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1 Introduction

Viral hepatitis is a major health problem worldwide, comparable to that
posed by other major communicable diseases, such as human immunode-
ficiency virus (HIV), tuberculosis, malaria, or, more recently, coronavirus
disease 2019 (COVID-19). In this work, we are interested in viral hepatitis
C (HCV).
Hepatitis C is an inflammation of the liver caused by the hepatitis C virus.
The virus can cause both acute and chronic hepatitis. According to the fact
sheet of the World Health Organization (WHO) updated on October 2017
for hepatitis C, 71 million people have been estimated for chronic hepatitis C
infection in the whole world, and approximately 399,000 people die each year
from hepatitis C [28]. Until today, researchers could not develop a vaccine
or effective treatment that heals hepatitis C at 100% [25].

The hepatitis C virus is transmitted by exposure to contaminated blood
resulting from bringing the blood of an infected person into contact with
that of a person likely to be contaminated directly (transfusion) or indirectly
(equipment of contaminated injection for example). In 2016, WHO intro-
duced global targets, for the care and management of HCV, a 90% reduction
in new cases of chronic hepatitis C, a 65% reduction in hepatitis C deaths,
and treatment of 80% of eligible people with chronic hepatitis C infections
[30]. In Algeria, the president of the “SOS hepatitis association”, spoke in an
interview about the need to draw up a national plan against viral hepatitis,
which will aim to improve prevention, care, and the availability of drugs.
He also mentioned that the prevention of viral hepatitis poses a problem
in Algeria because there is no real prevention against these viral infections,
especially at the dentist. It is obvious to know that the majority of con-
taminations by these viruses are done during dental care. Therefore, raising
awareness against viral hepatitis “B” and “C” is very important to detect
these diseases, especially since they are silent. Indeed, better prevention re-
quires better knowledge of the modes of transmission and the populations
at risk in order to improve education and teach the appropriate protective
measures. The last century has seen the emergence and rapid development
of mathematical modeling, which plays an important role in assessing and
anticipate the impact of Public Health programs.

Over the last decade, a large number of mathematical models have been
developed to simulate, analyze, and understand the dynamics of a population
of hepatitis C. In a related research work, Martcheva and Castillo-Chavez
[19] proposed a model to study the role of a chronic infectious stage on the
dynamics of HCV over the long term. Incorporating the immune class in [10],
in [32], the latency period was merged. In [4], the authors showed both the
effect of processing and immigration. Another model describes the effect of
isolating chronically infected people [15]. Several studies have been carried
out in [11, 20, 23, 21, 22, 33] showing the impact of HCV treatment in drug
users on the prevalence of the disease. The optimal control theory has been
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used to understand the efforts made to prevent the spread of the disease by
different measures and strategies [1, 31, 34].

Our aim in this article is to understand how hepatitis C disease can evolve,
by highlighting the role of sterilization of infected material, modeled by or-
dinary differential equation (ODE), unlike the model of Miller et al. [24],
which targets the population of drug users. Therefore a single mode of con-
tamination which plays the role of a vector of the disease and a single host.
Our new model SIR-MI consists of taking into account other causes of con-
tamination, such as dental equipment, toilet equipment, needles, tattooing,
and piercing equipment in interaction with a mixed human population, and
then we resolve this model.
On the other hand, wavelet theory plays an important role in many areas of
mathematics and applied sciences, for instance, signal analysis in medicine,
image processing, signal processing, data compression, statistics, and numer-
ical methods [7, 18]. In recent years, wavelets based on orthogonal polyno-
mials have been used in many researches to solve different problems such as
ODE, partial differential equations, fractional differential equations, optimal
control, and variational calculus [2, 9, 8, 26, 27], and this is due to orthogo-
nality property. We propose the Jacobi wavelets method with general indices
(α, β) in this work in order to obtain computational solutions. This method
generalized other methods like Legendre wavelets and Chebyshev wavelets.
The Jacobi wavelets method reduces an ODE to a system of algebraic equa-
tions by using the operational matrix of the derivative of Jacobi wavelets. In
our numerical simulations, we have found that using the operational matrix
of derivative simplifies the implementation of the method compared to us-
ing the operational matrix of integration [3]. Then, we apply the decoupling
and quasi-linearization technique (DQLT) combined with the Jacobi wavelets
method to solve the underlying problem.
In this paper, we propose, in section 2, a mathematical model SIR-MI that
describes the dynamics of a population of hepatitis C. Section 3 will concern
the mathematical analysis of the proposed model. Section 4 is devoted to
explaining the different steps that lead to the implementation of the Jacobi
wavelet method combined with DQLT. In Section 5, we apply the proposed
method to simulate the model SIR-MI. Finally, Section 6 presents our con-
clusions.

2 Model formulation

In order to understand the effect of sterilization of the material on the trans-
mission and dynamics of hepatitis C, we propose a mathematical model SIR-
MI developed by Miller et al. [24] with five compartments. That is, let NH

be the total population of humans, which is subdivided into three subclasses:
SH (susceptible), IH (infected), RH (recovered). The total population of NM

material is divided into two subclasses: MU (uninfected), MI (infected).
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The graphical representation of the proposed model is shown in Figure 1.
in Figure 1.

Figure 1: The compartmental model diagram.

