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Abstract

Particle swarm optimization (PSO) is a widely recognized bio-inspired
algorithm for systematically exploring solution spaces and iteratively iden-
tifying optimal points. Through updating local and global best solutions,
PSO effectively explores the search process, enabling the discovery of the
most advantageous outcomes. This study proposes a novel Smith chart-
based particle swarm optimization to solve convex and nonconvex multi-
objective engineering problems by representing complex plane values in
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a polar coordinate system. The main contribution of this paper lies in
the utilization of the Smith chart’s impedance and admittance circles to
dynamically update the location of each particle, thereby effectively deter-
mining the local best particle. The proposed method is applied to three
test functions with different behaviors, namely concave, convex, noncon-
tinuous, and nonconvex, and performance parameters are examined. The
simulation results show that the proposed strategy offers successful conver-
gence performance for multi-objective optimization applications and meets
performance expectations with a well-distributed solution set.

AMS subject classifications (2020): Primary 90C26; Secondary 58E17, 90C24.

Keywords: Multi-objective optimization (MOO); particle swarm optimiza-
tion (PSO); meta-heuristic optimization.

1 Introduction

Modern mathematical design problems necessitate the simultaneous solution
of multiple objectives. Most of these problems involve objectives with con-
trasting behaviors. When one objective is enhanced, others tend to suffer as a
consequence due to their contrasting behaviors. Therefore, it is not accurate
enough to talk about a single solution to these problems; instead, getting a
collection of solutions is needed. Multi-objective optimization methods help
find optimal solutions that simultaneously balance and optimize multiple ob-
jectives, considering their contrasting behaviors. There are several strategies
concerning multi-objective optimization in literature. The most well-known
ones are evolutionary algorithm [22], genetic algorithm [1], NSGA-II [4], and
particle swarm optimization (PSO).

PSO is an optimization method that uses the social behavior of fish pop-
ulations or flocks of birds and is based on a population of stochastic agents.
In the PSO algorithm, particles search for the optimal solution through the
direction of the particle with the most excellent performance. The global
optimum is a singular solution point; changing the position according to the
particle performs best. However, in multi-objective optimization problems,
since multiple solution points represent multi-objective solutions, to obtain

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 197–219
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the solution set, the particle positions should be updated not according to
the same particle but according to the most suitable particle to reach the so-
lution set. Therefore, in PSO with multiple objectives, the concept of “local
best” replaces the idea of “global best” that guides the swarm [19, 13].

The conventional multi-objective particle swarm optimization (MOPSO)
combines PSO and multi-objective optimization. Its weaknesses need to be
addressed, particularly regarding its convergence in high-dimensional prob-
lems and its capability to handle constraints. Therefore, several modified
multi-objective particle swarm optimization (M-MOPSO) algorithms have
emerged as promising options that overcome these limitations and demon-
strate good convergence in solving multi-objective problems, making them
suitable for real-world applications. To highlight the advantages of M-
MOPSO, we can compare it to MOPSO as follows [3].

The first difference lies in the population evolution procedure. MOPSO
employs a swarm intelligence technique where the entire population coor-
dinates their movements by following a single leader. On the other hand,
M-MOPSO utilizes a boundary control mechanism, allowing each individual
to evolve independently according to their own boundary. The second differ-
ence pertains to the mutation procedure. In MOPSO, the mutation is applied
after finding the new position of the population. However, in M-MOPSO,
the mutation is directly applied to the old population before evolution. The
third difference involves the repository update procedure. MOPSO updates
the contents of its repository only after generating and mutating the new
population. In contrast, M-MOPSO updates the contents of its repository
after mutating the old population and generating the new population. Addi-
tionally, there are differences in the repository member selection procedure.
MOPSO determines the domination of each repository member every time
new members are admitted, while M-MOPSO only determines the domina-
tion of necessary members and disregards any redundant solutions, not ad-
mitting them into the repository. Another distinction is found in the repos-
itory member deletion procedure. MOPSO deletes its repository members
based on the density of the grids, whereas M-MOPSO deletes its repository
members based on the Euclidean distance in the objective space between each
repository member and the latest admitted member. Finally, the difference
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lies in the global best selection or population update. In MOPSO, a single
new leader (global best) is selected in each iteration, replacing the previous
leader. In contrast, in M-MOPSO, each individual has their own best particle
(local best). If an individual cannot improve to find a better solution after a
predetermined number of iterations, they are no longer updated.

