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Letter from the Editor–in–Chief

I would like to welcome you to the Iranian Journal of Numerical Analysis
and Optimization (IJNAO). This journal has been published two issues per
year and supported by the Faculty of Mathematical Sciences at the Ferdowsi
University of Mashhad. The faculty of Mathematical Sciences with the cen-
ters of excellence and the research centers is well-known in mathematical
communities in Iran.
The main aim of the journal is to facilitate discussions and collaborations
between specialists in applied mathematics, especially in the fields of numer-
ical analysis and optimization, in the region and worldwide. Our vision is
that scholars from different applied mathematical research disciplines pool
their insight, knowledge, and efforts by communicating via this international
journal. In order to assure the high quality of the journal, each article is
reviewed by subject-qualified referees. Our expectations for IJNAO are as
high as any well-known applied mathematical journal in the world. We trust
that by publishing quality research and creative work, the possibility of more
collaborations between researchers would be provided. We invite all applied
mathematicians especially in the fields of numerical analysis and optimiza-
tion to join us by submitting their original work to the Iranian Journal of
Numerical Analysis and Optimization.
We would like to inform all readers that the Iranian Journal of Numerical
Analysis and Optimization (IJNAO), has changed its publishing frequency
from ”Semiannual” to a ”Quarterly” journal since January 2023. The four
journal issues per year will be published in the months of March, June,
September, and December. One of our goals is to continue to improve the
speed of both the review and publication processes, while try continuing to
publish the best available international research in numerical analysis and op-
timization, with the high scientific and publication standards that the journal
is known for.

Ali R. Soheili
Editor-in-Chief
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programming problems with vanishing
constraints

B. Japamala Rani*, I. Ahmad and K. Kummari

Abstract

In this study, we explore the theoretical features of a multiobjective
interval-valued programming problem with vanishing constraints. In view
of this, we have defined a multiobjective interval-valued programming prob-
lem with vanishing constraints in which the objective functions are consid-
ered to be interval-valued functions, and we define an LU-efficient solution
by employing partial ordering relations. Under the assumption of general-
ized convexity, we investigate the optimality conditions for a (weakly) LU-
efficient solution to a multiobjective interval-valued programming problem
with vanishing constraints. Furthermore, we establish Wolfe and Mond–
Weir duality results under appropriate convexity hypotheses. The study
concludes with examples designed to validate our findings.
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Keywords: Multiobjective interval-valued optimization problem; vanishing
constraints; (weakly) LU-efficient solution; duality.

1 Introduction

In modern mathematical research, the concept of mathematical program-
ming with vanishing constraints has emerged as a novel type of constrained
optimization problems. Formal analysis was conducted by Achtziger and
Kanzow [1]. Dorsch, Shikhman, and Stein [9] presented a topological analy-
sis of mathematical programs with vanishing constraints and introduced the
new concept of a T -stationary point. By applying the concept of local reg-
ularization to mathematical programs with vanishing constraints, Hohesiel,
Kanzow, and Schwartz [13] derived a new solution method for solving such a
class of optimization problems and proved several convergence results. Later,
to compute the mathematical problems involving vanishing constraints nu-
merically, Hoheisel et al. [14] investigated and compared four regularization
methods, each impacted by a single regularization parameter. The study
of mathematical programming with vanishing constraints has a wide range
of real-world applications, including the development of robot motion plans
[8, 19], the design of optimal truss topologies for mechanical structures [11],
and the design of nonlinear optimal control problems for mixed integers [20].
A multiobjective programming problem involves minimizing multiple objec-
tives over a set of feasible solutions. Multiobjective programming is chal-
lenging due to the fact that the objectives for vector optimization problems
compete with each other, and an improvement on one objective can reduce
goals for other objectives. There is an enormous amount of literature on op-
timal conditions and numerous kinds of dualities in multiobjective program-
ming problems (see, for example, [7, 22, 23]). A constraint qualification is an
element critical to the existence of Lagrange multipliers in multiobjective op-
timization problems, as it allows Karush–Kuhn–Tucker optimality conditions
to hold, thereby assisting with and enhancing optimization algorithms design.
There have been several recent articles published on optimality, stationarity,
criticality, and constraint qualification; for instance, we refer to [10, 12, 17].
Jayswal and Singh [18] studied about modified objective function approach
for an equivalent η-approximated multiobjective optimization problem with
vanishing constraints and also discussed saddle point criteria. The class of
differentiable semi-infinite multiobjective programming problems with van-
ishing constraints was discussed by Antczak [4].
Using separate considerations of minimization and maximization, Ishibuchi
and Tanaka [16] investigated multiobjective optimization problems in which
the objective functions are interval-valued and developed an ordering rela-
tionship between two closed intervals. A general methodology proposed by
Urli and Nadeau [26] provides a way of formulating the non-deterministic
multiobjective linear programming problem with interval coefficients in a de-
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terministic way and then solving it with an interactive approach. Under cer-
tain convexity assumptions, The Karush–Kuhn–Tucker necessary optimality
conditions for nonlinear differentiable multiobjective programming problems
with an interval-valued objective and constraint functions were derived by
Hosseinzade and Hassanpour [15]. Studies on optimality conditions and dif-
ferent types of duality for multiobjective programming problems with interval
objective function are quite widespread (refer to [6, 27, 28, 15, 21]). In this
paper, we aim to investigate the optimality conditions and the duality results
for multiobjective interval-valued programming problems with vanishing con-
straints under the Abadie constraint qualification.
Following is an outline of the rest of this paper: Section 2 consists of some
basic definitions, background material, and the necessary optimality condi-
tions. Section 3 represents the sufficient optimality conditions for multiob-
jective interval-valued optimization problems with vanishing constraints. In
Sections 4 and 5, Wolfe type dual and Mond–Weir type dual are presented,
and appropriate duality results are also discussed. Section 6 explores special
cases. Finally, the paper is concluded in Section 7.

2 Preliminaries

This section contains a list of notations and basic definitions which will
be used throughout the article. Let Rn be the Euclidean space with n-
dimensions and Rn

+ be its nonnegative orthant. For a given a, Θ(a) is the
system of the neighborhoods of a. For A ⊆ Rn, spanA and posA stands for
its linear hull and convex cone (containing the origin) of A, respectively. Let
A ̸= ϕ and let the contingent cone of set A at the point a, be denoted by
T(A, a). Let I(R) be the set of all closed and bounded intervals in R. For the
case where Λ1 ∈ I(R) is a closed interval, we use the notation Λ1 = [αL

0 , α
U
0 ],

where αL
0 and αU

0 represent the minimum and maximum values of Λ1, re-
spectively. Let

Λ1 = [αL
0 , α

U
0 ], Λ2 = [βL

0 , β
U
0 ] ∈ I(R).

Then we have

(i) Λ1 + Λ2 = {α0 + β0 | α0 ∈ Λ1 and β0 ∈ Λ2} = [αL
0 + βL

0 , α
U
0 + βU

0 ],

(ii) −Λ1 = {α0 | α0 ∈ Λ1} = [−αU
0 ,−αL

0 ],

(iii) Λ1 − Λ2 = Λ1 + (−Λ2) = [αL
0 − βU

0 , α
U
0 − βL

0 ],

(iv) kΛ1 = {kα0 | α0 ∈ Λ1} =

{
[kαL

0 , kα
U
0 ], if k ≥ 0,

[kαU
0 , kα

L
0 ], if k < 0,

where k is a real

number.
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357 On optimality and duality for multiobjective ...

The real number k ∈ R is equivalent to the closed interval Λ1k = [k, k].
Let Λ1 = [αL

0 , α
U
0 ] ∈ I(R) be a closed interval. We write the sum of an inter-

val Λ1 ∈ I(R) and a real number k as Λ1 +Λ1k . Thus, Λ1 + k = Λ1 +Λ1k =
[αL

0 + k, αU
0 + k].

For Λ1 = [αL
0 , α

U
0 ] and Λ2 = [βL

0 , β
U
0 ], the order relation ⪯LU is defined

as follows:

(i) Λ1 ⪯LU Λ2 if and only if αL
0 ≤ βL

0 and αU
0 ≤ βU

0 .

(ii) Λ1 ≺LU Λ2 if and only if Λ1 ⪯LU Λ2 and Λ1 ̸= Λ2.
It is obvious that, Λ1 ≺LU Λ2 if and only if

αL
0 < βL

0 and αU
0 < βU

0 ,

or, αL
0 ≤ βL

0 and αU
0 < βU

0 ,

or, αL
0 < βL

0 and αU
0 ≤ βU

0 .

Furthermore, for u̇, v̇ ∈ Rm, we use the following notations:

(i). u̇ ≺ v̇ ⇔ u̇i < v̇i, for all i ∈ {1, 2, . . . ,m}, u̇ ⊀ v̇ is the negation of u̇ ≺
v̇

(ii). u̇ ⪯ v̇ ⇔

{
u̇i ≤ v̇i, for all i ∈ {1, 2, . . . ,m}
u̇i0 < v̇i0 , for at least one i0 ∈ {1, 2, . . . ,m},

u̇ � v̇ is the negation of u̇ ⪯ v̇.

In the present analysis, we consider the following differentiable vector opti-
mization problem with multiple interval-valued objective function with van-
ishing constraints (MIVVC):

MIVVC min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ), . . . , ϑm(ξ))

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r,

where each ϑi : Rn → I(R), i ∈ T = {1, 2, . . . ,m} is an interval-valued
function; that is, ϑi(ξ) = [ϑLi (ξ), ϑ

U
i (ξ)], i ∈ T and τi(i = 1, 2, . . . , p),

σi(i = 1, 2, . . . , q), ρi, ωi(i = 1, 2, . . . , r) are assumed to be continuously
differentiable functions from Rn → R. Let us denote Tτ := {1, 2, . . . , p},
Tσ := {1, 2, . . . , q}, and Tr := {1, 2, . . . , r}. The feasible solution set of
MIVVC is given by

FVC =

{
ξ ∈ Rn | τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,
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Japamala Rani, Ahmad and Kummari 358

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r

}
.

Definition 1. A point a ∈ FVC is said to be a locally LU-efficient solution
of MIVVC, if there exists a neighborhood U ∈ Θ(a) such that there is no
ξ ∈ FVC ∩ U satisfying

ϑ(ξ) ⪯LU ϑ(a).

Definition 2. A point a ∈ FVC is said to be a locally weakly LU-efficient
solution of MIVVC, if there exists a neighborhood U ∈ Θ(a) such that there
is no ξ ∈ FVC ∩ U satisfying

ϑ(ξ) ≺LU ϑ(a).

Let a ∈ FVC be any feasible solution of the MIVVC. The following index
sets will be used:

T+(a) := {i ∈ Tr | ρi(a) > 0},

T0(a) := {i ∈ Tr | ρi(a) = 0}.

Furthermore, the index set T+ can be divided into the following subsets

T+0(a) := {i ∈ Tr | ρi(a) > 0, ωi(a) = 0},

T+−(a) := {i ∈ Tr | ρi(a) > 0, ωi(a) < 0}.

Similarly, the index set T0 can be partitioned in the following way

T0+(a) := {i ∈ Tr | ρi(a) = 0, ωi(a) > 0},

T00(a) := {i ∈ Tr | ρi(a) = 0, ωi(a) = 0},

T0−(a) := {i ∈ Tr | ρi(a) = 0, ωi(a) < 0}.

Definition 3. A point a ∈ FVC is said to be a strong stationary point of
MIVVC if and only if there exists (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ ×Rm
+ ×Rp×

Rq ×Rr ×Rr with
∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(a) = 0, λρT00(a)∪T0−(a) ≥ 0,

λωT+−(a)∪T0+(a)∪T00(a)∪T0−(a) = 0 and λωT+0(a)
≥ 0 such that∑

i∈T

αL
i ∇ϑLi (a) +

∑
i∈T

αU
i ∇ϑUi (a) +

∑
i∈Tτ

λτi ∇τi(a) +
∑
i∈Tσ

λσi ∇σi(a)

+
∑

i∈T+0

λωi ∇ωi(a)−
∑

i∈T0+∪T00∪T0−

λρi∇ρi(a) = 0.

Definition 4. A point a ∈ FVC is said to be a VC-stationary point of MIVVC
if and only if there exists (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ × Rm
+ × Rp × Rq ×
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Rr ×Rr with
∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(a) = 0, λρT00(a)∪T0−(a) ≥ 0,

λωT+−(a)∪T0+(a)∪T00(a)∪T0−(a) = 0 and λωT+0(a)∪T00(a)
≥ 0 such that∑

i∈T

αL
i ∇ϑLi (a) +

∑
i∈T

αU
i ∇ϑUi (a) +

∑
i∈Tτ

λτi ∇τi(a) +
∑
i∈Tσ

λσi ∇σi(a)

−
∑

i∈T0+∪T00∪T0−

λρi∇ρi(a) +
∑

i∈T+0

λωi ∇ωi(a) = 0.

For a ∈ FVC and (λτ , λσ, λω, λρ) ∈ Rp ×Rq ×Rr ×Rr, let us define

T+
τ (a) := {i ∈ Tτ (a) | λτi > 0},

T+
σ (a) := {i ∈ Tσ(a) | λσi > 0}, T−

σ (a) := {i ∈ Tσ(a) | λσi < 0},

T̂+
+ (a) := {i ∈ T+(a) | λρi > 0},

T̂+
0 (a) := {i ∈ T0(a) | λρi > 0}, T̂−

0 (a) := {i ∈ T0(a) | λρi < 0},

T̂+
0+(a) := {i ∈ T0+(a) | λρi > 0}, T̂−

0+(a) := {i ∈ T0+(a) | λρi < 0},

T̂+
00(a) := {i ∈ T00(a) | λρi > 0}, T̂−

00(a) := {i ∈ T00(a) | λρi < 0},

T̂+
0−(a) := {i ∈ T0−(a) | λρi > 0},

T+
+0(a) := {i ∈ T+0(a) | λωi > 0}, T−

+0(a) := {i ∈ T+0(a) | λωi < 0},

T+
+−(a) := {i ∈ T+−(a) | λωi > 0},

T+
0+(a) := {i ∈ T0+(a) | λωi > 0}, T−

0+(a) := {i ∈ T0+(a) | λωi < 0},

T+
00(a) := {i ∈ T00(a) | λωi > 0}, T−

00(a) := {i ∈ T00(a) | λωi < 0},

T+
0−(a) := {i ∈ T0−(a) | λωi > 0}.

Definition 5. Let a ∈ FVC.

(i) The linearized cone of MIVVC at a is
L(a) := {d ∈ Rn | ⟨∇τi(a), d⟩ ≤ 0 (i ∈ Tτ ), ⟨∇σi(a), d⟩ = 0 (i ∈ Tσ),
⟨∇ρi(a), d⟩ = 0 (i ∈ T0+), ⟨∇ρi(a), d⟩ ≥ 0 (i ∈ T00 ∪ T0−),
⟨∇ωi(a), d⟩ ≤ 0 (i ∈ T+0)} .

(ii) The VC-linearized cone of MIVVC at a is
LV C(a) := {d ∈ Rn | ⟨∇τi(a), d⟩ ≤ 0 (i ∈ Tτ ), ⟨∇σi(a), d⟩ = 0 (i ∈ Tσ),
⟨∇ρi(a), d⟩ = 0 (i ∈ T0+), ⟨∇ρi(a), d⟩ ≥ 0 (i ∈ T00 ∪ T0−),
⟨∇ωi(a), d⟩ ≤ 0 (i ∈ T+0 ∪ T00)} .

Definition 6. The Abadie constraint qualification (MIVVC-ACQ) is said to
hold at a ∈ FVC if

L(a) ⊆ T(FVC, a).
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Definition 7. The vanishing Abadie constraint qualification (MIVVC-VACQ)
is said to hold at a ∈ FVC if

LV C(a) ⊆ T(FVC, a).

The following theorem can be written in a similar way to Proposition 1
of Tung [25].

Theorem 1 (Necessary optimality conditions). Let ξ0 be a locally weakly
LU-efficient solution of primal problem MIVVC and also further assume that
if MIVVC-VACQ holds at ξ0 and the set

∆1 := pos

 ⋃
i∈Tτ

∇τi(ξ0) ∪
⋃

i∈T00∪T0−

(−∇ρi(ξ0)) ∪
⋃

i∈T+0∪T00

∇ωi(ξ0)



+ span

 ⋃
i∈Tσ

∇σi(ξ0) ∪
⋃

i∈T0+

∇ρi(ξ0)


is closed, then there exists (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ × Rm
+ × Rp ×

Rq × Rr × Rr with
∑
i∈T

(αL
i + αU

i ) = 1, λρT+(ξ0)
= 0, λρT00(ξ0)∪T0−(ξ0)

≥

0, λωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λωT+0(ξ0)∪T00(ξ0)

≥ 0 such that∑
i∈T

αL
i ∇ϑLi (a) +

∑
i∈T

αU
i ∇ϑUi (a) +

∑
i∈Tτ

λτi ∇τi(a) +
∑
i∈Tσ

λσi ∇σi(a)

−
∑
i∈Tr

λρi∇ρi(a) +
∑
i∈Tr

λωi ∇ωi(a) = 0.

3 Sufficient optimality conditions

In this section, we establish sufficient optimality conditions for the problem
MIVVC using the concept of generalized convexity.

Theorem 2. Let ξ0 be a strong stationary point of MIVVC. Suppose that
T̂−
0+ ∪ T+

+0 = ϕ and τi (i ∈ Tτ ), σi (i ∈ T+
σ ), −σi (i ∈ T−

σ ), ωi (i ∈
T+
+0), −ρi (i ∈ T̂+

0+ ∪ T̂+
00 ∪ T̂+

0−) are quasiconvex functions at ξ0. If∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·) is pseudoconvex function at ξ0, then ξ0 is an LU-

efficient solution of MIVVC.

Proof. Since ξ0 is a strong stationary point of MIVVC, there exists (αL, αU ,
λτ , λσ, λω, λρ) ∈ Rm

+×Rm
+×Rp×Rq×Rr×Rr with

∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+

=

0, λρT00∪T0−
≥ 0, λωT+−∪T0+∪T0−

= 0 and λωT+0
≥ 0 such that
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i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0) +

∑
i∈Tτ

λτi ∇τi(ξ0) +
∑
i∈Tσ

λσi ∇σi(ξ0)

−
∑
i∈Tr

λρi∇ρi(ξ0) +
∑
i∈Tr

λωi ∇ωi(ξ0) = 0. (1)

For an arbitrary ξ ∈ FVC, we get τi(ξ) ≤ 0 = τi(ξ0) for each i ∈ Tτ . Thus the
quasiconvexity at ξ0 of τi (i ∈ Tτ ) gives that

⟨∇τi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ Tτ ,

consequently, together with λτi ∈ Rp leads that〈∑
i∈Tτ

λτi ∇τi(ξ0), ξ − ξ0

〉
≤ 0. (2)

We deduce from ξ, ξ0 ∈ FVC that σi(ξ) = σi(ξ0) = 0, for all i ∈ Tσ, and
hence,

σi(ξ) ≤ σi(ξ0) = 0, for all i ∈ T+
σ and −σi(ξ) ≤ −σi(ξ0) = 0, for all i ∈ T−

σ .

The above inequalities along with the quasiconvexity at ξ0 of σi (i ∈ T+
σ )

and −σi (i ∈ T−
σ ) ensure that

⟨∇σi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T+
σ and ⟨−∇σi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T−

σ .

Thus, taking into account the definitions of T+
σ , T

−
σ results in〈∑

i∈Tσ

λσi ∇σi(ξ0), ξ − ξ0

〉
≤ 0. (3)

Again, we deduce from ξ ∈ FVC that −ρi(ξ) ≤ 0, ωi(ξ) ≥ 0, for all i ∈ Tr.
Thus, {

−ρi(ξ) ≤ −ρi(ξ0), i ∈ T̂+
0+ ∪ T̂+

00 ∪ T̂
+
0−,

ωi(ξ) ≤ ωi(ξ0), i ∈ T+
+0.

Therefore, the quasiconvexity of −ρi, i ∈ T̂+
0+ ∪ T̂+

00 ∪ T̂
+
0− and ωi, i ∈ T+

+0 at
ξ0 yields that

⟨−∇ρi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T̂+
0+ ∪ T̂+

00 ∪ T̂
+
0−, (4)

⟨∇ωi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T+
+0. (5)

As T+
+0 ∪ T̂

−
0+ = ϕ, we presume from (1)–(5) that
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i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ − ξ0

〉

=

〈∑
i∈Tτ

λτi ∇τi(ξ0) +
∑
i∈Tσ

λσi ∇σi(ξ0)−
∑
i∈Tr

λρi∇ρi(ξ0)+

∑
i∈Tr

λωi ∇ωi(ξ0), ξ − ξ0

〉
≥ 0, (6)

for all ξ ∈ FVC.
On the contrary, suppose ξ0 is not an LU-efficient solution of MIVVC. This
leads to the existence of a feasible point ξ̃ ∈ FVC such that

ϑ(ξ̃) ⪯LU ϑ(ξ0);

that is, for i ∈ T ,{
ϑLi (ξ̃) < ϑLi (ξ0)

ϑUi (ξ̃) ≤ ϑUi (ξ0)
, or

{
ϑLi (ξ̃) ≤ ϑLi (ξ0)

ϑUi (ξ̃) < ϑUi (ξ0)
, or

{
ϑLi (ξ̃) < ϑLi (ξ0)

ϑUi (ξ̃) < ϑUi (ξ0)
.

From the fact αL ∈ Rm
+ , α

U ∈ Rm
+ with

∑
i∈T

(
αL
i + αU

i

)
= 1, then above in-

equalities together yield∑
i∈T

αL
i ϑ

L
i (ξ̃) +

∑
i∈T

αU
i ϑ

U
i (ξ̃) <

∑
i∈T

αL
i ϑ

L
i (ξ0) +

∑
i∈T

αU
i ϑ

U
i (ξ0),

which by the pseudoconvexity of
∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·), we obtain

〈∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ̃ − ξ0

〉
< 0,

contradicting to (6).

Theorem 3. Let ξ0 be a strong stationary point of MIVVC. Suppose that
T̂−
0+ ∪ T+

+0 = ϕ and τi (i ∈ Tτ ), σi (i ∈ T+
σ ),−σi (i ∈ T−

σ ), ωi (i ∈
T+
+0),−ρi (i ∈ T̂+

0+ ∪ T̂+
00 ∪ T̂+

0−) are quasiconvex functions at ξ0. If∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·) is strictly pseudoconvex function at ξ0, then ξ0

is a weakly LU-efficient solution of MIVVC.

Proof. Similar to the proof of Theorem 2, we get〈∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ − ξ0

〉
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=

〈∑
i∈Tτ

λτi ∇τi(ξ0) +
∑
i∈Tσ

λσi ∇σi(ξ0)−
∑
i∈Tr

λρi∇ρi(ξ0)+

∑
i∈Tr

λωi ∇ωi(ξ0), ξ − ξ0

〉
≥ 0. (7)

Reasoning by contraposition, assume that ξ0 is not a weakly LU-efficient
solution. Then there exists a feasible point ξ̃ satisfying

ϑ(ξ̃) ≺LU ϑ(ξ0);

that is, for i ∈ T , {
ϑLi (ξ̃) < ϑLi (ξ0),

ϑUi (ξ̃) < ϑUi (ξ0).

From the fact that αL ∈ Rm
+ , α

U ∈ Rm
+ with

∑
i∈T

(
αL
i + αU

i

)
= 1, and by the

above inequalities, we get∑
i∈T

αL
i ϑ

L
i (ξ̃) +

∑
i∈T

αU
i ϑ

U
i (ξ̃) <

∑
i∈T

αL
i ϑ

L
i (ξ0) +

∑
i∈T

αU
i ϑ

U
i (ξ0).

By using the strictly pseudoconvexity of
∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·) at ξ̃ on

FVC, we get 〈∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ̃ − ξ0

〉
< 0,

contradicting to (7).

Now, we verify the sufficient optimality conditions by an example.

Example 1. Consider the following multiobjective interval-valued program-
ming problem with vanishing constraints (MIVVC-1):

MIV V C − 1 R+−min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ))

=
(
[4ξ2 − ξ, 4ξ2 + ξ + 1], [ξ2 − 2ξ, ξ4 + 2ξ]

)
subject to
ρ1(ξ) = ξ ≥ 0,

ω1(ξ)ρ1(ξ) = (−1− ξ)ξ ≤ 0,

where ϑL1 (ξ) = 4ξ2− ξ, ϑL2 (ξ) = ξ2−2ξ, ϑU1 (ξ) = 4ξ2+ ξ+1, ϑU2 (ξ) = ξ4+2ξ,
which is in the form of MIVVC with m = 2, n = 1, p = q = 0, and r = 1.

The feasible region of MIVVC-1 is FVC1 = {ξ ∈ R | ρ1(ξ) ≥ 0, ω1(ξ)ρ1(ξ) ≤
0}.
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(a) Graphical view of ϑ1(ξ) = [ϑL1 (ξ), ϑU1 (ξ)] (b) Graphical view of ϑ2(ξ) = [ϑL2 (ξ), ϑU2 (ξ)]

Graphical view of the feasible region of MIVVC-1

Note that ξ0 = 0 is a feasible solution of MIVVC-1. By simple cal-
culations, we get T(FVC1, ξ0) = FVC1, ∇ϑL1 (ξ0) = {−1} , ∇ϑL2 (ξ0) =
{−2} , ∇ϑU1 (ξ0) = {1} , ∇ϑU2 (ξ0) = {2} , ∇ρ1(ξ0) = {1} , ∇ω1(ξ0) = {−1} ,
T+ = T0+ = T0− = ϕ, T00 = {1},( ⋃

i∈T00

(−∇ρi(ξ0))

)−

= {ξ ∈ R | ξ ≥ 1},

( ⋃
i∈T00

(∇ωi(ξ0))

)−

= {ξ ∈ R | ξ ≥ 1},

( ⋃
i∈T00

(−∇ρi(ξ0))

)−

∩

( ⋃
i∈T00

∇ωi(ξ0)

)−

= {ξ ∈ R | ξ ≥ 1}.

Hence,
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i∈T00

(−∇ρi(ξ0))

)−

∩

( ⋃
i∈T00

(∇ωi(ξ0))

)−

⊂ T (FVC1, ξ0),

yields that MIVVC-VACQ satisfies at ξ0. Moreover,

∆1 := pos

( ⋃
i∈T00

(−∇ρi(ξ0)) ∪
⋃

i∈T00

∇ωi(ξ0)

)
= {ξ ∈ R | ξ ≥ −1}

is closed. Thus, all assumptions in Theorem 1 are satisfied. Then there exist
αL
1 = αL

2 = 1
2 , α

U
1 = αU

2 = 1
2 , λ

ρ
1 = 0, λω1 = 0 such that (1) is satisfied at

ξ0 = 0 for the problem MIVVC-1. Furthermore, it can be easily observed
that the hypothesis of Theorem 3 hold at ξ0 = 0, and owing to the fact that
for ξ ̸= ξ0, ϑ(ξ) ⊀LU ϑ(ξ0). Then, we assert that ξ0 is a locally weakly
LU-efficient solution of MIVVC-1.

4 The Wolfe type duality

In this section, we present the Wolfe type dual problem to MIVVC assuming
that all the functions to be convex. For a given ū, Θ(ū) is the system of the
neighborhoods of ū. For ξ0 ∈ FVC, (u, α

L, αU , λτ , λσ, λω, λρ) ∈ Rn × Rm
+ ×

Rm
+ × Rp × Rq × Rr × Rr with

∑
i∈T

(αL
i + αU

i ) = 1, λρT+(ξ0)
≥ 0, λωT0+(ξ0)

≤ 0,

and λωT+−(ξ0)∪T0−(ξ0)
≥ 0, we define

L(u, αL, αU , λτ , λσ, λω, λρ) =

(
ϑ1(u) +

(∑
i∈Tτ

λτi τi(u) +
∑
i∈Tσ

λσi σi(u)

−
∑
i∈Tr

λρi ρi(u) +
∑
i∈Tr

λωi ωi(u)

)
e+ · · ·

+ϑm(u) +

(∑
i∈Tτ

λτi τi(u) +
∑
i∈Tσ

λσi σi(u)−

∑
i∈Tr

λρi ρi(u) +
∑
i∈Tr

λωi ωi(u)

)
e

)
,

where e := (1, . . . , 1) ∈ Rm. We consider the Wolfe type dual problem as
follows:

(WDw(ξ0)) Rm
+−maxL(u, αL, αU , λτ , λσ, λω, λρ)

subject to∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u) +

∑
i∈Tτ

λτi ∇τi(u)
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+
∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u) +
∑
i∈Tr

λωi ∇ωi(u) = 0,

∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ0)

≥ 0, λωT0+(ξ0)
≤ 0 and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0, (u, αL, αU , λτ , λσ, λω, λρ) ∈

Rn ×Rm
+ ×Rm

+ ×Rp ×Rq ×Rr ×Rr.

The feasible set of (WDw(ξ0)) is defined by

FVCw(ξ0) :=

{
(u, αL, αU , λτ , λσ, λω, λρ) ∈ Rn ×Rm

+ ×Rm
+ ×Rp ×Rq ×Rr

×Rr|
∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ0)

≥ 0, λωT0+(ξ0)
≤ 0, and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0,

∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u)+∑

i∈Tτ

λτi ∇τi(u) +
∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u)+

∑
i∈Tr

λωi ∇ωi(u) = 0

}
.

The Wolfe type duality problem of MIVVC, which is not dependent on
ξ0, is

(WDw) : Rm
+ −maxL(ψ, αL, αU , λτ , λσ, λω, λρ)

subject to

(ψ, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw :=
⋂

ξ0∈FVC

FVCw(ξ0).

Definition 8. Let ξ0 ∈ FVC. Then (ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCw(ξ0)
is a locally LU-efficient solution of (WDw(ξ0)) (locally weakly LU-efficient
solution of (WDw(ξ0))) if there exists U ∈ Θ(ū) such that there is no
(u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw(ξ0) ∩ U satisfying

L(ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ⪯LU L(u, αL, αU , λτ , λσ, λω, λρ),(
L(ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ≺LU L(u, αL, αU , λτ , λσ, λω, λρ)

)
.

Theorem 4 (Weak Duality). Let ξ ∈ FVC and let (ψ, αL, αU , λτ , λσ, λω, λρ) ∈
FVCw. Suppose that τi(i ∈ T+

τ (ξ)), σi(i ∈ T+
σ (ξ)),−σi(i ∈ T−

σ (ξ)), ρi(i ∈
T̂−
0 (ξ)),−ρi(i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)), ωi(i ∈ T+

+0(ξ) ∪ T
+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ)),

−ωi(i ∈ T−
+0(ξ) ∪ T

−
0+(ξ) ∪ T

−
00(ξ)) are convex functions at ψ,

(i) If ϑLi , ϑUi (i ∈ T ) are convex functions at ψ, then
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ϑ(ξ) ⊀LU L(ψ, αL, αU , λτ , λσ, λω, λρ).

(ii) If ϑLi , ϑUi (i ∈ T ) are strictly convex functions at ψ, then

ϑ(ξ) �LU L(ψ, αL, αU , λτ , λσ, λω, λρ).

Proof. For ξ ∈ FVC and (ψ, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw =
⋂

ξ0∈FVC

FVCw(ξ0),

one gets

τi(ξ) ≤ 0 (i ∈ Tτ ), σi(ξ) = 0 (i ∈ Tσ), ρi(ξ) ≥ 0 (i ∈ Tr), ωi(ξ)ρi(ξ) ≤ 0 (i ∈ Tr)
(8)

and ∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ) +

∑
i∈Tτ

λτi ∇τi(ψ)

+
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ) = 0 (9)

with∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ) ≥ 0, λωT0+(ξ) ≤ 0, λωT+−(ξ)∪T0−(ξ) ≥ 0. (10)

Therefore we conclude from (8), based on the convexity of τi (i ∈ T+
τ (ξ)), σi (i ∈

T+
σ (ξ)),−σi (i ∈ T−

σ (ξ)), ρi (i ∈ T̂−
0 (ξ)),−ρi (i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)), ωi (i ∈

T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ)),−ωi (i ∈ T−

+0(ξ) ∪ T
−
0+(ξ) ∪ T

−
00(ξ)) at ψ

and by the definitions of index sets that

τi(ψ) + ⟨∇τi(ψ), ξ − ψ⟩ ≤ τi(ξ) ≤ 0, λτi > 0, for all i ∈ T+
τ (ξ),

σi(ψ) + ⟨∇σi(ψ), ξ − ψ⟩ ≤ σi(ξ) = 0, λσi > 0, for all i ∈ T+
σ (ξ),

−σi(ψ) + ⟨−∇σi(ψ), ξ − ψ⟩ ≤ −σi(ξ) = 0, λσi < 0, for all i ∈ T−
σ (ξ),

ρi(ψ) + ⟨∇ρi(ψ), ξ − ψ⟩ ≤ ρi(ξ) = 0, λρi < 0, for all i ∈ T̂−
0 (ξ),

−ρi(ψ) + ⟨−∇ρi(ψ), ξ − ψ⟩ ≤ −ρi(ξ) < 0, λρi > 0, for all i ∈ T̂+
+ (ξ),

−ρi(ψ) + ⟨−∇ρi(ψ), ξ − ψ⟩ ≤ −ρi(ξ) < 0, λρi > 0, for all i ∈ T̂+
0 (ξ),

ωi(ψ) + ⟨∇ωi(ψ), ξ − ψ⟩ ≤ ωi(ξ) = 0, λωi > 0, for all i ∈ T+
+0(ξ) ∪ T

+
00(ξ),

ωi(ψ) + ⟨∇ωi(ψ), ξ − ψ⟩ ≤ ωi(ξ) < 0, λωi > 0, for all i ∈ T+
+−(ξ) ∪ T+

0−(ξ),

−ωi(ψ)+⟨−∇ωi(ψ), ξ − ψ⟩ ≤ −ωi(ξ) = 0, λωi > 0, for all i ∈ T−
+0(ξ)∪T

−
00(ξ),

−ωi(ψ) + ⟨−∇ωi(ψ), ξ − ψ⟩ ≤ −ωi(ξ) < 0, λωi < 0, for all i ∈ T−
0+(ξ).

The above inequalities imply that
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i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

+

〈∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ)

+
∑
i∈Tr

λωi ∇ωi(ψ), ξ − ψ

〉
≤ 0. (11)

By using (9) and (11), we obtain⟨∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ), ξ − ψ

⟩

= −

⟨∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ), ξ − ψ

⟩
≥
∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ). (12)

(i) Suppose to the contrary that

ϑ(ξ) ≺LU L(ψ, αL, αU , λτ , λσ, λω, λρ). (13)

Then, we deduce from (13) and αL ∈ Rm
+ , α

U ∈ Rm
+ that〈

αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
〉
< 0,〈

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
〉
< 0,

which is equivalent to

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
−

m∑
i=1

αL
i

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)

−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
< 0,

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
−

m∑
i=1

αU
i

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)

−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
< 0.

On adding, we have
m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
−

m∑
i=1

(
αL
i + αU

i

)
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i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
< 0.

It follows from
m∑
i=1

(
αL
i + αU

i

)
= 1 that

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)

<

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
. (14)

From the convexity of ϑLi , ϑUi (i ∈ T ) at ψ, we get〈
∇ϑLi (ψ), ξ − ψ

〉
≤ ϑLi (ξ)− ϑLi (ψ), for all i ∈ T,〈

∇ϑUi (ψ), ξ − ψ
〉
≤ ϑUi (ξ)− ϑUi (ψ), for all i ∈ T,

which leads that〈
m∑
i=1

αL
i ∇ϑLi (ψ), ξ − ψ

〉
≤

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
,

〈
m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

〉
≤

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
. (15)

We deduce from the above inequalities and (14) that〈
m∑
i=1

αL
i ∇ϑLi (ψ) +

m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

〉

<

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
,

which contradicts with (12).

(ii) Reasoning by contraposition, suppose that

ϑ(ξ) ⪯LU L(ψ, αL, αU , λτ , λσ, λω, λρ). (16)

We deduce from (16) and αL ∈ Rm
+ , α

U ∈ Rm
+ that{ 〈

αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
〉
< 0,〈

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
〉
≤ 0,

or
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αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)

〉
≤ 0,〈

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
〉
< 0,

or { 〈
αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)

〉
< 0,〈

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
〉
< 0,

which is equivalent to
m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)

≤
m∑
i=1

(
αL
i + αU

i

)(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
.

It follows from
∑m

i=1

(
αL
i + αU

i

)
= 1 that

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)

≤

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
. (17)

From the strict convexity of ϑLi , ϑUi (i ∈ T ) at ψ, we get〈
∇ϑLi (ψ), ξ − ψ

〉
< ϑLi (ξ)− ϑLi (ψ), for all i ∈ T〈

∇ϑUi (ψ), ξ − ψ
〉
< ϑUi (ξ)− ϑUi (ψ), for all i ∈ T ,

which leads that〈
m∑
i=1

αL
i ∇ϑLi (ψ), ξ − ψ

〉
<

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
,

〈
m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

〉
<

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
. (18)

It follows from (17) and (18) that〈
m∑
i=1

αL
i ∇ϑLi (ψ) +

m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

〉

<

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
,
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contradicting to (12).

Example 2. Consider the following multiobjective interval-valued program-
ming problem with vanishing constraints (MIVVC-2):

MIV V C − 2 R+−min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ))

=
(
[2ξ + 4, e2ξ], [−2ξ + 1,−ξ − 1])

subject to
ρ1(ξ) = ξ ≥ 0,

ω1(ξ)ρ1(ξ) = −e1−ξξ ≤ 0,

where ϑL1 (ξ) = 2ξ + 4, ϑL2 (ξ) = −2ξ + 1, ϑU1 (ξ) = e2ξ, ϑU2 (ξ) = −ξ − 1, which
is in the form of MIVVC with m = n = 1, p = q = 0 and r = 1. The feasible
set of MIVVC-2 is FVC2 = {ξ ∈ R | ρ1(ξ) ≥ 0, ω1(ξ)ρ1(ξ) ≤ 0}. For any
ξ0 ∈ FVC2, the corresponding Wolfe type dual problem to MIVVC-2 is given
by

(WDw(ξ0)− 1)Rm
+ −maxL(u, αL, αU , λω, λρ)

=
(
[2u+ 4, e2u] + (−λρ1(u) + λω1 (−e1−u))(1),

[−2u+ 1,−u− 1] + (−λρ1(u) + λω1 (−e1−u))(1)
)

subject to
αL
1 (2) + αU

1 (2e
2u) + αL

2 (−2) + αU
2 (−1)− λρ1(1)

+ λω1 (−1) = 0,

αL
1 + αU

1 = 1, αL
2 + αU

2 = 1, λρ1

{
≥ 0, if1 ∈ T+(ξ0),

∈ R, if1 ∈ T0(ξ0),

λω1


≤ 0, if1 ∈ T0+(ξ0),

≥ 0, if1 ∈ T+−(ξ0) ∪ T0−(ξ0),
∈ R, if1 ∈ T+0(ξ0) ∪ T00(ξ0),

where (u, αL
1 , α

U
1 ,α

L
2 , α

U
2 , λ

ω, λρ) ∈ R×R+ ×R+ ×R+ ×R+ ×R×R.

Therefore, we get the following feasible set of problem (WDw(ξ0)− 1):

(FVCw(ξ0)− 1) :=

{
(u, αL

1 , α
U
1 , α

L
2 , α

U
2 , λ

ω, λρ) ∈ Rn ×Rm
+ ×Rm

+

×Rm
+ ×Rm

+ ×Rr ×Rr|αL
1 + αU

1 = 1, αL
2 + αU

2 = 1,

λρ1 ∈ R, λω1 ∈ R,αL
1∇ϑL1 (u) + αU

1 ∇ϑU1 (u) + αL
2∇ϑL2 (u)

+ αU
2 ∇ϑU2 (u)− λρ1∇ρ1(u) + λω1∇ω1(u) = 0

}
.
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By elementary calculations, we get ∇ϑL1 (ξ0) = {2} , ∇ϑU1 (ξ0) = {2} ,
∇ϑL2 (ξ0) = {−2} ,∇ϑU2 (ξ0) = {−1} , ∇ρ1(ξ0) = {1} , ∇ω1(ξ0) = {e} , T+ =
T0+ = T0− = ϕ, T00 = {1}.
Clearly, (u, αL

1 , α
U
1 , α

L
2 , α

U
2 , λ

ω, λρ) = (0, 12 ,
1
2 ,

1
2 ,

1
2 , 0,

1
2 ) is a feasible solution

to (WDw(ξ0)−1). We also note that ξ0 = 0 is a feasible solution to MIVVC-
2. On the other hand, it is easily verified that the hypothesis (i) and (ii) of
Theorem 4 are satisfied at u = 0.

Theorem 5 (Strong duality). Let ξ0 ∈ FVC be a locally weakly efficient
solution of MIVVC. If MIVVC-VACQ holds at ξ0 and the set ∆1 is closed,
then there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm

+ × Rm
+ × Rp × Rq × Rr × Rr

with λ̄ρT+(ξ0)
= 0, λ̄ρT00(ξ0)∪T0−(ξ0)

≥ 0, λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and

λ̄ωT+0(ξ0)∪T00(ξ0)
≥ 0 such that (ξ0, ᾱ

L, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCw(ξ0) and
ϑ(ξ0) = L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ). Furthermore, assume that τi(i ∈
T+
τ (ξ0)), σi (i ∈ T+

σ (ξ0)),−σi(i ∈ T−
σ (ξ0)), ρi(i ∈ T̂−

0 (ξ0)),−ρi(i ∈ T̂+
+ (ξ0) ∪

T̂+
0 (ξ0)), ωi(i ∈ T+

+0(ξ0) ∪ T+
+−(ξ0) ∪ T+

00(ξ0) ∪ T+
0−(ξ0)),−ωi(i ∈ T−

+0(ξ0) ∪
T−
0+(ξ0) ∪ T

−
00(ξ0)) are convex functions at ξ0.

(i) If ϑLi , ϑUi (i ∈ T ) are convex functions at ξ0, then (ξ0, ᾱ
L, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)

is a weakly LU-efficient solution of WDw(ξ0).
(ii) If ϑLi , ϑUi (i ∈ T ) are strictly convex functions at ξ0, then (ξ0, ᾱ

L, ᾱU , λ̄τ ,
λ̄σ, λ̄ω, λ̄ρ) is an LU-efficient solution of WDw(ξ0).

Proof. In view of Theorem 1, there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm
+ ×

Rm
+ ×Rp ×Rq ×Rr ×Rr with λ̄ρT+(ξ0)

= 0, λ̄ρT00(ξ0)∪T0−(ξ0)
≥ 0,

λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λ̄ωT+0(ξ0)∪T00(ξ0)

≥ 0 such that∑
i∈T

ᾱL
i ∇ϑLi (ξ0) +

∑
i∈T

ᾱU
i ∇ϑUi (ξ0) +

∑
i∈Tτ

λ̄τi ∇τi(ξ0) +
∑
i∈Tσ

λ̄σi ∇σi(ξ0)

−
∑
i∈Tr

λ̄ρi∇ρi(ξ0) +
∑
i∈Tr

λ̄ωi ∇ωi(ξ0) = 0.

Since λ̄τ ∈ Rp, one has λ̄τi τi(ξ0) = 0 for all i ∈ Tτ , and thus,
∑
i∈Tτ

λ̄τi τi(ξ0) = 0.

The fact ξ0 ∈ FVC guarantees that
∑

i∈Tσ

λ̄σi σi(ξ0) = 0. Moreover, we observe

by λ̄ρT+(ξ0)
= 0 and ρi(ξ0) = 0 for all i ∈ T0(ξ0) that

∑
i∈Tr

λ̄ρi ρi(ξ0) = 0. Anal-

ogously, as λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and ωi(ξ0) = 0 for all i ∈ T+0(ξ0) ∪

T00(ξ0), we know that
∑
i∈Tr

λ̄ωi ωi(ξ0) = 0. Thus, (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈

FVCw(ξ0) and
∑
i∈Tτ

λ̄τi τi(ξ0)+
∑

i∈Tσ

λ̄σi σi(ξ0)−
∑
i∈Tr

λ̄ρi ρi(ξ0)+
∑
i∈Tr

λ̄ωi ωi(ξ0) = 0

which is nothing else but the following equality ϑ(ξ0) = L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ).
(i). Now, arguing by contradiction, let us suppose that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not a weakly LU-efficient solution of WDw(ξ0). By the definition, there
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exists (u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw(ξ0) such that

L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ≺LU L(u, αL, αU , λτ , λσ, λω, λρ).

This shows that ϑ(ξ0) ≺LU L(u, αL, αU , λτ , λσ, λω, λρ), which contradicts
with Theorem 4(i).