The model SIR-MI is given by the following system of ordinary differential
equations

::::::
ODEs:

:



dSH

dt
(t) = λH − βSH(t)MI(t)

MI(t) +MU (t)
− µHSH(t),

dIH
dt

(t) =
βSH(t)MI(t)

MI(t) +MU (t)
− λIH(t)− (τ + µH) IH(t),

dRH

dt
(t) = λIH(t)− µHRH(t),

dMU

dt
(t) = λM − αMU (t)IH(t)

SH(t) + IH(t)
+ θMI(t)− kMU (t),

dMI

dt
(t) =

αMU (t)IH(t)

SH(t) + IH(t)
− θMI(t)− kMI(t),

SH(0) = SH0
, IH(0) = IH0

, RH(0) = RH0
,MU (0) =MS0

,MI(0) =MI0 ,
SH0

, IH0
, RH0

,MU0
,MI0 > 0,

(1)
with ,

λM = kNM ̸= 0.

4

Figure 1: The compartmental model diagram.

The model SIR-MI is given by the following system of ODEs:



dSH

dt
(t) = λH − βSH(t)MI(t)

MI(t) +MU (t)
− µHSH(t),

dIH
dt

(t) =
βSH(t)MI(t)

MI(t) +MU (t)
− λIH(t)− (τ + µH) IH(t),

dRH

dt
(t) = λIH(t)− µHRH(t),

dMU

dt
(t) = λM − αMU (t)IH(t)

SH(t) + IH(t)
+ θMI(t)− kMU (t),

dMI

dt
(t) =

αMU (t)IH(t)

SH(t) + IH(t)
− θMI(t)− kMI(t),

SH(0) = SH0 , IH(0) = IH0 , RH(0) = RH0 ,MU (0) =MS0 ,MI(0) =MI0 ,
SH0 , IH0 , RH0 ,MU0 ,MI0 > 0,

(1)
with

λM = kNM ̸= 0.
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The parameters used in our model are defined in Table 1.

Table 1: Definitions of parameters used in model.

Parameters Description
λH birth rate of susceptible
µH natural mortality rate of the human population
β rate of interaction between susceptible humans and infected material
τ mortality rate due to the disease
λ disease cure rate
λM birth rate of uninfected material
α interaction rate between infected humans and uninfected material
k rejection rate of infected or non-infected material
θ sterilization rate of infected material

3 Mathematical Analysis of the Model

In this section and in the first moment, we will apply the theorem of Cauchy–
Lipschitz to demonstrate the existence and the uniqueness of the solution of
the system (1). Then we will study the behavior of this solution by going
through the calculation of the points of equilibrium as well as the stability of
these points. However, first, we note that the population of material NM (t)
is constant.
Indeed,

NM (t) =MI(t) +MU (t) ⇐⇒ dNM

dt
(t) =

dMU

dt
(t) +

dMI

dt
(t).

So

dMU

dt
(t) +

dMI

dt
(t) = λM − k (MI(t) +MU (t)) ,

dNM

dt
(t) = 0.

We show that the human population is not constant. So we have

NH (t) = SH(t)+ IH(t)+RH(t) ⇐⇒ dNH

dt
(t) =

dSH

dt
(t)+

dIH
dt

(t)+
dRH

dt
(t).

Then

dSH

dt
(t) +

dIH
dt

(t) +
dRH

dt
(t) = λH − µH (SH(t) + IH(t) +RH(t))− τIH(t),

dNH

dt
(t) = −τIH(t).
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3.1 Existence and uniqueness of a positive solution

To study the existence and uniqueness of the solution of problem (1), we need
to apply the Cauchy–Lipschitz theorem.
Our model (1) is a system of nonlinear, autonomous first-order differential
equations that can be written as the following Cauchy problem:{

X ′ (t) = F (X (t)) , t ∈ [0, T ] ,
X (0) = X0,

(2)

with

X (t) =


SH (t)
IH (t)
RH (t)
MU (t)
MI (t)

 and F (X (t)) =


f1 (X (t))
f2 (X (t))
f3 (X (t))
f4 (X (t))
f5 (X (t))

 ,

where
f1 (X (t)) = λH − βSH(t)MI(t)

NM
− µHSH(t), (3)

f2 (X (t)) =
βSH(t)MI(t)

NM
− λIH(t)− (τ + µH) IH(t), (4)

f3 (X (t)) = λIH(t)− µHRH(t), (5)

f4 (X (t)) = λM − αMU (t)IH(t)

SH(t) + IH(t)
+ θMI(t)− k(t), (6)

f5 (X (t)) =
αMU (t)IH(t)

SH(t) + IH(t)
− θMI(t)− kMI(t). (7)

We recall that the norm Norm(·) in the space of continuous functions
from I to R5 (denoted by C

(
I,R5

)
) is defined by

Norm (F ) = max
t∈I

∥F (t)∥2 ,

with ∥·∥2 is the usual Euclidean norm in R5.
We are now able to state the following result.

Theorem 1. The differential problem (1) admits a unique solution
(SH(t), IH(t), RH(t),MU (t),MI(t))

T ∈ R5 for all t ∈ [0, T ] .