Since the basic purpose of multi-objective optimization is to obtain all
solution points that make up, the solution set most accurately, a successful
method or approach is needed to determine the local best particle. The pro-
posed technique uses the Smith chart’s impedance and admittance circles to
determine the local best particle. Three test functions with different behav-
iors are used to apply the suggested method, and its efficacy is assessed in
terms of the general distance and spacing metrics.

1.1 Related works

The authors in [21] presented a multi-adaptive strategy-based PSO. The pri-
mary goal is to successfully preserve population variety, which is accom-
plished by segmenting the population into a number of swarms that may be
moved about throughout the course of the evolutionary process. Particles in
a swarm dynamically select their learning exemplars within each generation
based on their personal performance. This enables individual particles within
a single swarm to exhibit distinctive search behaviors in every generation, and
even the same particle can exhibit various search behaviors throughout multi-
ple generations. An adaptive method for population size (APS) is suggested
to make the most use of computing resources. APS gives the population
the ability to selectively eliminate harmful particles and introduce beneficial
particles during the evolutionary process.

A unique strategy known as the classified perturbation mutation refers
to a technique used in optimization algorithms to introduce small changes or
perturbations to the current solution or position in the search space. This
technique-based PSO method is suggested in this study. Every iteration of
this algorithm evaluates and classifies each new personal best position’s per-
formance as either high quality or low quality. For the high-quality personal
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best position, a mutation approach with a smaller perturbation is subse-
quently designed to improve local search skills inside the potential search re-
gion. On the other hand, a more extensive perturbation mutation technique
is intended for the low-quality personal best position in order to explore new
areas and increase population variety [14].

A novel adaptation of PSO known as noninertial opposition-based particle
swarm optimization (NOPSO) is an enhanced variant of the traditional PSO
algorithm that incorporates the concept of opposition-based learning. It in-
troduces noninertial movement dynamics to improve the exploration and ex-
ploitation capabilities of the algorithm. This approach integrates an adaptive
elite mutation strategy and a generalized opposition-based learning strategy
[12].

1.2 The contributions of the paper

The main contributions of the paper can be listed as follows:

• In this paper, we introduce a novel approach that utilizes the PSO al-
gorithm to address problems characterized by multiple objectives. Our
proposed technique leverages the impedance and admittance circles of
the Smith chart to identify the local best particle. impedance and ad-
mittance circles are used to update particle locations. The Smith chart-
based particle swarm optimization (SC-PSO) technique is repeated dur-
ing the iterative refining phase to allow particles to progressively ap-
proach optimum solutions and explore the solution space. Convergence
towards optimal results is facilitated by updating particle locations and
velocities according to their local and global best solutions.

• The paper compares the simulation performance of the Smith-chart-
based multi-objective optimization algorithm with some well-known
benchmark schemes. The algorithm’s performance was assessed using
three test functions: Kursawe, Fonseca & Fleming, and Schaffer. The
analysis in a Smith chart-based PSO algorithm focused on two specific
performance metrics: generational distance and spacing. Generational
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distance is a metric commonly used in multi-objective optimization
techniques to assess the convergence and diversity of solutions. It mea-
sures the average distance between the algorithm’s generated solutions
and a reference set of known optimal or Pareto-optimal solutions. A
lower generational distance indicates that the algorithm is producing so-
lutions that are closer to the true optimal solutions. On the other hand,
spacing is another performance metric used in multi-objective optimiza-
tion to evaluate the uniformity and distribution of solutions across the
objective space. It gauges how well the algorithm explores and cov-
ers the entire Pareto front or solution space. A higher spacing value
suggests that the algorithm can generate diverse and well-distributed
solutions. These performance metrics are employed to evaluate the
quality of the algorithm’s generated solutions in terms of their proxim-
ity to the true optimal solutions (generational distance) and the diver-
sity and spread of solutions across the Pareto front (spacing). Through
the analysis and monitoring of these metrics during the algorithm’s
execution, researchers can gain insights into its convergence, diversity,
and overall effectiveness in finding optimal solutions for optimization
problems related to RF applications. The analysis focused on two per-
formance metrics: generational distance and spacing. The simulation
results demonstrated the superior performance of the proposed algo-
rithm compared to the benchmark schemes MISA, MicroGA, NSGA-II,
and PAES. In addition, the time complexity of the proposed algorithm
is provided.