(ii). Reasoning to the contrary, let us assume that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not an LU-efficient solution of WDw(ξ0). Then it guarantees the existence
of (u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw(ξ0) such that

L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ⪯LU L(u, αL, αU , λτ , λσ, λω, λρ).

Consequently, ϑ(ξ0) ⪯LU L(u, αL, αU , λτ , λσ, λω, λρ) which contradicts with
Theorem 4(ii).

Theorem 6 (Strict converse duality). Let ξ̃ ∈ FVC be a locally weakly
efficient solution of MIVVC such that MIVVC-VACQ holds at ξ̃ and the
strong duality between the MIVVC and the (WDW (ξ̃)) as in Theorem 5
holds. Also, let (ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ∈ FVCw be an LU-efficient solu-
tion of (WDW (ξ̃)). Moreover, Assume that ϑLi , ϑUi (i ∈ T ) are strictly con-
vex functions and that τi(i ∈ T+

τ (ξ̃)), σi(i ∈ T+
σ (ξ̃)),−σi(i ∈ T−

σ (ξ̃)), ρi(i ∈
T̂−
0 (ξ̃)),−ρi(i ∈ T̂+

+ (ξ̃)∪T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃)∪T
+
+−(ξ̃)∪T+

00(ξ̃)∪T
+
0−(ξ̃)),−ωi(i ∈

T−
+0(ξ̃)∪T

−
0+(ξ̃)∪T

−
00(ξ̃)) are convex functions at ψ̃, respectively. Then, ξ̃ = ψ̃.

Proof. Suppose on the contrary, ξ̃ ̸= ψ̃. Then, by Theorem 5, there exist
ξ̃ ∈ FVC and (ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ∈ FVCw, and hence

ϑ(ξ̃) = L(ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ). (19)

The strict convexity of ϑLi , ϑUi (i ∈ T ) at ψ̃ gives that〈
m∑
i=1

αL
i ∇ϑLi (ψ̃) +

m∑
i=1

αU
i ∇ϑUi (ψ̃), ξ̃ − ψ̃

〉

<

(∑
i∈Tτ

λτi τi(ψ̃) +
∑
i∈Tσ

λσi σi(ψ̃)−
∑
i∈Tr

λρi ρi(ψ̃) +
∑
i∈Tr

λωi ωi(ψ̃)

)
. (20)

The convexity of τi(i ∈ T+
τ (ξ̃)), σi(i ∈ T+

σ (ξ̃)),−σi(i ∈ T−
σ (ξ̃)),

ρi(i ∈ T̂−
0 (ξ̃)),−ρi(i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃) ∪ T+
+−(ξ̃) ∪ T+

00(ξ̃) ∪
T+
0−(ξ̃)),−ωi(i ∈ T−

+0(ξ̃) ∪ T−
0+(ξ̃) ∪ T−

00(ξ̃)) at ψ̃ and by the definitions of
index sets imply that

τi(ψ̃) +
〈
∇τi(ψ̃), ξ̃ − ψ̃

〉
≤ τi(ξ̃) = 0, λτi > 0, for all i ∈ T+

τ (ξ̃),

σi(ψ̃) +
〈
∇σi(ψ̃), ξ̃ − ψ̃

〉
≤ σi(ξ̃) = 0, λσi > 0, for all i ∈ T+

σ (ξ̃),
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−σi(ψ̃) +
〈
−∇σi(ψ̃), ξ̃ − ψ̃

〉
≤ −σi(ξ̃) = 0, λσi < 0, for all i ∈ T−

σ (ξ̃),

ρi(ψ̃) +
〈
∇ρi(ψ̃), ξ̃ − ψ̃

〉
≤ ρi(ξ̃) = 0, λρi < 0, for all i ∈ T̂−

0 (ξ̃),

−ρi(ψ̃) +
〈
−∇ρi(ψ̃), ξ̃ − ψ̃

〉
≤ −ρi(ξ̃) < 0, λρi > 0, for all i ∈ T̂+

+ (ξ̃),

−ρi(ψ̃) +
〈
−∇ρi(ψ̃), ξ̃ − ψ̃

〉
≤ −ρi(ξ̃) < 0, λρi > 0, for all i ∈ T̂+

0 (ξ̃),

ωi(ψ̃) +
〈
∇ωi(ψ̃), ξ̃ − ψ̃

〉
≤ ωi(ξ̃) = 0, λωi > 0, for all i ∈ T+

+0(ξ̃) ∪ T
+
00(ξ̃),

ωi(ψ̃) +
〈
∇ωi(ψ̃), ξ̃ − ψ̃

〉
≤ ωi(ξ̃) < 0, λωi > 0, for all i ∈ T+

+−(ξ̃) ∪ T+
0−(ξ̃),

which implies that

∑
i∈Tτ

λτi τi(ξ̃) +
∑
i∈Tσ

λσi σi(ξ̃)−
∑
i∈Tr

λρi ρi(ξ̃) +
∑
i∈Tr

λωi ωi(ξ̃) +

〈∑
i∈Tτ

λτi ∇τi(ψ̃)

+
∑
i∈Tσ

λσi ∇σi(ψ̃)−
∑
i∈Tr

λρi∇ρi(ψ̃) +
∑
i∈Tr

λωi ∇ωi(ψ̃), ξ̃ − ψ̃

〉
≤ 0. (21)

On adding the inequalities (20) and (21) and by using the duality constraint
(9) of (WDw(ξ̃)), we have

L(ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ≺LU ϑ(ξ̃),

which contradicts with (19).

5 The Mond–Weir type duality

The Wolfe dual of the primal problem, which we discussed in the last section,
says that all functions must be convex. Wolfe duality does not work for func-
tions, where the objective function is only pseudoconvex and the constraints
are only quasiconvex in the primal problem MIVVC (see, Mond [24]). So,
in this section, we propose a Mond–Weir type dual to the primal problem
MIVVC to weaken the convexity assumptions.

Consider ξ0 ∈ FVC, (u, α
L, αU , λτ , λσ, λω, λρ) ∈ Rn × Rm

+ × Rm
+ × Rp ×

Rq × Rr × Rr with
∑
i∈T

(αL
i + αU

i ) = 1, λρT+(ξ0)
≥ 0, λωT0+(ξ0)

≤ 0, and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0. We consider the Mond–Weir type dual problem as

follows:

(MWDM (ξ0)) R
m
+ −max ϑ(u)

subject to
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i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u) +

∑
i∈Tτ

λτi ∇τi(u)+∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u) +
∑
i∈Tr

λωi ∇ωi(u) = 0,

λτi τi(u) ≥ 0 (i ∈ Tτ ), λ
σ
i σi(u) = 0 (i ∈ Tσ),−λρi ρi(u) ≥ 0

(i ∈ Tr), λ
ω
i ωi(u) ≥ 0 (i ∈ Tr),

∑
i∈T

(
αL
i + αU

i

)
= 1,

λρT+(ξ0)
≥ 0, λωT0+(ξ0)

≤ 0 and λωT+−(ξ0)∪T0−(ξ0)
≥ 0, (u, αL, αU ,

λτ , λσ, λω, λρ) ∈ Rn ×Rm
+ ×Rm

+ ×Rp ×Rq ×Rr ×Rr.

The feasible set of (MWDM (ξ0)) is defined by

FVCM (ξ0) :=

{
(u, αL, αU , λτ , λσ, λω, λρ) ∈ Rn ×Rm

+ ×Rm
+ ×Rp ×Rq

×Rr ×Rr | λτi τi(u) ≥ 0 (i ∈ Tτ ), λ
σ
i σi(u) = 0 (i ∈ Tσ),

− λρi ρi(u) ≥ 0 (i ∈ Tr), λ
ω
i ωi(u) ≥ 0 (i ∈ Tr),∑

i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ0)

≥ 0, λωT0+(ξ0)
≤ 0, and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0,

∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u)

+
∑
i∈Tτ

λτi ∇τi(u) +
∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u)

+
∑
i∈Tr

λωi ∇ωi(u) = 0

}
.

Furthermore, let us denote by ΓM the projection of FVCM on Rn; that is,

ΓM (ξ0) :=
{
u ∈ Rn|(u, αL, αU , λτ , λσ, λω, λρ) ∈ ΓM (ξ0)

}
.

The other Mond–Weir type duality problem of MIVVC, which is not depen-
dent on ξ0, is

(MWDM ) : Rm
+ −max ϑ(ψ)

subject to

(ψ, αL, αU , λτ , λσ, λω, λρ) ∈ ΓM :=
⋂
ξ0∈Γ

ΓM (ξ0).

Definition 9. Let ξ0 ∈ FVC. Then (ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCM (ξ0) is
a locally LU-efficient solution of (MWDM (ξ0)) (locally weakly LU-efficient
solution of (MWDM (ξ0))) if there exists U ∈ Θ(ū) such that there is no
(u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCM (ξ0) ∩ U satisfying
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ϑ(ū) ⪯LU ϑ(u)

(ϑ(ū) ≺LU ϑ(u))

Theorem 7 (Weak duality). Let ξ ∈ FVC and (ψ, αL, αU , λτ , λσ, λω, λρ) ∈
FVCM . Suppose that τi (i ∈ T+

τ (ξ)), σi (i ∈ T+
σ (ξ)),−σi (i ∈ T−

σ (ξ)), ρi (i ∈
T̂−
0 (ξ)),−ρi (i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)), ωi (i ∈ T+

+0(ξ) ∪ T+
+−(ξ) ∪ T+

00(ξ) ∪
T+
0−(ξ)),−ωi (i ∈ T−

+0(ξ) ∪ T−
0+(ξ) ∪ T−

00(ξ)) are quasiconvex functions at
ψ on FVCM ∪ ΓM . If ϑLi , ϑUi (i ∈ T ) are strictly pseudoconvex functions at ψ
on FVCM ∪ ΓM , then ϑ(ξ) �LU ϑ(ψ).

Proof. For ξ ∈ FVCM and

(ψ, αL, αU , λτ , λσ, λω, λρ) ∈ FVCM =
⋂

ξ0∈FVCM

FVCM (ξ0),

we have

τi(ξ) ≤ 0 (i ∈ Tτ ), σi(ξ) = 0 (i ∈ Tσ), ρi(ξ) ≥ 0 (i ∈ Tr), ωi(ξ)ρi(ξ) ≤ 0 (i ∈ Tr),
(22)∑

i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ) +

∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)

−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ) = 0, (23)

and
λτi τi(ψ) ≥ 0 (i ∈ Tτ ), λσi σi(ψ) = 0 (i ∈ Tσ),

−λρi ρi(ψ) ≥ 0 (i ∈ Tr), λωi ωi(ψ) ≥ 0 (i ∈ Tr), (24)

with∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ) ≥ 0, λωT0+(ξ) ≤ 0, λωT+−(ξ)∪T0−(ξ) ≥ 0. (25)

It follows from the above inequalities that

τi(ξ) ≤ 0 ≤ τi(ψ) ≤ 0, for all i ∈ T+
τ (ξ),

σi(ξ) = σi(ψ) = 0, for all i ∈ T+
σ (ξ) ∪ T−

σ (ξ),

ρi(ξ) = 0 ≤ ρi(ψ), for all i ∈ T̂−
0 (ξ),

−ρi(ξ) ≤ 0 ≤ −ρi(ψ), for all i ∈ T̂+
+ (ξ) ∪ T̂+

0 (ξ),

ωi(ξ) ≤ 0 ≤ ωi(ψ), for all i ∈ T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ),

−ωi(ξ) ≤ 0 ≤ −ωi(ψ) = 0, for all i ∈ T−
+0(ξ) ∪ T

−
0+(ξ) ∪ T

−
00(ξ).

Thus, we deduce from the quasiconvexity of τi (i ∈ T+
τ (ξ)), σi (i ∈ T+

σ (ξ)),
− σi (i ∈ T−

σ (ξ)), ρi (i ∈ T̂−
0 (ξ)),−ρi (i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)),
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ωi (i ∈ T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ)),−ωi (i ∈ T−

+0(ξ)∪T
−
0+(ξ)∪T

−
00(ξ))

at ψ and the definitions of index sets that

⟨∇τi(ψ), ξ − ψ⟩ ≤ 0, λτi > 0, for all i ∈ T+
τ (ξ),

⟨∇σi(ψ), ξ − ψ⟩ ≤ 0, λσi > 0, for all i ∈ T+
σ (ξ),

⟨−∇σi(ψ), ξ − ψ⟩ ≤ 0, λσi < 0, for all i ∈ T−
σ (ξ),

⟨∇ρi(ψ), ξ − ψ⟩ ≤ 0, λρi < 0, for all i ∈ T̂−
0 (ξ),

⟨−∇ρi(ψ), ξ − ψ⟩ ≤ 0, λρi > 0, for all i ∈ T̂+
+ (ξ) ∪ T̂+

0 (ξ),

⟨∇ωi(ψ), ξ − ψ⟩ ≤ 0, λωi > 0, for all i∈ T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ),

⟨−∇ωi(ψ), ξ − ψ⟩ ≤ 0, λωi < 0, for all i∈ T−
+0(ξ) ∪ T

−
0+(ξ) ∪ T

−
00(ξ),

Employing this together with (23) gives us the inequality⟨∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ), ξ − ψ

⟩

= −

⟨∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ), ξ − ψ

⟩
≥ 0. (26)

Assume by contradiction that

ϑ(ξ) ⪯LU ϑ(ψ).

This is equivalent to{
ϑL(ξ) < ϑL(ψ)

ϑU (ξ) ≤ ϑU (ψ)
, or

{
ϑL(ξ) ≤ ϑL(ψ)

ϑU (ξ) < ϑU (ψ)
, or

{
ϑL(ξ) < ϑL(ψ)

ϑU (ξ) < ϑU (ψ)
.

Since ϑLi , ϑUi (i ∈ T ) are strictly pseudoconvex functions at ψ, we have〈
∇ϑLi (ψ), ξ − ψ

〉
< 0, for all i ∈ T,〈

∇ϑUi (ψ), ξ − ψ
〉
< 0, for all i ∈ T.

Taking into account αL ∈ Rm
+ , α

U ∈ Rm
+ and from

∑m
i=1

(
αL
i + αU

i

)
= 1, we

have 〈
m∑
i=1

αL
i ∇ϑLi (ψ) +

m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

〉
< 0,

contradicting to (26).

Example 3. Let m = n = 1, let p = q = 0 and let r = 1. Let us investigate
the following (MIV V C − 3):
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MIV V C − 3 R+−min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ))

=
(
[4ξ2 − ξ, 4ξ2 + ξ + 1], [ξ2 − 2ξ, ξ4 + 2ξ]

)
subject to
ρ1(ξ) = ξ ≥ 0,

ω1(ξ)ρ1(ξ) = (−1− ξ)ξ ≤ 0.

Then, FVC3 = {ξ ∈ R | ρ1(ξ) ≥ 0, ω1(ξ)ρ1(ξ) ≤ 0}. For any ξ0 ∈ FVC3, the
corresponding Mond–Weir dual problem to MIVVC-3 is given by

(MWDM − 1) Rm
+ −max ϑ(u)

=
(
[4u2 − u, 4u2 + u+ 1], [u2 − 2u, u4 + 2u]

)
subject to
αL
1 (8u− 1) + αU

1 (8u+ 1) + αL
2 (2u− 2) + αU

2 (4u
3 + 2)

− λρ1(1) + λω1 (−1) = 0,−λρ1(u) ≥ 0, λω1 (−1− u) ≥ 0,

αL
1 + αU

1 = 1, αL
2 + αU

2 = 1,

λρ1

{
≥ 0, if1 ∈ T+(ξ0),

∈ R, if1 ∈ T0(ξ0),
λω1


≤ 0, if1 ∈ T0+(ξ0),

≥ 0, if1 ∈ T+−(ξ0) ∪ T0−(ξ0),
∈ R, if1 ∈ T+0(ξ0) ∪ T00(ξ0),

where (u, αL
1 ,α

U
1 , α

L
2 , α

U
2 , λ

ω
1 , λ

ρ
1) ∈ R×R+ ×R+ ×R+ ×R+ ×R×R.

Therefore, we get the following feasible set of problem (MWDM (ξ0)− 1):

(FVCM (ξ0)− 1) :=

{
(u, αL

1 , α
U
1 , α

L
2 , α

U
2 , λ

ω, λρ) ∈ Rn ×Rm
+ ×Rm

+ ×Rm
+

×Rm
+ ×Rr ×Rr | − λρ1(u) ≥ 0, λω1 (−1− u) ≥ 0,

αL
1 + αU

1 = 1, αL
2 + αU

2 = 1, λρ1 ∈ R, λω1 ∈ R,

αL
1∇ϑL1 (u) + αU

1 ∇ϑU1 (u) + αL
2∇ϑL2 (u)

+ αU
2 ∇ϑU2 (u)− λρ1∇ρ1(u) + λω1∇ω1(u) = 0

}
.

By taking ξ0 = 0 ∈ FVC3, we evidence from Examples 1 and 2 that all
suppositions of Theorem 1 are fulfilled. Now, by choosing αL

1 = αU
1 = 1

2 , α
L
2 =

αU
2 = 1

2 , λ
ω
1 = 0, λρ1 = 0,

we have

−λρ1(ξ0) ≥ 0, λω1 (−1− ξ0) ≥ 0,

1

2
(−1) +

1

2
(1) +

1

2
(−2) +

1

2
(2)− λρ1(1) + λω1 (−1) = 0.

Finally, by the strict pseudoconvexity of ϑLi , ϑ
U
i (i ∈ T ) at ψ on FVCM ∪ ΓM

and by simple calculations, we get ϑ(ξ) �LU ϑ(ψ).
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Theorem 8 (Strong duality). Let ξ0 ∈ FVC be a locally weakly effi-
cient solution of MIVVC. If MIVVC-VACQ holds at ξ0 and the set ∆1

is closed, then there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm
+ × Rm

+ × Rp ×
Rq × Rr × Rr with

∑m
i=1

(
ᾱL
i + ᾱU

i

)
= 1, λ̄ρT+(ξ0)

= 0, λ̄ρT00(ξ0)∪T0−(ξ0)
≥

0, λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λ̄ωT+0(ξ0)∪T00(ξ0)

≥ 0 such that (ξ0, ᾱ
L,

ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCM (ξ0). Furthermore, assume that τi(i ∈ T+
τ (ξ0)), σi(i ∈

T+
σ (ξ0)),−σi(i ∈ T−

σ (ξ0)), ρi(i ∈ T̂−
0 (ξ0)),−ρi(i ∈ T̂+

+ (ξ0) ∪ T̂+
0 (ξ0)), ωi(i ∈

T+
+0(ξ0) ∪ T

+
+−(ξ0) ∪ T+

00(ξ0) ∪ T
+
0−(ξ0)),−ωi(i ∈ T−

+0(ξ0) ∪ T
−
0+(ξ0) ∪ T

−
00(ξ0))

are quasiconvex functions at ξ0. If ϑLi , ϑUi (i ∈ T ) are strictly pseudoconvex
functions at ξ0, then (ξ0, ᾱ

L, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) is an LU-efficient solution of
MWDM (ξ0).

Proof. By Theorem (1), there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm
+ × Rm

+ ×
Rp ×Rq ×Rr ×Rr with

∑m
i=1

(
αL
i + αU

i

)
= 1, λ̄ρT+(ξ0)

= 0, λ̄ρT00(ξ0)∪T0−(ξ0)
≥

0, λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λ̄ωT+0(ξ0)∪T00(ξ0)

≥ 0 such that∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ) +

∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)

−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ) = 0.

Since λ̄τ ∈ Rp, one has λ̄τi τi(ξ0) = 0 for all i ∈ Tτ . The fact that ξ0 ∈ FVC
guarantees that λ̄σi σi(ξ0) = 0. Furthermore, we deduce from λ̄ρT+(ξ0)

= 0 and
ρi(ξ0) = 0 for all i ∈ T0(ξ0) that −λ̄ρi ρi(ξ0) = 0 for all i ∈ Tr. In addition,
we get from λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)

= 0 and ωi(ξ0) = 0 for all i ∈ T+0(ξ0) ∪
T00(ξ0), that λ̄ωi ωi(ξ0) = 0 for all i ∈ Tr. Thus, (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈
FVCM (ξ0).

(i). Now, arguing by contradiction, let us suppose that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not a weakly LU-efficient solution of MWDM (ξ0). By the definition, there
exists (u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCM (ξ0) such that

ϑ(ξ0) ≺LU ϑ(u),

which contradicts with Theorem 4(i).
(ii). Reasoning to the contrary, Let us assume that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not an LU-efficient solution ofMWDM (ξ0). Then, there exists (u, αL, αU , λτ ,
λσ, λω, λρ) ∈ FVCM (ξ0) such that

ϑ(ξ0) ⪯LU ϑ(u)

which contradicts with Theorem 4(ii), and thus, completes the proof.

Theorem 9 (Strict converse duality). Let ξ̃ ∈ FVC be a locally weakly effi-
cient solution of MIVVC such that MIVVC-VACQ holds at ξ̃ and the strong
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duality between the MIVVC and the (MWDM )(ξ̃) as in Theorem 8 holds.
Also, let (ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ∈ FVCM be an LU-efficient solution of
(MWDM )(ξ̃). Moreover, Suppose that ϑLi , ϑUi (i ∈ T ) are strictly pseudocon-
vex functions and that τi(i ∈ T+

τ (ξ̃)), σi(i ∈ T+
σ (ξ̃)),−σi(i ∈ T−

σ (ξ̃)), ρi(i ∈
T̂−
0 (ξ̃)),−ρi(i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃) ∪ T
+
+−(ξ̃) ∪ T+

00(ξ̃) ∪ T
+
0−(ξ̃)),

− ωi(i ∈ T−
+0(ξ̃) ∪ T−

0+(ξ̃) ∪ T−
00(ξ̃)) are quasiconvex functions at ψ̃ on

FVCM ∪ ΓM , respectively.

Proof. Suppose, contrary to the result, that ξ̃ ̸= ψ̃. Then, by the strong
duality theorem, there exist (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ ×Rm
+ ×Rp×Rq ×

Rr × Rr such that (ψ̃, αL, αU , λτ , λσ, λω, λρ) is an LU-efficient solution of
MWDM (ξ̃), and hence

ϑ(ξ̃) = ϑ(ψ̃). (27)

By the strict pseudoconvexity of ϑLi , ϑUi (i ∈ T ) at ψ̃ on FVCM ∪ΓM , we have〈
m∑
i=1

αL
i ∇ϑLi (ψ̃) +

m∑
i=1

αU
i ∇ϑUi (ψ̃), ξ̃ − ψ̃

〉
< 0. (28)

By the quasiconvexity of τi(i ∈ T+
τ (ξ̃)), σi(i ∈ T+

σ (ξ̃)),−σi(i ∈ T−
σ (ξ̃)), ρi(i ∈

T̂−
0 (ξ̃)), −ρi(i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃) ∪ T
+
+−(ξ̃) ∪ T+

00(ξ̃) ∪ T
+
0−(ξ̃)),

−ωi(i ∈ T−
+0(ξ̃)∪T

−
0+(ξ̃)∪T

−
00(ξ̃)) at ψ̃ on FVC∪ΓMWD and by the definitions

of index sets, we have〈
∇τi(ψ̃), ξ̃ − ψ̃

〉
≤ 0, λτi > 0, for all i ∈ T+

τ (ξ̃),〈
∇σi(ψ̃), ξ̃ − ψ̃

〉
≤ 0, λσi > 0, for all i ∈ T+

σ (ξ̃),〈
−∇σi(ψ̃), ξ̃ − ψ̃

〉
≤ 0, λσi < 0, for all i ∈ T−

σ (ξ̃),〈
∇ρi(ψ̃), ξ̃ − ψ̃

〉
≤ 0, λρi < 0, for all i ∈ T̂−

0 (ξ̃),〈
−∇ρi(ψ̃), ξ̃ − ψ̃

〉
≤ 0, λρi > 0, for all i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃),〈

∇ωi(ψ̃), ξ̃ − ψ̃
〉
≤ 0, λωi > 0, for all i∈ T+

+0(ξ̃) ∪ T
+
+−(ξ̃) ∪ T+

00(ξ̃) ∪ T
+
0−(ξ̃),〈

−∇ωi(ψ̃), ξ̃ − ψ̃
〉
≤ 0, λωi < 0, for all i∈ T−

+0(ξ̃) ∪ T
−
0+(ξ̃) ∪ T

−
00(ξ̃),

which implies that〈∑
i∈Tτ

λτi ∇τi(ψ̃) +
∑
i∈Tσ

λσi ∇σi(ψ̃)−
∑
i∈Tr

λρi∇ρi(ψ̃) +
∑
i∈Tr

λωi ∇ωi(ψ̃), ξ̃ − ψ̃

〉
≤ 0.

(29)
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On adding the inequalities (28) and (29) and by using the duality constraint
of (MWDM (ξ0)), we have

ϑ(ψ̃) ≺LU ϑ(ξ̃).

which contradicts with (27).

6 Special cases

(i). If ϑ1(ξ) = ϑ2(ξ) = · · · = ϑm(ξ) then the MIVVC problem reduces to
the following (IVVC) problem of Ahmad et al. [2]:

(P-1) min ϑ(ξ) = (ϑ1(ξ)) = [ϑL1 (ξ), ϑ
U
1 (ξ)]

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r.

(ii). If ϑ1(ξ) = ϑ2(ξ) = · · · = ϑm(ξ) and ϑL1 (ξ) = ϑU1 (ξ) then the MIVVC
problem reduces to the following (MPVC) problem of Hoheisel and
Kanzow [12] and the (MPVC) problem of Ahmad, Kummari, and Al-
Homidan [3]:

(P-2) min ϑ(ξ)

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r.

(iii). If ρi(ξ) = 0 = ωi(ξ), for all i = 1, 2, . . . , r, then MIVVC problem re-
duces to the following IVP problem of Antczak and Michalak [5]:

(P-3) min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ), . . . , ϑm(ξ))

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q.

As a result of the above special cases, it is evident that the problem MIVVC
presented in this article is more generalized.
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7 Conclusion

In this paper, we have considered a multiobjective interval-valued program-
ming problem involving vanishing constraints. Based on generalized convex-
ity assumptions, the sufficiency of the Karush–Khun–Tucker necessary op-
timality conditions has been established. Furthermore, we have anticipated
Wolfe and Mond–Weir dual problems for the considered multiobjective pro-
gramming problem with interval-valued objective function and delved into
several duality results under convexity assumptions. The results established
in the paper were exemplified by an example.
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Abstract

In this article, we find a priori and a posteriori error estimates of the
fixed point for the Picard iteration associated with a noncyclic contraction
map, which is defined on a uniformly convex Banach space with a modulus
of convexity of power type. As a result, we obtain priori and posteriori
error estimates of Zlatanov for approximating the best proximity points of
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AMS subject classifications (2020): 41A25; 47H10; 54H25; 46B20.

Keywords: Fixed point; Noncyclic contraction map; Uniformly convex Ba-
nach space; Modulus of convexity; Priori and posteriori errors estimates.

1 Introduction

A basic result in fixed point theory is the Banach contraction principle. Fixed
point theory is an important tool to solve the equation Tx = x for mappings
T is defined on subsets of metric or normed spaces. One of the advantages
of Banach’s fixed point theorem is the estimation of the error of successive
iterations and the rate of convergence. There are equations Tx = x for
which the exact solution is not easy to find or even is not possible to find.
The error estimate is very useful in these cases. An extensive study about
approximations of fixed points for self-maps can be found in [2]. In 2016,
Zlatanov [17] obtained error estimates for approximating the best proximity
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points for cyclic contraction maps as generalization of the Banach contraction
principle. More cases can be found in [10, 11, 16] and references therein.

One other kind of a generalization of the Banach contraction principle
is the notation of noncyclical maps; that is, T : A ∪ B → A ∪ B such that
T (A) ⊆ A and T (B) ⊆ B. Also, a sufficient condition for the existence and
the uniqueness of fixed points in uniformly convex Banach spaces are given
in [15].

In this article, we obtain “a priori error estimates” and “a posteriori error
estimates” for approximating the fixed point of noncyclic contractions. As a
result, we obtain “a priori error estimates” and “a posteriori error estimates”
of Zlatanov for approximating the best proximity point of cyclic contractions.

2 Preliminaries

In this section, we recall some definitions and facts, which will be used here-
after. Let A and B be nonempty subsets of a metric space (X, d). The map
T : A∪B → A∪B is called a noncyclic map if T (A) ⊆ A and T (B) ⊆ B. The
noncyclic map T : A∪B → A∪B is called a noncyclic contraction map if there
holds the inequality d(Tx, Ty) ≤ kd(x, y)+(1−k)d(A,B) for some k ∈ (0, 1)
and all x ∈ A and y ∈ B, where d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}. We
say that (ξ, η) ∈ A × B is an optimal pair of fixed points of the noncyclic
mapping T provided that

Tξ = ξ, Tη = η and d(ξ, η) = d(A,B),

The definition for noncyclic contraction was introduced in [8].
The map T : A ∪ B → A ∪ B is called a cyclic map if T (A) ⊆ B and

T (B) ⊆ A. The cyclic map T : A ∪B → A ∪B is called a cyclic contraction
map if there holds the inequality d(Tx, Ty) ≤ kd(x, y) + (1 − k)d(A,B) for
some k ∈ (0, 1) and all x ∈ A and y ∈ B. A point ξ ∈ A ∪ B is called a
best proximity point for T if d(ξ, T ξ) = d(A,B); see [4, 6, 7] and references
therein. If sets A and B have a nonempty intersection, then every best
proximity point of T is a fixed point of T .
Definition 1. [9] The modulus of convexity of a Banach space X is the
function δX : [0, 2] → [0, 1] defined by

δX(ϵ) = inf
{
1− ∥x+ y

2
∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
.

The norm is called uniformly convex if δX(ϵ) > 0 for all ϵ > 0. The space
(X, ∥.∥) is called a uniformly convex space.

As a result of [15, Lemma 2.2 and Theorem 2.7], we have the next theorem.
Theorem 1. [15] Let A and B be nonempty, closed, and convex subsets
of a uniformly convex Banach space (X, ∥ · ∥) and let T : A ∪ B → A ∪ B
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be a noncyclic contraction map. Then T has a unique optimal pair of fixed
points (ξ, η) such that for every x0 ∈ A and y0 ∈ B the sequences {Tnx0}
and {Tny0} converge to ξ and η, respectively.

Definition 2. [9] A Banach space X is said to be uniformly convex if there
exists a strictly increasing function δ : [0, 2] → [0, 1] such that the following
implication holds for all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]:

∥x− p∥ ≤ R
∥y − p∥ ≤ R
∥x− y∥ ≥ r

 ⇒ ∥x+ y

2
− p∥ ≤

(
1− δ(

r

R
)
)
R. (1)

If (X, ∥ · ∥) is a uniformly convex Banach space, then δX(ϵ) is strictly
increasing function. Therefore if (X, ∥ · ∥) is a uniformly convex Banach
space, then there exists the inverse function δ−1 of the modulus of convexity.
If there exist constants C > 0 and q > 0 such that the inequality δX(ϵ) ≥ Cϵq

holds for every ϵ ∈ (0, 2], then we say that the modulus of convexity is of
power type q. It is well known that the modulus of convexity with respect
to the canonical norm ∥ · ∥p in lp or Lp is of power type, and there holds the
inequalities δX(ϵ) ≥ ϵp

p2p for p ≥ 2 and δX(ϵ) ≥ (p−1)ϵ2

8 for p ∈ (1, 2); see
[13]. An extensive study of the geometry of Banach spaces can be found in
[1, 3, 5].

3 Main results

In this section, we begin with the following lemma as a result of [15, Lemma
2.2], which will be used later.

Lemma 1. Let A and B be nonempty subsets of a metric space (X, d) and
let T : A∪B → A∪B be a noncyclic contraction map. Then, for every x ∈ A
and y ∈ B, there holds the inequality

d(Tnx, Tny)− d(A,B) ≤ kn(d(x, y)− d(A,B)). (2)

In the following result, we obtain our main result in this section.

Theorem 2. Suppose that A and B are nonempty, closed, and convex sub-
sets of a uniformly convex Banach space (X, ∥·∥) such that d := d(A,B) > 0,
and that T : A∪B → A∪B is a noncyclic contraction map. Let δX(ϵ) ≥ Cϵq

for some C > 0, q ≥ 2 and every ϵ ∈ (0, 2]. Then

(i) T has a unique optimal pair of fixed points (ξ, η) ∈ A×B;

(ii) for every x0 ∈ A and y0 ∈ B the sequences {Tnx0} and {Tny0} converge
to ξ and η, respectively;
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(iii) a priori error estimate holds

∥ξ − Tmx0∥ ≤ Mx0,y0

1− q
√
k

q

√
Mx0,y0

− d

Cd
(

q
√
k)m;

(iv) a posteriori error estimate holds

∥Tnx0 − ξ∥ ≤ Mxn,yn

1− q
√
k

q

√
Mxn,yn − d

Cd
;

where for every x ∈ A and y ∈ B, Mx,y := max
{
∥x− y∥, ∥Tx− y∥

}
.

Proof. The proof of (i) and (ii) follows from Theorem 1. (iii) For every n ∈ N
let xn = Tnx0 and let yn = Tny0. From Lemma 1, we have the inequalities

∥xn − yn∥ ≤ kn(∥x0 − y0∥ − d) + d ≤ kn(Mx0,y0
− d) + d,

∥xn+1 − yn∥ ≤ kn(∥Tx0 − y0∥ − d) + d ≤ kn(Mx0,y0 − d) + d,

and

∥xn − xn+1∥ ≤ 2
(
kn(Mx0,y0

− d) + d
)
.

Now, from (1) with x = xn, y = xn+1, z = yn, r = ∥xn − xn+1∥, R =
kn(Mx0,y0

− d) + d, and using the convexity of the set A, we get the chain of
inequalities

d ≤ ∥xn + xn+1

2
− yn∥

≤
(
1− δ

( ∥xn − xn+1∥
d+ kn(Mx0,y0

− d)

))(
d+ kn(Mx0,y0

− d)

)
. (3)

Using (3), we obtain the inequality

δ
( ∥xn − xn+1∥
d+ kn(Mx0,y0 − d)

)
≤ kn(Mx0,y0

− d)

d+ kn(Mx0,y0 − d)
. (4)

From the uniform convexity of X, it follows that δ is strictly increasing, and
therefore there exists its inverse function δ−1, which is strictly increasing.
From (4), we get

∥xn − xn+1∥ ≤
(
d+ kn(Mx0,y0 − d)

)
δ−1

(
kn(Mx0,y0 − d)

d+ kn(Mx0,y0
− d)

)
. (5)

It follows from the inequality δX(t) ≥ Ctq that δ−1
X (t) ≤

(
t
C

) 1
q . Using (5),

we obtain
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∥xn − xn+1∥ ≤Mx0,y0
q

√
kn(Mx0,y0

− d)

C
(
d+ kn(Mx0,y0

− d)
) (6)

≤Mx0,y0

q

√
Mx0,y0

− d

Cd
(

q
√
k)n.

So, from (6), we obtain

∥xn − xn+1∥ ≤Mx0,y0

q

√
Mx0,y0

− d

Cd
(

q
√
k)n. (7)

From (i) and (ii), there exists a unique fixed point ξ ∈ A such that for every
x0 ∈ A, the sequence {Tnx0} converges to ξ. After substitution in (7), we
get the inequality

∞∑
n=1

∥xn − xn+1∥ ≤Mx0,y0

q

√
Mx0,y0

− d

Cd

q
√
k

1− q
√
k
.

Consequently, the series
∑∞

n=1 ∥xn − xn+1∥ is absolutely convergent. Thus,
for any m ≥ 1, there holds ξ = xm −

∑∞
n=m(xn − xn+1), and we get the

inequality

∥ξ − xm∥ ≤
∞∑

n=m

∥xn − xn+1∥ ≤Mx0,y0

q

√
Mx0,y0

− d

Cd

( q
√
k)m

1− q
√
k
.

Hence,

∥ξ − Tmx0∥ ≤ Mx0,y0

1− q
√
k

q

√
Mx0,y0

− d

Cd
(

q
√
k)m.

(iv) In a similar way (7), we have

∥xn+i − xn+i+1∥ ≤Mxn,yn

q

√
Mxn,yn

− d

Cd
(

q
√
k)i.

So,

∥xn − xn+m∥ ≤
m−1∑
i=0

∥xn+i − xn+i+1∥

≤Mxn,yn

q

√
Mxn,yn − d

Cd

m−1∑
i=0

(
q
√
k)i.

Hence,
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∥xn − xn+m∥ ≤ Mxn,yn

1− q
√
k

q

√
Mxn,yn

− d

Cd
(1− (

q
√
k)m). (8)

After letting m→ ∞ in (8), we obtain the inequality

∥Tnx0 − ξ∥ ≤ Mxn,yn

1− q
√
k

q

√
Mxn,yn

− d

Cd
.

In the sequence, we obtain the main result of [17] as a special case of
Theorem 2.

Corollary 1. [17, Theorem 3.2] Suppose that A and B are nonempty, closed
and convex subsets of a uniformly convex Banach space (X, ∥.∥) such that
d := d(A,B) > 0, and that T : A ∪ B → A ∪ B is a cyclic contraction map.
Let δX(ϵ) ≥ Cϵq for some C > 0, q ≥ 2, and every ϵ ∈ (0, 2]. Then

(i) there exists a unique best proximity point ξ of T in A, Tξ is a unique
best proximity point of T in B and ξ = T 2ξ;

(ii) for every x0 ∈ A, the sequence {T 2nx0} converges to ξ and {T 2n+1x0}
converges to Tξ.

(iii) a priori error estimate holds

∥ξ − T 2nx0∥ ≤ ∥x0 − Tx0∥
1− q

√
k2

q

√
∥x0 − Tx0∥ − d

Cd
(

q
√
k)2n;

(iv) a posteriori error estimate holds

∥T 2nx0 − ξ∥ ≤ ∥T 2n−1x0 − T 2nx0∥
1− q

√
k2

q

√
∥T 2n−1x0 − T 2nx0∥ − d

Cd
q
√
k.

Proof. The proof of (i) and (ii) follows from [17, Theorem 2.1].
Because T is a cyclic contraction map, it is clear that T 2 is a noncyclic

contraction map and

d(T 2x, T 2y) ≤ k2d(x, y) + (1− k2)d(A,B).

(iii) As T is a cyclic contraction map, we have

∥T 2x0 − Tx0∥ ≤ k∥Tx0 − x0∥+ (1− k)d(A,B) ≤ ∥Tx0 − x0∥.

So,

max
{
∥x0 − Tx0∥, ∥T 2x0 − Tx0∥

}
= ∥x0 − Tx0∥.
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Hence,

Mx0,Tx0 = ∥x0 − Tx0∥.

Applying Theorem 2(iii) for noncyclic contraction T 2, we obtain

∥ξ − T 2mx0∥ ≤ Mx0,Tx0

1− q
√
k2

q

√
Mx0,Tx0

− d

Cd
(

q
√
k2)m

=
∥x0 − Tx0∥
1− q

√
k2

q

√
∥x0 − Tx0∥ − d

Cd
(

q
√
k)2m.

(iv) Since T is a cyclic contraction map, we get

∥T 2n+2x0 − T 2n+1x0∥ ≤ k∥T 2n+1x0 − T 2nx0∥+ (1− k)d(A,B)

≤ ∥T 2n+1x0 − T 2nx0∥,

for every n ∈ N. So,

max
{
∥T 2nx0 − T 2n+1x0∥, ∥T 2n+2x0 − T 2n+1x0∥

}
= ∥T 2nx0 − T 2n+1x0∥.

Hence, we have relations

MT 2nx0,T 2n+1x0
= ∥T 2nx0 − T 2n+1x0∥, (9)

MT 2nx0,T 2n+1x0
≤ ∥T 2n−1x0 − T 2nx0∥, (10)

MT 2nx0,T 2n+1x0
− d ≤ k(∥T 2n−1x0 − T 2nx0∥ − d). (11)

Applying Theorem 2(iv) for noncyclic contraction T 2, (9), (10), and (11), we
obtain

∥T 2nx0 − ξ∥ ≤
MT 2nx0,T 2n+1x0

1− q
√
k2

q

√
MT 2nx0,T 2n+1x0

− d

Cd

≤ ∥T 2nx0 − T 2n+1x0∥
1− q

√
k2

q
√
k

q

√
∥T 2n−1x0 − T 2nx0∥ − d

Cd

≤ ∥T 2n−1x0 − T 2nx0∥
1− q

√
k2

q

√
∥T 2n−1x0 − T 2nx0∥ − d

Cd
q
√
k.

Let A and B be nonempty, closed, and convex subsets of a uniformly
convex Banach space (X, ∥ · ∥) with a modulus of convexity of power type.
Theorem 2 shows that if noncyclic contraction T has a fixed point ξ ∈ A such
that {Tnx0} converges to ξ for some x0 ∈ A and (2) holds for every x ∈ A

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 385–396



Safari-Hafshejani 392

and y ∈ B, then priori and posteriori errors estimates hold in relations (iii)
and (iv) of Theorem 2, respectively. Also, Zlatanov [17] showed that if the
cyclic contraction T has the best proximity point ξ ∈ A such that {T 2nx0}
converges to ξ for some x0 ∈ A and

d(Tnx, Tn+1x)− d(A,B) ≤ kn(d(x, Tx)− d(A,B)) (12)

for every x ∈ A ∪ B, then priori and posteriori errors estimates hold in
relations (iii) and (iv) of Corollary 1, respectively. In fact, these results can
be generalized to contractions that satisfy these conditions. For instance,
consider the generalized cyclic quasi-contraction T : A∪B → A∪B introduced
in [14]. The author proved that if A and B are nonempty, closed, and convex
subsets of a uniformly convex Banach space and T : A ∪ B → A ∪ B is a
generalized cyclic quasi-contraction, that is, for which there exists k ∈ [0, 1)
such that

∥Tx− Ty∥ ≤kmax
{
∥x− y∥, ∥x− Tx∥, ∥y − Ty∥, ∥x− Ty∥+ ∥Tx− y∥

2

}
+ (1− c)d(A,B),

for all x ∈ A and y ∈ B; then for every x0 ∈ A the sequence {T 2nx0}
converges to some best proximity point ξ ∈ A and (12) holds. So priori and
posteriori errors estimates for each best proximity point of a generalized cyclic
quasi-contraction hold in relations (iii) and (iv) of Corollary 1, respectively.
Ilchev [11] used exactly this point to get the main results for the Kannan
cyclic contractive maps.

4 A numerical example

We know that the space (Rp, ∥ · ∥p) is uniformly convex with modulus of con-
vexity of power type, provided that p > 1. The following example illustrates
Theorem 2.

Example 1. Consider the space R2 endowed with the norms ∥(x, y)∥2 =
2
√
|x|2 + |y|2. Let

A = {(x, y) ∈ R2 : y − x+ 1 ≤ 0, y + x− 1 ≥ 0}

and

B = {(x, y) ∈ R2 : y − x− 1 ≥ 0, y + x+ 1 ≤ 0}.

It is easy to calculate d(A,B) = 2. Suppose that λ ∈ (0, 1). Let us define a
map T : R2

2 → R2
2 by
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T (x, y) =

{
(1− λ+ λx, λy) if (x, y) ∈ A,
(−1 + λ+ λx, λy) if (x, y) ∈ B.

We will show that the map T : A ∪ B → A ∪ B is a noncyclic contraction
with k = λ. Consider (x, y) ∈ A, and let (x′, y′) := T (x, y). Then

y′ − x′ + 1 = λy − 1 + λ− λx+ 1 = λ(y − x+ 1) ≤ 0

and

y′ + x′ − 1 = λy + 1− λ+ λx− 1 = λ(y + x− 1) ≥ 0.

Therefore, T (A) ⊆ A. The inclusion T (B) ⊆ B is proved in a similar fashion.
It is easy to observe that (1, 0) is a fixed point of T in A, that (−1, 0) is a
fixed point of T in B, and that ∥(1, 0) − (−1, 0)∥2 = 2. Let u1 = (x, y) and
let u2 = (x′, y′). Then

∥T (x, y)− T (x′, y′)∥2 = ∥(2(1− λ) + λ(x− x′), λ(y − y′))∥2
=
√
|2(1− λ) + λ(x− x′)|2 + λ|y − y′|2

= ∥2(1− λ)e1 + λ(u1 − u2)∥2
≤ λ∥u1 − u2∥2 + (1− λ)d(A,B).

Thus we can apply Theorem 2 to get error estimates of the successive itera-
tions {xn}, where xn+1 = Txn. We will consider a numerical example with
λ = 1

16 . From [13], we get C = 1
8 and q = 2.