Proof. To demonstrate that the Cauchy problem (1) admits a unique solu-
tion, it suffices to show that the vector function F of the equivalent problem
(2), is Liptschizian.

Let t ∈ [0, T ] , X1, X2 ∈ R5. Then
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∥F (X1(t))− F (X2(t))∥ = max


|f1 (X1 (t))− f1 (X2 (t))| ,
|f2 (X1 (t))− f2 (X2 (t))| ,
|f3 (X1 (t))− f3 (X2 (t))| ,
|f4 (X1 (t))− f4 (X2 (t))| ,
|f5 (X1 (t))− f5 (X2 (t))| .

We assume that at any instant t ∈ [0, T ], the human population NH(t) =
SH(t) + IH(t) is between two real numbers strictly positive Nmin and Nmax.

We will examine each of the components |fi (X1 (t))− fi (X2 (t))|, i =
1, . . . , 5. Therefore

|f1 (X1 (t))− f1 (X2 (t))|

=

∣∣∣∣−βSH1
(t)MI1(t)

NM (t)
− µHSH1

(t) +
βSH2

(t)MI2(t)

NM (t)
+ µHSH2

(t)

∣∣∣∣
≤ β

NM (t)
|−SH1

(t)MI1(t) + SH2
(t)MI2(t)|+ µH |−SH1

(t) + SH2
(t)| .

By adding and subtracting the term SH1
MI2 , we have

|f1 (X1 (t))− f1 (X2 (t))|

≤ β

NM (t)
SH1(t) |−MI1(t) +MI2(t)|+ β

MI2(t)

NM (t)
|−SH1(t) + SH2(t)|

+µH |−SH1
(t) + SH2

(t)| .

Since SH1 ≤ Nmax and MI2

NM
≤ 1, then

|f1 (X1 (t))− f1 (X2 (t))| ≤
(

β

NM (t)
Nmax + β + µH

)
∥X1(t)−X2(t)∥ .

For (4) and following the same reasoning, we find

|f2 (X1 (t))− f2 (X2 (t))|

≤
(

β

NM (t)
Nmax + β + λ+ τ + µH

)
∥X1(t)−X2(t)∥ .

The linearity of terms in (5) leads to

|f3 (X1 (t))− f3 (X2 (t))| ≤ (λ+ µH) ∥X1(t)−X2(t)∥ .

From (6), we have
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|f4 (X1 (t))− f4 (X2 (t))| ≤
α

NH(t)
|−MU1(t)IH1(t) +MU2(t)IH2(t)|

+θ |MI1(t)−MI2(t)|+ k |−MU1
(t) +MU2

(t)| .

By adding and subtracting the term MU1IH2 , we have

|f4 (X1 (t))− f4 (X2 (t))| ≤
α

NH(t)
MU1(t) |−IH1(t) + IH2(t)|

+
α

NH(t)
IH2(t) |−MU1(t) +MU2(t)|

+θ |MI1(t)−MI2(t)|+ k |−MU1
(t) +MU2

(t)| .

Knowing MU1
≤ NM , NH(t) ≥ Nmin and IH2

NH(t)
≤ 1, we arrive at

|f4 (X1 (t))− f4 (X2 (t))| ≤
(
αNM (t)

Nmin
+ α+ θ + k

)
∥X1(t)−X2(t)∥ .

Finally, from (7) and following the previous steps, we have

|f5 (X1 (t))− f5 (X2 (t))| ≤
(
αNM (t)

Nmin
+ α+ θ + k

)
∥X1(t)−X2(t)∥ .

Therefore, we have

∥F (X1(t))− F (X2(t))∥ ≤ C ∥X1(t)−X2(t)∥ ,

with

C =max
(

β

NM (t)
Nmax + β + µH , β

NM (t)
Nmax + β + λ+ τ + µH , λ+ µH ,

αNM (t)

Nmin
+ α+ θ + k

)
.

3.2 Equilibrium points

In this subsection, we will look for points of equilibrium E0 and E1 (Theorem
2) and study their stabilities. We limit ourselves to the stability of the point
E0. The stability of the point E1 will be made numerically.
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The basic reproduction rate R0

Understanding how an epidemic develops once it has appeared is crucial if
we are to hope to control it. To do this, various models have been developed,
which highlight the crucial role played by the R0 parameter, describing the
average number of new infections due to a sick individual. As one can imag-
ine, if this number is less than 1, then the epidemic will tend to die out, while
it may persist or even spread to the entire population if R0 > 1 ([12]).

We recall, for a given matrix A, that Sp(A) represents the spectrum of A
and that the spectral radius of the matrix A, denoted ρ(A), is defined by

ρ(A) = max {|λ| , λ ∈ Sp(A)} .

The disease-free point is

(SH =
λH
µH

, IH = 0, RH = 0,MU = NM ,MI = 0).

We consider different infected populations of the model. That is,

dIH
dt

(t) =
βSH(t)MI(t)

NM
− λIH(t)− (τ + µH) IH(t)

and

dMI

dt
(t) =

αMU (t)IH(t)

SH(t) + IH(t)
− θMI(t)− kMI(t).

To be able to calculate R0, we use two matrices F and V , where the
matrix F represents the appearance of new infected; that is, what comes from
other compartments and which enters the infected compartment following an
infection,

F (IH ,MI) =

 0
βSH

NM
αMU

NH
0

 .

