Numerical nonlinear model solutions for the hepatitis C transmission between people and medical equipment using Jacobi wavelets method

Document Type : Research Article


Laboratory of pure and applied mathematics, Faculty of exact science and computer science, University of Abdelhamid Ibn Badis, Mostaganem -Algeria.


In this work, we present a new mathematical model for the spread of hepatitis C disease in two populations: human population and medical equipment population. Then, we apply the Jacobi wavelets method com-bined with the decoupling and quasi-linearization technique to solve this set of nonlinear differential equations for numerical simulation.


Main Subjects

[1] Abdelrazec, A., Bélair, J., Shan, C. and Zhu, H. Modeling the spread and control of dengue with limited public health resources, Mathematical biosciences, 217 (2016), 136–145.
[2] Ablaoui-Lahmar, N., Belhamiti, O. and Bahri, S. M. A new Legendre wavelets decomposition method for solving PDEs, Malaya Journal of Matematik (MJM), 2 (1) (2014), 136–145.
[3] Abualrub, T. and Sadek, I. Legendre wavelet operational matrix of derivative for optimal control in a convective–diffusive fluid problem, J. Frankl. Inst. 351 (2) (2014), 682–693.
[4] Ainea, N., Massawe, E. S. and Makinde, O. D. Modelling the effect of treatment and infected immigrants on the spread of hepatitis c virus disease with acute and chronic stages, Am. J. Comput. Math. 2(1)(2012), 10–20.
[5] Ak Gümüs, O. Global and local stability analysis in a nonlinear discrete-time population model Adv. Difference Equ. 2014, 2014:299, 9 pp.
[6] Ali Merina, H and Belhamiti, O.Simulation study of nonlinear reverse osmosis desalination system using third and fourth chebyshev wavelet methods, MATCH Commun. Math. Comut. Chem. 75 (3)(2016), 629–652.
[7] Antoniadis, A. Wavelet methods in statistics: Some recent developments and their applications, Stat. Surv. 1 (2007), 16–55.
[8] Azodi, H. D. Numerical solution of fractional-order sir epidemic model via Jacobi wavelets, J. Int. Math. Virtual Inst. 10 (1) (2020), 183–197.
[9] Bokhari, A., Amir, A., Bahri, S. M. and Belgacem, F. B. M. A gener-alized Bernoulli wavelet operational matrix of derivative applications to optimal control problems, Nonlinear Stud. 24 (4) (2017), 75–90.
[10] Das, P., Mukherjee, D. and Sarkar, A. K. Analysis of a disease trans-mission model of hepatitis C, J. Biol. Syst. 13 (4) (2005), 331–339.
[11] Echevarria, D., Gutfraind, A., Boodram, B., Major, M., Del Valle, S., Cotler, S. J. and Dahari, H. Mathematical modeling of hepatitis C preva-lence reduction with antiviral treatment scale-up in persons who inject drugs in metropolitan Chicago, PloS one, 10 (8) (2015) e0135901.
[12] Falconet, H., Jego, A., Veber, A. and Calvez, V. Modéliser la propagation d’une épidémie, thése sous la direction d’Amandine Veber et Vincent Calvez, (2015).
[13] Jackson, D. Fourier series and orthogonal polynomials, Courier Corpo-ration, (2012).
[14] Hamou Maamar, M. and Belhamiti, O. New (0,2) Jacobi multi-wavelets adaptive method for numerical simulation of gas separations using hollow fiber membranes, Commun. Appl. Nonlinear Anal. 22 (3) (2015), 61–81.
[15] Khan, A., Sial, S. and Imran, M. Transmission dynamics of hepatitis C with control strategies, J. Comput. Med. (2014) 2014.
[16] Laguerre, E. N. Sur la règle des signes de Descartes, Nouvelles Annales de Mathématiques, 2e série, 18 (1879), 67–71.