Applying Theorem 2(iv), we obtain

∥xn − ξ∥ ≤Mn,

for n ≥ 0, where

Mn :=
8

3
Mxn,yn

√
Mxn,yn

− 2.

In the following table, we obtain the number n of iterations, needed by a
posteriori estimate less than 0.005 with initial points x0 = (1000, 8) and
y0 = (−500.5,−4), which is at least 8.

Applying Theorem 2(iii), we get

∥ξ − xn∥ ≤ 8

3
Mx0,y0

√
Mx0,y0 − 2(

1

4
)n,

The number n of iterations, needed by a priori error estimate less than 0.005
with an initial points x0 = (1000, 8) and y0 = (−500.5,−4), is at least 13.

Similarly, it is shown that the number n of iterations, needed by a poste-
riori estimate less than 0.005 for λ = 1

4 with initial points x0 = (1000, 8) and
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λ = 1
16

xn Mxn,yn Mnyn

n = 0
(1000, 8)

1500.547983 154900.90193
(−500.5,−4)

n = 1
(63.4375, 0.5)

95.65919017 2468.71315
(−32.21875,−0.25)

n = 2
(4.90234375, 3.125× 10−2)

7.8536555 50.67037
(−2.951171875,−1.5625× 10−2)

n = 3
(1.243896484, 1.953125× 10−3)

2.3658465 3.81596
(−1.121948242,−9.765625× 10−4)

n = 4
(1.01524353, 1.220703125× 10−4)

2.0228653 0.81568
(−1.007621765,−6.103515625× 10−5)

n = 5
(1.000952721, 7.629394531× 10−6)

2.0014290 0.20176
(−1.00047636,−3.81469726× 10−6)

n = 6
(1.000059545, 4.768371582× 10−7)

2.0000893 0.05040
(−1.000029773,−2.384185791× 10−7)

n = 7
(1.0000037215, 2.98023223× 10−8)

2.0000055 0.01260
(−1.0000018607,−1.490116119× 10−8)

n = 8
(1.0000002325, 1.8626451× 10−9)

2.0000003 0.00315
(−1.0000001162,−9.31322574× 10−10)

y0 = (−500.5,−4), is at least 16. Also, the number n of iterations, needed
by a priori error estimate less than 0.005, is at least 26.

5 Conclusion

In this article, we found a priori and a posteriori errors estimates for ap-
proximating fixed points for noncyclic contraction maps, which is defined
on a uniformly convex Banach space with a modulus of convexity of power
type. As seen in Example 1, a priori error estimate gives a larger number of
iterations that are needed than a posteriori estimate. Therefore, it can be
concluded that formula (iv) of Theorem 2 provides a better upper bound for
error estimates.
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Solving two-dimensional coupled Burgers
equations via a stable hybridized
discontinuous Galerkin method

S. Baharlouei, R. Mokhtari*, and N. Chegini

Abstract

The purpose of this paper is to design a fully discrete hybridized discon-
tinuous Galerkin (HDG) method for solving a system of two-dimensional
(2D) coupled Burgers equations over a specified spatial domain. The semi-
discrete HDG method is designed for a nonlinear variational formulation
on the spatial domain. By exploiting broken Sobolev approximation spaces
in the HDG scheme, numerical fluxes are defined properly. It is shown that
the proposed method is stable under specific mild conditions on the stabi-
lization parameters to solve a well-posed (in the sense of energy method)
2D coupled Burgers equations, which is imposed by Dirichlet boundary
conditions. The fully discrete HDG scheme is designed by exploiting
the Crank–Nicolson method for time discretization. Also, the Newton–
Raphson method that has the order of at least two is nominated for solving
the obtained nonlinear system of coupled Burgers equations over the rect-
angular domain. To reduce the complexity of the proposed method and the
size of the linear system, we exploit the Schur complement idea. Numerical
results declare that the best possible rates of convergence are achieved for
approximate solutions of the 2D coupled Burgers equations and their first-
order derivatives. Moreover, the proposed HDG method is examined for
two other types of systems, that is, a system with high Reynolds numbers
and a system with an unavailable exact solution. The acceptable results
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of examples show the flexibility of the proposed method in solving various
problems.

AMS subject classifications (2020): 65M60, 65M12

Keywords: Coupled Burgers equations; hybridized discontinuous Galerkin
method; stability analysis.

1 Introduction

Throughout the history of science, finding the analytical and especially nu-
merical solutions of nonlinear evolution equations such as Burgers and cou-
pled Burgers equations [3, 28, 31, 35], KdV type equations [2, 4, 27], Navier–
Stokes equations [34], and nonlinear Schrödinger equations [7] play crucial
roles in various fields of science and engineering for the detection of physical
phenomena. The system of two-dimensional (2D) coupled Burgers equations,
as a simplified form of some complex and practical equations in engineering
such as the incompressible Navier-Stokes equation, is widely used in fluid
dynamics such as modeling of the shock waves moving in viscous liquid [17],
shallow water waves [18, 26], turbulent medium [5], and diffusion processes
[1]. According to the new works that are done in the literature [24, 38, 39],
we realize that providing methods of finding the numerical solutions of Burg-
ers and coupled Burgers equations still have their importance. Moreover,
numerical scientists consider Burgers and coupled Burgers equations as test
problems to introduce and experiment with new numerical methods. In other
words, these equations are used to compare different numerical methods in
various aspects to choose and extend the most appropriate one to a spe-
cialized subject. This paper proposes a stable scheme for solving the 2D
nonlinear coupled Burgers equations over rectangular domains numerically.
The general form of the 2D system of coupled Burgers equations reads as

ut + uux + vuy −
1

Re (uxx + uyy) = 0,

vt + uvx + vvy −
1

Re (vxx + vyy) = 0,

or equivalently 
ut + U · ∇u− 1

Re∆u = 0,

vt + U · ∇v− 1

Re∆u = 0,
(1)

where Re > 0 is the Reynolds number, U = (u, v)⊺, and x = (x, y) ∈ Ω =
(a, b) × (c, d) ⊂ R2. In this paper, system (1) is equipped by the Dirichlet
boundary conditions and suitable initial conditions.
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Analytical solution of system (1) can be obtained, for instance, by the
Hopf–Cole transformation; see [20]. Providing an explicit analytical solu-
tion for system (1) is not trivial. However, if, by any chance, an explicit
form becomes available, then evaluating the analytical solution requires high
computational costs with a considerable amount of time, which may be ac-
companied by uncontrollable errors regarding the discretization of the ana-
lytical solution. Based on these reasons, it is requested design be stable and
effective numerical methods for computing numerical solutions. For solving
system (1), many numerical methods have been proposed, such as the de-
composition method [19], Chebyshev spectral collocation method [23], and
some others; for instance, see [24, 38, 39].

Since the main approach of this paper is directly related to the discon-
tinuous Galerkin (DG) method and is considered a continuation of the local
discontinuous Galerkin (LDG) method, it is necessary to briefly review the
history and background of DG and LDG methods. The first DG method
was proposed by Reed and Hill in 1973 for a time-independent linear hyper-
bolic equation [6], and then it was utilized and developed for time-dependent
partial differential equations (PDEs); see [10, 16]. Provable cell-entropy in-
equality for L2 stability, h-p adaptivity, and flexibility to handle complicated
geometry for arbitrary order of accuracy with local in-data communication,
and other abilities lead to applying the DG method to various types of differ-
ential equations. To dominate the limitations of the DG method for solving
high-order partial differential equations, an LDG method was proposed. This
method was used for the first time for solving a second-order time-dependent
convection-diffusion equation [15]. The main idea of the LDG method is the
transformation of a high-order equation into a first-order system of equations
before solving the new system by the DG method. Due to eliminating all of
the auxiliary variables locally, the LDG method inherits all flexibilities of
the DG method. Recent applications of the LDG method for higher-order
nonlinear PDEs can be found, for instance, in [8, 25, 31].

The usage of the hybridization technique in the context of the finite ele-
ment method goes back many years ago, while its application in the context
of DG methods has a recent history and goes back to 2004. In fact, the
hybridized discontinuous Galerkin (HDG) method was proposed for the first
time by combining the DG method and continuous Galerkin (CG) method to
solve the steady-state problems [11], and then it was generalized by Cockburn
et al. [12, 13, 14]. Recently, HDG methods have been widely used to solve
evolution equations numerically, in particular for compressible flow problems
[22, 30, 33, 36, 37], Stokes flow [9, 21], continuum mechanics problems [29],
and linear elasticity problems [32]. The HDG methods inherit the optimal
convergence rate from the DG methods for approximate solutions and their
derivatives with respect to spatial variables. HDG methods have two kinds
of unknowns; global unknowns that are used in the definition of numerical
traces (or in numerical fluxes) and obtained from the global system, and local
unknowns that can be eliminated locally and are obtained by weak formula-
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tion. Local and global unknowns are approximated by piecewise polynomials
of degree k, respectively, in Rd and Rd−1, where d is the dimension of the
spatial domain. Due to the consideration of global unknowns, one can infer
that the degree of freedom in the HDG method is reduced compared to the
traditional implicit DG methods. The key to the success of the HDG method
is the way of defining numerical fluxes that are based on global unknowns
and stabilization parameters. The numerical fluxes of the HDG method are
not defined uniquely in most situations, but those have to be defined in such
a way that the desired definitions of numerical fluxes ensure the stability of
the scheme. Also, the definitions of the numerical fluxes cause significantly
smaller bandwidth than the corresponding matrices of the traditional CG
method, and therefore lower computational cost is accessible in any HDG
method. In solving a problem with nonsmooth solutions, the HDG method
as a kind of DG method is a suitable scheme. This advantage is based on
the fact that the HDG method produces numerical approximations using dis-
continuous trial functions over the entire given domain. In summary, it is
worth pointing out that the HDG method has unique properties, which make
this method superior, such as reducing the degree of freedom compared to
the traditional implicit DG methods, making smaller bandwidth compared to
the corresponding matrices of traditional CG and DG methods, and having
less computational time; see [4]. In this paper, we intend to use a kind of
HDG method for discretizing the 2D coupled Burgers equations (1) in the
spatial domain.

The rest of the paper is organized as follows. In Section 2, some pre-
requisites such as notations, discretization of temporal and spatial domains,
and approximation spaces, are expressed in dimension two. Section 3 is ded-
icated to the employment of the HDG method to the 2D coupled Burgers
equations. In fact, in this section, a semi-discrete scheme is presented for the
2D coupled Burgers equations with suitable definitions of numerical fluxes
and stabilization parameters. In addition, the stability of the proposed semi-
discrete HDG scheme is investigated in this section. In other words, we
prove that the method is stable in the L2 norm under certain conditions on
the stabilization parameters. Then, a full discretization approach is designed
in Section 4 by exploiting the Crank–Nicolson method for time discretization
and Newton–Raphson as a nonlinear solver. Numerical experiments in Sec-
tion 5 show that the optimal order of accuracy is derived by the proposed
method. Also, by performing some experiments, the numerical solutions of
system (1) are investigated for large Reynolds numbers. Moreover, a 2D
problem with different values of Reynolds numbers is investigated such that
its exact solution is unavailable. The conclusion is given in Section 6. The
paper is ended with an Appendix.
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2 Prerequisites

Order to set up a system of weak formulation of coupled Burgers equations, it
requires defining necessary notations and relevant approximation spaces for a
desired HDGmethod. With T as a final time and for all t ∈ (0, T ], we consider
a given bounded spatial domain Ω ⊂ R2 with suitable partitioning. Suppose
that the domain Ω = (a, b) × (c, d) is split into conforming and uniform
finite element meshes with N triangles such that in this mesh generation, all
triangles have no intersection except in common edges or vertices. In general,
each of these triangles is denoted by K. By considering h as the longest edge
among triangles, the finite collection of disjoint elements, and the set of the
boundaries of elements, respectively, are denoted by

Kh := {K}, ∂Kh = {∂K},

where Ω =
⋃

K∈Kh
K, and ∂K denotes the boundary of element K. The

collection Fh = F∂
h ∪F0

h is the set of all faces such that F0
h and F∂

h represent,
respectively, the set of interior and boundary faces. More precisely, the set
of faces contains all edges of triangles. Let us consider two elements K− and
K+ and their common face e = ∂K− ∩ ∂K+ ∈ F0

h. As illustrated in Figure 1,
n− and n+ are, respectively, the corresponding outward unit normal vectors
of face e with respect to K− and K+. Let v− and v+ be the limits of the
function v at face e associated with ∂K+ and ∂K−, respectively. Thus the
mean and jump values of an arbitrary real valued function v on the given
face e are, respectively, defined as

{{v}} =
1

2
(v− + v+), [[v]] = v−n− + v+n+.

We note that the mean and jump values of function v at boundary face

Figure 1: Common face e of two elements K+,K− with outward unit vectors.
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e = ∂Ω ∩ K ∈ F∂
h are determined as {{v}} = v and [[v]] = vn, respectively.

So, the mean and jump of function v can be rewritten as

{{v}} =

{
(v+ + v−)/2, e ∈ F0

h,
v, e ∈ F∂

h ,
[[vn]] =

{
v+n+ + v−n−, e ∈ F0

h,
vn, e ∈ F∂

h .

To obtain weak formulations of the 2D coupled Burgers equations, one needs
to define appropriate approximation spaces. Regarding the nature of any
DG method, broken Sobolev spaces are relevant spaces for approximating
the solutions of system (1) via the HDG method. The corresponding broken
Sobolev space, associated with the partition Kh is defined as

H1(Kh) = {v : Ω → R : v |K∈ H1(K), for all K ∈ Kh},

and associated with the set Fh is defined as

M1(Fh) = {µ : Fh → R : µ |e∈ H1(e), for all e ∈ Fh}.

Discontinuous finite element spaces for scalar and vector valued functions, as
subspaces of broken Sobolev space H1(Kh) are, respectively, defined by

Sh,k =
{
w ∈ H1(Kh) : w |K∈ Pk(K), for all K ∈ Kh

}
,

Sh,k =
{
w ∈ (H1(Kh))

2 : w |K∈ (Pk(K))2, for all K ∈ Kh

}
,

where Pk(K) is the set of polynomials of degree at most k on the element
K ∈ Kh. The approximation space of the broken Sobolev space over Fh (or
skeleton space) is defined as

Mh,k = {µ ∈ M1(Fh) : µ |e∈ Pk(e), for all e ∈ Fh}.

Regarding the boundary conditions, it is needed to define the appropriate
subspace of the skeleton space. Consider Dirichlet boundary conditions and
the boundary data bu and bv on ∂Ω, which are associated with u and v, re-
spectively. Let Γu and Γv be collections of boundary faces in which boundary
data bu and bv are specified over Γu and Γv, respectively. Based on the given
boundary conditions, we define

Mh,k(l,Γ) := {µ ∈Mh,k : µ(x) = Πl(x), x ∈ Γ},

where Γ ∈ {Γu,Γv}, and Π is the L2 projection with respect to the skeleton
space of the boundary of the domain Ω. The approximation spaces Sh,k, Sh,k,
and Mh,k are equipped by the following inner products, respectively,

(w1, w2)Kh
=
∑

K∈Kh

(w1, w2)K, ⟨µ1, µ2⟩∂Kh
=
∑

K∈Kh

⟨µ1, µ2⟩∂K,
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where

(w1, w2)K =

∫
K
w1(x) · w2(x) dx, ⟨µ1, µ2⟩∂K =

∫
∂K
µ1 · µ2 ds,

in which w1, w2 are defined on Kh and µ1, µ2 are defined on ∂Kh. By
considering vector functions w = (w1, w2)

⊺, z = (z1, z2)
⊺, µ = (µ1, µ2)

⊺, and
η = (η1, η2)

⊺, the following inner products are needed

(w, z)Kh
=
∑

K∈Kh

(w, z)K, ⟨µ,η⟩∂Kh
=
∑

K∈Kh

⟨µ,η⟩∂K,

where w1, w2, z1, and z2 are defined on Kh, and µ1, µ2, η1, and η2 are
defined on ∂Kh. Besides, we have

(w, z)K = ((w1, z1)K, (w2, z2)K)
⊺, ⟨µ,η⟩∂K = (⟨µ1, η1⟩∂K, ⟨µ2, η2⟩∂K)⊺.

3 Construction of the semi-discrete HDG method

As mentioned, we assume that system (1) is equipped by the Dirichlet bound-
ary conditions over the rectangular domain Ω. The initial step is to refor-
mulate the 2D coupled Burgers equations (1) into a first-order system of
equations. By defining the auxiliary variables P = (p1, p2)

⊺ = (∇u)⊺ and
Q = (q1, q2)

⊺ = (∇v)⊺, the corresponding first-order system of (1) reads as
ut + U · ∇u− 1

Re∇ · P = 0,

P −∇u = 0,

vt + U · ∇v− 1

Re∇ · Q = 0,

Q −∇v = 0.

(2)

By establishing the corresponding semi-discrete HDG method of the system
(2), the stability of the semi-discrete method over the temporal interval [0, t]
for t ∈ (0, T ], is explained in the next subsection.

To have a corresponding conditionally well-posed problem of the system
(2), it is worth pointing out that this system should be equipped with initial
and boundary conditions. Weak formulation of the system (2) can be formed
by multiplying each equation of (2) by an appropriate test function, integrat-
ing over each element K ∈ Kh, and using the Green’s first identity. Conse-
quently, the aim is to find numerical approximations (u, v, P,Q) ∈ S2

h,k×S2
h,k

such that for all test functions (w1, w2,w1,w2) ∈ S2
h,k × S2

h,k and K ∈ Kh, it
holds that

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 397–425



Baharlouei, Mokhtari and Chegini 404
(ut, w1)K + (U · ∇u, w1)K + (

1

ReP,∇w1)K + ⟨
̂
− 1

RePn, w1⟩∂K = 0,

((P,w1))K + ((u,∇w1))K − ⟨⟨ûn,w1⟩⟩∂K = 0,

(vt, w2)K + (U · ∇v, w2)K + (
1

ReQ,∇w2)K + ⟨
̂
− 1

ReQn, w2⟩∂K = 0,

((Q,w2))K + ((v,∇w2))K − ⟨⟨v̂n,w2⟩⟩∂K = 0.

(3)

• Under imposed boundary conditions, numerical traces û ∈Mh,k(bu,Γu)
and v̂ ∈Mh,k(bv,Γv) are properly defined for all z ∈ Fh as

û(z) =

{
bu, z ∈ Γu,
ξ, z ∈ Fh \ Γu,

v̂(z) =

{
bv, z ∈ Γv,
ζ, z ∈ Fh \ Γv,

(4)

where (ξ, ζ) ∈ Mh,k(0,Γu) ×Mh,k(0,Γv) is a global unknown pair. It
can be observed that boundary data bu and bv are imposed in the
definitions of the numerical traces û and v̂, respectively, on Γu and Γv.
One can infer that û and v̂ are global unknowns corresponding to the
faces without a defined boundary data.

• In order to guarantee the stability of the semi-discrete method, numer-
ical fluxes −̂ 1

ReP and −̂ 1
ReQ are defined as

̂
− 1

ReP = − 1

ReP + τ(u− û)n,
̂
− 1

ReQ = − 1

ReQ+ σ(v − v̂)n,
(5)

where n is the outward unit normal vector with respect to the considered
face. In (5), τ and σ are the stabilization parameters. The valid range
of parameters τ and σ are determined in the stability theorem of the
proceeding subsection. We note that the definitions of the numerical
fluxes in (5) are not unique and depend on the form and physics of the
problems.

Remark 1. It is noteworthy that numerical fluxes and stabilization parame-
ters play a key role in the stability of the semi-discrete method. We emphasize
that functions − 1

ReP and − 1
ReQ on each element edge are approximated by

their corresponding numerical fluxes so that the numerical fluxes are single-
valued continuous functions across the element edges. In HDG methods,
numerical fluxes depend on the numerical traces while global unknowns in
the definitions of numerical traces depend on the faces.

Due to the fact that û and v̂ contain two global unknown variables over
[0, T ] × Ω, two extra global equations on each face should be added to the
system (3). The required global equations can be gained by enforcing the
conservation of the fluxes. Thus, the global unknowns are obtained with the
following extra global equations:
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[[
1̂

ReP · n]] = 0, for e ∈ F0
h , [[

1̂
ReQ · n]] = 0, for e ∈ F0

h . (6)

Then the local unknowns u, v, P , and Q, can be found by solving weak
formulation (3) in each element K ∈ Kh.

3.1 Stability analysis

In this subsection, we verify the numerical stability of the weak formulation
(3) over the time interval [0, t], for all t ∈ (0, T ]. To do this, let homogeneous
Dirichlet boundary conditions imposed to the weak formulation (3). We start
the analysis by multiplying the first equation of (1) by u to get

1

2

d

dt
u2 +

1

2
U · ∇(u2)− 1

Reu∆u = 0. (7)

By integrating (7) over the given domain Ω and using the Green’s first iden-
tity, we get

1

2

d

dt

∫
Ω

u2 dx+1

2

∫
Ω

U·∇(u2) dx+ 1

Re

∫
Ω

∇u·∇u dx− 1

Re

∫
Γ

u
∂u

∂n ds = 0. (8)

By applying homogeneous Dirichlet boundary conditions to (8) and regarding∫
Ω

∇u · ∇u dx ≥ 0, one can conclude that (8) leads to

1

2

d

dt

∫
Ω

u2 dx +
1

2

∫
Ω

U · ∇(u2) dx ≤ 0. (9)

Integrating (9) over the time interval [0, t], for 0 < t ≤ T , the following
inequality holds:

∥u(·, t)∥2Ω +

∫ T

0

Φ(u,Ω) dx ≤ ∥u(·, 0)∥2Ω, (10)

with
Φ(r,Λ) =

∫
Λ

U · ∇(r2) dx,

where r is the function of x and t, and Λ is a subdomain of Ω. Also, Output
of Φ(r,Λ) is a function of variable t. In the same approach, from the second
equation of (1), we get

∥v(·, t)∥2Ω +

∫ T

0

Φ(v,Ω) dt ≤ ∥v(·, 0)∥2Ω. (11)
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Theorem 1. Let weak formulation (3) be equipped by the homogeneous
Dirichlet boundary conditions over the domain Ω. By assuming τ > 0 and
σ > 0, it can be proved that the solution of weak formulation (3) satisfies the
following inequalities for all t ∈ (0, T ]:

∥u(·, t)∥2Kh
+

∫ T

0

Φ(u,Kh) dt ≤ ∥u(·, 0)∥2Kh
,

∥v(·, t)∥2Kh
+

∫ T

0

Φ(v,Kh) dt ≤ ∥v(·, 0)∥2Kh
.

Proof. By setting w1 = u, w1 = 1
ReP , w2 = v, and w2 = 1

ReQ, in the weak
formulation (3) and summing the first three equations and the last three
equations of (3) together, we get

1

2

d

dt
∥u∥2K +

1

Re∥P∥
2
K + Ē1,K +

1

2
Φ(u,K) = 0,

1

2

d

dt
∥v∥2K +

1

Re∥Q∥2K + Ē2,K +
1

2
Φ(v,K) = 0,

(12)

where

Ē1,K = 1
Re (P,∇u)K + 1

Re (u,∇P )K + ⟨−̂ 1
ReP · n, u⟩∂K − 1

Re ⟨ûn, P ⟩∂K,
Ē2,K = 1

Re (Q,∇v)K + 1
Re (v,∇Q)K + ⟨−̂ 1

ReQ · n, v⟩∂K − 1
Re ⟨v̂n, Q⟩∂K.

Using the divergence theorem, the following relations are obtained:
1

Re (P,∇u)K + 1
Re (u,∇P )K = 1

Re
∫
K ∇ · (Pu) dx = 1

Re
∫
∂K(Pu) · n ds

= 1
Re ⟨P · n, u⟩∂K,

1
Re (Q,∇v)K + 1

Re (v,∇Q)K = 1
Re
∫
K ∇ · (Qv) dx = 1

Re
∫
∂K(Qv) · n ds

= 1
Re ⟨Q · n, v⟩∂K,

(13)

By applying (13) to Ē1,K and Ē2,K, using

⟨ûn, P ⟩∂K = ⟨P · n, û⟩∂K, ⟨v̂n, Q⟩∂K = ⟨Q · n, v̂⟩∂K,

and adding

−⟨
̂
− 1

ReP · n, û⟩∂K = 0, −⟨
̂
− 1

ReQ · n, v̂⟩∂K = 0,

respectively, into Ē1,K and Ē2,K, we obtain

Ē1,K = ⟨−̂ 1
ReP · n, u− û⟩∂K + ⟨ 1

ReP · n, u− û⟩∂K
= ⟨(−̂ 1

ReP + 1
ReP ) · n, u− û⟩∂K,

Ē2,K = ⟨−̂ 1
ReQ · n, v − v̂⟩∂K + ⟨ 1

ReQ · n, v − v̂⟩∂K
= ⟨(−̂ 1

ReQ+ 1
ReQ) · n, v − v̂⟩∂K.
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Using the definitions of −̂ 1
ReP and −̂ 1

ReQ from (5), we obtain

Ē1,K =< τ, (u− û)2 >∂K, Ē2,K =< σ, (v − v̂)2 >∂K .

By summing Ē1,K and Ē2,K over all elements, we get∑
K∈Kh

Ē1,K =
∑

K∈Kh
< τ, (u− û)2 >∂K=< τ, (u− û)2 >∂Kh

,∑
K∈Kh

Ē2,K =
∑

K∈Kh
< σ, (v − v̂)2 >∂K=< σ, (v − v̂)2 >∂Kh

.

According to the assumptions τ > 0 and σ > 0, we can conclude
∑

K∈Kh
Ē1,K ≥

0 and
∑

K∈Kh
Ē2,K ≥ 0. Finally, by summing (12) over all elements, using

the obtained results, and ∥P∥2Kh
, ∥Q∥2Kh

≥ 0, we conclude

d

dt
∥u∥2Kh

+Φ(u,Kh) ≤ 0,
d

dt
∥v∥2Kh

+Φ(v,Kh) ≤ 0.

By integrating above relations over [0, t] for all t ∈ (0, T ], the assertion of the
theorem is concluded.

Remark 2. According to (10)–(11), by assuming∫ T

0

Φ(u,Ω) dt ≥ 0,

∫ T

0

Φ(v,Ω) dt ≥ 0,

one can verify that the 2D coupled Burgers equations (1) is well-posed in the
sense of the energy method. Therefore, in this case and based on Theorem
1, the proposed HDG method is stable with τ > 0 and σ > 0.

Briefly, Theorem 1 and Remark 2 show that the proposed semi-discrete
HDG method is stable for solving well-posed 2D coupled Burgers equations
provided some specific mild conditions on the stabilization parameters. More-
over, this stability is unconditional because we have no condition on the step
sizes.

4 Numerical algorithm and implementation issues

In order to design a fully discrete approximation method for solving the
2D nonlinear coupled Burgers equations (1), it is needed to apply a time-
discretization approach to the weak formulation (3). To do this, we simply use
the Crank–Nicolson method which is a method of order two. By considering
time step ∆t = T

J with J ∈ N and time level tn = n∆t, for n = 0, . . . , J , the
weak formulation (3) changes to
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

1

∆t
(u

n
, w1)K +

1

2
(U

n · ∇u
n
, w1)K +

1

2
(

1

Re
P

n
,∇w1)K +

1

2
⟨(

̂
−

1

Re
P )

nn, w1⟩∂K = l1(w1),

((Pn, w1))K + ((un,∇w1))K − ⟨⟨ûnn, w1⟩⟩∂K = 0,

1

∆t
(v

n
, w2)K +

1

2
(U

n · ∇v
n
, w2)K +

1

2
(

1

Re
Q

n
,∇w2)K +

1

2
⟨(

̂
−

1

Re
Q)

nn, w2⟩∂K = l2(w2),

((Qn, w2))K + ((vn,∇w2))K − ⟨⟨v̂nn, w2⟩⟩∂K = 0,

(14)
where Un = (un, vn)⊺, Pn = (pn1 , p

n
2 )

⊺, and Qn = (qn1 , q
n
1 )

⊺, and

l1(w1) =
1
∆t (u

n−1, w1)K + 1
2 (U

n−1 · ∇un−1, w1)K + 1
2 (

1
ReP

n−1,∇w1)K

+ 1
2 ⟨(−̂

1
ReP )

n−1n, w1⟩∂K,

l2(w2) =
1
∆t (v

n, w2)K + 1
2 (U

n−1 · ∇vn−1, w2)K + 1
2 (

1
ReQ

n−1,∇w2)K

+ 1
2 ⟨(−̂

1
ReQ)n−1n, w2⟩∂K.

The superscripts n and n − 1 stand for the values at the time levels tn and
tn−1, respectively. Likewise, the global equations should be considered at the
time level tn. By summing over all elements, inserting the flux definitions (5)
into (6) and (14) at the time level tn and also using boundary conditions (4),
the algebraic system of equations or vector-matrix system can be obtained.
The obtained system, steamed by exploiting the Crank–Nicolson method,
is nonlinear, and we intend to solve it numerically so that preserves the
second-order convergence in the temporal domain. Nevertheless, we exploit
the Newton–Raphson method for solving the obtained nonlinear system. We
set

Wn = (un, vn, pn1 , p
n
2 , q

n
1 , q

n
2 , ξ

n, ζn) ∈ S6
h,k ×Mh,k(0,Γu)×Mh,k(0,Γv),

where (un, vn, pn1 , pn2 , qn1 , qn2 , ξn, ζn) is the exact solution vector of system (14)
and (6) at the time level tn. With a suitable initial guessWn,0, we are aiming
to generate the following sequence of solution vectors

Wn,i =Wn,i−1 + δWn,i, i = 1, 2, . . . ,

whereWn,i converges to the exact solution, namely,Wn, as i tends to infinity.
We note that

δWn,i = (δun,i, δvn,i, δp1,n,i, δp2,n,i, δq1,n,i, δq2,n,i, δξn,i, δζn,i),

is obtained via the Newton–Raphson method. In the other words, δWn,i

is computed by solving the following linear variational formulation so that
holds for all (w1, w2,w1,w2) ∈ S2

h,k × S2
h,k and K ∈ Kh and (µ1, µ2) ∈

Mh,k(0,Γu)×Mh,k(0,Γv):
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ã1(δun,i, w1) + ã2(δvn,i, w1) + ã3(δp1,n,i, w1) + ã4(δp2,n,i, w1)

+ã5(δξn,i, w1) = l̃1(w1),

b̃1(δun,i, w11) + b̃2(δp1,n,i, w11) + b̃3(δξn,i, w11) = l̃2(w11),

b̃4(δun,i, w12) + b̃2(δp2,n,i, w12) + b̃5(δξn,i, w12) = l̃3(w12),
c̃1(δun,i, w2) + c̃2(δvn,i, w2) + c̃3(δq1,n,i, w2) + c̃4(δq2,n,i, w2)

+c̃5(δξn,i, w2) = l̃4(w2),

b̃1(δvn,i, w21) + b̃2(δq1,n,i, w21) + b̃3(δζn,i, w21) = l̃5(w11),

b̃4(δvn,i, w22) + b̃2(δq2,n,i, w22) + b̃5(δζn,i, w22) = l̃6(w12),

τ d̃1(δun,i, µ1) + d̃2(δp1,n,i, µ1) + d̃3(δp2,n,i, µ1)− τ d̃4(δξn,i, µ1) = l̃7(µ1),

σd̃1(δvn,i, µ2) + d̃2(δq1,n,i, µ2) + d̃3(δq2,n,i, µ2)− σd̃4(δζn,i, µ2) = l̃8(µ2).
(15)

where w1 = (w11, w12)
⊺, and w2 = (w21, w22)

⊺. To observe the definition
of multilinear forms and linear functionals in (15), we refer the reader to
Appendix of the paper.

In order to solve the large and sparse linear variational formulation (15)
more effectively, this system can be decomposed into two linear systems with
smaller sizes by using the Schur complement idea. One can observe that (15)
can be reformulated to the following vector-matrix equations:{

M11Xn,i +M12Yn,i = R1,
M21Xn,i +M22Yn,i = R2,

(16)

where Xn,i = [δūn,i δv̄n,i δp̄1,n,i δp̄2,n,i δq̄1,n,i δq̄2,n,i]
⊺, Yn,i = [δξ̄n,i δζ̄n,i]

⊺

are coefficients of approximate solutions with

M11 =



Ã1 Ã2
⊺ Ã3 Ã4 0 0

B̃1 0 B̃2 0 0 0

B̃1 0 0 B̃2 0 0

C̃1 C̃2 0 0 C̃3 C̃4

0 B̃1 0 0 B̃2 0

0 B̃1 0 0 0 B̃2

 , M12 =



Ã5 0

B̃3 0

B̃4 0

0 C̃5

0 B̃3

0 B̃4

 ,

M22 =

[
−τD̃4 0

0 −σD̃4

]
, M21 =

[
τD̃1 0 D̃2 D̃3 0 0

0 σD̃1 0 0 D̃2 D̃3

]
,

R1 =
[
L̃1 L̃2 L̃3 L̃4 L̃5 L̃6

]
, R2 =

[
L̃7 L̃8

]
,

In the above matrices and vectors, capital letters are interpreted as the ma-
trix and vector representation of multi-linear forms and linear functionals
defined in (15). Based on our experiences in the computer implementation of
the HDG method, we have not benefited by not encountering non-invertible
matrix M11. Regarding this fact, we assume that M11 is invertible. Oth-
erwise, it is not possible to propose the reduction of the complexity of the
computations for solving (15), and so this system has to be solved directly.
Based on the structure of the matrices in vector-matrix equations (16) and
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the Schur complement issue, instead of solving (16), the following system of
equations are solved in each iteration of the Newton–Raphson method:

(M22 −M21M
−1
11 M12)Yn,i = R2 −M21M

−1
11 R1. (17)

Thus Xn,k can be computed by

Xn,i =M−1
11 R1 −M−1

11 M12Yn,i. (18)

Based on the Newton–Raphson approach, and Schur complement decom-
position, we finish this section by representing the details of the designed
HDG scheme in the following algorithm.
Algorithm HDG algorithm for 2D coupled Burgers equations (1)
Input: Spatial domain Ω and number of elements, namely, N , time inter-
val [0, T ] and number of time steps J , degree of approximate polynomials
k, boundary data Γu and Γv, initial data, tolerance 0 < ϵ, and stabilization
parameters τ and σ.
Output: uJ , vJ , pJ1 , pJ2 , qJ1 , qJ2 , ξJ , and ζJ that are the approximate solu-
tions of u(x, y, T ), v(x, y, T ), p1(x, y, T ), p2(x, y, T ), q1(x, y, T ), q2(x, y, T ),
ξ(x, y, T ) and ζ(x, y, T ).

Generate regular mesh for the domain Ω.

Set W0 by given initial and boundary conditions.

For n = 1, 2, . . . , J do

Wn,0 =Wn−1, δWn,0 = (ϵ+ 1)⃗1, i = 0.

While ϵ < ∥δWn,i∥ do

Compute δWn,i+1 by Schur complement formulas (17) and (18)

Wn,i+1 =Wn,i + δWn,i+1, i = i+ 1

end While

Wn =Wn,i

end For

5 Numerical results

In this section, we aim to demonstrate the efficiency, validation, and ap-
plicability of the proposed fully discrete HDG method for system (1). We
observe that the semi-discrete HDG method for system (1) is stable over the
time interval [0, t], for all t ∈ (0, T ] provided that system (1) is well-posed in
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the sense of energy method. To design a fully discrete version of the HDG
method, we proposed an approach with the order of at least two for time
discretization, that is Crank–Nicolson. Also, the Newton–Raphson method
that has the order of at least two is proposed for solving the obtained non-
linear system, and therefore, the loss of accuracy will not appear. As seen,
to reduce the complexity of the proposed method and the size of the linear
system, we exploited the Schur complement idea. Numerical experiments
of the proposed HDG method are reported in three examples that they are
selected from [35].

In Example 1, the 2D system (1) is considered to investigate the spatial
order of accuracy of the proposed HDGmethod. Also, the results are reported
for different Reynolds numbers. In Example 2, the HDG solution is examined
for very high Reynolds numbers in the system (1). In Example 3, a 2D
coupled Burgers equation without having any exact solution is solved. In
this example, the HDG results are compared with the numerical results in
[35] and [3].

Example 1. [35] Consider the 2D coupled Burgers equations (1) with Ω =
(0, 1)× (0, 1), T = 1, and the following exact solutions:

u =
3

4
− 1

4(1 + exp(Re
4 (−t− 4x+ 4y)))

,

v =
3

4
+

1

4(1 + exp(Re
4 (−t− 4x+ 4y)))

.

The initial and boundary conditions can be derived from the exact solutions.
In Table 1, L2 error norms and corresponding orders are reported for Re = 1
and τ = σ = 0.5. As seen, satisfactory and high accuracy errors in Table
1 indicate the good performance of our proposed method in solving system
(1). Moreover, the results show the optimal convergence for approximate
solutions u, v, and their first derivatives. As mentioned earlier, this optimal
convergence is inherited from the DG method that is preserved well by our
proposed method. In Table 2, the errors are reported for different Reynolds
numbers Re = 0.1, 1, 10, 100, 200, 500, approximate polynomials of degree
k = 2 and h = 0.2. For this test, we set τ = σ = 0.5 for Re = 0.1, 1, 10, 100
and τ = σ = 2 for Re = 200, 500. Note that, by increasing the Reynolds
number, the effectiveness of dissipative terms in the system (1) will be elimi-
nated gradually, and so we will face an inviscid system. Therefore, we expect
that the accuracy of the method decreases as the Reynolds number increases.
According to Table 2, we can observe that the proposed HDG method pro-
duces acceptable approximate solutions even for high Reynolds numbers and
the reduction of accuracy is acceptable.

Here, we intend to do a test and check the dependence on the accuracy
of the numerical solutions on the stability parameters. In Table 3, L2 error
norms and corresponding orders are reported for Re = 1 and τ = σ = −0.5.
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Table 1: L2 error norms of approximate solutions u, v, p1, p2, q1, and q2 together with
their corresponding spatial orders of accuracy for Example 1 with Re = 1, τ = σ = 0.5
at T = 1.

k h ∥u− u∥Ω order ∥p1 − p1∥Ω order ∥p2 − p2∥Ω order
1 0.4 1.3059 E-6 3.7719 E-6 3.7620 E-6

0.2 3.2810 E-7 1.99 9.3005 E-7 2.02 9.3053 E-7 2.02
0.1 7.6653 E-8 2.10 2.0728 E-7 2.017 2.0778 E-7 2.016

2 0.4 1.2004 E-6 3.8744 E-6 3.8762 E-6
0.2 1.5815 E-7 2.92 5.0946 E-7 2.93 5.0959 E-7 2.93
0.1 1.9734 E-8 3.00 6.3571 E-8 3.00 6.3588 E-8 3.00

k h ∥v − v∥Ω order ∥q1 − q1∥Ω order ∥q2 − q2∥Ω order
1 0.4 1.3059 E-6 3.7719 E-6 3.7620 E-6

0.2 3.2810 E-7 1.99 9.3005 E-7 2.02 9.3053 E-7 2.02
0.1 7.6653 E-8 2.10 2.0728 E-7 2.017 2.0778 E-7 2.016

2 0.4 1.2004 E-6 3.8744 E-6 3.8762 E-6
0.2 1.5815 E-7 2.92 5.0946 E-7 2.93 5.0959 E-7 2.93
0.1 1.9734 E-8 3.00 6.3571 E-8 3.00 6.3588 E-8 3.00

Table 2: L2 error norms for Example 1 with approximate polynomial of degree k = 2
and h = 0.1 for Re = 0.1, 1, 10, 100, 250, and 500, at the final time T = 1.

Re ∥u− u∥Ωr ∥p1 − p1∥Ω ∥p2 − p2∥Ω ∥v − v∥Ω ∥q1 − q1∥Ω ∥q2 − q2∥Ω
0.1 1.6141 E-11 1.9859 E-10 1.9929 E-10 1.8628 E-11 2.7554 E-10 2.7644 E-10
1 1.2378 E-8 3.9750 E-8 3.9774 E-8 1.2378 E-8 3.9751 E-8 3.9772 E-8
10 6.7030 E-6 2.5580 E-5 2.6527 E-5 6.7030 E-6 2.5580 E-5 2.6527 E-5
100 1.0638 E-3 1.9183 E-2 2.1982 E-2 1.0638 E-3 1.9183 E-2 2.1982 E-2
200 3.3772 E-3 1.2515 E-1 1.3351 E-1 3.3773 E-3 1.2514 E-1 1.3351 E-1
500 2.1209 E-2 7.1691 E-1 6.9343 E-1 2.1210 E-2 7.1691 E-1 6.9343 E-1

We can observe that the HDG method with negative stabilization parameters
produces numerical results with high and unacceptable errors.

Example 2. [35] The aim of this example is to investigate the performance
of the HDG method in solving system (1) with high Reynolds numbers. Con-
sider system (1) with Ω = (0, 1)× (0, 1), T = 1, and exact solutions

u = −
2π exp(−5π2t

Re ) cos(2πx) sin(πy)
Re(2+ exp(−5π2t

Re ) sin(2πx) sin(πy))
,

v = −
2π exp(−5π2t

Re ) sin(2πx) cos(πy)
Re(2+ exp(−5π2t

Re ) sin(2πx) sin(πy))
.

The errors of numerical solutions u and v are shown in Figures 2 and 3,
respectively, for Re = 10000 and 100000. Note that, the results have been
obtained by setting τ = σ = 20, h = 0.1, and k = 1. As mentioned in
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Table 3: L2 error norms of approximate solutions u, v, p1, p2, q1, and q2 together with
their corresponding spatial orders of accuracy for Example 1 with Re = 1, τ = σ = −0.5
at T = 1.

k h ∥u− u∥Ω order ∥p1 − p1∥Ω order ∥p2 − p2∥Ω order
1 0.4 7.2644 2.4545 E+1 2.3701 E+1

0.2 6.2532 0.22 1.4973 E+1 0.71 1.4567 E+1 0.70
0.1 6.1053 0.03 1.4241 E+1 0.07 1.4304 E+1 0.03

2 0.4 2.9309 E+6 1.3503 E+5 1.6600 E+5
0.2 8.4685 E+6 -1.53 8.4199 E+5 -2.6 8.0063 E+5 -2.27
0.1 2.2730 E+5 -1.42 5.4620 E+4 -2.70 4.6931 E+4 -2.55

k h ∥v − v∥Ω order ∥q1 − q1∥Ω order ∥q2 − q2∥Ω order
1 0.4 7.3625 2.6346 E+1 2.5501 E+1

0.2 6.2372 0.24 1.4836 E+1 0.83 1.4870 E+1 0.78
0.1 6.0686 0.04 1.4378 E+1 0.05 1.4228 E+1 0.06

2 0.4 1.1331 E+6 5.3889 E+6 6.3966 E+6
0.2 5.2046 E+6 -2.20 5.1255 E+5 -3.25 4.9186 E+5 -2.94
0.1 9.5820 E+6 -0.88 2.3339 E+4 -2.19 1.9896 E+4 -2.20

Example 1, these high Reynolds numbers are going to omit the dissipative
terms in system (1), but we can infer from Figures 2 and 3 that the behav-
iors of approximate solutions still follow the exact solutions very well. This
shows the flexibility and superiority of the proposed HDG method for solving
different types of system (1) numerically.

Example 3. [3, 35] In this example, a 2D problem with different values
of Reynolds numbers will be investigated such that its exact solution is un-
available. Consider the 2D coupled Burgers equations (1) over the domain
Ω = (0, 0.5)× (0, 0.5) with the initial conditions

u(x, y, 0) = sin(πx) + cos(πx) v(x, y, 0) = x+ y,

and the boundary conditions

u(0, y, t) = cos(πy), u(0.5, y, t) = 1 + cos(πy),
u(x, 0, t) = 1 + sin(πx), u(x, 0.5, t) = sin(πx),
v(0, y, t) = y, v(0.5, y, t) = 0.5 + y, v(x, 0, t) = x, v(x, 0.5, t) = 0.5 + x.