Organization

The remainder of the paper is structured in the following manner: Section
2 introduces PSO and related works in engineering problems. Section 3
explains the multi-objective optimization concept and the Pareto optimal
analysis. Section 4 presents the Smith-chart-based novel approach to the
multi-objective optimization problem. Section 5 discusses the efficacy of the
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proposed method by numerical and statistical results. The paper is then
concluded, and future work is discussed in Section 6.

2 Particle swarm optimization (PSO)

Kennedy and Eberhart created the population-based optimization method
known as PSO to study the social interactions between groups of fish and
birds [9, 23]. The PSO algorithms search a swarm of particles. They are
used to solve an optimization problem, with each particle acting as a possible
solution point where three parameters are defined for each particle.

• xi is the particle’s current location.

• vi is the particle’s current speed.

• pi is the particle’s optimal location for anyone.

• fxi(t+1) is the fitness value of particle i’s new position at iteration t+1.

• pi(t) is the previous position of particle i at iteration t.

• pi(t+1) is the updated best previous position of particle i at iteration
t+ 1.

• pxi(t+1) is the current position of particle i’s new position at iteration
t+ 1.

• pxi(t) is the current position of particle i at iteration t.

• i represents particles, and t represents iteration.

The particles update their best positions at each process step by compar-
ing their experience with their current performance. The update process is
performed. Here, f is the objective function:

pi(t+ 1) =

 pi(t), f(xi(t+ 1)) ≥ f(pi(t)),

xi(t+ 1), f(xi(t+ 1)) < f(pi(t)).
(1)

In the PSO algorithms, particles update their velocity and position at each
process step by comparing their performances and using where a particle in
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a cluster is located based on how well it performs in comparison to other
particles. Using (1), the velocity of each particle is recalculated for each
objective in each iteration by using (2a) and (2b):

vi,j(t+ 1) = ω[vi,j(t)] + c1r1,j(t) [pi,j(t)− xi,j(t)]+c2r2,j(t) [gj(t)− xi,j(t)],

(2a)

xi(t+ 1) = xi(t) + vi(t+ 1). (2b)

In this case, the inertia coefficient ω specifies how much of the particles’
initial velocity they will retain in the following stage of processing. The algo-
rithm is based on two uses independent random variables (r1,j (t) ∼ U (0, 1)

and r2,j (t) ∼ U (0, 1)). These random coefficients c1 and c2 are learning
coefficients with values between [0,2]. Also, pi,j(t) is the value in the jth
dimension of the most excellent possible location for each particle ith up to
the tth processing step. Moreore, gj(t) represents the value of the particle
i’s best individual location in the jth dimension at the tth processing phase.
vi(t+ 1) is the updated velocity of particle i at iteration t + 1. The place
in the processing phase of the swarm particle with the greatest performance
j-dimensional number is shown in (3a) and (3b):

f(g(t)) = min {f(p1(t)), f(p2(t)), . . . , f(ps(t))} , (3a)

g(t) ∈ {p1(t), p2(t), . . . , ps(t)} . (3b)

As seen in (2a), three parameters are important when updating a particle’s
location. First is the number of the particle’s speed. The second represents
the particle’s personal best location. Lastly, the swarm particle performs best
(globally best). Hence, the particles update the position by remembering
their experience and being guided by the swarm’s top-performing particles
[23, 20].