[17] Mahmoud, A., Ameen, I. G. and Mohamed, A. A new operational matrix based on Jacobi wavelets for a class of variable-order fractional differ-ential equations, Proc. Rom. Acad. - Math. Phys. Tech. Sci. Inf. Sci. 18 (4) (2017), 315–322.
[18] Mallat, S. A wavelet tour of signal processing, The sparse way. Third edi-tion. With contributions from Gabriel Peyré. Elsevier/Academic Press, Amsterdam, 2009.
[19] Martcheva, M. and Castillo-Chavez, C. Diseases with chronic stage in a population with varying size, Math. Biosci. Elsevier, 182 (1) (2003), 1–25.
[20] Martin, N. K., Vickerman, P., Foster, G. R., Hutchinson, S. J., Goldberg, D. J. and Hickman, M. Can antiviral therapy for hepatitis C reduce the prevalence of HCV among injecting drug user populations? A modeling analysis of its prevention utility, J. Hepatol. 54 (6) (2011), 1137–1144.
[21] Martin, N. K., Vickerman, P., Grebely, J., Hellard, M., Hutchinson, S. J., Lima, V. D., Foster, G. R., Dillon, J. F., Goldberg, D. J., Dore, G. J. and Hickman, M., Hepatitis C virus treatment for prevention among people who inject drugs: modeling treatment scale-up in the age of direct-acting antivirals, Hepatology, 58 (5) (2013), 1598–1609.
[22] Martin, N. K., Vickerman, P., Hickman, M. Mathematical modelling of hepatitis C treatment for injecting drug users, J. Theoret. Biol. 274 (1) (2013), 58–66.
[23] Martin, N. K., Vickerman, P., Miners, A., Foster, G. R., Hutchinson, S. J., Goldberg, D. J. and Hickman, M. Cost-effectiveness of hepatitis C
virus antiviral treatment for injection drug user populations, Hepatology, 55 (1) (2012), 49–57.
[24] Miller-Dickson, M. D., Meszaros, V. A., Almagro-Moreno, S. and Bran-don Ogbunugafor, C. Hepatitis C virus modelled as an indirectly trans-mitted infection highlights the centrality of injection drug equipment in disease dynamics, J. R. Soc. Interface. 16 (158) (2019), 58–66.
[25] Organisation mondiale de la Santé. Organisation mondiale de la Santé Prévention des maladies chroniques: un investissement vital [Internet]. Geneva (2005).
[26] Razzaghi, M. and Yousefi, S. Legendre wavelets direct method for varia-tional problems,Math. Comput. Simulation 53 (3) (2000), 185–192.
[27] Rong, L. J. and Chang, P. Jacobi wavelet operational matrix of fractional integration for solving fractional integro-differential equation, In Journal of Physics: Conference Series, vol. 693, no. 1, p. 012002. IOP Publishing, 2016.
[28] Shukla, N., Angelopoulou, A and Hodhod, R. Non-Invasive Diagnosis of Liver Fibrosis in Chronic Hepatitis C using Mathematical Modeling and Simulation, Electronics, MDPI, 11 (8) (2022) 1260.
[29] Szegö, G. Orthogonal polynomials, American Mathematical Society Col-loquium Publications, Vol. 23 American Mathematical Society, New York, 1939.
[30] World Health Organization Global hepatitis report 2017: executive sum-mary, No. WHO/HIV/2017.06. World Health Organization, 2017.
[31] Yang, Y., Tang, S., Ren, X., Zhao, H. and Guo, C. Global stability and optimal control for a tuberculosis model with vaccination and treatment, Discrete Contin. Dyn. Syst. Ser. B, 21 (3) (2016).
[32] Yuan, J. and Yang, Z. Global dynamics of an SEI model with acute and chronic stages, J. Comput. Appl. Math. 213 (2) (2008), 465–476.
[33] Zeiler, I., Langlands, T., Murray, J. M. and Ritter, A. Optimal targeting of Hepatitis C virus treatment among injecting drug users to those not enrolled in methadone maintenance programs, Drug and alcohol depen-dence, 110 (3) (2010), 228–233.
[34] Zhang, S. and Xu, X. Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci. Numer. Simul. 46 (2017), 14–25.