In the proposed HDG scheme, we set σ = τ = 2, h = 0.05, ∆t = 0.001, and
T = 0.625. According to this system that has no available exact solution,
the only way to understand the correctness of the results is the compari-
son them with the results of other papers. In the following, the results are
compared with the results of [3, 35]. The numerical approximations u and
v are illustrated in Figure 4 with k = 2 and Re = 50. Also, in Tables 4
and 5, the numerical results are reported at some selected mesh points for
Re = 50, 500. We find that, the results of the proposed HDG method are in
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Table 4: Comparison of computed values of u and v for Re = 50 for Example 3. Results
are reported for approximate polynomials of degree two, h = 0.05, and ∆t = 0.001 at
final time T = 0.625.

u v
(x, y) HDG method [35] [3] HDG method [35] [3]

(0.1, 0.1) 0.96969 0.97146 0.96688 0.09817 0.09869 0.09824
(0.3, 0.1) 1.15072 1.15280 1.14827 0.14167 0.14158 0.14112
(0.2, 0.2) 0.86362 0.86307 0.85911 0.16915 0.16754 0.16681
(0.4, 0.2) 0.99136 0.97981 0.97637 0.18855 0.17109 0.17065
(0.1, 0.3) 0.66440 0.66316 0.66019 0.26491 0.26378 0.26261
(0.3, 0.3) 0.77587 0.77230 0.76932 0.24818 0.22654 0.22576
(0.2, 0.4) 0.59083 0.58180 0.57966 0.33124 0.32851 0.32745
(0.4, 0.4) 0.75273 0.75855 0.75678 0.38614 0.32499 0.32441

Table 5: Comparison of computed values of u and v for Re = 500 for Example 3. Results
are reported for approximate polynomials of degree two, h = 0.05, and ∆t = 0.001 at
final time T = 0.625.

u v
(x, y) HDG method [35] [3] HDG method [35] [3]

(0.15, 0.1) 0.96114 0.96151 0.96650 0.08662 0.09230 0.09020
(0.3, 0.1) 0.97324 1.03200 1.02970 0.07841 0.10728 0.10690
(0.1, 0.2) 0.84445 0.87814 0.84449 0.17889 0.16816 0.17972
(0.2, 0.2) 0.86926 1.06370 0.87631 0.16264 0.23690 0.16777
(0.1, 0.3) 0.67883 0.67920 0.67809 0.26177 0.26268 0.26222
(0.3, 0.3) 0.77557 0.79947 0.79792 0.21739 0.23550 0.23497
(0.15, 0.4) 0.54874 0.58959 0.54601 0.31817 0.30419 0.31753
(0.2, 0.4) 0.58850 0.78233 0.58874 0.30049 0.35294 0.30371

good agreements with the presented results in [3, 35]. Hence, the proposed
HDG method copes well with equations without the exact solution.

6 Discussion and conclusion

Numerical simulation of the 2D coupled Burgers equations via the HDG
method has been studied in this paper, so that this system is equipped with
appropriate initial and boundary conditions. In general, HDG methods have
less computational time compared to the other DG methods, especially the
LDG methods, which are the nearest to the HDG. The main reason for this
advantage is the way of defining numerical fluxes. In the HDG method, the
definition of numerical fluxes is not unique and depends on the form and
physics of the problem. On the other hand, the stability of the method is
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Figure 2: The errors of approximate solutions u and v for Example 2 with Re = 10000

at T = 1, 2. The results are reported for τ = σ = 20, approximate polynomial of degree
one, and h = 0.1.
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Figure 3: The errors of approximate solutions u and v for Example 2 with Re = 100000

at T = 1, 2. The results are reported for τ = σ = 20, approximate polynomial of degree
one, and h = 0.1.
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Figure 4: Approximate solutions u and v for Example 3 with Re = 50 at T = 0.625.
The results are reported for τ = σ = 2, approximate polynomial of degree two with
h = 0.05 and ∆t = 0.001.
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completely dependent on the fluxes. So, one of the hardships of using the
HDG method is finding appropriate definitions of numerical fluxes that guar-
antee stability. Fortunately, we presented a stable HDG method for solving
system (1), while there is no stable (with a proven theorem) LDG method
yet. Investigating the convergence of HDG methods for coupled and nonlin-
ear problems is not easy. According to the authors’ knowledge, already, the
convergence of the HDG methods has been studied just for some simple and
linear equations. Convergence of the proposed method can be considered as
one of our future works.
The same as other HDG methods, by converting the initial system to a sys-
tem of first-order equations and defining approximate broken Sobolev spaces
associated with spatial partitioning, we set up the semi-discrete variational
formulation of the coupled Burgers. Based on the structure of the HDG
method, we have proposed numerical traces and fluxes for the variational
formulation of the first-order equations. Numerical traces are supposed as
global unknowns and depend on Dirichlet boundary data. Defining numer-
ical flux in any HDG method plays a significant role in the stability of the
semi-discrete HDG method over a time interval. After introducing appropri-
ate numerical fluxes and imposing sufficient global equations over the spatial
partitioning for system (1), the L2 stability of the proposed semi-discrete
HDG methods has been investigated under specific mild conditions on the
stabilization parameters that are used in the definitions of numerical fluxes.
With the intention of gaining a fully discrete scheme, the Crank–Nicolson
method has been applied for time discretization. The choice of the Crank–
Nicolson method was because of its unconditional stability and second-order
accuracy. To preserve the second order of accuracy in time, the Newton–
Raphson method has been nominated for solving the nonlinear system of
equations. To solve the large and sparse linear variational systems, which
is related to the Newton–Raphson method, the Schur complement idea has
been used for reducing computational complexity and designing smaller sys-
tems of equations. To explain the details of the HDG method, an algorithm
has been prepared. To verify the efficiency of the proposed HDG method, the
method was applied to some model problems. In the presented examples, we
showed that approximate solutions and their first derivatives of degree k have
converged at order k + 1, which is an optimal order of convergence. Also, in
another example, the ability of the proposed HDG method was checked for
solving the 2D coupled Burgers equations with different and high Reynolds
numbers. Finally, we tested this method to solve a system without the ex-
act solution, and pleasant results were observed. Regarding the flexibility of
the method and numeric experiences, one can infer that the HDG method is
one of the outstanding methods that has been exploited for various types of
evolution problems in higher dimensions.
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Appendix

As mentioned in section 4, a fully discrete approximation method is obtained
for solving the nonlinear coupled Burgers equations (1) by using the HDG
and Crank–Nicolson methods for spatial and temporal discretization, respec-
tively. Regarding the definitions of approximation spaces, the goal is to find
(n, vn, pn1 , p

n
2 , q

n
1 , q

n
2 ) ∈ S6

h,k and (ξn, ζn) ∈ Mh,k(0,Γu) ×Mh,k(0,Γv), such
that all equations in (6) and (14) are satisfied for n = 1, 2, . . . , J . As stated
in section 4, by summing over all elements, inserting the flux definitions (5)
into (6) and (14) at the time level tn and also using boundary conditions (4),
the following system of equations is obtained:

1

∆t
(un, w1)Kh

+
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2
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where n = (nx, ny)

⊺, µ1 ∈Mu
h,k(0), µ2 ∈Mv
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l4(w) =
1
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(vn−1, w)Kh

− 1
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,

l5(w) = ⟨bnvnx, w⟩∂Kh∩Γv
, l6(w) = ⟨bnvny, w⟩∂Kh∩Γv

.

Regarding to the nonlinear weak formulation (19), it is needed to convert
this weak form to a linear variational form by a suitable iterative method.
As explained in section 4, by applying the Newton–Raphson method to the
nonlinear variational formulation (19), we intend to find

δWn,i = (δun,i, δvn,i, δp1,n,i, δp2,n,i, δq1,n,i, δq2,n,i, δξn,i, δζn,i),

such that for all (w1, w2, w11, w12, w21, w22) ∈ S6
h,k and (µ1, µ2) ∈Mh,k(0,Γu)×

Mh,k(0,Γv), the bilinear form system (15) holds. We finish the Appendix by
defining all multilinear forms and linear functionals, which are considered in
(15),
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Evaluation of iterative methods for
solving nonlinear scalar equations

M. Rezaiee-Pajand*, , A. Arabshahi and N. Gharaei-Moghaddam

Abstract
This study is aimed at performing a comprehensive numerical evalua-

tion of the iterative solution techniques without memory for solving non-
linear scalar equations with simple real roots, in order to specify the most
efficient and applicable methods for practical purposes. In this regard,
the capabilities of the methods for applicable purposes are be evaluated,
in which the ability of the methods to solve different types of nonlinear
equations is be studied. First, 26 different iterative methods with the best
performance are reviewed. These methods are selected based on performing
more than 46000 analyses on 166 different available nonlinear solvers. For
the easier application of the techniques, consistent mathematical notation
is employed to present reviewed approaches. After presenting the diverse
methodologies suggested for solving nonlinear equations, the performances
of the reviewed methods are evaluated by solving 28 different nonlinear
equations. The utilized test functions, which are selected from the re-
viewed research works, are solved by all schemes and by assuming different
initial guesses. To select the initial guesses, endpoints of five neighboring
intervals with different sizes around the root of test functions are used.
Therefore, each problem is solved by ten different starting points. In order
to calculate novel computational efficiency indices and rank them accu-
rately, the results of the obtained solutions are used. These data include
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the number of iterations, number of function evaluations, and convergence
times. In addition, the successful runs for each process are used to rank
the evaluated schemes. Although, in general, the choice of the method de-
pends on the problem in practice, but in practical applications, especially
in engineering, changing the solution method for different problems is not
feasible all the time, and accordingly, the findings of the present study can
be used as a guide to specify the fastest and most appropriate solution
technique for solving nonlinear problems.

AMS subject classifications (2020): Primary 45D05; Secondary 42C10, 65G99.

Keywords: Nonlinear scalar equations; Iterative method; Efficiency index;
Order of convergence; Initial guess; Function evaluation.

1 Introduction

Most of the practical problems in engineering and other fields of science can
be modeled by mathematical functions, which are mostly nonlinear. For
instance, in engineering applications, nonlinear structural analysis, or com-
putation of three-dimensional stresses require to solve nonlinear equations.
Another example of the case in civil engineering practice that requires solv-
ing a nonlinear scalar equation is the computation of the torsional-flexural
buckling load of steel columns. Similarly, the final step in the mathemat-
ical modeling and formulation of many other fields of science is to solve a
nonlinear equation. Therefore, a reliable and applicable method for solving
nonlinear equations is a necessary tool for scientific research. This device is
utilized in performing different science-based activities, such as analysis and
design. This need was felt many years ago and consequently, various solu-
tion methods are proposed for solving nonlinear equations. From the early
works in this field until now, many different schemes are proposed. Some of
these techniques are analytical approaches that are limited to special cases of
nonlinear equations, but most of them are numerical iterative schemes. An
iterative solution technique, as its name indicates, computes the root of a
nonlinear function through several iteration cycles by an initial guess. Most
of these methods are modifications of the basic earlier techniques, like the
Newton method.

The different iterative approach has different convergence order. Order
of convergence is an important mathematical quantity that indicates the effi-
ciency of the solver. However, despite this mathematical standpoint, from the
practical view, a method with a higher order of convergence is not necessarily
the best choice, and the performance of a solver depends on many different
factors. On the other hand, the large number of existing iterative methods
makes it more difficult to choose a suitable technique for a special applicable
problem. Therefore, the main motivation of this study is to provide a clear
understanding of the performance of many of these iterative schemes. For
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this purpose, it is attempted to review many of the basic and well-known as
well as newly proposed solution approaches in the first part of this study.
Some big questions arise when facing this large number of iterative nonlinear
solvers: Which method should be used for solving a given problem? Which
approach is the fastest? Which one requires the least computational effort?
Do they necessarily converge to the desired response?

The answer to these questions is not simple and certain and depends on
many factors, including the problem at hand, the utilized initial guess, num-
ber of floating-point arithmetic, and the termination criterion. However, it
is assured that no method can solve all the possible problems. The inves-
tigators who proposed the iterative solution schemes performed convergence
analysis to demonstrate the ability of their methods to find the root of non-
linear functions. Therefore, they proposed a convergence order that, from
the mathematical point of view, is an indication of the solution speed. In
general, a solution method with a higher convergence order should converge
faster to the response. However, in practice, the situation is not as easy as
it seems. There is no guarantee that a certain solver can find the roots of
a given nonlinear problem. Moreover, it is widely known that higher-order
solvers converge faster when the initial guess is close enough to the root. In
other words, increasing the order of convergence results in a smaller region
of attraction for a certain number of iterations. Therefore, in practical prob-
lems where the initial guess may fall in a wide range around the response, a
higher-order method is not necessarily superior. In cases, when the selected
starting point is far from the root of the function, the higher order of con-
vergence may lead to the inability of the method to find the response within
a permissible number of iterations. Even in some cases, the method may
diverge.

To the authors’ best knowledge, despite a large number of available iter-
ative methods for solving nonlinear scalar equations, there are very limited
reviews about these techniques. One of the limited reviews in this field is
performed by Babajee and Dauhoo [1]. They investigated the performance
of the variants of the Newton method with cubic convergence. They also
extended some of these methods to multivariate cases. In another similar
study, Varona [27] performed a numerical and graphical comparison between
some of the well-known solution methods. However, Varona utilized many
different criteria for the evaluation of the solution methods, but his research
work is mostly limited to traditional and well-known techniques, and their
performance is evaluated by extensive applications during the past decades.
Two more recent valuable review studies have also been performed by Cătinaş
[2, 3]. Occasionally various researchers propose the same methods indepen-
dently. This is due to the fact that there are so many iterative techniques
available, and this quantity increases very fast every year. Therefore, there is
a great need for studies like the present paper to provide useful information
for the researchers in this regard to prevent the proposition of the same for-
mulations by different investigators. Another merit of the present research
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work is to study the effect of the initial guess on the performance of the
methods and also evaluate the practical efficiency of different approaches.

The question of which solver is better remained unanswered. Due to
the variable nature of different nonlinear problems in the various fields of
science and application, giving a definite answer to this question is impos-
sible. This study, it is comprehensively tried to provide a clearer image of
the performance of a large number of iterative solution methods without
memory. For this purpose, 26 different solution techniques (selected as the
best-performing methods among 166 reviewed solvers which are not reported
in this manuscript) are used to solve 28 different nonlinear functions by using
ten diverse initial guesses for each function. Different initial guesses are used,
to investigate their effect of them on the performance of the solution methods.
It is worth mentioning that this important effect has been neglected in much
of the previous research in this field. To compare the abilities of discussed
approaches, a new computational efficiency index is proposed and utilized
against the others which were used previously. All solvers are ranked based
on the results of presented extensive numerical evaluations. The suggested
index has a qualitative-quantitative base and can successfully rank the solu-
tion schemes. To indicate the most applicable solver, the results of the new
index are compared with those attained by the traditional and well-known
efficiency indices. Findings show that the suggested way can better distin-
guish the performance and efficiency of the nonlinear solvers for practical
applications. Finally, according to the obtained results, the reviewed meth-
ods are ranked to specify the ones which are more efficient and applicable to
be utilized, especially, in engineering practice.

2 Review of the available iterative solvers

In this section, various nonlinear solvers are reviewed briefly and presented
in historical order. These methods fall in the category of iterative methods
without memory; that is, only the results of the current iteration would
be used to determine the next estimation. The iterative formula of each
technique is provided for the n + 1th estimation of the root, assuming that
the nth evaluation is available. The process commences by using an initial
guess, x0. Here, f(x) indicate the nonlinear function needs to be solved.
The reviewed methods are presented in Table 1, using uniform mathematical
notations.
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Table 1: Iterative solution methods

No Method Iterative Formula
1 Newton xn+1 = xn − f(xn)

f ′(xn)

2 Ostrowski [22] xn+1 = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

3 Traub–Ostrowski [26] xn+1 = xn − f(xn)
f ′(xn)

(
f(xn)−f(yn)
f(xn)−2f(yn)

)
4 Jarrat relation [12] xn+1 = xn − 1

2
f(xn)
f ′(xn)

+ f(xn)
f ′(xn)−3f ′(ỹn)

5 4th order Newton [20] xn+1 = yn − f(yn)
f ′(yn)

6 Three step Newton [4] xn+1 = x∗n − f(x∗
n)

f ′(xn)
x∗n = yn − f(yn)

f ′(xn)

7 Hansen and Patrick [11] xn+1 = xn − mf(xn)

(m+1
2m )f ′(xn)− f(xn)f′′(xn)

2f′(xn)

8 King method [13] xn+1 = yn − f(yn)
f ′(xn)

f(xn)
f(xn)−2f(yn)

9 Kung–Traub [15] xn+1 = yn − f(xn)f(yn)

[f(xn)−f(yn)]
2

f(xn)
f ′(xn)

10 Potra and Ptak [23] xn+1 = xn − f(xn)+f(yn)
f ′(xn)

11 Halley [8] xn+1 = xn − f(xn)

f ′(xn)− 1
2

f′′(xn)f(xn)

f′(xn)

12 Dong method [6] xn+1 = x∗n −
m

m+1 f(xn)

(1+ 1
m )

m
f ′(x∗

n)−f ′(xn)

x∗n = xn − m
m+1

f(xn)
f ′(xn)

13 Osada [21] xn+1 = xn − 1
2m (m+ 1) f(xn)

f ′(xn)

+ 1
2 (m− 1)

2 f ′(xn)
f ′′(xn)

14 Grau and Barrero method [9] xn+1 = x∗n − xn−yn

f(xn)−2f(yn)
f (x∗n)

x∗n = yn − xn−yn

f(xn)−2f(yn)
f (yn)

15 Noor, 1st method [19] xn+1 = x∗n − f(x∗
n)

f ′(x∗
n)

x∗n = xn − 2f(xn)

f ′(xn)±
√

f ′2(xn)−4f3(xn)

16 Noor, 2nd method [16] xn+1 = xn + 4 (x∗n − xn)
f(xn)

3f(xn)−2f(x∗
n)

x∗n = xn − 1
2

2f(xn)

f ′(xn)±
√

f ′2(xn)+4f2(xn)

17 Nedzhibov method [16] xn+1 = xn − 1
2

f(xn)
f ′(xn)

(
3f ′(yn)+f ′(xn)
3f ′(yn)−f ′(xn)

)
18 Kou et al. method [14] xn+1 = xn −

[
1− 3

4

(f ′ỹn)−f ′(xn))(7f ′(ỹn)+f ′(xn))
(3f ′(ỹn)+5f ′(xn))(2f ′(ỹn)−f ′(xn))

]
f(xn)
f ′(xn)

19 Sharma and Guha [25] xn+1 = x∗n − f(xn)+f(yn)
f(xn)−f(yn)

f(x∗
n)

f ′(xn)

x∗n = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

20 Yun [28] xn+1 = yn − f(yn)
f ′(xn)

− f(x∗
n)

f ′(xn)

x∗n = yn − f(yn)
f ′(xn)

21 Fernandez and Aquino method [7] xn+1 = xn + f2(xn)
(f(yn)−f(xn))f ′(xn)

− f2(yn)f(xn)(f(yn)−3f(xn))

(f(yn)−f(xn))
2(f(yn)−2f(xn))f ′(xn)

22 Noor, 3rd method [18] xn+1 = yn − f(yn)

f ′( xn+yn
2 )

23 Noor, 4th method [18] xn+1 = x∗n − f(x∗
n)

f ′
(

xn+x∗
n

2

)
x∗n = yn − f(yn)

f ′( xn+yn
2 )

24 Noor, 5th method [18] xn+1 = x∗n − 4f(x∗
n)

f ′(xn)+3f ′
(

xn+2x∗
n

3

)
x∗n = yn − 4f(yn)

f ′(xn)+3f ′( xn+2yn
3 )

25 Shah and Noor 1th method [24] xn+1 = x∗n − 2f(x∗
n)f

′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

x∗n = xn − 2f(xn)f
′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

26 Shah and Noor, 2nd method [24] xn+1 = x∗n − 2f(x∗
n)f

′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

x∗n = x∗∗n − 2f(x∗∗
n )f ′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

x∗∗n = xn − 2f(xn)f
′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

In this table, m stands for the multiplicity of the roots. In addition, it
should be noted that in the relations including ± sign in the denominator, the
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sign should be selected so as to maximize absolute value of the denominator.
The utilized intermediate variables used in the above-mentioned relations are
defined as follows:

yn = xn − f (xn)

f ′ (xn)
, (1)

ỹn = xn − 2

3

f (xn)

f ′ (xn)
, (2)

yn = xn − 1

2

f (xn)

f ′ (xn)
. (3)

3 Efficiency and performance evaluations

The order of convergence is an important mathematical feature of a nonlinear
solver, and the higher order of convergence is an indicator of the better
performance of the methods from a mathematical standpoint. However, it
is well known that increasing the order of convergence reduces the size of
attraction intervals of Newton-type solution methods. The attraction interval
is an interval around the root of the function that if the initial guess falls in
this interval, the required iteration for converging to the root would be less
than a specific number. In the higher-order methods, it is necessary to utilize
initial guesses that are closer to the root of the function, which is practically
difficult, because, in some cases, the range of possible responses is not known
beforehand.

The comparison between different methods is not an easy task and de-
pends on many factors, mostly the context in which the method is going to be
used. However, the concentration of this study is on scalar nonlinear equa-
tions with real simple roots. In this regard, previous investigators proposed
some efficiency indices for this purpose. The most well-known efficiency index
is the one proposed by Traub [22]. Many of the reviewed researches utilized
this index, which is defined by equation (4), to evaluate the performance of
the proposed techniques:

EI = p
1
q . (4)

In this relation, p is the convergence order and q is the number of function
evaluations per step (NFE). There is also another common index, which is
called the informational index, and is defined as follows:

EII =
p

q
. (5)

In both indices, the higher value of the index is considered a sign of better
performance. This is a widely accepted concept by mathematicians. However,
from the practical point of view, for instance, for an engineer who aims to
solve a nonlinear equation to find the response to a practical design problem,
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it raises some questions. For example, two different methods with the same
order of convergence and the total number of function evaluations have the
same values of efficiency indices, but it is obvious that their performances
are not necessarily similar. To show this complexity, the efficiency indices for
the evaluated methods are calculated by the authors and shown in Table 2.
These results present the convergence order and NFE, as well as, the values
of the two introduced efficiency indices.

Table 2: Efficiency indices of the solution methods

No Function Name Convergence
order

NFE Informational
Index( P

q )
Efficiency
Index(P

1
q )

1 Newton 2 2 1.000 1.414
2 Ostrowski [22] 4 3 1.333 1.587
3 Traub-Ostrowski

[26]
4 3 1.333 1.587

4 Jarrat relation [12] 4 3 1.333 1.587
5 4th order Newton

[20]
4 4 1.000 1.414

6 Three step Newton
[4]

4 4 1.000 1.414

7 Hansen and Patrick
[11]

3 3 1.333 1.442

8 King method [13] 4 3 1.333 1.587
9 Kung–Traub [15] 8 3 2.667 2.000

10 Potra and Ptak [23] 3 3 1.000 1.442
11 Halley [8] 2 3 0.667 1.260
12 Dong method [6] 2 2 1.000 1.414
13 Osada [21] 3 3 1.000 1.442
14 Grau and Barrero

method [9]
6 4 1.500 1.565

15 Noor, 1st method
[19]

4 4 1.000 1.414

16 Noor, 2nd method
[19]

4 3 1.333 1.587

17 Nedzhibov method
[16]

3 3 1.000 1.442

18 Kou et al. method
[14]

4 3 1.333 1.587

19 Sharma and Guha
[25]

6 4 1.500 1.565

20 Yun [28] 4 3 1.333 1.587
21 Fernandez and

Aquino method [7]
4 3 1.333 1.587

22 Noor, 3rd method
[18]

3 4 0.750 1.316

23 Noor, 4th method
[18]

3 4 0.750 1.316

24 Noor, 5th method
[18]

3 4 0.750 1.316

25 Shah and Noor 1th
method [24]

4 4 1.000 1.414

26 Shah and Noor, 2nd
method [24]

5 5 1.000 1.380

It is concluded from this comprehensive study that many of the available
methods have the same value as the efficiency indices, but as will be revealed
in the coming sections, the solved problems show very different performances
for these techniques. Moreover, the effect of the starting point on the per-
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formance of a solution method is not included in these indices. Accordingly,
it seems that these indices are not sufficient to judge about the applicability
of them in solving different types of applied problems, such as engineering
problems.

In most of the reviewed research, after the proposition of the method,
mathematical proofs about the order of convergence of the suggested schemes
are provided. In some of these studies, numerical evaluations were performed,
in which; a limited number of test functions were solved, and the obtained
results were compared with some other nonlinear solution techniques. The
number of iterations, the total number of function evaluations, solution time,
computational order of convergence, residual error of the function value, and
difference of the last two estimations were the parameters, which were usu-
ally recorded in the numerical evaluations. Some of the available solution
methods are able to calculate roots of nonlinear functions with very high
accuracy, for example 10−100. However, in practical applications, such high
accuracy is not required. Instead, a robust method should be able to com-
pute the response of different types of nonlinear functions within the least
possible number of iterations. Moreover, the exact ranges of the responses
for some practical purposes, such as nonlinear structural problems, are not
known beforehand, or it is difficult to estimate such ranges in highly non-
linear problems in structural engineering. Therefore, a robust method must
be able to solve a problem with a random initial guess. Therefore, some
investigators attempted to study the effects of different initial guesses on
the performance of the suggested methods by using assessing the basin of
attractions [27, 5, 17, 10].

For the applicable purposes, a method is considered desirable if it can solve
different types of nonlinear equations and by using diverse initial guesses.
Moreover, a powerful solution technique requires a fewer number of func-
tion evaluations and computational time. Accordingly, to rank the reviewed
methods and specify the most efficient techniques for applicable purposes, a
thorough numerical evaluation program is necessary. Such a responsibility is
defined and undertaken in the following of this study.

4 Test functions

To study the performance of these methods, 28 different scalar nonlinear
functions are solved. These test equations, which are selected from the re-
viewed research works, are listed in Table 3. All of these nonlinear equa-
tions are famous benchmark problems. As was mentioned previously, the
exact ranges of the responses for some practical purposes, such as nonlin-
ear structural problems, are not known beforehand, or it is difficult to es-
timate such ranges in highly nonlinear problems in structural engineering.
Therefore, a robust process must be able to find the response even in the
cases that the initial guess is not close to the root. To investigate accu-
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rately the effect of the selected starting point on the performance of the
approaches, each test function is solved ten times by using ten different ini-
tial guesses. These starting points are selected as the endpoints of a sym-
metrical interval around the roots of the functions. Five intervals, namely,
[x∗ − 0.1, x∗ + 0.1], [x∗ − 1, x∗ + 1], [x∗ − 10, x∗ + 10], [x∗ − 100, x∗ + 100]
and [x∗ − 1000, x∗ + 1000] are selected. They are named very small, small,
medium, large, and very large neighboring intervals. As mentioned in Table
3, x∗ represents the root of the function.

Table 3: Test functions

No. Test Functions x∗

1 f (x) = x3 + 4x2 − 15 1.63198
2 f (x) = xex

2 − sin2 (x) + 3cos (x) + 5 -1.20764
3 f (x) = cos (x) − x 0.73908
4 f (x) = x3 + 1 -1.00000
5 f (x) = 2xe−5 + 1− 2e−5x 0.13826
6 f (x) = 2xe−10 + 1− 2e−10x 0.06931
7 f (x) = sin−1

(
x2 − 1

)
− x

2
+ 1 0.59481

8 f (x) = x5 + 23x− 6 0.26082
9 f (x) = x3 + 4x2 − 10 1.36500
10 f (x) = ln

(
x2 + x+ 2

)
− x+ 1 4.15200

11 f (x) = e(−x2+x+2) − 1 -1.00000
12 f (x) = x5 + x4 + 4x2 − 15 1.34700
13 f (x) = x5 + x− 10000 6.30800
14 f (x) = (x− 1)3 − 1 2.00000
15 f (x) = x3 − 10 2.15440
16 f (x) = x3 − 2x− 5 2.09450
17 f (x) = (x− 1)3 − 2 2.25992
18 f (x) = e(x

2+7x−30) − 1 3.00000
19 f (x) = (x+ 2) ex − 1 -0.44280
20 x3 − e−x 0.77290
21 f (x) = e(−x2+x+2) − cos (x+ 1) + x3 + 1 -1.0000
22 f (x) = x3 + 4x2 − 25 2.03500
23 f (x) = sin2 (x) + x 0.00000
24 f (x) = tan−1(x) − 1 1.55740
25 f (x) = x3 − cos (x) + 2 -1.17250
26 f (x) = x3 + 4x2 + 8x+ 8 -2.00000
27 f (x) = x2 − (1− x)5 0.34595
28 f (x) = xlog (x) −1.2 2.74064

It must be noted that due to the described approach for the selection
of the starting points of the iterative process, the nonlinear functions, with
only one root, are selected for this study. The number of iterations, the total
number of function evaluations, and convergence time are recorded for each
run that reached the root within the admissible number of iterations. In
this study, the permissible number of iterations is assumed to be 1000. It
is noteworthy that the admissible tolerance for the convergence is selected
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as equal to 10−10. This value is mostly more than the necessary value for
applicable engineering problems.

5 Proposed efficiency index

In addition to the ability to solve different nonlinear problems for dissimilar
initial guesses, a powerful solution technique should be able to compute the
response by utilizing a lesser number of function evaluations or computation
time. Since the performance of a method for different types of nonlinear
problems is not uniform, it is difficult to select more efficient methods di-
rectly based on the recorded parameters for each test function, including
convergence time and the total number of function evaluations. Compre-
hensive numerical experiences inform the authors that more sophisticated
approaches are necessary. In this study, a computational efficiency index in
the following form is suggested:

EIc = α+ β + 70

(
imax − i

imax − imin

)
, (6)

where EIc is the computational index that can be computed for any of the
recorded values, including convergence time or total number of function eval-
uations. The parameters α and β are calculated by the following relations:

α =

{
0 if the method diverged,
10 if the solver converged to the response,

(7)

β =


0 if the method didn’t converge within the admissible

number of iterations,
20 if the method converged within the admissible

number of iterations.

(8)

In equation (6), i stands for the selected parameter, which can be the
number of function evaluations or the solution time. For a given starting
point, imax and imin are the maximum and the minimum values of the se-
lected parameter for the different solution methods. Because the number of
the maximum allowable iterations is equal to 1000, the maximum and min-
imums are specified for the methods that have converged to the response in
the admissible number of iterations. Therefore, the third term in the right-
hand side of equation (6) is equal to 0 for the approaches that have diverged
or cannot compute the response within the permissible iterations. It must
be noted that the mentioned values for different parameters in the suggested
efficiency index are found and proposed by the authors. In fact, the computa-
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tional efficiency index and the related parameters are selected in the process
of extensive numerical experiences as a tool for providing meaningful results.
These are not based on any special mathematical concept. For various solu-
tion techniques, these indices are computed in a test function and for each
initial guess. Then, the mean value of each neighboring interval is calculated
by averaging the values of the initial guesses corresponding to the start and
end point of the intervals. Finally, the averages of the derived values for all
the test functions are computed.

It is evident that the suggested index, which varies between 0 and 100, has
three different phases. These phases are specified by four boundary values
of 0, 10, 30, and 100. The average efficiency index equal to 0 indicates
that the solution method is not able to solve the nonlinear problems at all.
Obviously, it is an extreme case that will not happen for any of the available
solution techniques in the average results, because a solver, no matter how
weak, is able to solve some type of nonlinear problems. The value of 10
demonstrates that a solution technique can converge to the response of the
nonlinear problem but with iterations more than the admissible number.
Therefore, if the average computational efficiency index for a solution method
in a given neighboring interval falls between 0 and 10, it is an indication that
the technique is probably not able to solve the problem on the condition that
the initial guess is close to the endpoints of that interval. This probability is
higher if the value is closer to 0. It must be noted that the term “probably” in
the previous statement is of extreme importance because a solution method
does not demonstrate the same performance for different types of nonlinear
functions. On the other hand, the calculated indices in this study are derived
based on solving a limited number of test functions. Therefore, it is neither
possible nor logical to make a “certain” statement.

The next boundary value is 30, which characterizes the borderline be-
tween the probability of convergence to the response with fewer and more
iterations than the permissible number of iterations. Therefore, the value of
the efficiency index between 10 and 30 is the sign of the ability of the solu-
tion technique to converge to the root of the nonlinear function for a given
neighboring interval. However, the number of required iterations is expected
to be more than the admissible iterations. The values closer to 10 indicate a
lower probability of convergence. Hence, the methods which have efficiency
indices in the range of (10, 30) are not numerically efficient, but there is an
acceptable probability that they are able to solve nonlinear problems.

Finally, the last boundary value is 100, which shows that a solution
method is the most efficient one, among the evaluated solution techniques.
The values of efficiency indices between 30 and 100 show that there is a
high probability of solving diverse nonlinear problems by the corresponding
solution technique for the given neighboring. A technique is deemed more
efficient if its average efficiency indices are closer to 100. It must be stated
that the mentioned values are selected by the authors to provide a clear im-
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age of the performance of the methods. Obviously, it is possible to choose
different boundaries for the three phases of the proposed index.

6 The obtained results

The test functions presented in Table 2 are solved by the nonlinear solu-
tion methods listed in Table 1, and the previously mentioned parameters are
recorded for each initial guess. To shorten the paper, the recorded values for
each problem are not included in the text. The recorded values are used to
calculate the performance criteria which were introduced in the previous sec-
tion. Table 4 presents the total number of failed runs, as well as, the success
ratio for each method.

Table 4: The success ratio of different solution methods

Rank Function Name Number of
failed runs

Success
ratio (%)

1 Halley 32 88.57
2 Traub–Ostrowski 33 88.21
2 Hansen and Patrick 33 88.21
3 Ostrowski 34 87.86
3 King method 34 87.86
3 Shah and Noor, 1st method 36 87.14
4 Shah and Noor, 2nd method 36 87.14
4 Grau and Barrero method 37 86.79
5 Noor, 2nd method 37 86.79
5 4th order Newton 38 86.43
6 Newton 39 86.07
7 Kou et al. method 39 86.07
7 Noor, 4th method 39 86.07
7 Jarrat relation 40 85.71
8 Osada 40 85.71
8 Noor, 5th method 40 85.71
8 Three step Newton method 41 85.36
9 Kung-Traub 41 85.36
9 Dong method 41 85.36
9 Yun 41 85.36
9 Noor, 3rd method 41 85.36
9 Potra and Ptak 42 85.00
10 Noor, 1st method 42 85.00
10 Nedzhibov method 42 85.00
10 Sharma and Guha 42 85.00
10 Fernandez and Aquino method 42 85.00

According to the total number of function evaluations, the average com-
putational efficiency indices are listed in Table 5. These outcomes include
separate results for each neighboring interval, and an overall average.
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Table 5: The average computational efficiency indices based on the total number of
function evaluations for different solution methods

No Function
Name

Neighboring interval

[x∗ −
1000, x∗ +

1000]

[x∗ −
100, x∗ +

100]

[x∗ −
10, x∗ +

10]

[x∗ −
1, x∗ + 1]

[x∗ −
0.1, x∗ +

0.1]

Average

1 Newton 73.101 76.014 83.273 87.158 96.147 83.139
2 Ostrowski

[22]
73.071 77.045 88.475 89.494 96.845 84.986

3 Traub–
Ostrowski
[26]

71.914 77.424 89.328 89.494 96.845 85.001

4 Jarrat rela-
tion [12]

71.999 75.304 83.486 87.640 96.845 83.055

5 4th order
Newton [20]

71.777 74.519 81.233 86.306 95.763 81.919

6 Three step
Newton [4]

71.226 71.920 81.602 80.263 93.961 79.794

7 Hansen and
Patrick [11]

70.477 74.770 91.034 92.024 96.400 84.941

8 King
method
[13]

73.071 77.045 88.475 89.494 96.845 84.986

9 Kung–
Traub [15]

71.784 73.546 83.822 87.438 96.822 82.683

10 Potra and
Ptak [23]

71.396 74.216 81.595 82.334 93.190 80.546

11 Halley [8] 70.503 73.860 92.453 92.457 96.845 85.223
12 Dong

method
[6]

71.204 75.192 84.251 90.540 97.812 83.800

13 Osada [21] 68.974 71.690 80.842 84.379 94.221 80.021
14 Grau and

Barrero
method [9]

73.621 74.829 84.297 87.235 96.235 83.243

15 Noor, 1st
method [19]

66.743 67.428 80.845 88.717 90.966 78.940

16 Noor, 2nd
method [19]

28.192 60.246 86.995 86.501 88.122 70.011

17 Nedzhibov
method [16]

70.384 73.727 83.486 87.640 96.845 82.417

18 Kou et al.
method [14]

72.420 78.026 85.926 86.146 96.863 83.876

19 Sharma and
Guha [25]

71.552 75.038 82.283 83.326 96.227 81.685

20 Yun [28] 72.189 73.530 82.751 80.935 95.024 80.886
21 Fernandez

and Aquino
method [7]

72.002 73.790 81.968 87.158 96.488 82.281

22 Noor, 3rd
method [18]

72.489 74.307 82.175 81.684 93.060 80.743

23 Noor, 4th
method [18]

73.215 75.330 82.800 84.895 95.768 82.402

24 Noor, 5th
method [18]

71.891 75.321 82.977 84.743 95.763 82.139

25 Shah and
Noor, 1th
method [24]

68.756 73.769 85.590 90.221 95.794 82.826

26 Shah and
Noor, 2nd
method [24]

66.049 70.799 88.613 89.720 94.820 82.000
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Finally, the average computational efficiency indices based on the conver-
gence time are presented in Table 6. The attained results will be discussed
in the next section.

7 Discussion about the results

The first interesting finding according to the calculated success ratio is that
the Halley approach, which is one of the basic solution techniques, performs
better than all the other schemes, including those which are proposed newly
and those which have a higher order of convergence. The other remarkable
observation is the outstanding performance of the classical Newton method,
which is ranked 6, among 26 reviewed procedures. Its success ratio is only
about 2 percent less than the Halley technique! Based on the findings, most
of the traditional solution techniques are ranked among the top solvers, ac-
cording to the success ratio, while many of the recently proposed iterative
approaches perform poorly.

The derived results for efficiency indices in Tables 5 and 6 provide the
opportunity to study the effect of the starting point on the performance of
reviewed methods. Before presenting a further discussion about the attained
results, it seems necessary to rank the reviewed method based on the obtained
outcomes. For the criteria of the success ratio, the presented results in Table
4 are ranked in descending order. As was expected, most of the reviewed
techniques have computational efficiency indices higher than 90 for a very
small neighboring interval. This is a sign of fast convergence because the
starting point of the iterative process is very close to the response. The
general trend of efficiency index variation shows that the efficiency of the
methods reduces by increasing the distance of the initial guess from the root
of the test functions. It is interesting to note that the traditional solution
techniques, such as Newton and Traub–Ostrowski perform as well as the
newly proposed higher-order schemes and are even better than many of them.
As it was expected, the efficiency indices of convergence time and the total
number of function evaluations are compatible with each other.

According to the computed indices, the Halley technique is one of the
best approaches. An ironic and astonishing finding is that according to the
three considered criteria, many of the basic and traditional nonlinear solu-
tion techniques, such as, Halley, Hansen and Patrick, Ostrowski, Newton,
Traub–Ostrowski, and King are among the best solvers. Obviously more de-
tailed discussion is possible about the performance of the reviewed methods
according to the results of the comprehensive numerical evaluation under-
taken in this study. For example, it is possible to study the effect of the type
of nonlinear functions on the performance of the methods. It is noteworthy
that this study, and the presented results can be useful means for the future
investigator in the field of nonlinear solution techniques, as well as, the scien-
tists and engineers who seek to select a powerful method for solving practical
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Table 6: The average computational efficiency indices based on convergence time for
different solution methods

No Function
Name

Neighboring interval

[x∗ −
1000, x∗ +

1000]

x∗ −
100, x∗ +

100]

[x∗ −
10, x∗ +

10]

[x∗ −
1, x∗ +

1]

[x∗ −
0.1, x∗ +

0.1]

Average

1 Newton 74.451 78.192 84.341 89.797 98.603 85.077
2 Ostrowski

[22]
73.344 77.217 88.019 90.528 97.874 85.396

3 Traub-
Ostrowski
[26]

72.058 76.861 87.860 89.844 97.132 84.751

4 Jarrat rela-
tion [12]

72.668 76.066 83.829 88.956 97.912 83.886

5 4th order
Newton [20]

73.845 77.997 83.910 90.135 99.157 85.009

6 Three step
Newton [4]

73.439 75.250 83.178 84.405 96.630 82.580

7 Hansen and
Patrick [11]

71.501 76.920 92.294 94.485 98.558 86.751

8 King method
[13]

73.139 77.217 87.849 90.193 97.622 85.204

9 Kung–Traub
[15]

72.074 72.994 82.945 87.763 96.997 82.555

10 Potra and
Ptak [23]

73.066 75.573 82.470 84.502 94.799 82.082

11 Halley [8] 71.503 76.377 93.845 94.867 98.964 87.111
12 Dong method

[6]
71.666 75.657 84.771 91.766 98.810 84.534

13 Osada [21] 70.783 75.918 83.053 88.715 97.950 83.284
14 Grau and

Barrero
method [9]

74.486 76.892 85.450 89.366 98.458 84.930

15 Noor, 1st
method [19]

68.174 68.515 80.645 90.791 92.626 80.150

16 Noor, 2nd
method [19]

28.416 53.152 83.386 84.333 86.913 67.240

17 Nedzhibov
method [16]

71.299 75.571 84.629 89.877 98.974 84.070

18 Kou et al.
method [14]

73.062 79.502 86.988 88.036 98.742 85.266

19 Sharma and
Guha [25]

71.808 74.764 81.532 83.318 96.303 81.545

20 Yun [28] 73.311 74.854 83.280 83.158 96.527 82.226
21 Fernandez

and Aquino
method [7]

71.627 71.338 79.678 84.718 94.360 80.344

22 Noor, 3rd
method [18]

74.152 77.893 84.388 85.932 97.004 83.874

23 Noor, 4th
method [18]

74.284 77.414 83.957 87.609 98.373 84.327

24 Noor, 5th
method [18]

72.752 77.210 84.164 87.422 98.264 83.963

25 Shah and
Noor, 1th
method [24]

69.782 75.328 86.200 91.905 97.637 84.170

26 Shah and
Noor, 2nd
method [24]

66.809 71.563 88.311 90.772 96.203 82.732
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nonlinear equations. In order to evaluate the performance of future solution
techniques in a more realistic and applicable manner, the proposed efficiency
index can be used along with the previous indices.

8 Conclusion

In this study, 26 different iterative nonlinear solution techniques for solving
nonlinear scalar equations were reviewed and evaluated numerically. For
this purpose, 28 different nonlinear problems, which were selected from a
review of the previous studies in this field, were solved by the discussed
techniques. To study the effects of the starting point on the performance of
solvers, each problem was solved by assuming different initial guesses. The
selected starting points for the iterative process were the endpoints of the
symmetrical neighboring interval around the root of the solved functions. In
each run of a solver, the recorded parameters include the total number of
function evaluations and convergence time.

To compare the mentioned methods and rank them according to their
performances, three different criteria, namely, success ratio, computational
efficiency index of the total number of function evaluations, and also the so-
lution time’s efficiency index were defined. The first criterion was a simple
ratio of the successful runs to the total number of runs for each scheme. The
other two criteria were compared based on a new computational efficiency
index, which was suggested by the authors in order to provide a clear pic-
ture of the procedure performances. The reason for proposing this new index
was the inability of the classical efficiency indices, such as the well-known
Traub index, in distinguishing between the performance of different solution
methods that have the same order of convergence and the number of function
evaluations per step. The solver is considered more efficient if its index is
closer to 100. The comprehensive obtained results showed that the higher or-
der of convergence is not necessarily a sign of better performance. Moreover,
it is observed that many of the most powerful solution techniques are among
the old and traditional approaches, such as Halley, Hansen and Patrick, Os-
trowski, and even Newton. Astonishingly, it is found that some of the newly
presented solvers are not as operational as the old ones. According to the
performances of 26 different iterative techniques, the first four effective pro-
cedures for solving nonlinear equations can be ranked as follows: 1. Halley,
2. Traub–Ostrowski, 3. Ostrowski 4. Hansen and Patrick.
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Abstract
We deal with some effective numerical methods for solving a class of

nonlinear singular two-point boundary value Fredholm integro-differential
equations. Using an appropriate interpolation and a q-order quadrature
rule of integration, the original problem will be approximated by the non-
linear finite difference equations and so reduced to a nonlinear algebraic
system that can be simply implemented. The convergence properties of the
proposed method are discussed, and it is proved that its convergence order
will be of O(hmin{ 7

2
,q− 1

2
}). Ample numerical results are addressed to con-

firm the expected convergence order as well as the accuracy and efficiency
of the proposed method.
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1 Introduction

In this study, we consider the following nonlinear singular two-point boundary
value Fredholm integro-differential equation (SFIDE):

(tαy′(t))′ = f(t) +

∫ 1

0

v(t, s)u(y(s))ds, t ∈ (0, 1], 0 < α < 1, (1)

y(0) = a, y(1) = b, (2)
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where f(t), y(t) and kernels v(s, t), u are known L2 functions, and all of them
are in C4((0, 1]). The nonlinear singular problems are extensively arisen in
many applications in physics and astrophysics [11, 9, 12, 19, 20], chemical
and mechanical engineering [18, 5, 15, 13], physiological process [14], popula-
tion dynamics and epidemiology [23], fluid mechanics, electro hydrodynamics,
nuclear physics, and chemical kinetics [2, 10].