The matrix V represents all those who leave the compartments of the
infected and those who come there for any other reason,

V (IH ,MI) =

(
−λ− (τ + µH) 0

0 −θ − k

)
.

We have
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−FV −1 =

 0
βλH

NM (k + θ)µH
αNMµH

(λ+ τ + µH)λH
0

 .

The matrix −FV −1 represents the next generation matrix. The basic
reproduction rate is given by

R0 = ρ(−FV −1).

After calculating the eigenvalues of the matrix −FV −1, we find

λ1 =
√

βα
(λ+τ+µH)(k+θ) and λ2 = −

√
βα

(λ+τ+µH)(k+θ) .

We then conclude

R0 =

√
βα

(λ+ τ + µH) (k + θ)
. (8)

The calculation of equilibrium points

Theorem 2. The system (1) admits two equilibrium points E0 and E1, for
strictly positive parameters. They are given indeed as follows.

1. If R0 < 1, then the point E0 exists and it is given by

E0 =

(
λH
µH

, 0, 0, NM , 0

)
.

2. If

R0 > 1 and αβ + αµH > (k + θ) (τ + λ) ,

then the endemic point E1 exists and it is given by

E1 = (S∗
H , I

∗
H , R

∗
H , NM −M∗

I ,M
∗
I ),

with

S∗
H =

λH − (τ + µH + λ) I∗H
µH

,

I∗H =
βαλH − λH (k + θ) (λ+ τ + µH)NM

αβ (τ + µH + λ) +NM (λ+ τ + µH) (αµH − (k + θ) (τ + λ))
,

R∗
H =

λ

µH
I∗H ,

M∗
U = NM −M∗

I ,

M∗
I =

αµHNMI
∗
H

((αµH − (k + θ) (τ + λ)) I∗H + λH (k + θ))
.
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Proof. The equilibriums of the system (1) are given by the solutions of the
following system of algebraic equations:

λH − βS∗
HM

∗
I

NM
− µHS

∗
H = 0,

βS∗
HM

∗
I

NM
− λI∗H − (τ + µH) I∗H = 0,

λI∗H − µHR
∗
H = 0,

λM − αM∗
UI

∗
H

S∗
H + I∗H

+ θM∗
I − kM∗

U = 0,

α

SH + IH
M∗

UI
∗
H − (k + θ)M∗

I = 0.

(9)

As the population of the material is constant NM = MU +MI , then the
system (9) is reduced to the following four equations:

λH − βS∗
HM

∗
I

NM
− µHS

∗
H = 0, (10)

βS∗
HM

∗
I

NM
− λI∗H − (τ + µH) I∗H = 0, (11)

λI∗H − µHR
∗
H = 0, (12)

and
α(NM −M∗

I )I
∗
H

S∗
H + I∗H

− (k + θ)M∗
I = 0. (13)

The sum of (10) and (11) gives

S∗
H =

λH − (τ + µH + λ) I∗H
µH

. (14)

From (12), it is clear that

R∗
H =

λ

µH
I∗H . (15)

To determine M∗
I , we replace (14) in (13) and obtain

M∗
I =

αµHNMI
∗
H

((αµH − (k + θ) (τ + λ)) I∗H + λH (k + θ))
. (16)

Substituting (14) and (16) into (11), we find(
βα (λH − (τ + µH + λ) I∗H)

((αµH − (k + θ) (τ + λ)) I∗H + λH (k + θ))
− (λ+ τ + µH)NM

)
I∗H = 0.

(17)
According to (17), we distinguish two cases:
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Case I I∗H = 0, we then find

SH =
λH
µH

, RH =MI = 0 et MU = NM .

Hence the existence of the first equilibrium point E0 is as follows:

E0 =

(
λH
µH

, 0, 0, NM , 0

)
.

Case II I∗H ̸= 0, we have

βα (λH − (τ + µH + λ) I∗H)

((αµH − (k + θ) (τ + λ)) I∗H + λH (k + θ))
− (λ+ τ + µH)NM = 0.

We can easily write the last equation in the form

BI∗2H +AI∗H = 0

with{
A = βα (τ + µH + λ) + (λ+ τ + µH)NM (αµH − (k + θ) (τ + λ)) ,
B = −λH (k + θ) (λ+ τ + µH)NM + βαλH .

Hence,

I∗H =
βαλH − λH (k + θ) (λ+ τ + µH)NM

αβ (τ + µH + λ) + (λ+ τ + µH)NM (αµH − (k + θ) (τ + λ))
.

(18)

Then, the existence of the endemic point E1 is given by

E1 = (S∗
H , I

∗
H , R

∗
H , NM −M∗

I ,M
∗
I ),

with

S∗
H =

λH − (τ + µH + λ) I∗H
µH

,

I∗H =
βαλH − λH (k + θ) (λ+ τ + µH)NM

αβ (τ + µH + λ) + (λ+ τ + µH)NM (αµH − (k + θ) (τ + λ))
,

R∗
H =

λ

µH
I∗H ,

M∗
U = NM −M∗

I ,

M∗
I =

αµHNMI
∗
H

((αµH − (k + θ) (τ + λ)) I∗H + λH (k + θ))
.
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The positivity of the equilibrium points

It is clear that the point E0 is positive (belong to the positive orthant) without
condition. It then remains to show that the point E1 is positive. This
amounts to showing that S∗

H , I
∗
H , R

∗
H ,M

∗
I are positive.