2.1 PSO for engineering problems

PSO has been utilized successfully for solving various optimization problems,
including function optimization, engineering design, and machine learning.
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One benefit of PSO is that it is reasonably easy to apply and needs a few
parameters to modify [8, 7].In [8], the authors used it in solving optimization
problems in the area of solar energy and other renewable energy sources.
PSO may be an effective technique for improving the structure and per-
formance of solar energy structures, helping to improve their efficiency, re-
liability, and cost-effectiveness. In [15], the authors used PSO in solving
minimize energy consumption while ensuring the quality of service require-
ments. This study revealed that a clustering algorithm based on PSO could
be an effective solution. This algorithm was used to optimize the selection of
cluster heads by considering different factors, such as the distance between
nodes, the remaining energy of each node, and the network topology. In [10],
the authors suggested a quantum mechanics-based PSO algorithm. It uses
quantum-inspired operators to update the positions of particles in a swarm.
The authors showed that QPSO could be used in various applications, in-
cluding IoT (Internet of Things) applications. Overall, they are powerful
optimization algorithms that can be used for various IoT applications. Its
ability to efficiently search high-dimensional and nonconvex search spaces
makes them particularly well-suited for optimization problems in the IoT do-
main. Gad [9] systematically reviewed and showed that PSO also had been
successfully often used in engineering domains such as mechanical, electrical,
civil, and chemical engineering. In mechanical engineering, PSO has been
used to optimize the design of mechanical systems such as engines, turbines,
and robots. PSO has been used in electrical engineering for power system
optimization, load forecasting, and parameter estimation. In civil engineer-
ing, PSO has been used for structural optimization, traffic flow control, and
water resource management. PSO has been used in chemical engineering for
process optimization, parameter estimation, and experiment design. In [7],
the authors studied the impact of PSO on wireless network applications such
as wireless sensor networks, ad hoc networks, and routing optimization. PSO
has been used for coverage optimization, energy-efficient routing, and node
localization in wireless sensor networks. In ad-hoc networks, PSO has been
used for topology control, routing, and power management. In routing op-
timization, PSO has been used to optimize the routing protocol parameters,
such as the packet size, number of hops, and packet delay.
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3 Multi-objective optimization

Multi-objective optimization is simultaneously minimizing or maximizing m
objective functions −→

f (−→x ) = (f1 (
−→x ) , f2(

−→x ), . . ., fm(−→x )) considering the
constraints and the n decision variables on the solution set X. Combining each
goal into a single objective function is one approach to solving issues involv-
ing multiple objectives in optimization. The most commonly used method
of combining objective functions is to express these functions as weighted
linear sums. The weights that each objective function should be multiplied
by should be chosen so that the objective does not lose weight in the entire
process [16]. The value obtained will depend on the consequences defined for
each purpose. Nevertheless, a linear sum function constructed by appropri-
ately selecting the weight values defined for each objective function can be
optimized with any optimization algorithm to obtain highly successful val-
ues. The Pareto optimal analysis is one of the most reliable techniques for
multi-objective optimization issues.

3.1 Pareto optimal analysis

In multi-objective optimization issues, the goals typically behave in oppo-
sition to one another. Therefore, a solution point converging to one of the
available objectives moves away from the other. Multi-objective optimization
issues in this situation can only be solved [2]. It is not always possible to guar-
antee that one suggested strategy outperforms the others. Instead, to achieve
a collection of ideal solutions, so-called nondominated solutions (Figure 1).
Pareto dominance relations define this collection of answers. Utilizes to be
attained. For example; −→x1,

−→x2 ∈ X let be two solution vectors in m objective
functions be used in the optimization issue with multiple objectives. Follow-
ing is an expression for the Pareto dominance connection between these two
solution vectors:

1 If x⃗1 ⪯ x⃗2 (x⃗1 is less dominant), then fi(x⃗1) ≤ fi(x⃗2) for each objective
function fi, where i ∈ {1, 2, . . . ,m}. This implies that the objective
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functions should be minimized.