Also, the nonlinear singular problems have many applications in stel-
lar structure, thermal explosions, isothermal gas spheres, radiative cooling,
thermionic currents, and the thermal behavior of a spherical cloud of gas
[3, 17, 22].

The majority of engineering applications and various branches of sci-
ence, such as financial mathematics, oceanography, population dynamics,
fluid mechanics, plasma physics, electromagnetic theory, artificial neural net-
works, and biological processes, have been dominated by Fredholm integro-
differential equations (FIDEs) [4, 6]. In general, the analytical solution of
FIDEs is not available. As a result, various numerical techniques for deter-
mining approximate solutions of FIDEs have been created. The situation
is significantly more complicated for FIDEs with singularities. A particular
type of them called singularly perturbed Fredholm integro-differential equa-
tions (SPFIDEs), was discussed in [1, 6, 8, 7]. Numerical analysis of SPFIDEs
has not yet been widely utilized. In this study, we focus on a specific case
of nonlinear singular two-point boundary value Fredholm integro-differential
equations of the form (1)–(2). Since solving problems of this type is very
difficult, the main motivation of this study is to construct an efficient and
useful numerical method with O(h

7
2 ) accuracy in the L2 norm for nonlinear

singular problems of the form (1).
To formulate some accurate and effective methods for (1), we first ap-

ply a finite difference method to discretize the singular ordinary differential
equation part and a suitable quadrature rule of integration for the singular
two-point boundary value Fredholm integro-differential part of (1).

Then, the original problem is converted into a system of nonlinear alge-
braic equations. The numerical solution of the derived nonlinear system is
computed by using some solver like the Newton method. Also, the conver-
gence analysis of the present method is established.

The main features of the new method are as follows:

• It can be simply implemented by converting the singular problem into
a system of nonlinear algebraic equations.

• The convergence rate of the proposed method is O(h4) with respect to
the L∞ norm when applied to nonlinear singular problems.

• The proposed method is successful in solving some classes of singular
problems, such as SFIDEs and SPFIDE.

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 444–459



Amiri 446

• The provided comparative numerical simulations confirm that the pro-
posed method is more accurate than the existing methods reported in
the literature.

2 Formulation of the method

In this section, we formulate a novel numerical method for solving the two-
point boundary value Fredholm integro-differential equation (1). At first if
one takes q(t) = tαy′(t), then (1) reduces to

q′(t) = f(t) +

∫ 1

0

v(t, s)u(y(s))ds. (3)

Consider the partition {tk = kh : k = 0, 1, . . . , N} of the interval [0, 1], where
t0 = 0 and tN = 1 and h = 1

N denotes the step size. For k = 0, 1, . . . , N , let Yk
and Vk,n denote the approximate values of yk := y(tk) and vk,n := v(tk, tn),
respectively. For (3), we can conclude that

q(t)− qk =

∫ t

tk

f(ξ)dξ +

∫ t

tk

∫ 1

0

v(ξ, s)u(y(s))dsdξ. (4)

Dividing both sides of (4) by tα and then integrating over [tk, tk+1] and
[tk−1, tk], we have∫ tk±1

tk

(
y′(t)− qk

tα

)
dt =

∫ tk±1

tk

∫ t

tk

f(ξ)

tα
dξdt+

∫ tk±1

tk

∫ t

tk

∫ 1

0

v(ξ, s)

tα
u(y(s))dsdξdt.

By changing the order of integration, we get

yk±1 − yk ∓ qkTk±⌊ k∓1
k ⌋ = f±k +

∫ 1

0

u(y(s))v±k (s)ds, (5)

where

Tk−1 =
t1−α
k − t1−α

k−1

1− α
, f±k =

∫ tk±1

tk

t1−α
k±1 − ξ1−α

1− α
f(ξ)dξ,

v±k (s) =

∫ tk±1

tk

t1−α
k±1 − ξ1−α

1− α
v(ξ, s)dξ, (6)

and k = 1, . . . , N − 1. Eliminating qk in (5) concludes that

1

Tk−1
(yk − yk−1 + f−k ) +

1

Tk
(yk − yk+1 + f+k )

+

∫ 1

0

u(y(s))

(
1

Tk−1
v−k (s) +

1

Tk
v+k (s)

)
ds = 0. (7)
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To solve (7), it is sufficient to utilize some suitable numerical integration
methods to approximate f±, v±, and its integral part. By using the in-
terpolating polynomials of f(ξ) and v(ξ, ·) at nodes tk and tk±1, we can
approximate the integrals given in (6) as follows: f±k = a±0,kf(tk) + a±1,kf(tk±1) + a±2,kf

′′(tk) + a±3,kf
′′′(ξ±k ),

v±k (s) = a±0,kv(tk, s) + a±1,kv(tk±1, s) + a±2,k
∂2v
∂t2 (t, s)

∣∣∣
t=tk

+ a±3,k
∂3v
∂t3 (t, s)

∣∣∣
t=ζ±

k

,

in which ξ−k , ζ
−
k ∈ (tk−1, tk) and ξ+k , ζ

+
k ∈ (tk, tk+1) and

a±0,k =

1∑
j=0

(−1)j

2− α− j

(
1

j

)
(t2−α−j

k±1 − t2−α−j
k )tjk

∓ 1

2h

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk (8a)

a±1,k = ± 1

2h

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk, (8b)

a±2,k =
1

6

3∑
j=0

(−1)j

4− α− j

(
3

j

)
(t4−α−j

k±1 − t4−α−j
k )tjk

∓h
4

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk, (8c)

a±3,k = ±h
4

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk. (8d)

Assume that the functions f (4)(t) and ∂4v
∂t4 (t, s) are continuous. Then there

are the values ςk, ς̃k ∈ (tk−1, tk+1) and ζk, ζ̃k ∈ (min(ξ±k ),max(ξ±k )) such that
1

Tk−1
f−k +

1

Tk
f+k = φ0

kf(tk) + φ−
k f(tk−1) + φ+

k f(tk+1) + ek(f), (9a)

1

Tk−1
v−k (s) +

1

Tk
v+k (s) = φ0

kv(tk, s) + φ−
k v(tk−1, s) + φ+

k v(tk+1, s) + ek(v(·, s)), (9b)

where φ0
k = b0,k − 2

h2 b2,k, φ±
k = 1

Tk−1
a±1,k + 1

h2 b2,k, ek(f) = − 1
12h

2b2,kf
(4)(ςk) + b3,kf

(3)(ζk),

ek(v(·, s)) = − 1
12h

2b2,k
∂4v
∂t4 (t, s)

∣∣∣
t=ς̃k

+ b3,k
∂3v
∂t3 (t, s)

∣∣∣
t=ζ̃k

,

and bl,k = 1
Tk−1

a−l,k+
1
Tk
a+l,k, l = 0, 2, 3. Finally, by applying the relations (9)

and utilizing a suitable numerical quadrature method of order q with weights
w = (w0, w1, . . . , wN )⊤, (7) can be reformulated as
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−
1

Tk−1
yk−1 +

(
1

Tk−1
+

1

Tk

)
yk −

1

Tk
yk+1 + F̂k + h

N∑
n=0

wnunV̂k,n = ek(f) +O(hq+1),

(10)

where for k = 1, . . . , N − 1 and n = 0, 1, . . . , N , we set
un := u(yn),

F̂k := φ0
kfk + φ−

k fk−1 + φ+
k fk+1,

V̂k,n := φ0
kvk,n + φ−

k vk−1,n + φ+
k vk+1,n.

Therefore, an approximate method to solve the problem (1) can be formulated
as follows:

− 1

Tk−1
Yk−1 +

(
1

Tk−1
+

1

Tk

)
Yk − 1

Tk
Yk+1 + F̂k + h

N∑
n=0

wnUnV̂k,n = 0,

(11)

where Un = u(Yn). Take note that the Newton method can be used to solve
the derived nonlinear equations. Let us set Y = (Y1, . . . , YN−1)

⊤, F =

(F̂1, . . . , F̂N−1)
⊤,V =

[
V1, . . . ,VN−1

]
, and Vk =

(
V̂1,k, V̂2,k, . . . , V̂N−1,k

)⊤
for k = 1, . . . , N − 1. Then the matrix formulation of the proposed method
(11) is also written in the following form:

T Y + h L u(Y) = −F −w0U0V0 −wNUNVN + τ0Y0I1 + τNYNIN−1, (12)

where W = diag(w1, . . . , wN−1), L = VW and

T = tridiag(−T1
N−2,T0

N−2 + T1
N−1,−T1

N−2), (13)

is a tridiagonal matrix with Tk
n = [τk, τk+1, . . . , τn]

⊤ and τk = 1
Tk

for k =

0, 1, . . . , N . The symbol Ii signifies an (N − 1)-column vector with entry 1
in the position i and 0 elsewhere, where i = 1, N − 1.

Remark 1. It is worth noting that according to the relation tαy′′ = (tαy′)
′−

αtα−1y′, the presented technique may be utilized for the singularly perturbed
Fredholm integro-differential equations discussed in [1, 6, 8, 7], as well as the
singularly perturbed boundary value problems considered in [10, 13].

2.1 Convergence analysis

In this section, the convergence analysis of the presented method (11) to solve
the SFIDE (1) is performed. To this end, we set y = (y1, y2, . . . , yN−1)

⊤.
Then a matrix formulation of (10) is also derived as
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T y + h L u(y) =E(f)− F − w0U0V0 − wNUNVN + τ0Y0I1
+ τNYNIN−1 +O(hq+1)1N−1, (14)

where E(f) = (e1(f), e2(f), . . . , eN−1(f))
⊤ and 1N−1 = (1, 1, . . . , 1)⊤ ∈

RN−1. By subtracting (12) from (14), the error equation can be derived
as

T(y − Y) + h L
(
u(y)− u(Y)

)
= Ē,

where Ē = E(f) +O(hq+1)1N−1. Thus we have

(T + h LJU )(y − Y) = Ē, (15)

where JU is a diagonal matrix containing the Jacobian of kernel u(y). That
is, JU = diag(

[
∂
∂yu(y)

∣∣
y=yk

]N−1

k=1
). To formulate an upper bound for the

L2-error ∥y − Y2∥ derived in (15), we first prove the following lemmas.

Lemma 1. Let A ∈ Rn×n and x ∈ Rn. Then

∥Ax∥2 ≥ σmin(A)∥x∥2,

in which σmin(A) is the smallest singular value of matrix A.

Proof. If we consider the singular value decomposition of the form A =
SΣZ⊤, where S and Z are orthogonal and Σ = diag(σ1, . . . , σn) is the diago-
nal matrix with singular values σk, k = 1, . . . , n. Then from the orthogonality
of S and Z, we have

∥Ax∥2 =
∥∥SΣZ⊤x

∥∥
2
=
∥∥S(ΣZ⊤x)

∥∥
2
=
∥∥ΣZ⊤x

∥∥
2

=

∥∥∥∥∥∥∥
σ1

∑n
i=1 z1,ixi
...

σn
∑n

i=1 zn,ixi


∥∥∥∥∥∥∥
2

=

√√√√ n∑
k=1

σ2
k

(
n∑

i=1

zk,ixi

)2

,

where x = (x1, . . . , xN )⊤. Let σmin(A) = min{σk; k = 1, . . . , n}. This con-
cludes that

∥Ax∥2 ≥ σmin(A)

√√√√ n∑
k=1

(
n∑

i=1

zk,ixi

)2

= σmin(A)||Z⊤x||2 = σmin(A)||x||2.

In the following, we may try to construct lower and upper triangular
matrices L1 and U1 such that the tridiagonal matrix A can be expressed as
the product A = L1U1 of the form
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
d1 c1
a1 d2 c2

. . . . . . . . .
an−2 dn−1 cn−1

an−1 dn

 =

︸ ︷︷ ︸
A


1
l1 1

. . . . . .
ln−1 1


︸ ︷︷ ︸

L1


p1 c1

p2
. . .
. . . cn−1

pn

 .
︸ ︷︷ ︸

U1 (16)

Indeed, multiplying L1 by U1 yields the following recursive relations:

p1 = d1, lk =
ak
pk
, pk+1 = dk+1 − lkck, k = 1, 2, . . . , n− 1. (17)

In the following lemma, we will exhibit that the decomposition (16)–(17) for
the matrices with the property of strictly diagonally dominant is unique.

Lemma 2. If A is a strictly diagonally dominant matrix, then it has a unique
LU-factorization of the form (16)–(17).

Proof. It is sufficient to show that the elements pk in (17) are nonzero for
k = 1, . . . , n. It can be done by induction. So, we show that |pk| ≥ δk + |ck|,
where δk = |dk| − |ak−1| − |ck| > 0, k = 1, 2, . . . , n, and a0 = cn = 0. Since
|p1| = |d1| = δ1 + |c1|, assuming |pk| ≥ δk + |ck| for some k = 1, 2, . . . , n− 1,

concludes that |ck|
|pk| < 1. Therefore, according to (17) and the strictly diagonal

dominant of the matrix A, we have

|pk+1| = |dk+1 − lkck| =
∣∣∣∣dk+1 −

akck
pk

∣∣∣∣ ≥ |dk+1| −
|ak||ck|
|pk|

≥ |dk+1| − |ak| = δk+1 + |ck+1|.

In the next lemma, we can see that under some conditions there is an
LU-factorization in the form (16)–(17) for every weak dominant tridiagonal
matrix.

Lemma 3. Assume that A is a tridiagonal matrix with the property of
weakly diagonally dominant. If in addition |d1| > |c1| and ak ̸= 0, k =
1, 2, . . . , n − 2, then it has a unique LU-factorization of the form (16)–(17).
Moreover, if dn ̸= 0, then A is nonsingular.

Proof. The proof of this lemma is similar to Lemma 2.

In the next step, we investigate some properties of the matrix T given by
(13). Since T is a weak diagonal dominant symmetric matrix with positive
diagonal elements, then it is a positive semidefinite matrix. It is easily seen
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that the elements of T0
n and T1

n are not vanished. Consequently, from Lemma
3, we conclude that |T| ̸= 0 and pk > 0 for k = 1, 2, . . . , N−1. This yields that
all of the singular values σk as well as eigenvalues λk of T are positive. Now we
establish that λmin(T) > h. To this end, we first define M = 1

hT− I, in which
I is the identity matrix of order N − 1. So, if λ is an eigenvalue of T, then
( 1hλ− 1) is the eigenvalue of M. Hence, it is sufficient to prove that λmin(M)
(the smallest eigenvalue of M) is positive. Since M is a strictly diagonally
dominant matrix, then from Lemma 2, there exists a unique LU-factorization
of the form (16)–(17) for this matrix with the following coefficients:{

dk = 1
h (τk−1 + τk)− 1, k = 1, 2, . . . , N − 1,

ak = ck = − 1
hτk, k = 1, 2, . . . , N − 2.

Remark 2. Since h = 1
N , the coefficients given by (8)–(9) can be approxi-

mated as

τk ∼
tαk
h
, a±1,k ∼

h2

6
t−α
k , b0,k ∼ h, b2,k ∼ −h

3

12
, b3,k ∼ −h

5

24
, (18)

as h→ 0. Therefore, the elements φ±
k , φ

0
k, and V n of the matrix V will be of

order O(h). Finally, we conclude that the elements of the matrix L will be
of order O(h).

Lemma 4. If there is an LU-factorization for the matrix M in the form
(16)–(17), then |M| > 0 and pk > 0 for k = 1, . . . , N − 1.

Proof. Putting p̄k = hpk, l̄k = −lk and utilizing (17) yield p̄k+1 = τk+1+τk−
h− τk l̄k. Therefore, we get,

l̄k+1 =
γk+1

γk+1 + 1− l̄k − h/τk
,

in which γk+1 = τk+1

τk
, k = 1, . . . , N − 1. It should be mentioned that l̄1 =

τ1
τ0+τ1

< 1 and lim
k→∞

l̄k = 1. So, for sufficiently small h, assuming l̄k <

1 − h
τk−1

< 1 concludes l̄k+1 < 1 − h
τk
< 1. Totally, we have 0 < l̄k < 1, k =

1, . . . , N − 1. Therefore, with the help of (18), we get

p̄k+1 > τk+1 − h > k.

From Lemma 4, we can reach that the determinant of all upper-left sub-
matrices of M is positive. Thanks [24, Theorem 7.2], this implies that M is
a positive definite matrix and all its eigenvalues are positive. It means that
eigenvalues of T must be fulfilled λ > h. Now, We set A = (T + hLJU ) and
x = y − Y. Then, using the Lemma 1 for (15), we conclude that
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∥y − Y∥2 ≤ ∥Ē∥2
σmin (T + hLJU )

. (19)

Since T is a nonsingular positive semidefinite tridiagonal matrix and using
Remark 2, we can easily deduce that σmin (T + hLJU ) ∼ σmin (T).

Theorem 1. Let the fourth-order derivatives of functions f(t), v(t, s), u(y(t))
are continuous. Then for all α ∈ (0, 1), we have ∥y − Y∥2 = O(hmin{ 7

2 ,q−
1
2}).

Proof. From the continuity of third and fourth order derivative of the corre-
sponding functions and according to the relations (9) and (18), we conclude
that there exists constant c̄ ∈ R such that∥∥Ē

∥∥
2
≤ c̄h

9
2 + chq+

1
2 ,

and so, from (19), we get

∥y − Y∥2 ≤ c̄h
9
2 + chq+

1
2

λmin (T)
≤ c̄h

9
2 + chq+

1
2

h
= c̄h

7
2 + chq−

1
2 .

According to Theorem 1, the maximum order of convergence is achieved
when q ≥ 4. Therefore, we use a Simpson quadrature rule to discretize the
integral parts of (6).

Remark 3. As is well known, all norms are equivalent for every z ∈ Rn; that
is, ∥z∥1 ≤

√
n∥z∥2 ≤ n∥z∥∞. As a result, if q ≥ 4, then ∥y − Y∥1 = O(h3)

and ∥y − Y∥∞ = O(h4) for the proposed method (11).

3 Numerical examples

The performance of the proposed method to solve the SFIDE (1) is demon-
strated in this section. In the following numerical simulations, the step size is
selected as h = 2−k, k = 2, . . . , 8, and then the error ∥y − Y∥2 is computed.

Example 1. As a first example for SFIDE (1), we consider u(y) = exp(−y)
and

v(t, s) =v0 t
1+2αs2+α sin

(
µπt3+α

)
sin
(
µπs3+α

)
,

f(t) =t1+2α (3 + α)
(
−µ2π2t3+α (3 + α) cos

(
µπt3+α

)
−2 (µπ + 1) (1 + α) sin

(
µπt3+α

))
.

Then the exact solution is y(t) = cos
(
µπtα+3

)
, where v0 = 2µπ(α+1)(α+3)2

exp(− cos(µπ))−exp(−1)

and α ∈ (0, 1).
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Table 1: L2 error and order of the method (11) for Example 1.

N α = µ = 1
2 Order α = 1

2 , µ = 1 Order α = 1
8 , µ = 5

2 Order
4 8.9150e-02 — 6.1400e-01 — 3.0755e+00 —
8 5.9426e-03 3.90 7.0005e-02 3.13 7.0548e-01 2.12
16 4.6722e-04 3.66 6.2258e-03 3.49 6.8774e-02 3.35
32 3.2741e-05 3.83 4.3233e-04 3.84 8.1641e-03 3.07
64 1.1031e-04 3.60 3.5398e-05 3.61 6.9052e-04 3.56
128 2.6914e-06 3.52 3.0591e-06 3.53 6.1420e-05 3.49
256 2.0531e-08 3.50 2.6884e-07 3.50 5.4073e-06 3.50

It should be mentioned that, in this example, the Jacobian of the kernel
u(y) is not positive and that increasing µ causes more oscillations of the
solution y. We computed the numerical solution of this singular problem
by the proposed method (11). The numerical results of this test problem
in the form of the L2 error and the order of the method are reported in
Table 1. From this table, we can see that the desired order of convergence
of the presented method is obtained. In Figure 1(a), the exact solution of
the problem given by Example 1 is compared with the approximate solution
derived by the proposed method (11) when h = 2−8, α = 2

3 , and µ = 7
2 .

The absolute error of the present method to solve this example is plotted in
Figure 1(b).
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(a) Exact and approximate solutions for h = 2−8. (b) Absolute error.

Figure 1: Numerical results of the proposed method to solve Example 1 with α = 2
3
, µ =

7
2
.

Example 2. As a second example for SFIDE (1), we consider u(y) = exp(y)
and

v(t, s) = µ0 t
1+2αs2+α cos

(
t3+α

)
cos
(
s3+α

)
, f(t) = −(α+ 3)2 t4+3α sin

(
t3+α

)
.

Then the exact solution will be y(t) = sin
(
tα+3

)
, where µ0 = 2(1+α)(3+α)2

exp(sin(1))−1

for α ∈ (0, 1).

This example and Example 1 are similar, but the sign of its Jacobian JU
of the kernel u(y) is unlike that of the ones in Example 1. We report the
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(a) Exact and approximate solutions for h = 2−8. (b) Absolute error.

Figure 2: Numerical results of the proposed method to solve Example 2 with α = 1
5
.

Table 2: L2 error and order of the method (11) for Example 2.

N α = 1
3 Order α = 1

2 Order α = 2
3 Order

4 2.2839e-02 — 3.1452e-02 — 4.3256e-02 —
8 2.6238e-03 3.12 3.8926e-03 3.01 5.7418e-03 2.91
16 2.1676e-04 3.59 3.3580e-04 3.53 5.1593e-04 3.47
32 1.7916e-05 3.59 2.8937e-05 3.53 4.5736e-05 3.49
64 1.4922e-06 3.58 2.5547e-06 3.50 4.1658e-06 3.45
128 1.2372e-07 3.59 2.1784e-07 3.55 3.7527e-07 3.47
256 1.0570e-08 3.54 1.8648e-08 3.54 3.3067e-08 3.50

numerical results of this example with various values of α and step size h.
Again, from Table 2, we can observe that the expected order of convergence
7
2 is achieved. For α = 1

5 and h = 2−8, the exact and approximate solutions
are depicted in Figure 2(a). The absolute error plotting in Figure 2(b) shows
that the present method is accurate and successful.

Example 3. As a third example for SFIDE (1), we consider u(y) = −y5 and

v(t, s) = v0 t
2αs1+α

(
1 + t2+α

)β−1
, f(t) = f0 t

2+3α
(
1 + t2+α

)−2+β
.

Then the exact solution will be y(t) =
(
1 + tα+2

)β , where v0 = β(5β+1)(1+2α)(2+α)2

1−25β+1

and f0 = β(β − 1)(2 + α)2 for α ∈ (0, 1) and β > 0.

We solved this singular boundary value problem for some selected values
of α and β. The L2 norm of the errors is computed for the presented method
(11) and then is exhibited in Table 3. It can be seen that the numerical results
verify that the claimed order of the convergence of the method is achieved.

Example 4. Consider the nonlinear SPFIDE from [6] as{
−εy′′(t) + (2− exp(−t))y(t) + 1

2

∫ 1

0
(exp(t cos(πs))− 1) y(s)ds = 1

1+t ,

y(0) = 1 y(1) = 0,
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Table 3: L2 error and order of the method (11) for Example 3.

N α = 0.25, β = 3 Order α = 0.5, β = 3 Order α = 0.75, β = 4 Order
4 9.9948e-01 — 1.5924e+00 — 1.0037e+01 —
8 4.9934e-01 1.00 2.5881e-01 2.62 2.1306e+00 2.23
16 7.3623e-02 2.76 3.0132e-02 3.10 2.9483e-01 2.85
32 5.6781e-03 3.69 2.9081e-03 3.37 3.1017e-02 3.24
64 5.0210e-04 3.49 2.6321e-04 3.46 2.8995e-03 3.41
128 4.0819e-05 3.62 2.3407e-05 3.49 2.6351e-04 3.45
256 3.4354e-06 3.57 2.0688e-06 3.50 2.3132e-05 3.50

where ε ∈ (0, 1] is a perturbation parameter. Since the exact solution to
this problem is unknown, we can use the double-mesh principle to estimate
the errors and compute numerical solutions [6]. The errors obtained so are
denoted by

Eh
ε = max

k

∣∣∣Y ε,h
k − Y

ε,h/2
k

∣∣∣ ,
in which Y ε,h

k is the corresponding approximate solution with respect to ε
and step size h.

In the reported numerical results, we try to compute the estimated con-
vergence rates

phε = log2
(
Eh

ε

E
h/2
ε

)
, ph = log2

(
Eh

Eh/2

)
,

where Eh = maxεEh
ε . The maximum pointwise errors and the rates of

convergence phε , pε are obtained for the values ε = 4−j , j = 0, . . . , 4, and
N = 2l, l = 5, . . . , 10, by the proposed method. In this example, the nu-
merical results of the presented method will be compared with those of the
numerical reports in [6]. According to the computational results in Table
4, we observe that the presented method is more accurate than that of the
method presented in [6]. It can be seen that the numerical results confirm
that the methods have achieved the declared order of convergence. Based on
Table 4, we can conclude that the order of convergence of the present method
is 4 in the L∞ norm, while the method of [6] is of order 2 with respect to the
L∞ norm.

Example 5. As a final example, we consider the following linear singularly
perturbed boundary value problem [21, 16, 13]{

εy′′(t) + y′(t) = 1 + 2t, 0 ≤ t ≤ 1,

y(0) = 0, y(1) = 1.

The analytical solution of this problem is
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Table 4: L∞ error and order of the methods for Example 4.

Present method with α = 1e− 6

ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 7.024e-07 4.390e-08 2.751e-09 1.719e-10 1.074e-11 6.528e-13
3.999 3.997 4.000 4.001 4.040

4−1 2.591e-06 1.594e-07 9.958e-09 6.218e-10 3.888e-11 2.323e-12
4.023 4.001 4.001 3.999 4.065

4−2 3.537e-05 2.638e-06 1.727e-07 1.090e-08 6.827e-10 4.264e-11
3.745 3.933 3.986 3.997 4.001

4−3 2.305e-04 1.931e-05 1.283e-06 8.137e-08 5.104e-09 3.197e-10
3.577 3.912 3.979 3.995 3.999

4−4 4.185e-04 3.902e-05 2.625e-06 1.669e-07 1.048e-08 6.563e-10
3.423 3.894 3.975 3.993 3.997

Eh 4.185e-04 3.902e-05 2.625e-06 1.669e-07 1.048e-08 6.563e-10
ph 3.423 3.894 3.975 3.993 3.997

Method of [6]

ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 2.882e-02 7.291e-03 1.839e-03 4.624e-04 1.161e-04 2.906e-05
1.983 1.987 1.992 1.994 1.998

4−1 2.861e-02 7.251e-03 1.832e-03 4.614e-04 1.507e-04 3.785e-05
1.98 1.985 1.989 1.991 1.993

4−2 4.001e-02 1.016e-02 2.575e-03 6.508e-04 1.643e-04 4.139e-05
1.978 1.98 1.984 1.986 1.989

4−3 4.331e-02 1.100e-02 2.791e-03 7.070e-04 1.790e-04 4.527e-05
1.977 1.979 1.981 1.982 1.983

4−4 4.343e-02 1.105e-02 2.804e-03 7.123e-04 1.809e-04 4.593e-05
1.975 1.978 1.977 1.977 1.978

Eh 4.343e-02 1.105e-02 2.804e-03 7.123e-04 1.809e-04 4.593e-05
ph 1.975 1.978 1.977 1.977 1.978

y(t) = t(t+ 1− 2ε) +
(2ε− 1)(1− exp(−t/ε))

1− exp(−1/ε)
.

In this example, we consider the methods [21, 16, 13] to compare the
obtained numerical results with the present method. Table 5 contains the
computed numerical solution achieved by our method and other methods.
From this table, it can be seen that the present method is more accurate
than methods [21, 16, 13].
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Table 5: Comparison of the approximate solutions of Example 5 for ε = h = 10−3.

t Method [21] Method [16] Method [13] Present method Analytical solution
(α = 1e− 6)

0.001 -1.0009970 -0.6311195 -0.6293169 -0.6298615715 -0.6298573177
0.010 -0.9918800 -0.9898546 -0.9878740 -0.9878746043 -0.9878746909
0.020 -0.9815600 -0.9796000 -0.9776400 -0.9776399939 -0.9776399980
0.030 -0.9710400 -0.9691000 -0.9671600 -0.9671599962 -0.9671599999
0.040 -0.9603199 -0.9584000 -0.9564800 -0.9564800000 -0.9564800000
0.050 -0.9493999 -0.9475000 -0.9456000 -0.9456000079 -0.9456000000
0.100 -0.8918000 -0.8900000 -0.8882000 -0.8882000032 -0.8882000000
0.300 -0.6114000 -0.6100000 -0.6086000 -0.6086000008 -0.6086000000
0.500 -0.2510000 -0.2500000 -0.2490000 -0.2490000008 -0.2490000000
0.700 0.1894000 0.1900000 0.1906000 0.1906000004 0.1906000000
0.900 0.7098000 0.7099999 0.7102000 0.7102000001 0.7102000000
1.000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

4 Conclusions

In this work, an effective and high-order numerical method for solving a class
of nonlinear singular two-point boundary value Fredholm integro-differential
equations was presented. After formulation of the method, as well as uti-
lizing an appropriate numerical integration, the original problem was con-
verted to a nonlinear algebraic system. The error analysis was performed to
demonstrate the robustness of the method. It was observed that the present
methods achieved the order of convergence O(hmin{ 7

2 ,q−
1
2}) in the L2 norm,

where q is the order of the quadrature method. Here, some test problems of
type SFIDEs and SPFIDEs are solved numerically. Numerical simulations
confirmed the theoretical analysis and efficiency of the new method.
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This study addresses the inverse issue of identifying the space-dependent
heat source of the heat equation, which is stated using the optimal con-
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1 Introduction

Many inverse problems for the heat equation are applied to many fields of
physics and engineering, such as acoustics [19], medical imaging [10], signal
processing [35], optic [6], and radar [7]. There are approximately five major
classes of inverse heat diffusion equation problems.
(i) The problem of reverse time or conducting heat backward from the known
last-minute distribution determines the initial temperature distribution.
(ii) Inverse heat conduction is the detection of temperature or temperature
flux at one inaccessible boundary beyond the data available in the other case
that is accessible.
(iii) Identify coefficients of over-posed data at the boundaries.
(iv) Determining the shape of unknown boundaries or cracks inside the heat
conduction body.
(v) The identification of the heat source [18, 5].
The heat equation, in this research, treats the heat source as an uncertainty.
Applications in the real world where these difficulties are useful include cre-
ating the end state of melting, and freezing processes and determining the
contaminating source’s intensity. Methods such as the generalized finite dif-
ference scheme [12], the radial basis function method [28], the sparse reg-
ularization approach [25], the meshless generalized finite difference scheme
[13], the mollification regularization scheme [36], and the reproducing ker-
nel space scheme [33], have all been applied to the solution of inverse heat
source problems. In this paper, we propose a novel numerical method for ob-
taining the source parameter (or control parameter) in parabolic equations.
Iterative methods and a variational approach have recently been proposed
to numerically solve this problem [21]. These methods are computationally
expensive because they solve a direct problem at each iteration. Tikhonov
regularization is proposed in [37] as a stable optimal control solution to the
inverse heat source problem. Parameter identification for a nonlinear heat
equation in the 2D and 3D space-time domains was solved by Lin and Liu us-
ing homogenization functions as the basis [24]. The authors of [29] proposed
a perfect method to investigate inverse heat source problems in function-
ally graded materials using the homogenization function. Due to the given
conditions, a homogenization function for the boundary value problem is con-
ceived, and a family of homogenization functions is further derived. Djennadi
et al. [11] employed the expansion method and the overdetermination con-
dition to solve the inverse source fractional diffusion problem that contains
the Atangana–Baleanu–Caputo fractional derivative. In [20], for the stable
reconstruction of the heat source in the parabolic heat equation, an itera-
tive variable conjugate gradient algorithm is proposed based on a sequence
of direct problems that are solved using the boundary element method of
each iteration step. The gradient descent along with the finite difference
method to find the solution nonlinear inverse heat transfer problem in [4].
Ciofalo [9] proposed using finite volume discretization to get a solution for
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an inverse heat conduction problem. In which, with the assumption that
the thermal boundary conditions in other walls are known, the steady state
distribution of the displacement heat transfer coefficient on one slab wall is
reconstructed from the temperature distribution in the plate embedded in
the slab. With the increasing use of machine learning techniques, includ-
ing neural networks, the use of these techniques in solving inverse problems
has also attracted the attention of many researchers. Li and Hu [23] used
a multi-layer neural network to solve the Cauchy inverse problem. Phisyc-
informed neural network models are one of the powerful methods in deep
learning. Authors in [27] applied it to solve a class of inverse problems re-
lated to partial differential equations (PDEs). The authors of [15] proposed
a new method for solving large-scale inverse problems based on Bayesian in-
ference, Markov chain Monte Carlo approach, and derivative-free algorithms.
Bondarenko [8] presented a finite-difference-based method to investigate the
discrete systems of the inverse of the Sturm–Liouville problem. Huntul [16]
used the Tikhonov regularization and the nonlinear optimization for the first
time in the third-order pseudo-parabolic equation with initial and nonlocal
periodic boundary conditions derived from nonlocal integral observation for
the inverse space-dependent heat problem. Huntul [17] recovered a source in
a high-order pseudo parabolic equation using cubic spline functions. In [14],
authors solved the two-dimensional inverse time-fractional diffusion prob-
lem with nonlocal boundary conditions using a-polynomials, collocation, and
least squares methods. They calculated time using the L1 method. Wen,
Liu, and Wang [34] used the Fourier approach to find the source term and
starting data in the time-fractional diffusion equation . Abbaszadeh and
Dehghan [1] considered the inverse tempered fractional diffusion equation.
They used Crank–Nicolson temporal discretization, a modified element-free
Galerkin method, and a meshless method to solve the inverse problem.

In this research, we provide a numerical solution for solving the inverse
heat source issue in an optimal control setting by using orthogonal polyno-
mials. This piece is an attempt to provide a fresh strategy for addressing
the issue of the mysterious heat source. The optimal control issue is re-
duced to a set of algebraic equations in the suggested approach [26, 32, 30].
This is achieved by approximating the temperature y and the heat source
f in PI (see (1)) with the help of shifted Legendre polynomials (SLPs) and
their operational matrix with unknown coefficients. By substituting these
approximations for the objective function in the inverse problem, we are
able to determine not only the unknown coefficients but also the initial and
boundary conditions. To conclude, we utilize Lagrange multipliers to connect
the algebraic equation produced from the objective function to the algebraic
equations derived from the inverse system and the starting and boundary
conditions. Then, we can use the constrained extremum method to solve the
resulting algebraic system of equations to find the best solution. The authors
of [3] investigated the inverse heat equation problem with variable boundary
conditions using a weak solution strategy. The Legendre spectral collocation
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method was used to solve a fractional inverse heat conduction problem in
[2], where both the temperature function and the boundary heat fluxes were
unknown. Following the introduction, the article will focus on five primary
sections that together address this inverse problem. In Section 2, we present
the optimal control issue and the inverse heat source problem. In Section 3,
we describe the SLPs and their characteristics. The problem is resolved in
Section 4. In Section 5, we provide numerical examples that demonstrate the
effectiveness and precision of the suggested approach. The last part explains
the results.

2 Problem statement

Suppose the following inverse problem:
Let us supposeΘ := (0, 1)×(0, T ), T ≥ 1, one is going to find the temperature
z and the heat source f that satisfy (1); that is,

PI :



zt(x, t)− zxx(x, t) = f(x), (x, t) ∈ Θ,

z(x, 0) = ν(x), x ∈ (0, 1),

zx(0, t) = g0(t), zx(1, t) = g1(t), t ∈ (0, T ).

(1)

The second-order parabolic equation PI with sufficiently smooth functions
ν(x) (the initial condition), (Neumann boundary conditions) g0(t) and g1(t),
forms the governing equations.

Assume that the desired function measured data hϵ(x) (desired function)
and the actual data z(x, T ) := h(x) meet the following relation:

∥h(x)− hϵ(x)∥L2[0,1] ⩽ ϵ, (2)

where ϵ is the known noise level and the norm ∥ · ∥L2[0,1] of a function z(x)
is determined by

∥z(x)∥L2[0,1] =
(∫ 1

0

z2(x)dx
) 1

2

.

In the following part, we convert the problem PI into an optimal control
problem of PII and solve it using the suggested approach. The following is a
consideration of the optimal control problem:

PII : min
f∈Fad

J(z, f) :=
1

2
∥z(x, T )− hε(x) ∥2L2[0,1] +

σ

2
∥∇f ∥2L2[0,1], (3)
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where Fad has defined the set of admissible controls of the objective function
J as

Fad = {f(x) : 0 ⩽ a ≤ f ≤ b,∇f ∈ L2[0, 1]}, (4)

with the constant bounds, a, b ∈ R. Moreover, z(x, t) is the solution of (1)
for a given heat source f(x) ∈ Fad, and σ is the regularization parameter.
For noisy data hε(x), the purpose of the optimal control problem is to find
functions f(x) and z(x, t) that minimize the objective function PII and satisfy
PI.

3 Shifted Legendre Polynomials (SLPs)

The orthogonal polynomials with regard to the weight function W (x) = 1
on [−1, 1] are known as Legendre polynomials of degree m and are denoted
by Lm(x) (m = 0, 1, . . .). The following recurrence formula can be used to
create these polynomials:

Lm(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x), m = 1, 2, . . . , (5)

where L0(x) = 1 and L1(x) = x. The well-known SLPs in [0, 1] can be
created by changing the variable x = 2t−1, which is expressed as Lm(t) (m =
0, 1, 2, . . . , ), by

Lm(t) =
(2m+ 1)(2t− 1)

m+ 1
Lm(t)− m

m+ 1
Lm−1(t), m = 1, 2, . . . , (6)

where L0(t) = 1 and L1(t) = 2t − 1. The explicit formula of the SLPs is as
follows [31]:

Lm(t) =

m∑
i=0

bmit
i, (7)

where Lm(0) = (−1)m, Lm(1) = 1, and

bmi = (−1)m+i (m+ i)!

(m− i)!(i!)
2 . (8)

The orthogonality condition of the SLPs with respect to the weight function
w(t) = 1 is given by ∫ 1

0

Lm(t)Ln(t)dt = hmδmn, (9)
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where δmn is Kronecker’s delta function and hm =
1

2m+ 1
. Any given func-

tion z(t) ∈ L2[0, 1] can be represented in (n+ 1) terms of the SLPs as

z(t) ≃
n∑

i=0

ziLi(t)
∆
= ZTΦn(t), (10)

where

Z = [z0 z1 . . . zn]
T
,

Φn(t)
∆
= [L0(t) L1(t) . . . Ln(t)]

T
, (11)

and

zi =
1

hi

∫ 1

0

z(t)Li(t)dt, i = 0, 1, . . . , n.

In a similar way, a two-variable function z(x, t) ∈ L2(Θ) can be expanded by
the SLPs as

z(x, t) ≃
m∑
i=0

n∑
j=0

zijLi(x)Lj(t)
∆
= ΦT

m(x)ZΦn(t), (12)

where Z = [zij ] is the matrix of coefficients with dimensions (m+1)× (n+1)
whose entries are unknown and obtained from the following equation:

zij=
1

hihj

∫ 1

0

∫ 1

0

z(x, t)Li(x)Lj(t)dxdt, (13)

for i = 0, 1, . . . ,m, j = 0, 1, . . . , n. Suppose that Φn(t) is the vector intro-
duced in (11). Then the derivative of this vector is as follows: [31]

dΦn(t)

dt
= D

(1)
t Φn(t), (14)

where D(1)
t = [d

(1)
ij ] is called the derivative operational matrix of SLPs of

(n+ 1)-order, whose structure is as follows:

d
(1)
ij =


2(2j + 1), j = i− k,

{
k = 1, 3, . . . , n if n odd,

k = 1, 3, . . . , n− 1 if n even,

0 otherwise.

(15)
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Remark 1. Generally, the r-derivative operational matrix of SLPs of Φn(t)
can be given by [31]

drΦn(t)

dtr
= D

(r)
t Φn(t), (16)

in which D(r)
t is obtained by r times multiplying D(1)

t in itself.

4 Convergence analysis

In this section, the convergence analysis of SLPs expansion in two dimensions
is investigated.

Theorem 1. Suppose that z : Θ −→ R is (n +m + 1) times continuously
differentiable. If ΦT

m(x)ZΦn(t) is a unique best approximation of z, then the
following inequality holds:

∥z(x, t)− ΦT
m(x)ZΦn(t)∥L2(Θ) ⩽

∆
√
Γ(n+m+ 2)

r!(n+m+ 1− r)!
, (17)

where

∆ = max
Θ

{| ∂n+m+1

∂xn+m+1−i∂ti
z(x, t) | i = 0, 1, . . . , n+m+ 1},

Γ = max
T⩾1

{T 2n+2m−i+3, i = 0, 1, . . . , 2(n+m+ 1)}.

Proof. Maclaurin’s expansion for z(x, t) reads as follows:

z(x, t) = p(x, t) +
1

(n+m+ 1)!
(x

∂

∂x
+ t

∂

∂t
)n+m+1z(ξ0x, ξ0t), ξ0 ∈ (0, 1),

where

p(x, t) =

n+m∑
k=0

1

k!
(x

∂

∂x
+ t

∂

∂t
)
k

z(0, 0).

Thus

|z(x, t)− p(x, t)| = | 1

(n+m+ 1)!
(x

∂

∂x
+ t

∂

∂t
)n+m+1z(ξ0x, ξ0t)|, ξ0 ∈ (0, 1).

On the other hand, since ΦT
m(x)ZΦn(t) is the best approximation of z(x, t),

we obtain

∥ z − ΦT
mZΦn∥2L2(Θ) ≤∥ z − p∥2L2(Θ).
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By the definition of the L2-norm and expand (x ∂
∂x + t ∂

∂t )
n+m+1, we have

∥ z(x, t)− p(x, t) ∥2
L2(Θ)

=

∫ T

0

∫ 1

0

[
1

(n+m+ 1)!
(x

∂

∂x
+ t

∂

∂t
)n+m+1z(ξ0x, ξ0t)]

2dxdt

=

∫ T

0

∫ 1

0

[
1

(n+m+ 1)!

n+m+1∑
i=0

(
n+m+ 1

i

)
xn+m+1−iti

∂n+m+1

∂xn+m+1−i∂ti
z(ξ0x, ξ0t)]

2dxdt

≤
∆2

(n+m+ 1)!2

∫ T

0

∫ 1

0

[

n+m+1∑
i=0

(
n+m+ 1

r

)
xn+m+1−iti]2dxdt,

where(
n+m+ 1

r

)
= max

{(
n+m+ 1

i

)
; i = 0, 1, . . . , n+m+ 1

}
.

To find the upper bound for the above expression, we calculate the following
terms:∫ T

0

∫ 1

0

x2(n+m+1−i)t2idxdt =
T 1+2i

(1 + 2i)(2n+ 2m− 2i+ 3)
,

i = 0, 1, . . . , n+m+ 1,∫ T

0

∫ 1

0

x(2n+2m+1−i)ti+1dxdt =
T 2+i

(2 + i)(2n+ 2m− i+ 2)
,

i = 0, 1, . . . , n+m,

...∫ T

0

∫ 1

0

x(2+i)t2n+2m−idxdt =
T 2n+2m−i+1

(3 + i)(2n+ 2m− i+ 1)
, i = 0, 1,∫ T

0

∫ 1

0

x(1+i)t2n+2m−i+1dxdt =
T 2n+2m−i+2

(2 + i)(2n+ 2m− i+ 2)
, i = 0.

Therefore

∥ z − p∥2L2(Θ) ≤
∆2

r!2(n+m+ 1− r)!2

∫ T

0

∫ 1

0

[

n+m+1∑
i=0

xn+m+1−iti]2dxdt

=
∆2

r!2(n+m+ 1− r)!2

[ n+m+1∑
i=0

T 1+2i

(1 + 2i)(2n+ 2m− 2i+ 3)
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+

n+m∑
i=0

T 2+i

(2 + i)(2n+ 2m− i+ 2)
+ · · ·

+

1∑
i=0

T 2n+2m−i+1

(3 + i)(2n+ 2m+ 1)
+

T 2n+2m−i+2

2(2n+ 2m+ 2)

]
≤ ∆2Γ

r!2(n+m+ 1− r)!2

×
[
(n+m+ 2) + (n+m+ 1) + · · ·+ 2 + 1

]
≤ ∆2Γ

r!2(n+m+ 1− r)!2
(n+m+ 2)2,

which is the desired result.