1. The positivity of S∗
H is according to (14).

It is clear that the denominator of S∗
H is positive, so it suffices to study

the positivity of the numerator

λH − (τ + µH + λ) I∗H =
λHαµH + λH (k + θ)µH

αβ + αµH − (k + θ) (τ + λ)

=
S1

S2
.

As the numerator S1 is positive, then it remains to show that S2 is
positive; that is,

αβ + αµH > (k + θ) (τ + λ) .

2. The positivity of I∗H is according to (18). We let

I∗H =
A

B
.

We write A as a function of R0 defined in (8),

A = αλHβ
R2

0 − 1

R2
0

.

Therefore A is positive if R0 > 1.

We write B as a function of R0,

B ≥ αβ (λ+ τ)
R2

0 − 1

R2
0

.

We note that B is positive if R0 > 1.

3. The positivity of R∗
H is according to (15). We note that R∗

H is positive
if I∗H is positive.

4. The positivity of M∗
I is according to (16). We let

M∗
I =

M1

M2
.
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It is clear that M1 is positive if I∗H is positive. Then, M∗
I is positive if

M2 is positive. Indeed

M2 > 0 =⇒ C1

C2
> 0,

withC1 = αµH (λ+ τ + µH) (αβ + αµH − (k + θ) (τ + λ))
+λH (k + θ) (αβµH + (τ + µH + λ)αµH) > 0,

C2 = αβ (τ + µH + λ) + (λ+ τ + µH) (αµH − (k + θ) (τ + λ)) > 0.

We then deduce that M2 is positive if

αβ + αµH > (k + θ) (τ + λ) ,

and therefore M∗
I is positive if I∗H is positive and if

αβ + αµH > (k + θ) (τ + λ) .

3.3 Stability

The stability of the equilibrium point [5] results from the stability of the
Jacobian matrix of the system (10), (11), (12), (13) ( i.e., its eigenvalues
must be negative), which is given by

J(SH , IH , RH ,MI)

=



−βMI

NM
− µH 0 0 −βSH

NM
βMI

NM
−λ− (τ + µH) 0

βSH

NM
0 λ −µH 0

−α(NM −MI)IH

(SH + IH)
2

α(NM −MI)SH

(SH + IH)
2 0

−αIH
SH + IH

− (k + θ)


Theorem 3. It holds that E0 is locally asymptotically stable (the solutions
must approach an equilibrium point under initial conditions close to the equi-
librium point) if and only if

R0 < 1.

Proof. The Jacobian matrix at point E0 is given by
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J(E0) =



−µH 0 0 − βλH
NMµH

0 − (λ+ τ + µH) 0
βλH
NMµH

0 λ −µH 0

0
αNMµH

λH
0 − (k + θ)



=


−A 0 0 −B
0 −C 0 B
0 D −A 0
0 E 0 −F

 .

We calculate the characteristic polynomial of J(E0),

det(J(E0)−XI3) = − (X + µH)
2
(kλ+ kτ + kµH + θλ

+θτ − αβ + θµH + (θ + λ+ τ + µH + k)X +X2
)

= − (X + µH)
2
P (X).

We have the first eigenvalues

X1 = X2 = −µH < 0,

and
P (X) = A+BX + CX2,

with

A = kλ+ kτ + kµH + θλ+ θτ + θµH − αβ,

B = (θ + λ+ τ + µH + k) ,

C = 1.

Let us use Descartes’ rule [16] to show that the coefficients of the poly-
nomial P do not change signs.

It is clear that B and C are positive. It only remains to show that A is
positive or equivalently

1−R0 > 0.

So, A is positive if R0 < 1.

According to Descartes’ rule, the polynomial does not admit any positive
root. Hence, the stability of the point E0.
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4 Method of resolution

4.1 Jacobi wavelets

The Jacobi polynomials J (α,β)
m (α > −1, β > −1) are orthogonal polynomials

on the interval [−1, 1] ([13, 29]) with the weight function

ω(x) = (1− x)
α
(1 + x)

β
, (19)

where m is a positive integer, which represents the degree of the polyno-
mial. These polynomials belong to the weight space L2

ω ([−1, 1]). The Jacobi
polynomials can be represented by the recursive formula given by

J (α,β)
m (x)

=
(α+ β + 2m− 1)

[
α2 − β2 + x(α+ β + 2m)(α+ β + 2m− 2)

]
2m (α+ β + 2m− 2) (α+ β +m)

J
(α,β)
m−1 (x)

− (α+m− 1) (β +m− 1) (α+ β + 2m)

m (α+ β + 2m− 2) (α+ β +m)
J
(α,β)
m−2 (x), (20)

where
J
(α,β)
0 (x) = 1, J (α,β)

1 (x) =
α+ β + 2

2
x+

α− β

2
. (21)

As the Jacobi polynomials are orthogonal with respect to the weight func-
tion ω, then〈

J (α,β)
n , J (α,β)

m

〉
L2

ω

= h(α,β)m δn,m, for all n,m ∈ N, (22)

where

h(α,β)m =
∥∥∥J (α,β)

m

∥∥∥2 =
2α+β+1Γ (α+m+ 1)Γ (β +m+ 1)

(2m+ 1 + α+ β)m!Γ (α+ β +m+ 1)
, (23)

δn,m represents the Kronecker symbol, Γ is the Euler gamma function, and
⟨·, ·⟩L2

ω
denotes the inner product of L2

ω ([−1, 1]).