2 If x⃗1 ≺ x⃗2 (x⃗1 is dominant), then x⃗1 ⪯ x⃗2 and fj(x⃗1) ≤ fj(x⃗2) for at
least one objective function fj , where j ∈ {1, 2, . . . ,m}. This indicates
that the objective functions should be minimized.

3 If x⃗1 ∼ x⃗2 (x⃗1 and x⃗2 are not different), it means that neither x⃗1

dominates x⃗2 nor x⃗2 dominates x⃗1. In this case, there is no specific
direction indicated for the objective functions.

Here x1 and x2 dominate the other solution vectors rather than one an-
other. In this case, these two solution vectors are considered mutually optimal
and called Pareto-optimal. The Pareto Frontier is a group of Pareto-optimal
answers depicting the surface trade-off between various objective functions
[17].

Figure 1: Transition from parameter space to function space and nondominated solutions

4 Smith chart approach

the Smith chart use as a visualization tool within the optimization process.
There are several ways in which the Smith chart can be employed alongside
the PSO algorithm. Firstly, in RF design scenarios, the PSO algorithm’s
fitness function often involves assessing impedance matching and transmis-
sion line properties. By employing the Smith chart, it becomes possible
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to visually examine and analyze the impedance variations of different solu-
tions, thereby gaining valuable insights into their fitness values. Addition-
ally, the Smith chart can aid in constraint analysis, particularly concerning
impedance matching and transmission line parameters. Through visualizing
the solutions on the Smith chart, it becomes simpler to identify any viola-
tions of constraints and guide the PSO algorithm towards exploring feasible
regions. Furthermore, once the PSO algorithm concludes or reaches termina-
tion, the Smith chart can be employed to visually represent the best solutions
obtained. This graphical representation offers a clear depiction of the opti-
mized impedance matching or transmission line characteristics. In summary,
the Smith chart serves as an auxiliary tool for visualizing and analyzing RF-
related aspects of the optimization problem when used in conjunction with
the PSO algorithm. In this section, Smith’s chart-based PSO algorithm is ex-
plained.The optimization problem encompasses various dimensions, including
the lower and upper limits of the parameters. It involves defining objective
functions, determining the number of particles, and identifying the specific
problems that require solutions. We first establish the boundaries within
which the parameters can vary to tackle this optimization issue. These lower
and higher limits provide the range within which the optimization algorithm
will explore possible solutions. Next, we define the objective functions that we
seek to optimize. These functions represent the goals we want to achieve or
the criteria we want to maximize or minimize. By evaluating these functions,
we can measure the quality or effectiveness of different solutions. Further-
more, we determine the number of particles to employ in the optimization
algorithm. These particles represent potential solutions to the multi-objective
problem. The number of particles influences the exploration and exploitation
balance within the search space. Finally, we identify the specific problems
that require improvement. These problems can be diverse in nature, rang-
ing from optimizing complex to nonconvex functions. By addressing these
problems through the optimization process, we aim to enhance performance.
The particle locations are randomly distributed within the upper and lower
limits. The best locations of each particle are identical to their starting posi-
tions, and the particle’s initial velocities are given a value of zero. An archive
is created to store the best solutions in each iteration. Each particle in the
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swarm is applied to the function values acquired and the objective functions.
Each particle updates its performance by comparing its function values in
the target space and past function values. Using the Pareto technique, the
target space of particle values contains not dominated solutions. Also, the
locations of the not dominated particles are then determined. The function
values are sent to the archive. By selecting the finest guide, each particle
modifies its weight and location.

The local best particle is identified as follows:

• The function values of the particles in the archive are matched to the
Smith chart space with (4). Function values of ith archive member
being (fi,1, fi,2) are converted to impedance and admittance values:

Zi = fi,1 + jfi,2(Ω),

Yi =
1

Zi
(Ω)−1, (4)

where

• fi,1 corresponds to the first function value of the ith archive member.
Also, fi,2 represents the second function value of the ith archive mem-
ber.