5 Description of the presented method

Now in this section we will use numerical methods to address the problem
raised in (1) and (3). We will use numerical methods to address the problem
raised in (1) and (3) in this section. SLPs approximate the temperature and
heat source for this purpose as follows:

z(x, t) ≃ Φm(x)TZΦn(t), (18)
f(x) ≃ FTΦm(x), (19)

where Z and F are the following unknown matrices of coefficients with di-
mensions (m + 1) × (n + 1) and (m + 1) × 1, respectively, while Φm(x) and
Φn(t) in (11) have been expressed:

Z =


z00 z01 . . . z0n
z10 z11 . . . z1n

...
...

...
zm0 zm1 . . . zmn

 , F =


f0
f1
...
fm

 . (20)

Set

P(x, t) ≜ [L0(x)L0(t), . . . , Lm(x)L0(t) | · · · | L0(x)Ln(t), . . . , Lm(x)Ln(t)] . (21)

According to (21), we can express (18) as

z(x, t) ≃ Φm(x)TZΦn(t) = P(x, t) vec(Z), (22)

where

vec(Z) = [z00, . . . , zm0 | . . . | z0n, . . . , zmn]
T
.

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 460–480



469 An optimal control approach for solving an inverse...

From (14), (22), and Remark 1, the result will be as follows:

zx(x, t) ≃ Φm(x)TD(1)T
x ZΦn(t) = P(x, t)(In+1 ⊗D(1)T

x ) vec(Z), (23)

zxx(x, t) ≃ Φm(x)TD(2)T
x ZΦn(t) = P(x, t)(In+1 ⊗D(2)T

x ) vec(Z), (24)

zt(x, t) ≃ Φm(x)TZD
(1)
t Φn(t) = P(x, t)(D

(1)T
t ⊗ Im+1) vec(Z), (25)

so that Im+1 and In+1 are identity matrices of orders m + 1 and n + 1,
respectively. Additionally, ⊗ refers to the Kronecker product [22]. Now,
(19), (24), and (25) are substituted into the first subequation of (1), and the
result is

K(x, t) vec(Z)− FTΦm(x) = 0, (26)

in which

K(x, t) ≜ P(x, t)
[
(D

(1)T
t ⊗ Im+1)− (In+1 ⊗D(2)T

x )
]
.

Thus, as to (22) and (23) and with regards to initial and Neumann boundary
conditions in (1), we have

P(x, 0) vec(Z) = ν(x),

P(0, t)(In+1 ⊗D
(1)T
x ) vec(Z) = g0(t),

P(1, t)(In+1 ⊗D
(1)T
x ) vec(Z) = g1(t).

(27)

We follow the suggested procedure by constructing an (m+1)× (n+1) alge-
braic system of equations. For this reason, we derive the following equations
from (26) and (27):

K(ξi, ηj) vec(Z)− FTΦm(ξi) = 0, i = 2, . . . ,m, j = 2, . . . , n+ 1,

P(ξi, 0) vec(Z) = ν(ξi) i = 1, . . . ,m+ 1,

P(0, ηj)(In+1 ⊗D
(1)T
x ) vec(Z) = g0(ηj), j = 2, . . . , n+ 1,

P(1, ηj)(In+1 ⊗D
(1)T
x ) vec(Z) = g1(ηj), j = 2, . . . , n+ 1,

(28)
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where a collocation scheme is defined by evaluating the outcome at the points
(ξi, ηj) in (28). We employ the shifted Legendre–Gauss–Lobatto nodes ξi (1 ≤
i ≤ m+1) and the shifted Legendre roots ηj (1 ≤ j ≤ n+1) of Ln(t) to find
suitable collocation points. It is possible to write (28) as follows:

M vec(Z)−NF̂ = Q, (29)

in which

M =


T (2 : n+ 1, :)⊗X (2 : m, :)
T (1, :)⊗X (1 : m+ 1, :)
T (2 : n+ 1, :)⊗X (1, :)

T (2 : n+ 1, :)⊗X (m+ 1, :)

 , N =


S ⊗ X (2 : m, :)

0
0
0

 ,

F̂ =

f0, . . . , fm| 0, . . . , 0︸ ︷︷ ︸
m+1

| · · · | 0, . . . , 0︸ ︷︷ ︸
m+1

T

,

Q =
[ n︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

m−1

| · · · | 0, . . . , 0︸ ︷︷ ︸
m−1

|ν(ξ1), . . . , ν(ξm+1)

|g0(η2), . . . , g0(ηn+1)|g1(η2), . . . , g1(ηn+1)
]T
,

where F̂ and Q are (m+ 1)(n+ 1)-order vectors and

S ≜


1
0
...
0

0
0
...
0

. . .

. . .

. . .
0

0
0
...
0


n×(n+1)

,

T ≜


L0(η1) L1(η1)
L0(η2) L1(η2)

. . .

. . .
Ln(η1)
Ln(η2)

...
...

. . . ...
L0(ηn+1) L1(ηn+1) . . . Ln(ηn+1)


(n+1)×(n+1)

,

X ≜


L0(ξ1) L1(ξ1)
L0(ξ2) L1(ξ2)

. . .

. . .
Lm(ξ1)
Lm(ξ2)

...
...

. . . ...
L0(ξm+1) L1(ξm+1) . . . Lm(ξm+1)


(m+1)×(m+1)

.

Next, we approximate PII by SLPs. First, we approximate the desired func-
tion hε(x) as
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hε(x) ≃ HTΦm(x). (30)

From (14) and (19), we have

∇f(x) ≃ FTD(1)
x Φm(x). (31)

Inserting (18), (30), and (31) into (3) yields that

J(z, f) ≃ Jm,n(Z, F )

=
1

2

∫ 1

0

(Φm(x)TZΦn(T )− Φm(x)TH)(Φm(x)TZΦn(T )− Φm(x)TH)T dx

+
σ

2

∫ 1

0

(FTD
(1)
x Φm(x))(FTD

(1)
x Φm(x))T dx.

The value
∫ 1

0
(ϕm(x)TH)2dx is positive, meaning it has no influence on min-

imization and according to (9), the equation can be expressed as follows:

Jm,n(Z,F ) =
1

2
vec(Z)T (Φn(T )Φn(T )

T ⊗Υm) vec(Z)

−HT (Φn(T )
T ⊗Υm) vec(Z)

+
σ

2
F (In+1 ⊗ (D(1)

x ΥmD
(1)T
x ))F, (32)

where

Υm = diag(h0, . . . , hm).

The problem of optimal control in the discussion has now become a finite
dimension optimization. We use the Lagrangian multipliers method to solve
the ensuing optimization problem. Let us clarify

J∗(z, f) ≃ J∗(Z,F,Ω) = Jm,n(Z,F ) + ΛT (M vec(Z)−NF̂ −Q), (33)

where

Λ =
[
λ1 λ2 . . . λ(m+1)×(n+1)

]T
,

which shows the vector of Lagrange multipliers as Λ. The following equations
lead to the following optimality conditions:

∂J∗(z, f)

∂ vec(Z) = 0,

∂J∗(z, f)

∂F
= 0,

∂J∗(z, f)

∂Λ
= 0.
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The Newton iterative approach or MATLAB software tools can be used to
solve the aforementioned algebraic equation system. We can get the approx-
imate solutions z(x, t) and f(x) from (18) and (19), respectively, by figuring
out Z and F .

6 Numerical examples

This section gives two examples along with figures to illustrate how the rec-
ommended technique may be implemented successfully and to show its po-
tential. The results of the existing plan are analyzed and compared to the
solution that was found analytically and method of [37]. The rand function
is used by the MATLAB software to generate noisy data, and the value of hε
for 0 ≤ δ ≤ 1 in the collocation points {ξj}m+1

j=1 is calculated as follows:

hε = h+ δ.rand(size(h)), (34)

ε = ∥hε − h∥l2 = (
1

m+ 1

m+1∑
j=1

|hε − h|2) 1
2 . (35)

For noisy data hε(x), the goal of the optimal control problem is to find
functions f(x) and z(x, t) that minimize the following objective function and
satisfy (1):

min J(z, f) = 1

2
∥ z(x, 1)− hε(x) ∥2L2[0,1] +

σ

2
∥ f

′
(x) ∥2L2[0,1]

=
1

2

∫ 1

0

|z(x, 1)− hε(x)|2dx+
σ

2

∫ 1

0

|f
′
(x)|2dx. (36)

We take the regularization parameter σ = ε2, and, in order to observe the
convergence of the method described in numerical experiments, we calculate
the approximate error resulting from the following equation:

e(f) = ∥
∼
f −f∥L∞ , (37)

where
∼
f is the numerical approximation of the exact solution f in the collo-

cation points {ξi}m+1
i=1 .

Example 1. Consider the inverse problem with Θ = (0, 1)× (0, 1) [37]

zt(x, t)− zxx(x, t) = f(x), (x, t) ∈ Θ,

z(x, 0) = 0, x ∈ (0, 1),

zx(0, t) = zx(1, t) = 0, t ∈ (0, 1).

(38)
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We attempt to approximate the heat source defined by

f(x) = π2 cos(πx). (39)

Then with f given by (39), the forward problem presented by (38) has an
analytical solution as follows:

z(x, t) =

∞∑
n=1

1− e−(nπ)2t

(nπ)2
fn cos(nπx), (40)

where fn is the Fourier coefficient as follows:

fn = 2

∫ 1

0

f(x) cos(nπx)dx. (41)

From (40), we have

h(x) = z(x, 1) =

∞∑
n=1

1− e−(nπ)2

(nπ)2
fn cos(nπx). (42)

Table 1: Comparison of errors estimate obtained for functions f in Example 1 over a
range of σ values between the proposed method and [37]

σ = 10−4 σ = 10−5 σ = 10−6

Proposed method 6.1387e− 01 6.8907e− 02 1.2413e− 02
Method of [37] 2.511e− 01 4.81e− 02 3.26e− 02

Table 1 analyzes the error behavior of the proposed method in here and
the presented method in [37] by varying the value of σ.

Table 2: Errors estimate for the functions f and z in Example 1 over a range of σ values

σ = 10−4 σ = 10−5 σ = 10−6 σ = 10−7

Eroor(f) 6.1387e− 01 6.8907e− 02 1.2413e− 02 8.3175e− 03
Eroor(z) 5.5543e− 02 6.0304e− 03 6.0868e− 04 6.3734e− 05

The approximate solutions for the functions f and z are shown in Figure
1. The approximation inaccuracy are shown in Table 2. Figure 2 depicts the
convergence of the suggested approach.
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Figure 1: Results of Example 1’s numerical solutions for functions f (left) and z (right)
for a range of σ values
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Figure 2: Convergence of the numerical solutions of Example 1 for functions f (left) and
z (right) for a range of collocation point values

Example 2. Consider the inverse problem with Θ = (0, 1)× (0, 1) [28]

zt(x, t)− zxx(x, t) = f(x), (x, t) ∈ Θ,

z(x, 0) = sin(πx), x ∈ (0, 1),

zx(1, t) = −zx(0, t) = π(e−π2t − 2), t ∈ (0, 1).

(43)

We attempt to approximate the heat source defined by

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 460–480



475 An optimal control approach for solving an inverse...

f(x) = 2π2 sin(πx). (44)

Then with f given by (44), the forward problem presented by (43) has an
analytical solution as follows:

z(x, t) = −(e−π2t − 2) sin(πx). (45)

From (45), we have

h(x) = z(x, 1) = −(e−π2

− 2) sin(πx). (46)

Table 3: Values of errors for the functions f and z with different values of σ in Example
2

σ = 10−5 σ = 10−6 σ = 10−7 σ = 10−8

Eroor(f) 4.3462e− 00 1.2586e− 00 7.4287e− 01 6.8760e− 01
Eroor(z) 9.7406e− 02 1.6259e− 02 1.7443e− 03 1.7581e− 04

Figure 3 shows the approximate solutions for the functions f and z. The
approximation error is presented in Table 3. The convergence of the proposed
method can be seen in Figure 4.
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Figure 3: Behavior of the numerical solutions for the functions f (right) and z (left) at
some different values of σ in Example 2
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Figure 4: Convergence of the numerical solutions for the functions f (right) and z (left)
at some different values of collocation points in Example 2

7 Conclusion

When it comes to finding a regular and stable solution, inverse problems
that are related to PDEs provide a significant computing challenge since it
is very difficult to do so. The scope of this work is an investigation into an
inverse space-dependent source issue for a heat equation. A shifted Legen-
dre polynomial and an optimum control strategy were used in the process of
creating a heat source. One of the most popular and efficient tools for resolv-
ing computing problems is the Legendre polynomial. The shifted Legendre
polynomials operational matrix was utilized to resolve this optimal control
problem. By applying the suggested collocation method and using an oper-
ational matrix, the issue was converted into a set of equations that can be
solved using algebra. When utilizing this method to solve an inverse prob-
lem, as demonstrated by the examples provided in the paper, a high level of
precision was achieved in the solution. The method presented here was based
on the optimal control problem and shifted Legendre polynomials. In future
work, we will try to use machine learning techniques, including deep neural
networks, to solve this problem.
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Analysis and optimal control of a
fractional MSD model
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Abstract

In this research, we aim to analyze a mathematical model of Maize streak
virus disease as a problem of fractional optimal control. For dynamical
analysis, the boundedness and uniqueness of solutions have been investi-
gated and proven. Also, the basic reproduction number is obtained, and
local stability conditions are given for the equilibrium points of the model.
Then, an optimal control strategy is proposed for the purpose of examining
the best strategy to fight the maize streak disease. We solve the fractional
optimal control problem by a forward-backward sweep iterative algorithm.
In this algorithm, the state variable is obtained in a forward and co-state
variable by a backward method where an explicit Runge-Kutta method is
used to solve differential equations arising from fractional optimal control
problems. Some comparative results are presented in order to verify the
model and show the efficacy of the fractional optimal control treatments.
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Keywords: Fractional differential equation; Maize streak virus; Fractional-
order optimal control; Sweep method; Numerical simulation.

1 Introduction

Maize is an important annual cereal crop of the world belonging to the fam-
ily Poaceae. It is considered a staple food in many parts of the world. It
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is the third leading crop in the world after rice and wheat [20]. Due to its
highest yield potential among cereals, it is known globally as the queen of
cereals. Maize streak disease (MSD) is the most serious viral crop disease in
Sub-Saharan Africa. This disease is caused by the Maize streak virus (MSV),
which was first described by the South African entomologist Claude Fuller in
1901 [12]. MSV is mainly transmitted by as many as six leafhopper species
in the Genus Cicadulina, but some other leafhopper species are also able to
transmit the virus. In addition to maize, this virus can infect over 80 other
species in the Family Poaceae. Severe MSD manifests as pronounced, contin-
uous parallel chlorotic streaks on leaves, with severe stunting of the affected
plant and, usually, a failure to produce complete cobs or seeds. Erratic epi-
demics have been occurring every 3-10 years, and the main damage caused
is to plants younger than six weeks old [24].

In recent years, mathematical modeling has become a valuable tool to
study the mechanisms of plant disease spread, predict the future course of an
outbreak, and appraise strategies to control. In most cases, differential equa-
tions of the integer order have been used to construct such models; see, for
example, [25, 8, 9, 14] and the references therein. The integer-order deriva-
tives and integrals have local properties; that is, the next state is not influ-
enced by the current and previous state. So, the integer-order mathematical
models can not describe natural phenomena precisely.

Fractional calculus is an extension of classical calculus that introduces
derivatives and integrals of fractional order. Fractional derivatives have non-
local properties, that is the next state depends on the current state and all
previous states. This is the main excellence of fractional derivatives over
classical derivatives. Due to this advantage, many applications of fractional
calculus can be found in various fields of research, such as biology, economy,
physics, control theory, and so on [15, 13, 21, 22, 26, 2]. In [23], a fractional
model of tuberculosis disease has presented, and the values of parameters have
been evaluated according to the actual clinical cases. In 2020, the dynamics
of the fractional HIV infection model were studied by Evirgen Evirgen, Uçar,
and Özdemir [11]. Bozkurt et al., in their work [6], have analyzed a fractional
model of COVID-19 by considering the fear effects of the media and social
networks. In [5], the authors presented a fractional model for the simulation
of the Cholera outbreak in Yemen. The authors in [4] proposed a fractional
model to study the dynamics of the MSV in the maize plant population by
considering the interaction of MSV pathogen with the past invasion.

In light of this significant advantage, we were motivated to develop the
model investigated in [3] into a new fractional model involving the Caputo
derivatives. The Caputo derivative is of use for modeling phenomena that
take account of interactions within the past and also problems with nonlocal
properties. In this sense, one can think of the equation as having “memory.”
After that, we discuss some properties of the fractional version of the model
under consideration. Next, fractional optimal control (FOC) is applied as a
generalization of the classical optimal control system [3]. The FOC model is
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developed with three time-dependent control strategies proposed by Alem-
neh, Kassa, and Godana [3].

The paper is organized as follows. In section 2, we give a brief review
of the Caputo operator and discuss its basic characteristics. In Section 3,
the fractional-order model formulation is presented, and the main properties
of the fractional model are then given in section 4. Section 5 focuses on
the dynamic analysis of the model. The FOC of the model and numerical
simulations of the fractional model are presented in section 6. Section 7 also
contains concluding remarks.

2 Basic definitions and facts

In this section, we give a brief review of the Caputo operator and discuss its
basic characteristics [16].

Definition 1. For a function f : [0, tf ] → R, ν ∈ (n − 1, n), and n ∈ N, the
left- and the right-sided Caputo fractional derivatives of order ν of a function
f are defined in the following forms:

C
0 D

ν
t f(t) =

1

Γ(n− ν)

∫ t

0

(t− u)(n−ν−1)f (n)(u)du, t > 0, (1)

and
C
tf
Dν

t f(t) =
(−1)n

Γ(n− ν)

∫ tf

t

(t− u)(n−ν−1)f (n)(u)du, t < tf . (2)

Here, Γ(·) denotes the Gamma function.

Definition 2. The integral operators related to (1) and (2), are specified by

C
0 I

ν
t f(t) =

1

Γ(ν)

∫ t

0

(t− η)ν−1f(η)dη, (3)

C
t I

ν
tf
f(t) =

1

Γ(ν)

∫ tf

t

(η − t)ν−1f(η)dη. (4)

Additionally, if f ∈ Cn[a, b], then

C
0 I

ν
t [

C
0 D

ν
t f(t)] = f(t)−

n−1∑
k=0

f (k)(0)

k!
tk, (5)

C
t I

ν
tf
[Ct D

ν
tf
f(t)] = f(t)−

n−1∑
k=0

(−1)k
f (k)(tf )

k!
(tf − t)k. (6)

For any α1, α2 ∈ R and f1, f2 ∈ H1(0, tf ), we have

C
0 D

ν
t (α1f1(t) + α2f2(t)) = α1

C
0 D

ν
t f1(t) + α2

C
0 D

ν
t f2(t), (7)
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C
t D

ν
tf
(α1f1(t) + α2f2(t)) = α1

C
t D

ν
tf
f1(t) + α2

C
t D

ν
tf
f2(t), (8)

C
0 I

ν
t (α1f1(t) + α2f2(t)) = α1

C
0 I

ν
t f1(t) + α2

C
0 I

ν
t f2(t), (9)

C
t I

ν
tf
(α1f1(t) + α2f2(t)) = α1

C
t I

ν
tf
f1(t) + α2

C
t I

ν
tf
f2(t). (10)

Let f(t) be a constant function. Then

C
0 D

ν
t f(t) =

C
t D

ν
tf
f(t) = 0. (11)

The Caputo derivatives satisfy the Lipschitz condition.

3 New fractional model of MSV disease in maize plant

In this section, we develop a deterministic eco-epidemiological fractional
model for the dynamics of MSV disease in maize plants. The original version
of this model is a system of ordinary differential equations that have been be-
fore presented in [3]. The effect of previous states in the current states of the
disease spread has not been considered in this model. One way to overcome
this drawback is to replace the integer-order derivatives in the model with
noninteger-order derivatives [19]. Hence, we replace the ordinary derivative
with the following Caputo fractional derivative operator

d

dt
−→ 1

ϱ1−ν
C
0 D

ν
t , (12)

where the auxiliary parameter ϱ > 0 represents the fractional time compo-
nents in the system. Thus, the new model is described by the system

ϱν−1C
0 D

ν
t S(t) = rS(1− S + I

K
)− β1SY

A+ S
,

ϱν−1C
0 D

ν
t I(t) =

β1SY

A+ S
− µ1I,

ϱν−1C
0 D

ν
tH(t) = q − β2IH

C+I − µ2H,

ϱν−1C
0 D

ν
t Y (t) =

bβ2IH

C + I
− µ3Y,

(13)

S(0) = S0, I(0) = I0, H(0) = H0, Y (0) = Y0, (14)

where 0 < α ≤ 1, N1(t) = S(t)+I(t), N2(t) = H(t)+Y (t), and (S, I,H, Y ) ∈
R4

+. In this model, S(t) denotes the density of the susceptible maize, and
I(t) denotes the density of the infected maize. The susceptible and infected
leafhopper vector densities are denoted by H(t) and Y (t), respectively. All
parameters in the model are nonnegative. Description of the parameters are
found in Table 1.
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Table 1: Explanation of MSV model parameters

Parameter Explanation
β1 Predation and infection rate of infected leafhopper on susceptible maize plant
β2 Predation and infection rate of susceptible leafhopper on infected maize plant
A The half-saturation rate of susceptible maize with infected plant
C The half-saturation rate of susceptible leafhopper with infected maize plant
K Carrying capacity
q Recruitment rate of susceptible leafhopper
b Infected leafhopper conversion rate
r Maize population intrinsic growth rate
µ1 Death rate of infected maize
µ2 Death rate of susceptible leafhopper
µ3 Infected leafhopper death rate

As can be observed, model (13) involves a system of nonlinear fractional
differential equations. The exact solution of this model may not be available
in general. However, a mathematical analysis of the existence and uniqueness
of the solution ensures that a unique solution exists under some conditions.

4 Properties of the model

In the following, the model’s main properties are provided. Our model can
be formulated as

C
0 D

ν
t V (t) = Φ(t, V (t)),

V (0) = V0, (15)

where V (t) = (S(t), I(t),H(t), Y (t)).

Lemma 1. [17] Let w(t) be a continuous function on [t0,∞) and satisfying{
C
0 D

ν
tw(t) ≤ −λw(t) + µ,

w(t0) = w0,
(16)

where 0 < ν < 1, (λ, µ) ∈ R2, λ ̸= 0, and t0 ≥ 0 is the initial time. Then

w(t) ≤ (w0 −
µ

λ
)Eν [−λ(t− t0)

ν ] +
µ

λ
,

where Eν represents Mittag–Leffler function.

Lemma 2. [7] Let 0 < ν < 1 and λ < 0. Then Eν,ν(λt
ν) tends monotonically

to zero as t→ ∞.

Lemma 3. [10] Let Φ : [t0,∞) × Rn → Rn be a continuous function and
Lipschitz-continuous respecting to the second variable. In addition to, let
ν ∈ (0, 1] and V0 ∈ Rn. Then, the problem

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 481–499



Bagherpoorfard and Akhavan Ghassabzade 486

C
0 D

ν
t V (t) = Φ(t, V (t)), t > t0,

V (t0) = V0, (17)

has a unique solution in C([0,∞);Rn).

Theorem 1. All solutions of system (13) that initiate in R4
+ are bounded

within the region Ω defined by
Ω = {(S, I,H, Y ) ∈ R4

+|S(t) + I(t) +H(t) + 1
bY (t) ≤ L

ρ
+ ε, for all ε > 0}.

Proof. Define a time-dependent function w(t) = S(t) + I(t) +H(t) + 1
bY (t).

So, for any positive number ρ, we have

C
0 D

ν
tw(t) + ρw(t)

= rS(1− S + I

K
)− µ1I − µ2H − µ3

b
Y + ρS + ρI + ρH +

ρ

b
Y + q

≤ rS(1− S

K
) + (ρ− µ1)I + (ρ− µ2)H + (ρ− µ3)

1

b
Y + q

= (r + ρ)S − r

K
S2 + (ρ− µ1)I + (ρ− µ2)H + (ρ− µ3)

1

b
Y + q

≤ K

4r
(r + ρ)2 + (ρ− µ1)I + (ρ− µ2)H + (ρ− µ3)

1

b
Y + q.

Taking ρ < min(µ1, µ2, µ3), so

C
0 D

ν
tw(t) + ρw(t) ≤ L,

where L = K
4r (r + ρ)2 + q. Now, we apply Lemma 1 and obtain

w(t) ≤ (w(0)− L

ρ
)Eν [−ρtν ] +

L

ρ
.

Thus, w(t) → L

ρ
as t→ ∞ and 0 < w(t) ≤ L

ρ
. Hence all solutions of system

(13) that starts from R4
+ are confined in the region Ω = {(S, I,H, Y ) ∈

R4
+|w(t) ≤

L

ρ
+ ε, for all ε > 0}.

Now, we study the existence and uniqueness of system (13) in the region
Λ× [0, T ], where

Λ = {(S, I,H, Y )ϵR4 : max(|S|, |I|, |H|, |Y |) ≤M},

T <∞ and M is sufficiently large.

Theorem 2. For any nonnegative initial conditions, system (13) has a unique
solution.
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Proof. Let X = (S, I,H, Y ). Consider a mapping

Q(X) = (Q1(X), Q2(X), Q3(X), Q4(X)),

where

Q1(X) = rS(1− S + I

K
)− β1SY

A+ S
,

Q2(X) =
β1SY

A+ S
− µ1I,

Q3(X) = q − β2IH

C + I
− µ2H,

Q4(X) =
bβ2IH

C + I
− µ3Y.

For any X,X ∈ Λ, we have

∥Q(X)−Q(X)∥

= |Q1(X)−Q1(X)|+ |Q2(X)−Q2(X)|+ |Q3(X)−Q3(X)|+ |Q4(X)−Q4(X)|

= |rS(1−
S + I

K
)−

β1SY

A+ S
− rS(1−

S + I

K
) +

β1S.Y

A+ S
|

+ |
β1SY

A+ S
− µ1I −

β1S.Y

A+ S
+ µ1I|+ |q −

β2IH

C + I
− µ2H − q +

β2I.H

C + I
+ µ2H|

+ |
bβ2IH

C + I
− µ3Y −

bβ2I.H

C + I
+ µ3Y |

= |r(S − S)−
r

K
(S2 − S

2
)−

r

K
(SI − S.I)− β1(

SY

A+ S
−

S.Y

A+ S
)|

+ |β1(
SY

A+ S
−

S.Y

A+ S
)− µ1(I − I)|+ | − β2(

IH

C + I
−

I.H

C + I
)− µ2(H −H)|

+ |bβ2(
IH

C + I
−

I.H

C + I
)− µ3(Y − Y )|

≤ (r +
3rM

K
)|S − S|+ 2β1|

SY

A+ S
−

S.Y

A+ S
|+ β2(1 + b)|

IH

C + I
−

I.H

C + I
|

+ µ1|I − I|+ µ2|H −H|+ µ3|Y − Y |

≤ (r +
3rM

K
+

2β1M

A
)|S − S|+ (

2β1(A+M)M

A2
+ µ3)|Y − Y |

+ (
β2M

C
(1 + b) + µ1)|I − I|+ (

β2M(C +M)

C2
(1 + b) + µ2)|H −H|

≤ H∥X −X∥,

where

H = max{r + 3rM

K
+

2β1M

A
,
2β1(A+M)M

A2
+ µ3,

β2M(1 + b)

C
+ µ1,

β2M(C +M)(1 + b)

C2
+ µ2}.
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Thus, Q(X) satisfies the Lipschitz condition with respect to X. Hence
there exists a unique solution of the system (13) with conditions (14) on
Λ× [0, T ].

5 Dynamical behaviors

One of the key concepts in epidemiology is the basic reproduction number
(BRN). The aim of this section is to obtain the BRN for model (13) and study
the local stability behavior of the model at its disease-free equilibriums.

5.1 Basic reproduction number

Consider the following fractional differential system:
ϱν−1C

0 D
ν
tX(t) = F (X,Y ),

ϱν−1C
0 D

ν
t Y (t) = G(X,Y ),

G(X, 0) = 0,

(18)

with nonnegative initial conditions X(0) = X0 ∈ R2 and Y (0) = Y0 ∈ R2,
where the components of vector X = (S,H) represent the number of suscep-
tible maize and leafhopper, and the components of vector Y = (I, Y ) indicate
the number of infected maize and leafhopper. Furthermore, we presume that
the function G is of class C1, F is continuous, and the system (18) with the
initial conditions X(0) = X0 and Y (0) = Y0 admits a unique solution. Also,
suppose that E = (X∗, 0) ∈ R4 denotes the disease-free equilibrium point of
the system (18). Let A = ∂G

∂Y (X∗, 0) = M −D, where M,D are two square
matrices that D > 0 is a diagonal matrix and M ≥ 0. Then the BRN R0 is
obtained as the spectral radius of MD−1.
For system (13), we have

A =

[
−µ1

β1S
A+S

bβ2HC
(C+I)2 −µ3

]
=

[
0 β1S

A+S
bβ2HC
(C+I)2 0

]
−
[
µ1 0
0 µ3

]
(19)

So,

R0 := ρ

([
0 β1S

µ3(A+S)
bβ2HC

µ1(C+I)2 0

])
=

√
bβ1β2HCS

µ1µ3(A+ S)(C + I)2
. (20)
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5.2 Local stability analysis

Theorem 3. The disease free-equilibrium point E0 = (0, 0, q
µ2
, 0) of sys-

tem (13) is always unstable while the disease-free equilibrium point E1 =
(K, 0, q

µ2
, 0), is locally asymptotically stable if R0 < 1.

Proof. Conforming to Mittag-Leffler function [18], the disease free equilib-
rium E of system (13) is locally asymptotically stable if all eigenvalues
λi, i = 1, 2, 3, 4 of JE satisfy |arg(λi)| > νπ

2 , i = 1, 2, 3, 4. The Jacobian
matrix associated to E0 is given by

JE0
=


r 0 0 0
0 −µ1 0 0

0 −β2q
Cµ2

−µ2 0

0 bβ2q
Cµ2

0 −µ3

 .
The eigenvalues of the matrix JE0

are λ1 = r > 0, λ2 = −µ1 < 0 λ3 =
−µ2 < 0 λ4 = −µ3 < 0. We observed that |arg(λ1)| = 0 < νπ

2 . So, the
equilibrium point E0 is unstable.

The Jacobian matrix associated to E1 is the following one:

JE1
=


−r −r 0 −βK

A+K

0 −µ1 0 βK
A+K

0 −β2q
Cµ2

−µ2 0

0 bβ2q
Cµ2

0 −µ3

 .
The following characteristic equation is obtained from JE1

:

ϕ(λ) = (r + λ)(µ2 + λ)

(
λ2 + (µ1 + µ3)λ+ (µ1µ3 −

Kbqβ1β2
(A+K)µ2C

)

)
.

We observe that two roots of the characteristic equation ϕ(λ) are

λ1 = −r < 0, λ2 = −µ2 < 0.

It is obvious that |arg(λ1)| > νπ
2 and |arg(λ2)| > νπ

2 . The remaining eigen-
values are given by

λ2 + (µ1 + µ3)λ+ (µ1µ3 −
Kbqβ1β2

(A+K)µ2C
) = 0. (21)

By the Routh–Hurwitz criteria, all the roots of the polynomial (21) are neg-
ative or have negative real part if and only if

µ1µ3 −
Kbqβ1β2

(A+K)µ2C
> 0,
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or

R0 =

√
Kbqβ1β2

(A+K)µ1µ2µ3C
< 1. (22)

Hence, E1 is locally asymptotically stable if R0 < 1.

6 Optimal control problem

In this section, to attain the minimized number of infected maize and infected
leafhoppers, we reconsider the model (13) and formulate an optimal control
problem with three control variables u1(t), u2(t), and u3(t). Let

U = {(u1, u2, u3)|u1, u2, and u3 are Lebesgue measurable on [0, tf ],

0 ≤ u1, u2, u3 ≤ 1, for all t ∈ [0, tf ]},

be the admissible control set. With the existence of control u1, it is expected
to diminish the number of infected maize as compared to those without con-
trol cases. The control variable u2 is used to control the number of infected
leafhoppers. Furthermore, u3 is chemical control that is used as an inter-
vention strategy to optimize the objective functional F . After incorporating
the control variables u1(t), u2(t), and u3(t) in the model (13), the optimal
control model is as follows:

ϱν−1C
0 D

ν
t S(t) = rS(1− S + I

K
)− (1− u1)

β1SY

A+ S
,

ϱν−1C
0 D

ν
t I(t) = (1− u1)

β1SY

A+ S
− (µ1 + u2)I,

ϱν−1C
0 D

ν
tH(t) = q − (1− u2)

β2IH
C+I − (u3 + µ2)H,

ϱν−1C
0 D

ν
t Y (t) = (1− u2)

bβ2IH

C + I
− (u3 + µ3)Y,

S(0), I(0),H(0), Y (0) ≥ 0.

(23)

Consider the following objective functional:

F =

∫ tf

0

(
d1I + d2Y +

1

2
(w1u

2
1 + w2u

2
2 + w3u

2
3)

)
dt, (24)

where d1, d2 are the weights on the state variables and w1, w2, and w3 are
relative weights of the treatment related to the control functions u1, u2, and
u3.

Our aim is to minimize the cost value F by the state and control variables
I∗, Y ∗, u∗1, u

∗
2, and u∗3 satisfying the constraints (23). For this purpose, we

use a kind of Pontryagin maximum principle in the fractional order state [1].
We define the Hamiltonian function as below:
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H(S, I,H, Y ) = d1I + d2Y +
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3)

+ϖ1(rS(1−
S + I

K
)− (1− u1)

β1SY

A+ S
)

+ϖ2((1− u1)
β1SY

A+ S
− (µ1 + u2)I)

+ϖ3(q − (1− u2)
β2IH

C + I
− (u3 + µ2)H)

+ϖ4((1− u2)
bβ2IH

C + I
− (u3 + µ3)Y ),

where ϖi, i = 1, 2, 3, 4 are the co-state variables or adjoint variables. The
optimality conditions are obtained from

∂H

∂u1
=

∂H

∂u2
=

∂H

∂u3
= 0.

Hence, we have

u1 =
β2(ϖ2 −ϖ1)IH

w1(A+ S)
,

u2 =
ϖ2I

w2
+
β2(bϖ4 −ϖ3)IH

w2(C + I)
,

u3 =
ϖ4Y −ϖ3H

w3
, (25)

where the adjoint variables satisfy

C
t Dν

tf
ϖ1(t) =

∂H

∂S
={r(

K − 2S − I

K
)− (1− u1)

β1Y A

(A+ S)2
}ϖ1

+ {
β1(1− u1)SY

(A+ S)2
}ϖ2,

C
t Dν

tf
ϖ2(t) =

∂H

∂I
=d1 −

rS

K
ϖ1 − (µ1 + u2)ϖ2 − (1− u2)

β2CH

(C + I)2
ϖ3

+ (1− u2)
β2bCH

(C + I)2
ϖ4,

C
t Dν

tf
ϖ3(t) =

∂H

∂H
={(u2 − 1)

β2I

C + I
− µ2 − u3}ϖ3 +

b(1− u2)β2I

C + I
ϖ4,

C
t Dν

tf
ϖ4(t) =

∂H

∂Y
=d2 +

β1(u1 − 1)S

A+ S
(ϖ1 −ϖ2)− (u3 + µ3)ϖ4,

ϖ1(tf ) = ϖ2(tf ) =ϖ3(tf ) = ϖ4(tf ) = 0. (26)

Then, we have the following boundary value problem for optimal treatment:
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ϱν−1C
0 D

ν
t S(t) = rS(1− S + I

K
)− (1− u1)

β1SY

A+ S
,

ϱν−1C
0 D

ν
t I(t) = (1− u1)

β1SY

A+ S
− (µ1 + u2)I,

ϱν−1C
0 D

ν
tH(t) = q − (1− u2)

β2IH
C+I − (u3 + µ2)H,

ϱν−1C
0 D

ν
t Y (t) = (1− u2)

bβ2IH

C + I
− (u3 + µ3)Y,

C
t D

ν
tf
ϖ1(t) = {r(K − 2S − I

K
)− (1− u1)

β1Y A

(A+ S)2
}ϖ1

+{β1(1− u1)SY

(A+ S)2
}ϖ2,

C
t D

ν
tf
ϖ2(t) = d1 − rS

K ϖ1 − (µ1 + u2)ϖ2 − (1− u2)
β2CH
(C+I)2ϖ3

+(1− u2)
β2bCH
(C+I)2ϖ4,

C
t D

ν
tf
ϖ3(t) = {(u2 − 1)

β2I

C + I
− µ2 − u3}ϖ3 +

b(1− u2)β2I

C + I
ϖ4,

C
t D

ν
tf
ϖ4(t) = d2 +

β1(u1 − 1)S

A+ S
(ϖ1 −ϖ2)− (u3 + µ3)ϖ4,

ϖ1(tf ) = ϖ2(tf ) = ϖ3(tf ) = ϖ4(tf ) = 0,

S(0) = S0, I(0) = I0,H(0) = H0, Y (0) = Y0,

(27)

where u1(t), u2(t), and u3(t) are given by (25). In turn, the optimality condi-
tions of Pontryagin’s Minimum Principle establish that the optimal controls
u∗1(t), u

∗
2(t), and u∗3(t) are defined by

u∗1 = min{max{0, β2(ϖ2 −ϖ1)IH

w1(A+ S)
}, 1},

u∗2 = min{max{0, ϖ2I

w2
+
β2(bϖ4 −ϖ3)IH

w2(C + I)
}, 1},

u∗3 = min{max{0, ϖ4Y −ϖ3H

w3
}, 1}.

Simulation and discussion

In this part, the effects of fractional operators on the behavior of controlled
system for the dynamics of MSV disease are investigated. We develop the
fractional version of fourth-order Runge-Kutta (RK4) algorithm for the cou-
pled system (27) and apply the iterative process as follows:

We use S(0) = 1000, I(0) = 20,H(0) = 100, and Y (0) = 0 as initial
values. In addition, the parameter values can be seen in [3].

The dynamical behaviors of all variables in the new fractional model with-
out applying any control for different values of the fractional orders and the
classic integer-order are plotted in Figure 1. As seen in this figure, infectious
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Algorithm 1
Step 1 Set the initial values for the control functions u1(t), u2(t), and u3(t).
Step 2 Use the current values of control functions and apply the forward

fractional RK4 method for the control system and obtain the original
variables.

Step 3 Apply the backward fractional RK4 method to compute the adjoint
variables using the current values of the original variables and control
functions.

Step 4 Update the value of control functions.
Step 5 If the updated values of the original variables, adjoint variables, and

control functions are not close enough to their previous values, then go
to Step 2.

maize and leafhopper densities increase with the fractional orders decrease
and tend uniformly to the integer-order trajectory. Furthermore, when the
fractional orders decrease, the densities of susceptible maize and leafhopper
are reduced and go to the ν = 1 state.

To indicate the efficiency of the new optimal control model, the same
impact rate has been considered for all three controls, and the numerical
results of the new model are compared with the classical integer model, in
Figure 2. As can be seen in this figure, the participation of controls leads to
a further reduction of infected maize in the new model than in the classical
model. Therefore, the effect of controls on the fractional system is more
successful than applying controls on the integer system, and the difference
between them is significant. Of course, it should be noted that if no control
is applied, the fractional model still leads to a significantly lower infection
density than the integer model (Figure 2).

In the following, we numerically examine the effect of several optimal
control scenarios, where each scenario includes more than one interventionist:

Scenario 1 Applying quarantine (u2) and chemical control (u3) along with
elimination of prevention (u1).

Scenario 2 Applying prevention (u1) and quarantine (u2) along with elim-
ination of chemical control (u3).

Scenario 3 Applying prevention (u1) and chemical control (u3) along with
elimination of quarantine (u2).

Scenario 4 Applying all three controls u1, u2, and u3.

In the first scenario, the prevention (u1(t)) effect is removed, and two con-
trol functions u2(t) and u3(t) are used. Figure 3 shows that in this control
scenario, the number of infected maize decreases, while if no control is ap-
plied, the number of them increases over time. In addition, for fractional
derivatives with lower orders, the rate of reduction of infectious cases is more
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Figure 1: Numerical solutions for classical and fractional order models without controls

significant. Hence, this scenario is effective in the decline of infection in the
maize community, especially in the fractional model.

The results of scenario 2 are presented in Figure 4. In this case, the
quarantine control (u2(t)) is maintained as in the previous scenario, but the
chemical control (u3(t)) is replaced by the prevention (u1(t)). This scenario
prevents the spread of infected maize and reduces their number. Therefore,
this strategy is also successful in eliminating the disease in the maize com-
munity.

Figure 5 indicates the results of using scenario 3. In this scenario, the
quarantine control is removed, unlike the previous two scenarios, and the
rest of the controls are applied. Based on this figure, the number of infected
is reduced compared to the case where there is no control, and this scenario
also limits the growth of infectious cases.

Finally, all control interventions are considered together. As you can see
in Figure 6, the use of these controls is a successful plan and causes the
infected maize to be destroyed as passing the time.
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Based on Figures 3–6, the quarantine control is more effective than other
controls. Without quarantine control, despite preventive and chemical con-
trols, the number of infected maize will spread, but this increasing process is
much slower than the case where there is no control, and also, the difference
between their increasing manner is very significant.
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Figure 2: Numerical solutions of I(t), with uncontrolled and controlled conditions for
classical and fractional order models
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Figure 3: Numerical solutions of I(t) in classic and fractional model, with quarantine
and chemical controls (u2 ̸= 0, u3 ̸= 0, u1 = 0)
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Figure 4: Numerical solutions of I(t) in classic and fractional model, with prevention
and quarantine controls (u1 ̸= 0, u2 ̸= 0, u3 = 0)
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Figure 5: Numerical solutions of I(t) in classic and fractional model, with prevention
and chemical controls(u1 ̸= 0, u3 ̸= 0, u2 = 0)
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Figure 6: Numerical solutions of I(t) in classic and fractional model, with prevention,
quarantine and chemical controls(u1 ̸= 0, u2 ̸= 0, u3 ̸= 0)

7 Conclusion

In the present study, we developed a new mathematical model involving
the Caputo fractional derivative for MSV disease in maize plants. First, we
proved that the solution of this model system exists uniquely and that all so-
lutions remain positive and bounded whenever they start with positive initial
values, thus justifying the well-posedness of a biological model. We also de-
termined the BRN for the model. Then, we studied the local stability of the
disease-free equilibrium points of the model. The study demonstrated that
one of the equilibrium points is always unstable, and the other equilibrium
point is locally asymptotically stable if the model’s BRN is less than unity.
Next, an optimization problem is formulated. Our main focus in this work
is to investigate the influence of fractional-order derivatives on the optimal
control problem. The optimality system was solved numerically by use of a
forward and backward RK4 scheme. The effectiveness of preventive, quar-
antine, and chemical controls on the fractional model is investigated in the
figures. Different scenarios for the participation of these controls were eval-
uated for various fractional-order values. We observed that in all scenarios,
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the efficiency of the controls increases by moving away from the integer-order
and reducing the fractional orders. Moreover, it was observed that the quar-
antine control is more effective than other controls. Without quarantine
control, despite preventive and chemical controls, the infectious density of
maize progresses with an increasing trend. Of course, it should be noted that
the increasing trend is much slower than the case where there is no control,
and also, the difference between their increasing manner is very significant.
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1 Introduction

The mathematical modeling of many phenomena in various branches of sci-
ence leads to nonlinear integral-differential equations. Fractional calculus is
applied extensively by many scientists in the mathematical modeling and
control of numerous dynamic systems [30, 31]. This class of equations arises
in the field of signal processing [21], waves and brain modeling [18, 26], ra-
diative equilibrium [17], and so on. Commonly, it is impractical to obtain an
analytical solution to integral-differential equations. As a result, the improve-
ment of some numerical methods and the introduction of new high-accuracy
numerical algorithms is very important to obtain approximate solutions. So
various numerical methods have been developed to solve these types of equa-
tions by many researchers. Some of the prominent methods are modified
differential transform [15, 20], Adomian decomposition, Homotopy analysis
[9, 12], Galerkin [10, 28], collocation [16, 25], product integration [1], Euler
wavelets [7], haar wavelets [4], Legendre wavelets [29], Chebyshev wavelets
[13], Hermite cubic splines [27], Hat functions [11], Taylor series [8], and so
forth. The nonlinear fractional integral-differential equation with a weakly
singular kernel appears in the following form:

C
0 D

α
t u(t) = g(t) + p(t)u(t) + λ

∫ t

0

(t− s)
−β
um(s)ds, α > 0, 0 < β < 1,

u(i)(0) = u
(i)
0 , i = 0, 1, . . . , ⌈α⌉ − 1, m ∈ N, t ∈ I(t),

(1)

where u(t) is an unknown function to be determined, λ is an appropriate
parameter, g(t) and p(t) are known continuous functions on I(T ) := [0, T ],
and C

0 D
α
t is the Caputo fractional differential operator of order α. Some nu-

merical methods convert such an integral-differential equation into a system
of algebraic equations that can be easily solved.
Wang and Zhu [32] applied the second kind of Chebyshev wavelets method
to give approximate solutions for the fractional integral-differential equations
with a weakly singular kernel. Nemati and Lima [22] applied a numerical
method based on modified hat functions (MHFs) for solving the problem (1).
Xie et al. [33] used the Haar wavelets to solve a coupled system of fractional-
order integral-differential equations. Riahi Beni [29] proposed a novel tech-
nique for nonlinear fractional Volterra–Fredholm integro-differential equa-
tions. Also, a numerical solution for a fractional integro-differential equation
via a method based on the Gegenbauer wavelets was suggested by Özaltun,
Konuralp, and Gümgüm [23]. In this paper, we introduce a high-precision
numerical algorithm for the problem (1) in terms of Cubic hat-functions
(CHFs).