The Jacobi wavelets are defined by

ψ(α,β)
n,m (x) =

 2
k+1
2√

h
(α,β)
m

J
(α,β)
m

(
2k+1x− 2n+ 1

)
, n−1

2k
≤ x < n

2k

0, otherwise,
(24)

where k ∈ N, n = 1, . . . , 2k represents the number of decomposition levels,
m = 0, 1, . . . ,M is the degree of the Jacobi polynomials (M ∈ N∗). The
coefficient 2

k+1
2√

h
(α,β)
m

is for normality.
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4.2 Decomposition in Jacobi wavelets basis

Since the Jacobi wavelets family
{
ψ
(α,β)
n,m

}
n = 1, . . . , 2k

m ≥ 0

forms an orthonor-

mal basis in L2
ω ([0, 1]), we can express all functions f in L2

ω ([0, 1]) as a unique
linear combination of elements of this basis:

f(x) =

2k∑
n=1

∞∑
m=0

cn,mψ
(α,β)
n,m (x) , (25)

where cn,m =
〈
f, ψ

(α,β)
n,m

〉
L2

ω([0,1])
. From the point of view of the numerical

analysis, we take the truncated sum (its projection on finite space)

f(x) =

2k∑
n=1

M∑
m=0

cn,mψ
(α,β)
n,m (x). (26)

Let
C =

[
c1,0, . . . , c1,M , c2,0, . . . , c2,M , . . . , c2k,0, . . . , c2k,M

]T
,

and let

Ψ(α,β) =
[
ψ
(α,β)
1,0 , . . . , ψ

(α,β)
1,M , ψ

(α,β)
2,0 , . . . , ψ

(α,β)
2,M , . . . , ψ

(α,β)

2k,0
, . . . , ψ

(α,β)

2k,M

]T
.

(27)
We can find the following matrix notation:

f(x) = CTΨ(α,β) (x) . (28)

In this case, the Ψ(α,β) are called the 2k(M + 1) Jacobi wavelets vector and
C is a 2k(M + 1) vector.

The operational matrix of derivative

The derivative of the Jacobi wavelets vector Ψ(α,β) from (27) can be expressed
by [17]

dΨ(α,β) (x)

dx
= D(α,β)Ψ(α,β)(x),

where D(α,β) denotes the 2k (M + 1) × 2k (M + 1) operational matrix given
by
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D(α,β) =


F (α,β) 0 . . . 0

0 F (α,β) . . . ...
... . . . . . . 0
0 . . . 0 F (α,β)

 ,

F (α,β) is (M + 1)× (M + 1) matrix, where its (i, j)th element is given by

F
(α,β)
i,j =

 2k+1

√
h
(α,β)
j−1√

h
(α,β)
i−1

γ
(α,β)
i−1,j−1, if i > j

0, otherwise,
(29)

in which h(α,β)i−1 and h(α,β)j−1 are defined from (23), and γ(α,β)i−1,j−1 are given by

γ
(α,β)
i−1,j−1 =

Γ (i+ β)

2Γ (i+ α+ β)

(2 (j − 1) + α+ β + 1)Γ (α+ β + j)

Γ (α+ j)
(30)

×

 i−1∑
d=j−1

(−1)
d−j−1 (2 (d+ 1) + α+ β) Γ (α+ d+ 1)

Γ (β + d+ 2)

 .

4.3 Description of the solution method

In this subsection, we describe how to apply the Jacobi wavelets to solve
ODEs. Then, we use the DQLT with Jacobi wavelets method to solve a set
of nonlinear differential equations. In the end, we present the formula of
errors calculation.

Linear first order differential equation

Consider the linear first order differential equation with initial condition{
f ′(x) + a(x)f(x) = g(x), x ∈ ]0, 1] ,
f(0) = f0,

(31)

where f0 is arbitrary constant. To solve the problem (31), we decompose
f(x) in the Jacobi wavelets basis

{
ψ
(α,β)
n,m

}
n=1,...,2k

m=0,...,M

by estimating (28),

f(x) = CTΨ(α,β) (x) , (32)

where C denotes the solution vector of the problem. Then, we have

f ′(x) = CTD(α,β)Ψ(α,β) (x) . (33)
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Now, by substituting (32)–(33) into problem (29), we get the following alge-
braic system:

CT (D(α,β) + a(xi)I)Ψ
(α,β) (xi) = g(xi), i = 1, . . . , nc, (34)

where I is the identity matrix and nc is the number of collocation points.
We have to insert the initial condition

f0 = CTΨ(α,β) (0) . (35)

Equations (34) and (35) generate 2k(M +1) set of linear algebraic equations,
which can easily be solved for the unknown C by using one of the method
of resolution an algebraic system. Consequently, f(x) given in (32) will be
easily calculated.