• Zi represent the impedance of particle i and Yi represent the admit-
tance of particle i.

• The function values of the other particles are also given in (4) and are
mapped to the abstraction space.

• In this stage, each particle selects the most appropriate local best par-
ticle from the particles in the archive. Here, four different local best
particles are chosen for a particle four different local best particles are
selected for a particle as shown in Figure 2.
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Figure 2: Local best particle determination of a particle

The archive members are categorized based on their proximity to different
circles in the system. In Figure 2, (1) refers to archive members located on the
nearest resistance circle. These members are situated in close proximity to the
resistance values within the system. (2) represents archive members located
on the nearest reactance circle, indicating their association with reactance
values. (3) represents archive members positioned on the nearest conduc-
tivity circle, indicating their relationship with conductivity characteristics.
Lastly, (4) represents archive members located on the closest susceptance
circle, highlighting their connection to susceptance values within the system.
Organizing the archive members this way makes it easier to effectively cover
the whole solution space.

Figure 3 shows the particles and how they update their location depending
on the different archive members. The figure also shows graphically the effect
of the four circles itemized above. As can be seen, each case is concentrated
in a specific region of the Pareto curve and eventually leads to the actual
Pareto curve on the Pareto front.
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Figure 3: Effect of local best designation varieties on the Pareto front

4.0.1 Complexity analysis

The suggested Smith chart-based multi-objective PSO algorithm’s time com-
plexity is determined by the number of paths through the admittance and
impedance circles, The number of swarming particles, the number of itera-
tions, and the complexity of the optimized fitness function. Therefore, the
time complexity able to be expressed as O(4×NP×I×F ), where F denotes
the complexity of the fitness function and NP is the number of particles. I

denotes the number of iterations.

5 Results

Applying the suggested strategy to three frequently used test functions al-
lows us to see how successfully the suggested approach works. For each test
function, the algorithm was run thirty times. The maximum number of the
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iteration was 2000, and the number of particles was 100. Figures 4, 5, and
6 show the graphical results. The figures also show that the proposed algo-
rithm finds the optimal solutions for different types of functions.

Test Function-I: Kursawe Test Function.

Minimize:

f1(x) =

n−1∑
i=1

[
−10e−0.2

√
x2
i+x2

i+1

]
, (5)

f2(x) =

n∑
i=1

(
|xi|0.8 + 5 sin(x3

i )
)
, (6)

where x = [x1, x2, . . . , xn] represents the decision variables, and x is the
number of decision variables.

Kursawe is a well-known multi-objective optimization test function used
to evaluate performance algorithms. Kursawe is twofold; the first is to mini-
mize the sum of the absolute values of the difference between adjacent vari-
ables, while the second concerns minimizing a nonconvex function involving
these variables. This test has been widely used as a benchmark function for
testing the performance of multi-objective optimization algorithms due to its
nonlinearity, nonconvexity, and presence of multiple local optima. All in all,
the goal is to minimize both objectives simultaneously as shown in (5).

Figure 4: Pareto front obtained for Kursawe
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Test Function-II: Schaffer-I Test Function

Minimize:

f1(x) = x2, (7)

f2(x) = (x− 2)2, (8)

where −A ≤ x ≤ A, with A = 100. The complexity of this problem becomes
considerably higher when the values of A exceed 105.

The Schaffer-I function is a popular test function used to evaluate the
performance of an optimization algorithm. The Schaffer-I function is used as
a single benchmark to test optimization algorithms due to its simplicity and
a well-defined global minimum. It is often used with other more complex
test functions to provide a more comprehensive evaluation of optimization
algorithms, as shown in (7).