The present work discusses some of the properties of Riemann–Liouville
integral operators to solve the nonlinear fractional integral-differential equa-
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tions. Applying the operational matrix method, the principal problem will
be reduced to solving several nonlinear trivariate polynomial equations. In
Section 2, some basic definitions and characteristics of fractional calculus
are presented. Section 3 is devoted to introducing the operational matrix of
CHFs basis. The fourth section studies the absolute error of approximation
of a function by a truncated series of CHFs. The fifth section presents a nu-
merical method for Problem (1). The convergence analysis of the proposed
scheme is discussed in Section 6. To show the validity and accuracy of the
utilized approach, three numerical examples are provided in Section 7, and
the paper ends in Section 8, with a conclusion and discussion.

2 Basic concepts and definitions

In this section, some definitions and properties, which have been used in this
manuscript, are explained. In this research, the Riemann–Liouville integral
operator of the αth order (Iαt ) and the Caputo fractional differential operator
of order α (c0Dα

t ) will be used. They are well addressed in [24].

Definition 1. Suppose that α ∈ R , n − 1 < α ≤ n, n ∈ N, and let u(t) be
a continuous function defined on [0, 1]. The Caputo fractional derivative of
order α > 0 is defined as follows:

C
0 D

α
t u(t) =

{
1

Γ(n−α)

∫ t

0
(t− τ)

(n−α−1) dn

dτ u(τ)dτ, n− 1 < α < n,

u(n)(t), α = n,
(2)

wherein
Γ(x) =

∫ ∞

0

tx−1e−tdt.

Definition 2. Assume that α > 0 and that u(t) is a continuous function
defined on the closed interval [0, 1]. The Riemann–Liouville integral operator
of order α is defined as follows:

Iαt u(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

u(τ)dτ. (3)

The Riemann–Liouville integral operator and the Caputo fractional deriva-
tive operator satisfy the following properties [24]:

Iαt (I
β
t u(t)) = Iβt (I

α
t u(t)) = Iα+β

t u(t), α, β > 0,

Iαt (
C
0 D

α
t u(t)) = u(t)−

n−1∑
i=0

u(i)(0)
ti

i!
, n− 1 < α ≤ n, t > 0. (4)
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2.1 Definition of CHFs

First, let us state a history of Hat functions and then some definitions and
properties of CHFs. In 2011, Babolian and Mordad [6] described gener-
alized Hat functions to solve systems of Fredholm and Volterra integral
equations. In 2016, Mirzaee and Hadadiyan [19] introduced MHFs to solve
Volterra–Fredholm integral equations. In this paper, we improve the hat
functions method and use the method for solving linear and nonlinear frac-
tional integral-differential equations with weakly singular kernels. CHFs are
defined on the closed interval [0, T ] and have a hat-like shape. The inter-
val is divided into n subintervals, with equal lengths h, where h = T

n , and
n = 3K, K ∈ N.
CHFs are defined as follows:

ϕ0(t) =

{
− 1

6h3 (t− h)(t− 2h)(t− 3h), 0 ≤ t ≤ 3h,

0, otherwise.
(5)

For i = 3ν − 2, ν = 1, 2, . . . , n/3,

ϕi(t) =

{
1

2h3 (t− (i− 1)h)(t− (i+ 1)h)(t− (i+ 2)h), (i− 1)h ≤ t ≤ (i+ 2)h,

0, otherwise.
(6)

For i = 3ν − 1, ν = 1, 2, . . . , n/3,

ϕi(t) =

{
− 1

2h3 (t− (i− 2)h)(t− (i− 1)h)(t− (i+ 1)h), (i− 2)h ≤ t ≤ (i+ 1)h,

0, otherwise.
(7)

When i = 3ν, ν = 1, 2, . . . , (n− 3)/3,

ϕi(t) =


1

6h3 (t− (i− 3)h)(t− (i− 2)h)(t− (i− 1)h), (i− 3)h ≤ t ≤ ih,

− 1
6h3 (t− (i+ 1)h)(t− (i+ 2)h)(t− (i+ 3)h), ih ≤ t ≤ (i+ 3)h,

0, otherwise,
(8)

and

ϕn(t) =

{
1

6h3 (t− (n− 3)h)(t− (n− 2)h)(t− (n− 1)h), (n− 3)h ≤ t ≤ nh,

0, otherwise.
(9)

A function u(t) can be expressed in terms of CHFs as follows:

u(t) ≈ un(t) =

n∑
i=0

aiϕi(t) = ATΦ(t) = Φ(t)TA, (10)

so that
Φ(t) = [ϕ0(t), ϕ1(t), . . . , ϕn(t)]

T
, (11)

and
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A = [a0, a1, . . . , an]
T
, (12)

wherein ai = u(ih), i = 0, . . . , n, are unknown coefficients of the CHFs. Fig-
ure 1 shows the CHFs plotted on the interval [0, 1] for n = 6 using MATLAB
package.
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2.1.1 Properties of CHFs

Using the CHFs definition, the following properties can be obtained:
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Figure 1: Plots of the CHFs, up to n = 6, T = 1

n∑
i=0

ϕi(t) = 1, ϕi(jh) =

{
1, i = j,

0, i ̸= j.
(13)

Multiplying both sides of this summation to ϕj(t) attains(
n∑

i=0

ϕj(t)ϕi(t)

)
= ϕj(t). (14)

Thus, for t = jh, we have
n∑

i=0

ϕj(jh)ϕi(jh) = ϕj(jh),

[(ϕj(jh)ϕ0(jh)) + · · ·+ (ϕj(jh)ϕj(jh)) + · · ·+ (ϕj(jh)ϕn(jh))] = ψj(jh),
[(ϕj(jh)× 0) + · · ·+ (ϕj(jh)× ϕj(jh)) + · · ·+ (ϕj(jh)× 0)] = ϕj(jh).

(15)
As a result,

ϕj(jh)ϕj(jh) = ϕj(jh). (16)

Taking these properties, one has

ϕi(jh)ϕj(jh) ≈

{
ϕi(jh), j = i,

0, j ̸= i.
(17)

Then, from the relations (17 ) and (11), it can be concluded that

Φ(t)ΦT (t) ≃ diag [ϕ0(t), ϕ1(t), . . . , ϕn−1(t), ϕn(t)]
T
= diag (Φ(t)) . (18)

2.1.2 Nonlinear approximation of CHFs

Using (18) and (10), um(t) , m = 1, 2, . . ., can be calculated as follows:

u2(t) ≃ ATΦ(t)ΦT (t)A = AT diag(Φ(t))A = AT diag(A)Φ(t)
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= AT
2 Φ(t), A2 = [a20, a

2
1, . . . , a

2
n]

T ,

u3(t) ≃ u2(t)u(t) = A
T
2 Φ(t)Φ

T (t)A = AT
2 diag(Φ(t))A = AT

2 diag(A)Φ(t)
= AT

3 Φ(t), A3 = [a30, a
3
1, . . . , a

3
n]

T ,

...

um(t) ≃
n∑

i=0

ai
mϕi(t) = AT

mΦ(t), Am = [am0 , a
m
1 , . . . , a

m
n ]T . (19)

3 Operational matrices of CHFs

In this part of the study, we achieve the fractional-order integral operational
matrix using CHFs.

3.1 Fractional order operational matrix of integration

Let us state the following theorem.

Theorem 1. Let Φ(t) be given by (11) and let α > 0. Then

Iαt Φ(t) ≃ QαΦ(t), (20)

where Qα is called the (n + 1) × (n + 1) operational matrix of fractional
integration of order α and is defined as follows:

Q(α) =
hα

6Γ(α+ 4)



0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 · · · ρn−2 ρn−1 ρn
0 σ1 σ2 σ3 σ4 σ5 σ6 · · · σn−2 σn−1 σn
0 κ1 κ2 κ3 κ4 κ5 κ6 · · · κn−2 κn−1 κn
0 µ1 µ2 µ3 µ4 µ5 µ6 · · · µn−2 µn−1 µn

0 0 0 0 σ1 σ2 σ3 · · · σn−5 σn−4 σn−3

0 0 0 0 κ1 κ2 κ3 · · · κn−5 κn−4 κn−3

0 0 0 0 µ1 µ2 µ3 · · · µn−5 µn−4 µn−3

0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · σ1 σ2 σ3
0 0 0 0 0 0 0 · · · κ1 κ2 κ3
0 0 0 0 0 0 0 · · · µ1 µ2 µ3



, (21)

wherein

ρk = 6kα(α+ 3)(α+ 2)(α+ 1)− 11kα+1(α+ 3)(α+ 2)

+ 12kα+2(α+ 3)− 6kα+3, k = 1, 2, 3,
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ρk = 6kα(α+ 3)(α+ 2)(α+ 1)−
(
11kα+1 − 2(k − 3)

α+1
)
(α+ 3)(α+ 2)

+ 6
(
2kα+2 + (k − 3)

α+2
)
(α+ 3)

− 6
(
kα+3 − (k − 3)

α+3
)
, k = 4, . . . , n,

σk = 3
(
6(k)

α+1
(α+ 3)(α+ 2)− 10(k)

α+2
(α+ 3) + 6(k)

α+3
)
, k = 1, 2, 3,

σk = 9
(
2(k)

α+1 − (k − 3)
α+1

)
(α+ 3)(α+ 2)

− 6
(
5(k)

α+2
+ 4(k − 3)

α+2
)
(α+ 3)

+ 18
(
(k)

α+3 − (k − 3)
α+3

)
, k = 4, . . . , n,

κk = −3
(
3(k)

α+1
(α+ 3)(α+ 2)− 8(k)

α+2
(α+ 3) + 6(k)

α+3
)
, k = 1, 2, 3,

κk = −9
(
(k)

α+1 − 2(k − 3)
α+1

)
(α+ 3)(α+ 2)

+ 6
(
4(k)

α+2
+ 5(k − 3)

α+2
)
(α+ 3)

− 18
(
(k)

α+3 − (k − 3)
α+3

)
, k = 4, . . . , n,

µk = 2(k)α+1(α+ 3)(α+ 2)− 6(k)α+2(α+ 3) + 6(k)α+3, k = 1, 2, 3,

µk = 2
(
(k)

α+1 − 11(k − 3)
α+1

)
(α+ 3)(α+ 2)− 6(k)α+2(α+ 3)

+ 6
(
(k)

α+3 − 2(k − 3)
α+3

)
, k = 4, 5, 6,

µk = 2
(
(k)

α+1 − 11(k − 3)
α+1

+ (k − 6)
α+1

)
(α+ 3)(α+ 2)

− 6
(
(k)

α+2 − (k − 6)
α+2

)
(α+ 3)

+ 6
(
(k)

α+3 − 2(k − 3)
α+3

+ (k − 6)
α+3

)
, k = 7, . . . , n. (22)

Proof. First, for ϕi(t), i = 0, . . . , n, we have the definition of the Riemann–
Liouville integral operator as follows:

Iαt ϕi(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

ϕi(τ)dτ. (23)

We expand Iαt ϕi(t), in terms of the cubic hat basis functions as follows:

Iαt ϕi(t) ≃
n∑

j=0

γijϕj(t), i = 0, . . . , n, (24)

where the values of Iαt ϕi(t) at jth node point, (jh), represent the coefficients
γij . Thus, we have
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γij =
1

Γ(α)

∫ jh

0

(jh− τ)
α−1

ϕi(τ)dτ, i, j = 0, 1, . . . , n. (25)

Using equations (5)–(9), we calculate the integral (25). For i = 0, by substi-
tuting (5) in (25), we introduce the coefficient as follows:

γ0j = − hα

6Γ(α+ 4)



 6jα+3 − 12jα+2(α+ 3)

+11jα+1(α+ 3)(α+ 2)

−6jα(α+ 3)(α+ 2)(α+ 1),

 , j ≤ 2,


6
(
jα+3 − (j − 3)

α+3
)

−6
(
2jα+2 + (j − 3)

α+2
)
(α+ 3)

+
(
11jα+1 − 2(j − 3)

α+1
)
(α+ 3)(α+ 2)

−6jα(α+ 3)(α+ 2)(α+ 1),

 , j ≥ 3.

(26)
For i = 3ν − 2, ν = 1, 2, . . . , n/3, we obtain

γij =
hα

2Γ(α+ 4)



0, j ≤ i− 1, 6(j − i+ 1)α+3

−10(j − i+ 1)α+2(α+ 3)

+6(j − i+ 1)α+1(α+ 3)(α+ 2)

 , i ≤ j ≤ i+ 2,



6
(
(j − i+ 1)

α+3 − (j − i− 2)
α+3

)
−2
(
5(j − i+ 1)

α+2

+4(j − i− 2)
α+2

)
(α+ 3)

+3
(
2(j − i+ 1)

α+1

−(j − i− 1)
α+1

)
(α+ 3)(α+ 2)


, j ≥ i+ 3.

(27)
For i = 3ν − 1, ν = 1, 2, . . . , n/3, replacing (7) into Eq. (25) yields
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γij = − hα

2Γ(α+ 4)



0, j ≤ i− 2, 6(j − i+ 2)α+3

−8(j − i+ 2)α+2(α+ 3)

+3(j − i+ 2)α+1(α+ 3)(α+ 2)

 , i− 1 ≤ j ≤ i+ 1,



6
(
(j − i+ 2)

α+3 − (j − i− 1)
α+3

)
−2
(
4(j − i+ 2)

α+2

+5(j − i− 1)
α+2

)
(α+ 3)

+3
(
(j − i+ 1)

α+1

−2(j − i− 1)
α+1

)
(α+ 3)(α+ 2)


, j ≥ i+ 2.

(28)
Now, we attain (25) for i = 3ν, ν = 1, 2, . . . , n/3,

γij =
hα

6Γ(α+ 4)



0, j ≤ i− 3, 6(j − i+ 3)α+3

−6(j − i+ 3)α+2(α+ 3)

+2(j − i+ 3)α+1(α+ 3)(α+ 2)

 , i− 2 ≤ j ≤ i,


6
(
(j − i+ 3)

α+3 − 2(j − i)
α+3

)
−6(j − i+ 3)

α+2
(α+ 3)

+2
(
(j − i+ 3)

α+1

−11(j − i)
α+1

)
(α+ 3)(α+ 2)

 , i+ 1 ≤ j ≤ i+ 3,



6
(
(j − i+ 3)

α+3

−2(j − i)
α+3

+ (j − i− 3)
α+3

)
−6
(
(j − i+ 3)

α+2

−(j − i− 3)
α+2

)
(α+ 3)

+2

 (j − i+ 3)α+1

−11(j − i)α+1

+(j − i− 3)α+1

 (α+ 3)(α+ 2)


, j ≥ i+ 3,

(29)
Consider 3ν − 2 = i in (27), 3ν − 1 = i in (28), and 3ν = i in (29). Then
apply 3ν + k = j to all (26)–(29), ν = 1, . . . , n/3 and k = 1, . . . , n. Some
simple manipulations completes the proof.

As a result of using (10) and (20), we can approximate the integral of a
nonlinear function as follows:
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Iαt u
m(t) ≃ Iαt

(
n∑

i=0

am
i
ϕi(t)

)
≃ Iαt

(
AT

mΦ(t)
)
≃ AT

mQ
αΦ(t), ,m = 1, 2, . . . .

(30)
For instance, when α = 1 and n = 3, using the operational matrix (21), we
get

Examples Composite trapezoidal rule CHFs
solutions with n = 6 solutions

Example 1 :
∫ 1

0
sin s cos3s ds 0.2251 0.2327

Example 2 :
∫ 2

3

0
2xx3ds 0.0742 0.0730

Example 3 :
∫ 1

0
x

1
2 ln(x+ 1) ds 0.3055 0.3053

(31)

4 Error analysis

In this section, our analysis shows that when using CHFs to approximate a
function, the order of accuracy is O(h4). Let us approximate a function u(t),
as (10), where

un(t) =

n∑
i=0

u(ih)ϕi(t), n = 3K, K ∈ N. (32)

In the first step, for t ∈ (jh, (j + 1)h), j = 0, 3, 6, . . . , n − 3, using (5)–(9)
and doing some computation, we obtain

un(t) =

n∑
i=0

u(jh)ϕi(t)

= ϕj(t)u (jh) + ϕj+1(t)u ((j + 1)h)

+ ϕj+2(t)u ((j + 2)h) + ϕj+3(t)u ((j + 3)h)

= u(jh)

(
(t− (j + 1)h) (t− (j + 2)h) (t− (j + 3)h)

−6h3

)
+ u(jh+ h)

(
(t− jh) (t− (j + 2)h) (t− (j + 3)h)

2h3

)
+ u(jh+ 2h)

(
(t− jh) (t− (j + 1)h) (t− (j + 3)h)

−2h3

)
+ u(jh+ 3h)

(
(t− jh) (t− (j + 1)h) (t− (j + 2)h)

6h3

)
.

Then by simplifying the current relationship, we have
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un(t) = u(jh)

(
(t− jh)

3 − 6h(t− jh)
2
+ 11h2 (t− jh)− 6h3

−6h3

)

+ u(jh+ h)

(
(t− jh)

3 − 5h(t− jh)
2
+ 6h2 (t− jh)

2h3

)

+ u(jh+ 2h)

(
(t− jh)

3 − 4h(t− jh)
2
+ 3h2 (t− jh)

−2h3

)

+ u(jh+ 3h)

(
(t− jh)

3 − 3h(t− jh)
2
+ 2h2 (t− jh)

6h3

)
.

Therefore

un(t) = u(jh)

+ (t− jh)

(
−11u(jh) + 18u(jh+ h)− 9u(jh+ 2h) + 2u(jh+ 3h)

6h

)
+

(t− jh)
2

2

(
2u(jh)− 5u(jh+ h) + 4u(jh+ 2h)− u(jh+ 3h)

h2

)
+

(t− jh)
3

6

(
−u(jh) + 3u(jh+ h)− 3u(jh+ 2h) + u(jh+ 3h)

h3

)
.

It is known that the kth, k = 1, 2, 3, order derivative of u(t) about the point
(jh) is as follows:

u′(jh) =
−11u(jh) + 18u(jh+ h)− 9u(jh+ 2h) + 2u(jh+ 3h)

6h
+O(h4),

u′′(jh) =
2u(jh)− 5u(jh+ h) + 4u(jh+ 2h)− u(jh+ 3h)

h2
+O(h4),

u′′′(jh) =
−u(jh) + 3u(jh+ h)− 3u(jh+ 2h) + u(jh+ 3h)

h3
+O(h4).

So, assuming h→ 0 results in

un(t) = u(jh)+(t− jh)u′(jh)+ (t− jh)
2

2
u′′(jh)+

(t− jh)
3

6
u′′′(jh)+O(h4).

(33)
Expanding u(t) in the Taylor’s series, about the point t = jh, we have

u(t) =

3∑
k=0

(t− jh)
k

k!
u(k)(jh) +O(t− jh)4. (34)

According to (33) and (34), we can obtain the error between the exact and
approximate values of u(t) as follows:
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u(t)− un(t) = O(t− jh)4. (35)

Thus, for t → jh, j = 0, 3, 6, . . . , n − 3 and h → 0, since (t− jh) < h, from
(35), we attain

|u(t)− un(t)| = O(h4). (36)

In the second step, for j = 1, 4, 7, . . . , n− 2 and jh < t < (j + 1)h, we get

un(t) =

n∑
i=0

u(jh)ϕi(t)

= ϕj−1(t)u ((j − 1)h) + ϕj(t)u (jh)

+ ϕj+1(t)u ((j + 1)h) + ϕj+2(t)u ((j + 2)h)

= u(jh− h)

(
(t− jh) (t− (j + 1)h) (t− (j + 2)h)

−6h3

)
+ u(jh)

(
(t− (j − 1)h) (t− (j + 1)h) (t− (j + 2)h)

2h3

)
+ u(jh+ h)

(
(t− (j − 1)h) (t− jh) (t− (j + 2)h)

−2h3

)
+ u(jh+ 2h)

(
(t− (j − 1)h) (t− jh) (t− (j + 1)h)

6h3

)
.

Hence

un(t) = u(jh)

+ (t− jh)

(
−2u(jh− h)− 3u(jh) + 6u(jh+ h)− u(jh+ 2h)

6h

)
+

(t− jh)
2

2

(
u(jh− h)− 2u(jh) + u(jh+ h)

h2

)
+

(t− jh)
3

6

(
−u(jh− h) + 3u(jh)− 3u(jh+ h) + u(jh+ 2h)

h3

)
.

(37)

As a reminder, the derivatives of u(t) about the point jh are as follows:

u′(jh) =
−2u(jh− h)− 3u(jh) + 6u(jh+ h)− u(jh+ 2h)

6h
+O(h4),

u′′(jh) =
u(jh− h)− 2u(jh) + u(jh+ h)

h2
+O(h4),

u′′′(jh) =
−u(jh− h) + 3u(jh)− 3u(jh+ h) + u(jh+ 2h)

h3
+O(h4). (38)

As h→ 0, from (37)–(38), we get
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un(t) = u(jh)+(t− jh)u′(jh)+ (t− jh)
2

2
u′′(jh)+

(t− jh)
3

6
u′′′(jh)+O(h4).

(39)
Considering (39), (34), and h→ 0 for j = 1, 4, 7, . . . , n− 2, one has

|u(t)− un(t)| = O(h4). (40)

In the final step, for j = 2, 5, 8, . . . , n− 1 and t ∈ (jh, (j + 1)h), we attain

un(t) =

n∑
i=0

u(jh)ϕi(t)

= ϕj−2(t)u ((j − 2)h) + ϕj−1(t)u ((j − 1)h)

+ ϕj(t)u (jh) + ϕj+1(t)u ((j + 1)h)

= u(jh− 2h)

(
(t− (j − 1)h) (t− jh) (t− (j + 1)h)

−6h3

)
+ u(jh− h)

(
(t− (j − 2)h) (t− jh) (t− (j + 1)h)

2h3

)
+ u(jh)

(
(t− (j − 2)h) (t− (j − 1)h) (t− (j + 1)h)

−2h3

)
+ u(jh+ h)

(
(t− (j − 2)h) (t− (j − 1)h) (t− jh)

6h3

)
.

As a result,

un(t) = u(jh) + (t− jh)

(
u(jh− 2h)− 6u(jh− h) + 3u(jh) + 2u(jh+ h)

6h

)
+

(t− jh)
2

2

(
u(jh− h)− 2u(jh) + u(jh+ h)

h2

)
+

(t− jh)
3

6

(
−u(jh− 2h) + 3u(jh− h)− 3u(jh) + u(jh+ h)

h3

)
.

(41)

On the other hand, according to the derivatives of u(t) about the point jh,
(41) can be written as follows:

un(t) = u(jh)+(t− jh)u′(jh)+ (t− jh)
2

2
u′′(jh)+

(t− jh)
3

6
u′′′(jh)+O(h4).

(42)
Thus, assuming (42), (34), and h→ 0, for j = 2, 5, 8, . . . , n− 1, one has

|u(t)− un(t)| = O(h4). (43)
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Finally, for t ∈ (jh, (j + 1)h), j = 0, 1, 2, . . . , n, and h → 0, using (36), (40),
and (43), we get

|u(t)− un(t)| = O(h4). (44)

5 Numerical algorithm

In this section, a numerical algorithm is offered to solve problem (1). Consider
the following nonlinear fractional integral-differential equation with weakly
singular kernel :

C
0 D

α
t u(t) = g(t) + p(t)u(t) + λ

∫ t

0

(t− s)
−β
um(s)ds, (45)

α > 0, 0 < β < 1, m ∈ N, t ∈ I(t).

First, putting −β = ω − 1, 0 < ω < 1 in the third term on the right of this
equation, we get∫ t

0

(t− s)
−β
um(s)ds = Γ(ω)

(
1

Γ(ω)

∫ t

0

(t− s)
ω−1

um(s)ds

)
, 0 < ω < 1.

(46)
By the definition of Riemann–Liouville fractional integral operator, [24], the
current relationship can be rewritten as follows:∫ t

0

(t− s)
−β
um(s)ds = Γ(ω)Iωt (um(t)) . (47)

Now, by applying (47), the Riemann–Liouville integral operator of order α
on the both sides of (45), one gets

Iαt
(
C
0 D

α
t u(t)

)
= Iαt (g(t)) + Iαt (p(t)u(t)) + λΓ(ω)Iαt I

ω
t (um(t)) ,

u(t) = z(t) + Iαt (g(t)) + Iαt (p(t)u(t)) + λΓ(ω)Iα+ω
t (um(t)) , (48)

where

z(t) =

⌈α⌉−1∑
i=0

u(i)(0)
ti

i!
, α > 0.

Now, by approximating the functions in (48) by CHFs (10) and (19), we
attain

u(t) ≃
n∑

i=0

aiϕi(t) = ATΦ(t), Am = [a0, a1, . . . , an]
T . (49)

um(t) ≃
n∑

i=0

ai
mϕi(t) = AT

mΦ(t), Am = [am0 , a
m
1 , . . . , a

m
n ]T . (50)
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z(t) ≃
n∑

i=0

z(ih)ϕi(t) = zTΨ(t), Z = [z(0), z(h), . . . , z(nh)]T , (51)

g(t) ≃
n∑

i=0

g(ih)ϕi(t) = GTΨ(t), G = [g(0), g(h), . . . , g(nh)]T , (52)

and

p(t) ≃
n∑

i=0

p(ih)ϕi(t) = pTΨ(t), P = [p(0), p(h), . . . , p(nh)]T , (53)

wherein n is an integer multiple of 3. Utilizing (20)–(22), and (18) and the
substitution of (49)–(53) in (48) become

ATΦ(t) = ZTΦ(t) + Iαt (GTΦ(t)) + Iαt (PTΦ(t)Φ(t)TA) + λΓ(ω)Iα+ω
t (AT

mΦ(t)),

ATΦ(t)− ZTΦ(t)− Iαt (GTΦ(t))− Iαt (PT diag (Φ(t))A)− λΓ(ω)Iα+ω
t (AT

mΦ(t)) = 0,

ATΦ(t)− ZTΦ(t)− Iαt (GTΦ(t))− Iαt (PT diag (A)Φ(t))− λΓ(ω)Iα+ω
t (AT

mΦ(t)) = 0,

ATΦ(t)− ZTΦ(t)−GTQ(α)Φ(t) − PT diag (A)Q(α)Φ(t)− λΓ(ω)AT
mQ

(α+ω)Φ(t) = 0.

Thus

AT − ZT −GTQ(α) − PT diag (A)Q(α) − λΓ(ω)AT
mQ

(α+ω) = 0,

α > 0, 0 < ω < 1, ω = 1− β. (54)

This system has the dimension (n+ 1)× (n+ 1).
Suppose that

Q(α) = [γij ] , Qω = [θij ] , i, j = 0, 1, 2, . . . , n. (55)

Then, from the operational matrix (23), one gets

γi0 = θi0 = 0, i = 0, 1, 2, . . . , n,

γij = θij = 0, j = 1, 3, . . . , n− 1, i = j + 3, j + 4, . . . , n,

γij = θij = 0, j = 2, 4, . . . , n, i = j + 2, j + 3, . . . , n.

Using (54), the unknown coefficients can be determined. We start to find the
first unknown coefficient as follows:

a0 = z(0). (56)

In the next step, we get
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system 1:



eq1 : [a1 ]− [z(1h)]−
[

3∑
i=0

g(ih)γi1

]
−
[

3∑
i=0

p(ih)γi1ai

]
−
[
λΓ(ω)

3∑
i=0

θi1ai
m

]
= 0,

eq2 : [a2 ]− [z(2h)]−
[

3∑
i=0

g(ih)γi2

]
−
[

3∑
i=0

p(ih)γi2ai

]
−
[
λΓ(ω)

3∑
i=0

θi2ai
m

]
= 0,

eq3 : [a3 ]− [z(3h)]−
[

3∑
i=0

g(ih)γi3

]
−
[

3∑
i=0

p(ih)γi3ai

]
−
[
λΓ(ω)

3∑
i=0

θi3ai
m

]
= 0.

Solving the first system allows us to calculate a1, a2, and a3, then we solve
the following system:

system 2:



eq4 : [a4 ]− [z(4h)]−
[

6∑
i=0

g(ih)γi4

]
−
[

6∑
i=0

p(ih)γi4ai

]
−
[
λΓ(ω)

6∑
i=0

θi4ai
m

]
= 0,

eq5 : [a5 ]− [z(5h)]−
[

6∑
i=0

g(ih)γi5

]
−
[

6∑
i=0

p(ih)γi5ai

]
−
[
λΓ(ω)

6∑
i=0

θi5ai
m

]
= 0,

eq6 : [a6 ]− [z(6h)]−
[

6∑
i=0

g(ih)γi6

]
−
[

6∑
i=0

p(ih)γi6ai

]
−
[
λΓ(ω)

6∑
i=0

θi6ai
m

]
= 0.

By solving system 2, the values of the unknown parameters a4, a5, and a6
are calculated. Then we can get the values of a7, a8, and a9 using system
3:

system 3:



eq7 : [a7 ]− [z(7h)]−
[

9∑
i=0

g(ih)γi7

]
[

9∑
i=0

p(ih)γi7ai

]
−
[
λΓ(ω)

9∑
i=0

θi7ai
m

]
= 0,

eq8 : [a8 ]− [z(8h)]−
[

9∑
i=0

g(ih)γi8

]
−
[

9∑
i=0

p(ih)γi8ai

]
−
[
λΓ(ω)

9∑
i=0

θi8ai
m

]
= 0,

eq9 : [a9 ]− [z(9h)]−
[

9∑
i=0

g(ih)γi9

]
−
[

9∑
i=0

p(ih)γi9ai

]
−
[
λΓ(ω)

9∑
i=0

θi9ai
m

]
= 0.
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The process can be continued up to the following form:

system n/3:



eqn−2 : [an−2 ]− [z((n− 2)h)]−
[

n∑
i=0

g(ih)γi(n−2)

]
−
[

n∑
i=0

p(ih)γi(n−2)ai

]
−
[
λΓ(ω)

n∑
i=0

θi(n−2)ai
m

]
= 0,

eqn−1 : [an−1 ]− [z((n− 1)h)]−
[

n∑
i=0

g(ih)γi(n−1)

]
−
[

n∑
i=0

p(ih)γi(n−1)ai

]
−
[
λΓ(ω)

n∑
i=0

θi(n−1)ai
m

]
= 0,

eqn : [an ]− [z(nh)]−
[

n∑
i=0

g(ih)γin

]
−
[

n∑
i=0

p(ih)γinai

]
−
[
λΓ(ω)

n∑
i=0

θinai
m

]
= 0.

As a result, the values of an−2, an−1, and an are derived using system n/3.
Therefore, we can obtain an approximate solution via (10). To solve the
nonlinear equations, see [34]. The computations were handled by MATLAB
package. The following theorem outlines the proposed method.

Theorem 2. Consider the principal problem (1). To obtain a numerical
solution to (1) using CHFs, the following iterative algorithm is offered:

Proof. See the scheme proposed in this section, (56)–(57).

6 Convergence analysis

In this section, we will verify the convergence of the numerical proposed
scheme.

Theorem 3. Let un(t) be the numerical solution of (1) obtained by the
proposed method in Section (5). Moreover, u(t) is an exact solution and
En(t) is the residual error for numerical solution. Also, suppose that M and
K are positive constants. Then, En(t) tends to zero, as n→ ∞, where

M = sup
t,τ∈[0,T ]

∣∣∣Γ−1(α)(t− τ)
α−1

p(τ)
∣∣∣ ,

K = sup
t,τ∈[0,T ]

∣∣∣λmLΓ−1(α+ ω)(t− τ)
α+ω−1

∣∣∣ .
Proof. Applying the Riemann–Liouville integral operator of order α and (48),
it is appropriate to rewrite (1) in the integral form

u(t) = z(t) + Iαt (g(t)) + Iαt (p(t)u(t)) + λΓ(ω)Iα+ω
t (um(t)) , (57)

where
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Algorithm 1 An algorithm for approximation using CHsF
Step 1: Inputs, n (integer multiple of 3), α, β, λ, T, g(t), p(t),

u(i)(0), i = 0, 1, . . . , ⌈α⌉ − 1.
Step 2: Set ω = 1− β, h = T/n, and ti = ih, i = 0, . . . , n.

Step 3: z(t) =
n−1∑
i=0

u(i)(0) t
i

i! .

Step 4: Compute the elements of Q(α) = [γij ] and Q(α+ω) = [θij ],
i, j = 0, . . . , n.

Step 5: Set and solve recursive trivariable system v, v = 1 : n/3.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 = z(0),
for v = 1 : n/3
Solution of the vth system determines
the unknown parameter.

system v :



[
a(3v−2)

]
− [z((3v − 2)h)]−

[
3v∑
k=0

g(ih)γi(3v−2)

]
−
[

3v∑
k=0

p(ih)γi(3v−2)ai

]
−
[
Γ(ω)

3v∑
i=0

θi(3v−2)ai
m

]
= 0,[

a(3v−1)

]
− [z((3v − 1)h)]−

[
3v∑
k=0

g(ih)γi(3v−1)

]
−
[

3v∑
i=0

p(ih)γi(3v−1)ai

]
−
[
Γ(ω)

3v∑
i=0

θi(3v−1)ai
m

]
= 0,[

a(3v)
]
− [z((3v)h)]−

[
3v∑
i=0

g(ih)γi(3v)

]
−
[

3v∑
i=0

p(ih)γi(3v)ai

]
−
[
Γ(ω)

3v∑
i=0

θi(3v)ai
m

]
= 0,

end.
Step 6: Calculate fully ai, i = 0, 1, . . . , n.
Step 7: Define CHFs: (ϕi(t), i = 0, 1, . . . , n).

Step 8: Determine the approximate solutions: un(t) =
n∑

i=0

aiϕi(t).

z(t) =

⌈α⌉−1∑
i=0

u(i)(0)
ti

i!
, α > 0, ω = 1− β, 0 < β < 1, t ∈ I(t).

Thus, un(t) satisfies the following equation:
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un(t) = z(t) + Iαt (g(t)) + Iαt (p(t)un(t)) + λΓ(ω)Iα+ω
t (umn (t)) . (58)

If the residual function En(t) is not zero, then we can obtain it by using the
following relation:

En(t) = en[u](t)− Jα
n [u](t)− V α+ω

n [um](t), (59)

where

en[u](t) = u(t)− un(t), (60)

Jα
n [u](t) =

1

Γ(α)

∫ t

0

(t− τ)
α−1

p(τ)(u(τ)− un(τ))dτ, (61)

and

V α+ω
n [um](t) =

λ

Γ(α+ ω)

∫ t

0

(t− τ)
α+ω−1

(um(τ)− umn (τ))dτ. (62)

Then, we get

|En(t)| ≤ |en[u](t)|+ |Jα
n [u](t)|+

∣∣V α+ω
n [um](t)

∣∣ . (63)

For t ∈ (ih, (i + 3)h), i = 0, 3, 6, . . . , n − 3, according to (44), the approxi-
mation of the absolute error using CHFs yields

|u(t)− un(t)| = O(h4). (64)

By using (60), we have
|en[u](t)| = O(h4), (65)

when h→ 0, |en[u](t)| → 0. Then, by using (61) and (64), we attain

|Jα
n [u](t)| =

1

Γ(α)

∣∣∣∣∫ t

0

(t− τ)
α−1

p(τ)(u(τ)− un(τ))dτ

∣∣∣∣
≤ |p(τ)|

Γ(α)

∫ t

0

(t− τ)
α−1 |u(τ)− un(τ)| dτ

≤ |p(τ)|
Γ(α)

∫ t

0

(t− τ)
α−1 |u(τ)− un(τ)| dτ

≤MO(h4), (66)

wherein

M = sup
t,τ∈[0,T ]

∣∣∣Γ−1(α)(t− τ)
α−1

p(τ)
∣∣∣ and whenh→ 0,

∣∣Jβ−α
n [u](t)

∣∣→ 0.

In addition, the following inequality holds [11]:
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|um(t)− umn (t)| ≤ mL |u(t)− un(t)| , (67)

where L =
∣∣∣(max(u(t), un(t)))m−1

∣∣∣. As well, from (62), (64), and (67), we
have ∣∣V α+ω

n [um](t)
∣∣ = 1

Γ(α+ ω)

∣∣∣∣λ ∫ t

0

(t− τ)
α+ω−1

(um(τ)− umn (τ))dτ

∣∣∣∣
≤ |λ|

Γ(α+ ω)

∫ t

0

(t− τ)
α+ω−1 |(um(τ)− umn (τ))| dτ

≤ mL |λ|
Γ(α+ ω)

∫ t

0

(t− τ)
α+ω−1 |(u(τ)− un(τ))| dτ

≤ KO(h4), (68)

wherein

K = sup
t,τ∈[0,T ]

∣∣∣λmLΓ−1(α+ ω)(t− τ)
α+ω−1

∣∣∣ and as h→ 0,
∣∣V α+ω

n [um](t)
∣∣→ 0.

Then, from relations (65), (66), (68), and (63), it is obvious that |En(t)| tends
to zero, as h→ 0, or n→ ∞.

7 Numerical examples

In this section, the theoretical results of the previous sections are used for
solving linear and nonlinear fractional integral-differential equations with the
weakly singular kernel, that is, the initial condition equation (1). For assess-
ing the accuracy of the scheme, let us define the maximum absolute error
(L∞-norm error) as

∥ξn∥∞ = sup
[ti=ih]ni=0

{|u(ti)− un(ti)|} . (69)

Using this definition, the order of convergence, with respect to this norm, is
introduced as follows:

Rate = log2
(

∥ξn∥∞
∥ξ2n∥∞

)
, (70)

For some problems, there are no exact solutions, so the L2-norm error is
calculated by the following formula:

∥̃ξn∥2 =

(
n∑

i=0

(un(ti)− u2n(ti))
2

) 1
2

, ti = ih, i = 0, . . . , n, (71)
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where un(t), n = T/h is the approximate solution defined as (49). In addi-
tion, the results of different values of α are compared with each other and
with MHFs method, [22].

Example 1. Consider a nonlinear integral-differential equation with weakly
singular kernel [22]:

C
◦ D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

(t− s)
−β
u2(s)ds, t ∈ [0, 1],

g(t) = 3t2 −

(√
πΓ (7)

Γ
(
15
6

) ) t 13
2 , p(t) = 0, u(0) = 0.

For α = 1 and β = 1
2 , the exact solution is u(t) = t3. Approximate

numerical results using different values of n are shown in Tables 1–3 and Fig-
ures 2–4. Table 1 shows the approximate and exact solutions to the problem
at some points. Also, the L∞-norm errors and convergence orders obtained
by the current method are compared with the MHFs method [22] and the
methods presented in [14, 5] in Table 2. Table 3 shows the comparison of
the result of the l2-norm error ∥̃ξn∥2 obtained by the proposed method. It is
clear from Table 2 that the results of the present method for less or similar n
are better than the results obtained in [22]. Figure 2 indicates the behavior
of absolute errors for Example 1. Also, Figure 3 shows the logarithm of the
L∞-norm errors. As can be seen from the plot, as n increases, the error
decreases. Also, the comparison of the results obtained for different values
of alpha with the exact solutions of the equation is plotted in Figure 4.

Table 1: Numerical results of Example 1

Points Exact Approximate Approximate Approximate
solutions solutions solutions solutions

s u(s) n = 12 n = 24 n = 48

0 0.00000000000 0.00000000000 0.00000000000 0.00000000000
1/12 0.00057870370 0.00057871890 0.00057870463 0.00057870368
1/6 0.00462962963 0.00462979683 0.00462962554 0.00462962982
1/4 0.01562500000 0.01562510533 0.01562500074 0.01562499998
1/3 0.03703703704 0.03703629382 0.03703707090 0.03703703603
5/12 0.07233796296 0.07233970584 0.07233791123 0.07233796502
1/2 0.12500000000 0.12500014128 0.12499999725 0.12499999984
7/12 0.19849537037 0.19849178055 0.19849551759 0.19849536600
2/3 0.29629629630 0.29630236028 0.29629611403 0.29629630318
3/4 0.42187500000 0.42187499884 0.42187498758 0.42187499953
5/6 0.57870370370 0.57869407976 0.57870407228 0.57870369262

11/12 0.77025462963 0.77026833822 0.77025420450 0.77025464509

1 1.00000000000 0.99999965644 0.99999997045 0.99999999902

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 500–531



Ebrahimi and Biazar 522

Table 2: Comparison of the L∞-norm error and convergence order for Example 1

MHFs method [22] CHFs method
n ∥ξn∥∞ Rate of convergence n ∥ξn∥∞ Rate of convergence
4 4.81704E − 03 3.93 3 5.64350E − 03 4.22
8 3.15569E − 04 3.49 6 3.03330E − 04 4.47
16 2.81379E − 05 3.88 12 1.37086E − 05 4.71
32 1.90987E − 06 3.93 24 5.24867E − 07 4.85
64 1.25460E − 07 3.95 48 1.82605E − 08 4.92
128 8.09506E − 09 3.97 96 6.04389E − 10 4.96
256 5.16785E − 10 − 192 1.950051E − 11 −

Method presented in [14] Method presented in [5]
n ∥ξn∥∞ ∥ξn∥∞
4 3.52E − 09 3.5E − 04
8 1.40E − 14 1.11022E − 16
16 1.51E − 14 1.11022E − 16

Table 3: Numerical results of the L2-norm error functions ∥̃ξn∥2 for Example 1

n 3 6 12 24 48 96 192
∥̃ξn∥2 7.9E − 03 3.5E − 04 1.9E − 05 9.3E − 07 4.4E − 08 2.0E − 09 9.6E − 11
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Figure 2: Absolute errors of Example 1, for n = 12, 24, 48

Example 2. Consider the following nonlinear fractional integral-differential
equation with weakly singular kernel [22] :

C
◦ D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

(t− s)
−β
u2(s)ds, t ∈ [0, 1],

g(t) =
3Γ
(
1
2

)
4Γ
(
11
6

) t 5
6 − t

5
2 − 32

35
t
7
2 ,

p(t) = t, u(0) = 0.
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Figure 3: Logarithm of the L∞-norm error in Example 1
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Figure 4: Exact and approximate solutions of Example 1, for n = 12

For α = 2
3 and β = 1

2 , the analytic solution is u(t) = t
3
2 . Approximate

numerical results using different values of n are shown in Tables 4–6, and Fig-
ures 5–7. Table 4 shows the approximate and exact solutions to the problem
at some points. Table 5 indicates the L∞-norm errors and convergence orders
for various values of n. Table 6 shows the L2-norm errors at some values of n.
As can be compared in Table 5, this new method provides a higher order of
convergence compared to the other method. Figure 5 indicates the absolute
errors of Example 2, at n = 12, 24, 48. Figure 6 shows that the logarithm
of the L∞-norm error decreases as n increases. A comparison between the
changes in the fractional orders of the equation is shown in Figure 7.

