sempozyumu (2014), 187–192.
[7] Elbes, M., Alzubi, S., Kanan, T., Al-Fuqaha, A. and Hawashin, B.A survey on particle swarm optimization with emphasis on engineering and network applications, Evol. Intel. 12(2) (2019), 113–129.
[8] Elsheikh, A.H. and Abd Elaziz, M. Review on applications of particle swarm optimization in solar energy systems Int. J. Environ. Sci. Technol. 16(2) (2019) 1159–1170.
[9] Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review, Arch Computat Methods Eng. 29(5) (2022), 2531–2561.
[10] Ghorpade, S.N., Zennaro, M., Chaudhari, B.S., Saeed, R.A., Alhumyani, H. and Abdel-Khalek, S.Enhanced differential crossover and quantum particle swarm optimization for IoT applications, IEEE Access, 9 (2021) 93831–93846.
[11] Gu, Q., Wang, Q., Chen, L., Li, X. and Li, X.A dynamic neighborhood balancing-based multi-objective particle swarm optimization for multi-modal problems, Expert Syst. Appl. 205 (2022) 117713.
[12] Kang, L., Chen, R.-S., Cao, W. and Chen, Y.-C. Non-inertial opposition-based particle swarm optimization and its theoretical analysis for deep learning applications, Appl. Soft Comput. 88 (2020), 106038.
[13] Li, Y., Zhang, Y. and Hu, W.Adaptive multi-objective particle swarm optimization based on virtual Pareto front Inf. Sci. 625 (2023), 206–236.
[14] Liang, J., Ge, S., Qu, B., Yu, K., Liu, F., Yang, H., Wei, P. and Li, Z. Classified perturbation mutation-based particle swarm optimization algo-ithm for parameters extraction of photovoltaic models, Energy Convers. Manag. 203 (2020), 112138.
[15] Loganathan S. and Arumugam, J. Energy efficient clustering algorithm based on particle swarm optimization technique for wireless sensor net-works, Wireless Pers. Commun. 119(1) (2021), 815–843.
[16] Petchrompo, S., Coit, D.W., Brintrup, A., Wannakrairot, A. and Par-likad, A.K.A review of Pareto pruning methods for multi-objective opti-mization, Comput. Ind. Eng. 167 (2022), 108022.
[17] Petchrompo, S., Wannakrairot, A. and Parlikad, A.K.Pruning Pareto optimal solutions for multi-objective portfolio asset management, Eur. J. Oper. Res. 297(1). 203–220.
[18] Shami, T.M., El-Saleh, A.A., Alswaitti, M., Al-Tashi, Q., Summakieh, M.A., and Mirjalili, S. Particle Swarm Optimization: A Comprehensive Survey IEEE Access, 10 (2022), 10031–10061.
[19] Valencia-Rodrıguez D.C. and Coello Coello, C.A. Influence of the num-ber of connections between particles in the performance of a multi-objective particle swarm optimizer, Swarm Evol. Comput. 77 (2023), 101231.
[20] Wang, D., Tan, D. and Liu, L. Particle swarm optimization algorithm: An overview, Soft Comput. 22(2) (2018), 387–408.
[21] Wei, B., Xia, X., Yu, F., Zhang, Y., Xu, X., Wu, H., Gui, L. and He, G. Multiple adaptive strategies-based particle swarm optimization algorithm, Swarm Evol. Comput. 57 (2020) 100731.
[22] Xu, Y., Zhang, H., Huang, L., Qu, R. and Nojima, Y.A Pareto front grid guided multi-objective evolutionary algorithm Appl. Soft Comput. 136 (2023) 110095.
[23] Zhang, Y. and Kong, X. A particle swarm optimization algorithm with empirical balance strategy Chaos, Solitons. Fractals, 10 (2023), 100089.
Send comment about this article