Set of nonlinear differential equation

To solve a set of nonlinear differential equations, we will use the DQLT to
transform this problem by iterative steps into a set of decoupled and lin-
earized differential equations, where each equation can be written as the
problem (31). Then we use the Jacobi wavelets method described in the pre-
vious subsection. Let us consider a set of p nonlinear differential equations.
This iterative technique can be defined by

Given initial profilef (0)1 , f
(0)
2 , . . . , f

(0)
p ,

(f ′1(x))
(l+1)

+ a1(x)f
(l+1)
1 = g1

(
x, f

(l)
1 , f

(l)
2 , . . . , f

(l)
p

)
,

(f ′2(x))
(l+1)

+ a2(x)f
(l+1)
2 = g2

(
x, f

(l+1)
1 , f

(l)
2 , . . . , f

(l)
p

)
,

...(
f ′p(x)

)(l+1)
+ ap(x)f

(l+1)
p = gp

(
x, f

(l+1)
1 , f

(l+1)
2 , . . . , f

(l)
p

)
,

(36)

where f (l+1)
i and f (l)i are the approximations of the solution fi at the current

and the precedent iteration, respectively. At each iteration, we apply the
Jacobi wavelets method to solve p linear differential equation. Then, for
(l + 1)th iteration, we can calculate the decoupling error using the following
formula:

EDQLT = max
(
∥f l1 − f l+1

1 ∥2, ∥f l2 − f l+1
2 ∥2, . . . , ∥f lp − f l+1

p ∥2
)
. (37)

The procedure is terminated when the error of decoupling is sufficiently small.
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Error estimation

Since the ODEs solutions are only known at collocation points, the most
appropriate norm is the euclidean norm if the exact solution is given. The
accuracy of the proposed method is estimated by

error = ∥f(x)− fex(x)∥2 =

√√√√ nc∑
i=1

|f(xi)− fex(xi)|2, (38)

where fex is the analytic solution, f is the approximate solution, and nc the
number of collocation points.

5 Numerical simulations of model SIR-MI

In this section, we will study the stability of the point E1 numerically. Then,
we simulate our model to see the importance of studying the effect of the
sterilization parameter infected material and management on the evolution
of the human population. We apply the Jacobi wavelets with DQLT, which
makes it possible to numerically evaluate the solutions of the ODEs and to
build their graphs. We conclude our section with a discussion of the results
obtained.

5.1 The study of the stability of the second equilibrium
point E1

The following table gives us the biological parameters that verify the condi-
tions of existence and stability of the second point of equilibrium E1:

Table 2: The parameters verifying the stability of E1.

Equilibrium point E1 = (1622, 9920, 1668, 18172, 11828)
Parameter λH β µH λ λM τ α k θ

Value 230 0.23 0.05116 0.086 1500 0.011 0.6 0.05 0.3

1. For the conditions of existence, we have

(R0 = 1.6313) > 1, (39)

and
(αβ + αµH = 0.1687) > ((k + θ)(τ + λ) = 0.0339). (40)
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Hence, we have the existence of the point E1.

2. For stability, the Jacobian matrix of system (34) at point E1 after
substitution of the parameters given in Table 2 is given by

J (E1) =


−0.1418 0 0 −0.0124
0.0907 −0.1482 0 0.0124

0 0.0860 −0.0512 0
−1.5836 2.5875 0 −0.5778

 .

The eigenvalues of J(E1) are


vp1 = −0.0512,
vp2 = −0.6842,
vp3 = −0.0918 + 0.0515i,
vp4 = −0.0918− 0.0515i.

The eigenvalues of J(E1) have a negative real part, hence, the asymp-
totic stability of the second equilibrium point E1.

Figure 2: The convergence of the system toward E1.

(A) (B)

Figure 3: Evolution of human and material sub-populations
:::::::::::::
subpopulations:

(A) : represents the human sub-populations
::::::::::::::
subpopulations, (B) : represents

the material sub-populations
:::::::::::::
subpopulations.


vp1 = −0.0512,
vp2 = −0.6842,
vp3 = −0.0918 + 0.0515i,
vp4 = −0.0918− 0.0515i.

The eigenvalues of J(E1) have a negative real part, hence, the asymp-
totic stability of the second equilibrium point E1.

We notice
::::
note

:
that the solutions obtained in Figure 2. all

::
All

:
converge

towards the equilibrium point E1 when t → +∞. Figure 3 . shows that the
five subpopulations converge after a fairly large time to the second equilib-
rium point E1.

In the sequel
::::
what

:::::::
follows, we carried out simulation experiments with the

parameters illustrated by Table (3)
:
3.

21

Figure 2: The convergence of the system toward E1.

We note that the solutions obtained in Figure 2. All converge towards
the equilibrium point E1 when t→ +∞.

Figure 3 shows that the five subpopulations converge after a fairly large
time to the second equilibrium point E1.

In what follows, we carried out simulation experiments with the parame-
ters illustrated by Table 3.
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Figure 2: The convergence of the system toward E1.
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the material sub-populations
:::::::::::::
subpopulations.
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vp4 = −0.0918− 0.0515i.

The eigenvalues of J(E1) have a negative real part, hence, the asymp-
totic stability of the second equilibrium point E1.