Figure 5: Pareto front obtained for Schaffer-I

Test Function-III: Fonseca & Fleming Test Function

Minimize:

f1 (x) = 1− exp
(
−

n∑
i=1

(xi −
1√
n
)

2)
, (9)
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f2 (x) = 1− exp
(
−

n∑
i=1

(xi +
1√
n
)

2)
, (10)

where x = [x1, x2, . . . , xn] represents the decision variables, and n is the
number of decision variables.

The Fonseca-Fleming is another popular test function used in the field of
multi-objective optimization. This function involves a set of decision variables
and two objectives that must be optimized simultaneously. The Fonseca-
Fleming function is a challenging test for multi-objective optimization be-
cause it is nonlinear, nonconvex, and has multiple local optima; it is often
used as a benchmark function for testing the performance of multi-objective
optimization algorithms, as shown in (9).

Figure 6: Pareto front obtained for Fonseca & Fleming

We also conducted evaluations to assess how well the suggested technique
works in addition to the graphical results. These quantitative evaluations, in
Tables 1 and 2, are the convergence and diversity parameters, respectively,
developed by Coello and Cortés [5]. The convergence metric expresses the
degree to which the Pareto front generated by the algorithm resembles the
actual Pareto front. This metric has “0” as both the lowest and desired
numbers. The other metric gives the distribution of the points that make
up the Pareto front obtained by the algorithm. This metric, which has a
minimum and target value of “0”, gives the distribution of the Pareto front
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between two extrapolated points. In other words, it expresses how evenly the
obtained solutions are distributed. It can be concluded from also the tables
that the proposed algorithm performs good convergence and diversity.

In Table 1, we evaluated the performance of our proposed algorithm on
the Kursawe test function and compared it against other techniques.

Table 1: Generational distance performance of the proposed method

Test Function Minimum Maximum Average Median Std. Dev
Kursawe 0.000879 0.0014 0.0011 0.0011 0.00007648
Schaffer 0.00049564 0.0005153 0.0005097 0.0005072 0.00000612

Fonseca and Fleming 0.00051618 0.0006628 0.0005821 0.0005896 0.00068063

Table 2: Spacing performance of the proposed method

Test Function Minimum Maximum Average Median Std. Dev
Kursawe 0.0393 0.0996 0.0503 0.0464 0.0120
Schaffer 0.0109 0.0137 0.0123 0.0122 0.0013

Fonseca and Fleming 0.0066 0.0077 0.0071 0.0068 0.0005115

Table 3 clearly shows that our proposed method outperforms other meth-
ods in terms of spacing and generational distance metrics.

Table 3: Comparison with other methods in literature

Generational Distance MISA Micro GA NSGA-II PAES Proposed Method
Average 0.00466 0.01133 0.01663 0.02450 0.0011
Best 0.00433 0.00698 0.00680 0.00648 0.000879
Worst 0.00558 0.02298 0.03447 0.09593 0.014

Std. Dev 0.00031 0.00538 0.00773 0.0244 0.00007648
Spacing MISA Micro GA NSGA-II PAES Proposed Method
Average 0.10906 0.12571 0.06134 0.19530 0.0503
Best 0.06274 0.09505 0.04645 0.06556 0.0393
Worst 0.14373 0.14264 0.09914 0.49154 0.0996

Std. Dev 0.01592 0.01577 0.01284 0.01284 0.0120
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6 Conclusion

PSO is an effective and easy-to-use tool for nonlinear optimization prob-
lems, this study introduces a novel approach called SC-PSO for solving multi-
objective engineering problems. By utilizing the impedance and admittance
circles on the Smith chart, the proposed method dynamically updates the par-
ticle locations, leading to effective determination of the local best particle.
The performance of the SC-PSO algorithm is evaluated on three test func-
tions with different characteristics, demonstrating successful convergence and
providing a well-distributed solution set. The results highlight the potential
of SC-PSO as an efficient approach for multi-objective optimization applica-
tions, showcasing its ability to explore solution spaces and identify optimal
points in both convex and nonconvex problem domains. In future studies, we
will apply it to a nonorthogonal multiple access network to optimize various
parameters.
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