We notice
::::
note

:
that the solutions obtained in Figure 2. all

::
All

:
converge

towards the equilibrium point E1 when t → +∞. Figure 3 . shows that the
five subpopulations converge after a fairly large time to the second equilib-
rium point E1.

In the sequel
::::
what

:::::::
follows, we carried out simulation experiments with the

parameters illustrated by Table (3)
:
3.

21

Figure 3: Evolution of human and material subpopulations: (A) represents the human
subpopulations, (B) represents the material subpopulations.

Table 3: Variations in estimated values of biological data.

The time 40 years
I.C SH IH RH MU MI

Value 60000 30000 20000 10000 20000
Parameter λH β µH λ λM τ α k θ

Value 230 0.072-0.6 0.01-0.05116 0.006-0.235 1500 0.011 0.1-0.6 0.05 0.17-0.4

5.2 The impact of equipment sterilization on disease
progression

Table 3:
:::::::::
Variations

::
in

:::::::::
estimated

::::::
values

:::
of

::::::::
biological

::::::
data.

The time I.C SH Value 60000 Parameter λHβµHλλMταkθ Value 230
0.072-0.6 0.01-0.05116 0.006-0.235 1500 0.011 0.1-0.6 0.05 0.17-0.4Variations

in estimated values of biological data.
The time 40 years

I.C SH IH RH MU MI

Value 60000 30000 20000 10000 20000
Parameter λH β µH λ λM τ α k θ

Value 230 0.072-0.6 0.01-0.05116 0.006-0.235 1500 0.011 0.1-0.6 0.05 0.17-0.4

Figure 4: Evolution of human sub-populations
:::::::::::::
subpopulations

:
for different

values of θ.

5.2 The impact of equipment sterilization on disease
progression

For different values of θ = 0.2, 0.3, 0.4, we seein Figures 4.
:
,
:::
in

::::::
Figure

:::
4,

the positive effect played by the sterilization parameter to reduce the num-
ber of infections. This shows that better compliance with universal hygiene
rules and recommendations disinfection of non-disposable

:::
for

::::::::::
disinfection

:::
of

::::::::::::
nondisposable

:
medical equipment and the development of equipment for use

single should allow in the long term a quasi-disappearance of the infections.

5.3 The impact of the transition rate from IH to RH

For different values of λ = 0.01, 0.015, 0.02, the curves obtained in Figures 5
.

:::::
Figure

::
5
:
have made it possible to understand the important role of good

care for infected people. Being infected with HCV does not protect against
the risk of a new infection, which could worsen the medical situation, the

:
.

:::
The

:
development of a better therapeutic strategy can significantly improve

the quality of life of people infected with hepatitis C.

22

Figure 4: Evolution of human subpopulations for different values of θ.

For different values of θ = 0.2, 0.3, 0.4, we see, in Figure 4, the positive
effect played by the sterilization parameter to reduce the number of infec-
tions. This shows that better compliance with universal hygiene rules and
recommendations for disinfection of nondisposable medical equipment and
the development of equipment for use single should allow in the long term a
quasi-disappearance of infections.
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5.3 The impact of the transition rate from IH to RH

Figure 5: Evolution of human sub-populations
:::::::::::::
subpopulations

:
for different

values of λ.

6 Discussions and Conclusion
World Health Organization recommendations

:::::::::::
recommends that countries de-

velop national strategies to reduce the burden of disease associated with hep-
atitis C are hampered by weak or lacking national surveillance systems and
unreliable estimates of the burden of hepatitis C morbidity.

In this work, we described and mathematically analyzed the dynamics of
hepatitis C. The different numerical simulations were presented to see the be-
havior of the model at infinity,

:::
and the results obtained show

::::::
showed

:
that the

trends related to the prevention and management of infection considerably
influence the subpopulations. We also apply

::::::
applied

:
the Jacobi wavelets

method associated with the decoupling and quasi-linearization technique
::::::
DQLT to obtain a numerical solution

:
,
:
which gave a very satisfactory results.

Due to the lack of data, our model has not been validated for the case of
Algeria, nevertheless

:
.
::::::::::::
Nevertheless the results of this modest work constitute

the bases of a work to be continued and improved for a much more in-depth
study.
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For different values of λ = 0.01, 0.015, 0.02, the curves obtained in Figure
5 have made it possible to understand the important role of good care for
infected people. Being infected with HCV does not protect against the risk of
a new infection, which could worsen the medical situation. The development
of a better therapeutic strategy can significantly improve the quality of life
of people infected with hepatitis C.

6 Discussions and Conclusion

World Health Organization recommends that countries develop national
strategies to reduce the burden of disease associated with hepatitis C ham-
pered by weak or lacking national surveillance systems and unreliable esti-
mates of the burden of hepatitis C morbidity.

In this work, we described and mathematically analyzed the dynamics of
hepatitis C. The different numerical simulations were presented to see the
behavior of the model at infinity, and the results obtained showed that the
trends related to the prevention and management of infection considerably
influence the subpopulations. We also applied the Jacobi wavelets method
associated with the DQLT to obtain a numerical solution, which gave a very
satisfactory results.

Due to the lack of data, our model has not been validated for the case of
Algeria. Nevertheless the results of this modest work constitute the bases of
work to be continued and improved for a much more in-depth study.
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