Example 3. Consider the following linear fractional integral-differential
equation with weakly singular kernel [22]:

C
◦ D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

(t− s)
−β
u(s)ds, t ∈ [0, 1],

g(t) =
6t

8
3

Γ
(
11
3

) +(32

35
−

Γ
(
1
2

)
Γ
(
7
3

)
Γ
(
17
6

) )
t
11
6 + Γ

(
7

3

)
t,
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Table 4: Numerical results of Example 2

Points Exact Approximate Approximate Approximate
solutions solutions solutions solutions

s u(s) n = 12 n = 24 n = 48

0 0.00000000 0.00000000 0.00000000 0.00000000
1/12 0.02405626 0.02340582 0.02394753 0.02400902
1/6 0.06804138 0.06771773 0.06790284 0.06800459
1/4 0.12500000 0.12449685 0.12487612 0.12496621
1/3 0.19245009 0.19199415 0.19232923 0.19241677
5/12 0.26895718 0.26849729 0.26883160 0.26892254
1/2 0.35355339 0.35305089 0.35341692 0.35351566
7/12 0.44552819 0.44495789 0.44537319 0.44548528
2/3 0.54433105 0.54365866 0.54414702 0.54428012
3/4 0.64951905 0.64868490 0.64929131 0.64945599
5/6 0.76072577 0.75964752 0.76043179 0.76064433

11/12 0.87764152 0.87619255 0.87724539 0.87753181

1 1.00000000 0.99796079 0.99944320 0.99984577

Table 5: Comparison of the L∞-norm error and convergence order for Example 2

MHFs method [22] CHFs method
n ∥ξn∥∞ Rate of convergence n ∥ξn∥∞ Rate of convergence
4 1.39991E − 02 2.08 3 4.05382E − 02 2.38
8 3.30803E − 03 1.90 6 7.80949E − 03 1.94
16 8.84780E − 04 1.84 12 2.03921E − 03 1.87
32 2.46509E − 04 1.83 24 5.56795E − 04 1.85
64 6.92324E − 05 1.51 48 1.54232E − 04 1.84
128 2.42498E − 05 1.50 96 4.30102E − 05 1.84
256 8.57216E − 06 − 192 1.20325E − 05 −

Table 6: Numerical results of the L2-norm error functions ∥̃ξn∥2 for Example 2

n 3 6 12 24 48 96 192
∥̃ξn∥2 3.5E − 02 7.2E − 03 2.4E − 03 8.5E − 04 3.3E − 04 1.3E − 04 5.0E − 05

p(t) = −32

35
t
1
2 , u(0) = 0.

For α = 1
3 and β = 1

2 , the analytic solution is u(t) = t3 + t
4
3 . Tables 7–9

and Figures 8–10 show approximate numerical results using different values
of n. Table 7 indicates the approximate and exact solutions to the problem
at some grid points. Table 7 shows the advantage of the proposed method
compared to the MHF method by presenting the order of convergence and
the maximum norm error. Figure 8 shows the behavior of absolute errors
for Example 3. Figure 9 shows the logarithm of the L∞-norm errors. In
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Figure 5: Absolute errors of Example 2, for n = 12, 24, 48
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Figure 6: Logarithm of the L∞-norm error in Example 2
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Figure 7: Exact and approximate solutions of Example 2,for n = 12
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addition, a comparison of the results for different values of α with the exact
solution of the equation is shown in Figure 10.

Table 7: Numerical results of Example 3

Points Exact Approximate Approximate Approximate
solutions solutions solutions solutions

s u(s) n = 12 n = 24 n = 48

0 0.00000000 0.00000000 0.00000000 0.00000000
1/12 0.03697789 0.03708156 0.03699820 0.03698362
1/6 0.09634983 0.09644877 0.09637681 0.09635574
1/4 0.17311513 0.17323059 0.17314347 0.17312128
1/3 0.26815746 0.26828582 0.26818799 0.26816396
5/12 0.38354663 0.38368969 0.38357860 0.38355352
1/2 0.52185026 0.52199562 0.52188416 0.52185755
7/12 0.68589934 0.68605454 0.68593554 0.68590705
2/3 0.87868327 0.87885234 0.87872136 0.87869145
3/4 1.10329522 1.10346969 1.10333552 1.10330386
5/6 1.36290039 1.36308529 1.36294318 1.36290952

11/12 1.66071634 1.66091514 1.66076132 1.66072598
1 2.00000000 2.00020619 2.00004743 2.00001015

Table 8: Comparison of the L∞-norm error and convergence order for Example 3

MHFs method [22] CHFs method
n ∥ξn∥∞ Rate of convergence n ∥ξn∥∞ Rate of convergence
4 1.14967E − 03 1.86 3 1.68472E − 03 1.20
8 3.15569E − 04 1.83 6 7.35848E − 04 1.84
16 8.90424E − 05 2.20 12 2.06192E − 04 2.12
32 1.93665E − 05 2.30 24 4.74299E − 05 2.22
64 3.94225E − 06 2.09 48 1.01541E − 05 2.27
128 9.26153E − 07 2.13 96 2.10201E − 06 2.30
256 2.12088E − 07 − 192 4.27476E − 07 −

Table 9: Numerical results of the L2-norm error ∥̃ξn∥2 for Example 3

n 3 6 12 24 48 96 192
∥̃ξn∥2 1.2E − 03 1.0E − 03 4.2E − 04 1.4E − 04 4.2E − 05 1.2E − 05 3.6E − 06

8 Conclusion

In this paper, we proposed a numerical scheme for solving a class of non-
linear fractional integral-differential equations with weakly singular kernels
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Figure 8: Absolute errors of Example 3, for n = 12, 24, 48
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Figure 9: Logarithm of the L∞-norm error in Example 3
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Figure 10: Exact and approximate solutions of Example 3, for n = 12

based on CHFs. CHF and the corresponding operational matrix were in-
troduced. The proposed method transforms the original problem into an
iterative algorithm, including polynomial equations with three unknown co-
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efficients, using the fractional-order operational matrix of integration. An
analysis of the method’s absolute errors and convergence was conducted. In
order to validate the accuracy and effectiveness of this new method, three
numerical examples were presented. In Example 1, the absolute error is lower
at the nodal points near the beginning of the interval, as shown in Figure
2. Table 2 shows that the new method offers more accurate solutions at the
same lengths h than the MHFs approaches. In Examples 2 and 3, the error
clearly increases as the time variable approaches one; see Figures 5 and 8,
respectively. A study of the results shows that, generally, as n increases,
the accuracy of the approximate solution increases, and the absolute error
decreases. One of the advantages of this proposed algorithm is that instead
of solving a system of (n+ 1)× (n+ 1) equations, it only needs to solve n/3
systems of three-variable nonlinear equations. In addition, the order of con-
vergence for the cubic hat functions is O(h4), while the order of convergence
for the generalized hat functions method [6] and the MHFs method [22] are
O(h2) and O(h3), respectively. Finally, the proposed method (CHFs) can be
used for a large number of similar problems, and we will continue to work on
developing this method.
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Nearest fuzzy number of type L-R to an
arbitrary fuzzy number with applications

to fuzzy linear system
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Abstract

The fuzzy operations on fuzzy numbers of type L-R are much easier
than general fuzzy numbers. It would be interesting to approximate a
fuzzy number by a fuzzy number of type L-R. In this paper, we state and
prove two significant application inequalities in the monotonic functions set.
These inequalities show that under a condition, the nearest fuzzy number
of type L-R to an arbitrary fuzzy number exists and is unique. After that,
the nearest fuzzy number of type L-R can be obtained by solving a linear
system. Note that the trapezoidal fuzzy numbers are a particular case of
the fuzzy numbers of type L-R. The proposed method can represent the
nearest trapezoidal fuzzy number to a given fuzzy number. Finally, to
approximate fuzzy solutions of a fuzzy linear system, we apply our idea to
construct a framework to find solutions of crisp linear systems instead of
the fuzzy linear system. The crisp linear systems give the nearest fuzzy
numbers of type L-R to fuzzy solutions of a fuzzy linear system. The
proposed method is illustrated with some examples.
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1 Introduction

One of the most important topics related to fuzzy mathematics is to study
fuzzy numbers. Fuzzy numbers were first introduced by Zadeh [22, 23, 24]
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and then were developed by other researchers [16, 11]. Fuzzy numbers are
important essential tools to represent uncertainty models, formalize fuzzy
variable functions, defuzzification [3], and linguistic variables [4]. The re-
searchers in [2] proposed an efficient approach to assigning a distance between
fuzzy numbers and describing a pseudo-metric on the set of fuzzy numbers
and a metric on the set of trapezoidal fuzzy numbers. Trapezoidal fuzzy
numbers have a good application in dealing with uncertain information. In
fact, to describe the specification of some uncertain events, we have to use
fuzzy numbers. Voxman [20] represented two canonical representations of
discrete fuzzy numbers. Nevertheless, some fuzzy numbers are too compli-
cated. Hence, the approximation of general fuzzy numbers with regular fuzzy
numbers like fuzzy numbers of type L-R, help decision-makers to make bet-
ter decisions. Trapezoidal fuzzy numbers and triangular fuzzy numbers are
particular cases of fuzzy numbers of type L-R. Abbasbandy et al. showed
that the nearest trapezoidal fuzzy number to a given fuzzy number exists
and is unique. Hajjari [12] used the concept of 0.5-Level and mean Core to
approximate fuzzy numbers. In [13], authors introduced a trapezoidal ap-
proximation of an arbitrary fuzzy number by Core and support of the fuzzy
numbers. Some researchers presented efficient methods to find the nearest
trapezoidal fuzzy number or triangular fuzzy number to a given fuzzy num-
ber [8, 21, 5, 10]. Lucian Coroianu [9] proved that quadratic programs give
the nearest trapezoidal approximation of general fuzzy numbers with respect
to weighted metrics with or without additional constraints. Amirfakhrian
and Bagherian [6, 7] represented a parametric distance and used it to find
the nearest approximation of a given fuzzy Number. Zhou, Yang, and Wang
[25] represented fuzzy arithmetic on L-R fuzzy numbers and showed that
the proposed model could be transferred to an equivalent crisp program-
ming model by the operational law and then solved with the aid of some
well-developed optimization software packages. Ghanbari et al. [14] used
an effective approximate multiplication operation on L-R fuzzy numbers and
their application.

In this paper, we present two inequalities in monotonic function. These
inequalities show that under a condition, the nearest fuzzy number of type
L-R to a given fuzzy number exists and is unique. For this purpose, we rep-
resent a constrained optimization problem and prove that it has a unique
solution. The unique solution is obtained by solving a linear system. Since
the trapezoidal fuzzy numbers are a kind of fuzzy number of type L-R, our
method can find the nearest trapezoidal fuzzy number to an arbitrary fuzzy
number. Here some examples are given to illustrate the main results. Due
to the presented method, it is easy to obtain the nearest fuzzy numbers of
type L-R to the solutions of a fuzzy linear system, fuzzy linear differential
equations, or fuzzy linear integral equations, etc. For instance, finding the
nearest fuzzy numbers of type L-R to fuzzy solutions of a linear system is ex-
plained. An example is given to approximate a fuzzy solution to a 2×2 fuzzy
linear system. In Section 2, we recall some notations and basic definitions of
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fuzzy sets and fuzzy numbers. In Section 3, two basic inequalities and theo-
rems are stated and proved, and the proposed method is described. Section
5 represents our method with an example to approximate fuzzy solutions of
a fuzzy linear system with L-R fuzzy numbers.

2 Notations and basic definitions

The concept of real numbers is generalized to the concept of fuzzy numbers.
Fuzzy numbers have been defined based on their membership functions as
below.

Definition 1. [17] A fuzzy number u is a fuzzy set of the real line with the
following conditions:
(i) u is normal.
(ii) The support of u is bounded.
(iii) The membership function of u is continuous and convex.

The set of all such fuzzy numbers is represented by E1. Considering four
real numbers α1 ≤ α2 ≤ α3 ≤ α4, the membership function of fuzzy numbers
can be introduced as the following form:

u(x) =



0 if x < α1,

u1(x) if α1 ≤ x < α2,

1 if α2 ≤ x ≤ α3,

u2(x) if α3 ≤ x < α4,

0 if α4 < x,

in which u1 : [α1, α2] → [0, 1] is a nondecreasing function and u2 : [α3, α4] →
[0, 1] is a nonincreasing function. The fuzzy number as the following form,
completely characterized by four real numbers α1 ≤ α2 ≤ α3 ≤ α4, is called
an L-R fuzzy number:

u(x) =



0 if x < a− α,

L(a−x
α ) if a− α ≤ x < a,

1 if a ≤ x ≤ b,

R(x−b
β ) if b ≤ x ≤ b+ β,

0 if x > b+ β,

in which, α1 = a− α, α2 = a, α3 = b, α4 = b+ β, and

L : [0, 1] → [0, 1], R : [0, 1] → [0, 1]

are continuous and decreasing shape functions such that L(0) = R(0) = 1
and L(1) = R(1) = 0. It is mostly denoted in short as u = (a, b, α, β)LR.
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If L(x) = R(x), then u is denoted by u = (a, b, α, β)L. Suppose that u =
(a1, b1, α1, β1)L and v = (a2, b2, α2, β2)L are two fuzzy numbers of type L-L
and that k ∈ R. Then the following statements hold:

1) u+ v = (a1 + a2, b1 + b2, α1 + α2, β1 + β2)L.

2) ku(x) =

 (ka1, kb1, kα1, kβ1)L if k ≥ 0,

(kb1, ka1, kβ1, kα1)L if k < 0,

3) u− v = (a1 − b2, a2 − b1, α1 + α2, β1 + β2)L.

Definition 2. Following [15], we show an arbitrary fuzzy number by an
ordered pair of functions (u(r), u(r)); 0 ≤ r ≤ 1, that satisfy the following
conditions:

1) u(r) is a bounded left-continuous nondecreasing over [0, 1].

2) u(r) is a bounded left-continuous nonincreasing over [0, 1].

3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

If u = (u(r), u(r) and v = (v(r), v(r) are two fuzzy numbers, then the follow-
ing conditions holds

1.
u+ v = u+ v, u+ v = u+ v, (1)

2.
ku = ku, ku = ku if k ≥ 0, (2)

3.
ku = ku, ku = ku if k < 0. (3)

The parametric form of fuzzy number of type u = (a, b, α, β)LR is repre-
sented as

u = (a− αL−1(r), b+ βR−1(r)).

Definition 3. [18, 3] Let A and B be two arbitrary fuzzy numbers. A
distance between A and B is denoted by D(A,B) and defined as below:

D(A,B) = {
∫ 1

0

(A(r)−B(r))2dr +

∫ 1

0

(A(r)−B(r))2dr} 1
2 . (4)

Note that D(A,B) is metric in E1 and (E1, D) is a complete space. It is
obviously that

A = B ⇔ A(r) = B(r), r ∈ [0, 1]. (5)
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3 Approximation of general fuzzy number by a given
L-R fuzzy number

Let A be an arbitrary fuzzy number. We try to approximate it by a known
fuzzy number of type L-R, N(A) = (a, b, α, β)LR such that N(A) is the
nearest to A with respect to the certain distance in (4). Hence an optimal
problem is considered, and then an optimal solution is obtained with an easy
method. For this purpose, we denote N(A) as

N(A) = (a, a+ ξ1, ξ2, ξ3)LR,

in which ξi ≥ 0 for i = 1, 2, 3, and b = a+ ξ1, α = ξ2, β = ξ3. For finding the
nearest fuzzy number of type L-R to the arbitrary fuzzy number A, we have
to solve the optimization problem as below:minD(A,N(A))(a, ξ1, ξ2, ξ3)

s.t.
ξi ≥ 0, i = 1, 2, 3,

(6)

in which

D(A,N(A))(a, ξ1, ξ2, ξ3) =

∫ 1

0

(A(r)− a+ ξ1L
−1(r))2dr

+

∫ 1

0

(A(r)− (a+ ξ2 + ξ3R
−1(r)))2dr.

To discuss the existence and uniqueness of the solutions to the optimization
problem (6), we need to represent some important inequalities as below:

Lemma 1. Let f and g be two integrable functions from an interval [a, b] to
R. Then the following inequalities hold:

1. If g is a nondecreasing (nonincreasing) function and f is a nonincreasing
(nondecreasing) function, then∫ b

a

f(x)g(x)dx ≤
∫ b

a
f(x)dx

∫ b

a
g(x)dx

b− a
. (7)

2. If g and f are nonincreasing (nondecreasing) functions over [a, b], then∫ b

a

f(x)g(x)dx ≥
∫ b

a
f(x)dx

∫ b

a
g(x)dx

b− a
. (8)

3. Regarding to part 1, if f and g are not constant functions over [a, b], then
inequality (7) becomes
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a

f(x)g(x)dx <

∫ b

a
f(x)dx

∫ b

a
g(x)dx

b− a
. (9)

4. Regarding to part 2, if f and g are not constant functions over [a, b], then
inequality (8) becomes∫ b

a

f(x)g(x)dx >

∫ b

a
f(x)dx

∫ b

a
g(x)dx

b− a
. (10)

Proof. Since f and g are monotonic functions over [a, b], they are integrable
functions. Without loss of generality, assume that g is a nonincreasing and
that f is a nondecreasing function over the interval [a, b]. For each x, y ∈
[a, b], if x ≤ y, then f(x) ≤ f(y) and g(y) ≤ g(x). Similarly, if y ≤ x,
then f(x) ≥ f(y) and i g(y) ≥ g(x). Thus for each x, y ∈ [a, b], we have
(f(x)− f(y))(g(y)− g(x)) ≥ 0. we conclude that

1

2
{
∫ b

a

∫ b

a

(f(x)− f(y))(g(y)− g(x))dydx} ≥ 0. (11)

Hence

1

2

∫ b

a

∫ b

a

(f(x)g(y)− f(x)g(x)− f(y)g(y) + f(y)g(x))dydx ≥ 0. (12)

Since∫ b

a

∫ b

a

f(x)g(y)dydx =

∫ b

a

∫ b

a

f(y)g(x)dydx =

∫ b

a

f(x)dx

∫ b

a

g(y)dy

=

∫ b

a

f(y)dy

∫ b

a

g(x)dx,∫ b

a

∫ b

a

f(x)g(x)dydx =

∫ b

a

∫ b

a

f(y)g(y)dydx = (b− a)

∫ b

a

f(y)g(y)dy

= (b− a)

∫ b

a

f(x)g(x)dx,

then (12) yields the following inequality:

1

2

{∫ b

a

f(x)dx

∫ b

a

g(y)dy − (b− a)

∫ b

a

f(x)g(x)dx

− (b− a)

∫ b

a

f(y)g(y)dy +

∫ b

a

f(y)dy

∫ b

a

g(x)dx
}
≥ 0.

Therefore
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a

f(x)dx

∫ b

a

g(y)dy − (b− a)

∫ b

a

f(x)g(x)dx ≥ 0.

We conclude that∫ b

a

f(x)dx

∫ b

a

g(x)dx ≥ (b− a)

∫ b

a

f(x)g(x)dx.

It results that ∫ b

a

f(x)g(x)dx ≤
∫ b

a
f(x)dx

∫ b

a
g(x)dx

b− a
.

Similarity, inequality (8) can be proved. If g is a nonincreasing function and
f is a nondecreasing function over the interval [a, b] such that they are not
constant functions over [a, b], then inequality (11) becomes

1

2
{
∫ b

a

∫ b

a

(f(x)− f(y))(g(y)− g(x))dydx} > 0.

Similar to what was stated in the proof of the part 1, we obtain (9). Inequality
(10) is provided in the same manner.

Corollary 1. Suppose that g : [0, 1] → [0, 1] is integrable and decreasing
shape functions such that g(0) = 1 and g(1) = 0. Then the following proper-
ties hold:

1 If f is a nondecreasing continuous function over [0, 1], then
∫ 1

0
f(x)g(x)dx ≤∫ 1

0
f(x)dx

∫ 1

0
g(x)dx.

2 If f is a nonincreasing continuous function over [0, 1], then
∫ 1

0
f(x)g(x)dx ≥∫ 1

0
f(x)dx

∫ 1

0
g(x)dx.

3 Since g is not constant,
∫ 1

0
(g(x))2dx > (

∫ 1

0
(g(x))dx)2.

Theorem 1. Let A = (A(r), A(r)) be the parametric form of the given fuzzy
number A. The following inequalities hold:

1
∫ 1

0
A(r)L−1(r)dr ≤

∫ 1

0
A(r)dr

∫ 1

0
L−1(r)dr,

2
∫ 1

0
A(r)R−1(r)dr ≥

∫ 1

0
A(r)dr

∫ 1

0
R−1(r)dr,

3
∫ 1

0
(R−1(r))2dr > (

∫ 1

0
R−1(r)dr)2,

4
∫ 1

0
(L−1(r))2dr > (

∫ 1

0
L−1(r)dr)2.

Proof. We know that the following functions satisfy the hypotheses of Lemma
1 and Corollary 1:

a: L : [0, 1] → [0, 1] is a decreasing function,
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b: R : [0, 1] → [0, 1] is a decreasing function,

c: A(r) is a nondecreasing function over [0, 1],

d: A(r) is a nonincreasing function over [0, 1].

Then the proof of theorem is deduced.

For simplicity in computations, we take

p =

∫ 1

0

L−1(r)dr, p′ =

∫ 1

0

(L−1(r))2dr,

q =

∫ 1

0

R−1(r)dr, q′ =

∫ 1

0

(R−1(r))2dr. (13)

Also, we take

γ1 =

∫ 1

0

A(r)dr, γ2 =

∫ 1

0

L−1(r)A(r)dr,

γ3 =

∫ 1

0

A(r)dr, γ4 =

∫ 1

0

R−1(r)A(r)dr. (14)

The last theorem immediately gives the following results:

p′ − p2 > 0, q′ − q2 > 0, γ2 − pγ1 ≤ 0, γ4 − qγ3 ≥ 0. (15)

Now we prove that the optimization problem (6) has a unique solution, and
then the optimal solution is obtained by solving a linear system

Theorem 2. Let A be an arbitrary fuzzy number. Then the nearest fuzzy
number of type L-R to A exists and is unique.

Proof. To find the optimal solution for (6), we take

∂

∂a
D(A,N(A))(a, ξ1, ξ2, ξ3) = 0,

∂

∂ξ1
D(A,N(A))(a, ξ1, ξ2, ξ3) = 0,

∂

∂ξ2
D(A,N(A))(a, ξ1, ξ2, ξ3) = 0,

∂

∂ξ3
D(A,N(A))(a, ξ1, ξ2, ξ3) = 0.

Hence we obtain the following system:
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∫ 1

0
(A(r)− a+ ξ1L

−1(r))dr +
∫ 1

0
(A(r)− (a+ ξ2 + ξ3R

−1(r)))dr = 0,∫ 1

0
(A(r)− a+ ξ1L

−1(r))L−1(r)dr = 0,∫ 1

0
(A(r)− (a+ ξ2 + ξ3R

−1(r)))dr = 0,∫ 1

0
(A(r)− (a+ ξ2 + ξ3R

−1(r)))R−1(r)dr = 0.

The following linear system is obtained:

2a− ξ1
∫ 1

0
L−1(r)dr + ξ2 + ξ3

∫ 1

0
R−1(r)dr =

∫ 1

0
(A(r) +A(r))dr,

a
∫ 1

0
L−1(r)dr − ξ1

∫ 1

0
(L−1(r))2dr =

∫ 1

0
A(r)L−1(r)dr,

a+ ξ2 + ξ3
∫ 1

0
R−1(r)dr =

∫ 1

0
A(r)dr,

a
∫ 1

0
R−1(r)dr + ξ2

∫ 1

0
R−1(r)dr + ξ3

∫ 1

0
(R−1(r))2dr =

∫ 1

0
A(r)R−1(r)dr.

(16)
referring to (13) and (14), the linear equations system (16) becomes

2 −p 1 q
p −p′ 0 0
1 0 1 q
q 0 q q′



a
ξ1
ξ2
ξ3

 =


γ1 + γ3
γ2
γ3
γ4

 .

We perform elementary row operations on the coefficient matrix and the
right-hand side vector, the following system is obtained:

1 −p 0 0
p −p′ 0 0
1 0 1 q
q 0 q q′



a
ξ1
ξ2
ξ3

 =


γ1
γ2
γ3
γ4

 . (17)

The coefficient matrix is a block matrix. Based on the definition of the
determinate of matrices, it is obvious that

det


1 −p 0 0
p −p′ 0 0
1 0 1 q
q 0 q q′

 = det

(
1 −p
p −p′

)
det

(
1 q
q q′

)
= (p2 − p′)(q′ − q2) ̸= 0.

Due to the results in (15), the linear equations system (17) has a unique
solution. To ensure that this linear system gives the optimal solution of (6),
we need to prove that ξ1, i = 1, 2, 3, are nonnegative. Consider the first and
second equations of the linear equations system (17). We have
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∫ 1

0
A(r))dr,

pa− p′ξ1 =
∫ 1

0
A(r)L−1(r)dr.

(18)

To delete the variable a, we multiply the first row by −p and added the
results to the second row. The results give ξ1 as below:

ξ1 =
p
∫ 1

0
A(r)dr −

∫ 1

0
A(r)L−1(r)dr

p′ − p2

=

∫ 1

0
L−1(r)dr

∫ 1

0
A(r)dr −

∫ 1

0
A(r)L−1(r)dr

p′ − p2
, (19)

By subsisting to (19) and using (15), we have

ξ1 =
pγ1 − γ2
p′ − p2

≥ 0.

From the third and forth equations of (17), we havea+ ξ2 + qξ3 =
∫ 1

0
A(r)dr,

qa+ qξ2 + q′ξ3 =
∫ 1

0
A(r)R−1(r)dr.

Performing elementary row operations on the linear equations system, a and
ξ2 are deleted, and a new linear equation is obtained as below:

ξ3 =

∫ 1

0
A(r)R−1(r)dr − q

∫ 1

0
A(r)dr

q′ − q2

=

∫ 1

0
A(r)R−1(r)dr −

∫ 1

0
R−1(r)dr

∫ 1

0
A(r)dr∫ 1

0
(R−1(r))2dr − (

∫ 1

0
R−1(r)dr)2

.

It means that
ξ3 =

γ4 − qγ3
q′ − q2

.

Due to (15), we conclude that ξ3 ≥ 0. Consider the first and third linear
equations of (17), then perform the elementary operation for deleting a. We
have

ξ2 =

∫ 1

0

A(r)dr −
∫ 1

0

A(r)dr − qξ3 − pξ1.

By substituting ξ1 and ξ3, we have

ξ2 = γ3 − γ1 − q
γ4 − qγ3
q′ − q2

− p
pγ1 − γ2
p′ − p2

.

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 532–552



Alavi 542

Due to the assumption and results in (15), we conclude that ξ2 ≥ 0. Then
N(A) = (a, a + ξ2, ξ1, ξ3)LR, is the nearest fuzzy number to A. If γ3 − γ1 <
q γ4−qγ3

q′−q2 − ppγ1−γ2

p′−p2 , then ξ2 < 0 and (a, ξ1, ξ2, ξ3) is a global optimal solution
to minD(A,N(A))(a, ξ1, ξ2, ξ3), but N(A) = (a, a + ξ2, ξ1, ξ3)LR, is not a
fuzzy number. In this case, we use the quadratic penalty method on (6), as

minD(A,N(A))(a, ξ1, ξ2, ξ3) + cj

3∑
j=1

max{0,−ξj}, (20)

where cj ≥ 0. Due to [19], the optimal solution to (20) exists and is obtained
as (a, ξ1, ξ2, ξ3), in which ξ1, ξ2, ξ3 ≥ 0. Then the nearest fuzzy number of
type L-R to A is N(A) = (a, a+ ξ1, ξ2, ξ3)LR.

Corollary 2. Let n > 0. Then A = (−(1− r)n, (1− r)n) is a fuzzy number.
Consider L−1 = R−1 = 1− r.

1: For 0 < n ≤ 1, we have ξ2 ≥ 0. Therefore, (17) gives N(A) = (a, a +
ξ1, ξ2, ξ3)LR, which is the nearest trapezoidal fuzzy number to A with
respect to distance (4). For instance, if A = (−(1 − r)0.5, (1 − r)0.5),
then N(A) = (−0.26, 0.53, 0.53, 0.8)T .

2: For 1 < n, we have ξ2 < 0. Therefore, (17) does not give the nearest
trapezoidal fuzzy number to A. For instance, if A = (−(1−r)2, (1−r)2)
we cannot use linear system (17). Using quadratic penalty method, we
have N(A) = (0, 0, 0.73, 0.73)T that is a triangular fuzzy number.

4 Results and examples

In this section, we represent three examples to show the efficiency of our
method. The first example uses the fuzzy number of type L-L, the second
example uses the trapezoidal fuzzy number, and the third example uses the
fuzzy number of type L-R. Finally, we represent a kind of fuzzy number that
may not have the nearest fuzzy number of type L-R.

Example 1. Let us consider the fuzzy number

A =


1− (x−5)2

4 , 3 ≤ x ≤ 7,

0 otherwise.

Take L(x) = R(x) =
√
1− x. Then L−1(r) = R−1(r) = 1 − r2. Obviously

the parametric form of A is

A = (5− 2
√
1− r, 5 + 2

√
1− r).
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Considering (17), to obtain the entries of the coefficient matrix, we take

p = q =

∫ 1

0

L−1(r)dr =

∫ 1

0

(1− r2)dr = 0.66,

p′ = q′ =

∫ 1

0

(L−1(r))2dr =

∫ 1

0

(1− r2)2dr = 0.53,

and entries of the right-hand side of the linear system (17) are obtained as
below:

γ1 =

∫ 1

0

A(r)dr =

∫ 1

0

(5− 2
√
1− r)dr = 3.67,

γ2 =

∫ 1

0

A(r)L−1(r)dr =

∫ 1

0

(5− 2
√
1− r)(1− r2)dr = 2.30,

γ3 =

∫ 1

0

A(r)dr =

∫ 1

0

(5 + 2
√
1− r)dr = 6.33,

γ4 =

∫ 1

0

A(r)R−1(r)dr =

∫ 1

0

(5 + 2
√
1− r)(1− r2)dr = 4.36.

Hence the linear system is obtained as follows:
1 −0.66 0 0

0.66 −0.53 0 0
1 0 1 0.66

0.66 0 0.66 0.53



a
ξ1
ξ2
ξ3

 =


3.67
2.30
6.33
4.36

 .

Solving this linear system, we have a = 4.54, ξ1 = 1.32, ξ2 = 0.72, ξ3 = 1.60.
Therefore the nearest fuzzy number of type L-R to A is

N(A) = (3.18, 4.50, 0.72, 1.60)L.

Figure 1 compares the graph of A and N(A).

In particular, if L(r) = R(r) = 1− r, then p = q =
∫ 1

0
(1− r)dr = 1

2 and
p′ = q′ =

∫ 1

0
(1 − r)2dr = 1

3 . The linear equations system (17) becomes the
following system and gives the nearest trapezoidal fuzzy number to the given
fuzzy number A = (A(r), A(r)):

1 − 1
2 0 0

1
2 − 1

3 0 0
1 0 1 1

2
1
2 0 1

2
1
3



a
ξ1
ξ2
ξ3

 =


∫ 1

0
A(r)dr∫ 1

0
(1− r)A(r)dr∫ 1

0
A(r)dr∫ 1

0
(1− r)A(r)dr

 . (21)

Example 2. Let us consider the fuzzy number
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Figure 1: Membership functions of A (line) and N(A) (point), where N(A) is the nearest
fuzzy number of type L-R with L−1(r) = R−1(r) = 1− r2 to A

A =


1− (x−5)2

4 , 3 ≤ x ≤ 7,

0 otherwise.

The parametric form of A is A = (5− 2
√
1− r, 5+ 2

√
1− r). For finding the

nearest trapezoidal fuzzy number to fuzzy number A, it is enough to take
L(x) = R(x) = 1 − x ((L−1(r) = R−1(r) = 1 − r) and determine all entries
of the right-hand side of linear system (21). Then

γ1 =

∫ 1

0

A(r)dr =

∫ 1

0

(5− 2
√
1− r)dr = 3.67,

γ2 =

∫ 1

0

A(r)L−1(r)dr =

∫ 1

0

(5− 2
√
1− r)(1− r)dr = 1.70,

γ3 =

∫ 1

0

A(r)dr =

∫ 1

0

(5 + 2
√
1− r)dr = 6.33,

γ4 =

∫ 1

0

A(r)R−1(r)dr =

∫ 1

0

(5 + 2
√
1− r)(1− r)dr = 3.30.

Thus the linear system is obtained as
1 − 1

2 0 0
1
2 − 1

3 0 0
1 0 1 1

2
1
2 0 1

2
1
3



a
ξ1
ξ2
ξ3

 =


3.67
1.70
6.33
3.30

 .
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By solving this linear system, we have a = 4.47, ξ1 = 1.60, ξ2 = 1.05,
ξ3 = 1.62. Therefore the nearest trapezoidal fuzzy number to A is N(A) =
(4.47, 4.47 + ξ1, ξ2, ξ3)T ; that is,

N(A) = (4.47, 5.52, 1.60, 1.62)T .

Figure 2 compares the graph of A and N(A).

Figure 2: Membership functions of A (point) and N(A) (line), where N(A) is the nearest
trapezoidal fuzzy number to A

Example 3. Consider the fuzzy number

A =



sin(πx2 ), 0 ≤ x ≤ 1,

3−x
2 , 1 ≤ x ≤ 3,

0, otherwise.

Let L(x) =
√
1− x and R(x) = 1 − x. We want to obtain the nearest fuzzy

number of type L-R to A. The parametric form of A is A = ( 2π arcsin(r), 3−
2r). One can easily show that L−1(r) = 1 − r2 and R−1(r) = 1 − r. re-
ferring to (14), we have γ1 =

∫ 1

0
A(r)dr =

∫ 1

0
( 2πarcsin(r))dr = 0.363, γ2 =∫ 1

0
A(r)L−1(r)dr = 0.172, γ3 =

∫ 1

0
A(r)dr = 2 and γ4 =

∫ 1

0
A(r)R−1(r)dr =

1.167. Hence the linear system is obtained as
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1 −0.667 0 0

0.667 −0.533 0 0
1 0 1 0.500

0.500 0 0.500 0.333



a
ξ1
ξ2
ξ3

 =


0.363
0.172
2.000
1.167

 .

Solving this linear system, we have a = 0.918, ξ1 = 0.832, ξ2 = 0.039,
ξ3 = 2.084. Therefore the nearest fuzzy number of type L-R to A is N(A) =
(0.918, 0.918 + ξ2, ξ1, ξ2)LR; that is,

N(A) = (0.918, 1.147, 0.832, 2.083)LR.

Figure 3 compares the graph of A and N(A).

Figure 3: Membership functions of A (line) and N(A) (point), where N(A) is the nearest
fuzzy number of type L-R to A with L−1(r) = 1− r2 and R−1(r) = 1− r

5 Fuzzy linear system

In this section, we focus on the fuzzy linear system as AX = b, in which
the entries of the right-hand side vector, b, are fuzzy numbers, and entries of
the coefficient matrix, A, are real numbers. Using the proposed method, we
approximate the fuzzy solutions by L-R fuzzy numbers.

Definition 4. The n× n linear system
a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1,
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2,
...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn,

(22)
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is called a fuzzy linear system if bi = (bi(r), bi(r)), for i = 1, 2, . . . , n, are
fuzzy numbers such that ξbj ,2 ≥ 0 and ai,j ∈ ℜ.

Let xj = (xj , xj) be the fuzzy solutions to (22). Due to (5), (1), (2), and
(3), for each i, we have

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi,

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi,

and then
∑

ai,j≥0 ai,jxj(r) +
∑

ai,j≤0 ai,jxj(r) = bi(r), i = 1, 2, . . . , n,∑
ai,j≥0 ai,jxj(r) +

∑
ai,j≤0 ai,jxj(r) = bi(r), i = 1, 2, . . . , n.

(23)

Integrating with respect to r on the interval [0, 1], we have

∑
ai,j≥0 ai,j

∫ 1

0
xj(r)dr +

∑
ai,j≤0 ai,j

∫ 1

0
xj(r)dr =

∫ 1

0
bi(r)dr,

i = 1, 2, . . . , n,∑
ai,j≥0 ai,j

∫ 1

0
xj(r)dr +

∑
ai,j≤0 ai,j

∫ 1

0
xj(r)dr =

∫ 1

0
bi(r)dr,

i = 1, 2, . . . , n.
(24)

Multiplying both sides of the equations (23) by L−1(r) and integrating, we
obtain the following equations:

∑
ai,j≥0 ai,j

∫ 1

0
L−1(r)xj(r)dr +

∑
ai,j≤0 ai,j

∫ 1

0
L−1(r)xj(r)dr

=
∫ 1

0
L−1(r)bi(r)dr, i = 1, 2, . . . , n,

∑
ai,j≥0 ai,j

∫ 1

0
L−1(r)xj(r)dr +

∑
ai,j≤0 ai,j

∫ 1

0
L−1(r)xj(r)dr

=
∫ 1

0
L−1(r)bi(r)dr, i = 1, 2, . . . , n.

(25)

Multiplying both sides of the equations (23) by R−1(r) and integrating,
we obtain the following equations:

∑
ai,j≥0 ai,j

∫ 1

0
R−1(r)xj(r)dr +

∑
ai,j≤0 ai,j

∫ 1

0
R−1(r)xj(r)dr

=
∫ 1

0
R−1(r)bi(r)dr, i = 1, 2, . . . , n,

∑
ai,j≥0 ai,j

∫ 1

0
R−1(r)xj(r)dr +

∑
ai,j≤0 ai,j

∫ 1

0
R−1(r)xj(r)dr

=
∫ 1

0
R−1(r)bi(r)dr, i = 1, 2, . . . , n.

(26)
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We denote
∫ 1

0
xj(r)dr,

∫ 1

0
L−1(r)xj(r)dr,

∫ 1

0
xj(r)dr,

∫ 1

0
R−1(r)xj(r)dr,∫ 1

0
R−1(r)xj(r)dr, and

∫ 1

0
L−1(r)xj(r)dr, respectively, by γj,1, γj,2, γj,3, γj,4,

γj,5, and γj,6. Thus we can rewrite (24), (25), and (26), respectively, as
below:

∑
ai,j≥0 ai,jγj,1 +

∑
ai,j≤0 ai,jγj,3 =

∫ 1

0
bi(r)dr, i = 1, 2, . . . , n,

∑
ai,j≥0 ai,jγj,3 +

∑
ai,j≤0 ai,jγj,1 =

∫ 1

0
bi(r)dr, i = 1, 2, . . . , n,

(27)


∑

ai,j≥0 ai,jγj,2 +
∑

ai,j≤0 ai,jγj,6 =
∫ 1

0
L−1(r)bi(r)dr, i = 1, 2, . . . , n,

∑
ai,j≥0 ai,jγj,6 +

∑
ai,j≤0 ai,jγj,2 =

∫ 1

0
L−1(r)bi(r)dr, i = 1, 2, . . . , n,

(28)
and

∑
ai,j≥0 ai,jγj,5 +

∑
ai,j≤0 ai,jγj,4 =

∫ 1

0
R−1(r)bi(r)dr, i = 1, 2, . . . , n,

∑
ai,j≥0 ai,jγj,4 +

∑
ai,j≤0 ai,jγj,5 =

∫ 1

0
R−1(r)bi(r)dr, i = 1, 2, . . . , n.

(29)
The coefficient matrices of the linear equations (27), (28), and (29) are the
same. Then it is enough to describe only one of them. Here we describe
the linear system (27). Subtracting and adding the first n equations by the
second n equations, we obtain two n× n linear systems as below [1]:

I)



a1,1(γ1,3 + γ1,1) + a1,2(γ2,3 + γ2,1) + · · ·+ a1,n(γn,3 + γn,1)

=
∫ 1

0
b1(r)dr +

∫ 1

0
b1(r)dr,

a2,1(γ1,3 + γ1,1) + a2,2(γ2,3 + γ2,1) + · · ·+ a2,n(γn,3 + γn,1)

=
∫ 1

0
b2(r)dr +

∫ 1

0
b2(r)dr,

...
an,1(γ1,3 + γ1,1) + an,2(γ2,3 + γ2,1) + · · ·+ an,n(γn,3 + γn,1)

=
∫ 1

0
bn(r)dr +

∫ 1

0
bn(r)dr,

(30)

II)



a+1,1(γ1,3 − γ1,1) + a+1,2(γ2,3 − γ2,1) + · · ·+ a+1,n(γn,3 − γn,1)

=
∫ 1

0
b1(r)dr −

∫ 1

0
b1(r)dr,

a+2,1(γ1,3 − γ1,1) + a+2,2(γ2,3 − γ2,1 + · · ·+ a+2,n(γn,3 − γn,1)

=
∫ 1

0
b2(r)dr −

∫ 1

0
b2(r)dr,

...
a+n,1(γ1,3 − γ1,1) + a+n,2(γ2,3 − γ2,1) + · · ·+ a+n,n(γn,3 − γn,1)

=
∫ 1

0
bn(r)dr −

∫ 1

0
bn(r)dr,

(31)
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in which a+i,j = |ai,j |. Taking γcj = γj,2+ γj,1 and γdj = γj,2− γj,1 and solving
the linear equations (30) and (31), γcj and γdj are obtained for j = 1, 2, . . . , n,
provided that, coefficient matrices are nonsingular. After that, we conclude
that γj,1 = 0.5(γcj − γdj ) and γj,2 = 0.5(γcj + γdj ).

Solving the linear equations (27), (28), and (29), the nearest fuzzy number
of type L-R to each xj are obtained as below:

N(xj) = (aj , aj + ξj,2, ξj,1, ξj,3)LR, j = 1, 2, . . . , n,

in which
ξj,1 =

pγj,1 − γj,3
p′ − p2

≥ 0.

ξj,2 = γj,3 − γj.1 − q
γj,4 − qγj,3
q′ − q2

− p
pγj,1 − γj,2
p′ − p2

≥ 0.

ξj,3 =
pγj,1 − γj,3
p′ − p2

≥ 0.

Due to (18), aj is obtained as

aj = pξj,1 + γj,1.

Example 4. Let us consider the 2× 2 fuzzy linear system{
2x1 + x2 = (r2, 2− r),
x1 − x2 = (5− 2

√
1− r, 5 + 2

√
1− r).

(32)

For simplicity, suppose that L−1(r) = R−1(r) = 1 − r is linear functions.
Then the nearest fuzzy number of type L-R is trapezoidal fuzzy numbers.
The exact solutions of system (32) are

x1 = (
5r2 + r + 18

12
+
√
1− r,

−r2 − 5r + 30

12
−

√
1− r),

x2 = (
−r2 − 5r − 30

12
− 3

√
1− r,

5r2 + r − 42

12
+ 3

√
1− r).

One can see that x2(r) ≤ x2(r), but x1(r) ≥ x1(r). Then x2 is a fuzzy
solution and x1 is not a fuzzy number. Then it is not a fuzzy solution to
(32). Now represent x1 as (−r2−5r+30

12 −
√
1− r, 5r

2+r+18
12 +

√
1− r) that

is called weak fuzzy solution. We try to find the nearest trapezoidal fuzzy
number to fuzzy solutions x1 and x2. Also, since L−1(r) = R−1(r), we need
to solve only two linear systems (27) and (28). Solving (27) and (28), the
nearest trapezoidal fuzzy numbers to x1 and x2 are obtained, respectively, as
below:

N(x1) = (1.75, 2.180, 0.306, 0.318)T ,

N(x2) = (−3.74,−2.313, 1.975, 1.987)T .
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Figures 4 and 5 represent the graphs of the exact fuzzy solutions x1 and x2
with their nearest trapezoidal fuzzy numbers.

Figure 4: Membership functions of x1 (curve) and N(x1) (trapezoidal), where N(x1) is
the nearest fuzzy number of type L-R to x1 with L−1(r) = R−1(r) = 1− r

Figure 5: Membership functions of x2 (curve) and N(x2) (trapezoidal), where N(x2) is
the nearest trapezoidal fuzzy number to x2

6 Conclusion

In this study, we focused on the approximate given general fuzzy numbers
by fuzzy numbers of type L-R. Fuzzy numbers of type L-R, in particular,
trapezoidal fuzzy numbers, play an essential role in the fuzzy environment.
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We use a property of linear equations system to obtain the nearest trapezoidal
fuzzy number to a given general fuzzy number with respect to the distance
formula D(·, ·). The presented method is attractive, simple, and can be
applied in any way.
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The proposed study is focused to introduce a novel integral transform op-
erator, called Generalized Bivariate (GB) transform. The proposed trans-
form includes the features of the recently introduced Shehu transform, ARA
transform, and Formable transform. It expands the repertoire of existing
Laplace-type bivariate transforms. The primary focus of the present work
is to elaborate fashionable properties and convolution theorems for the
proposed transform operator. The existence, inversion, and duality of the
proposed transform have been established with other existing transforms.
Implementation of the proposed transform has been demonstrated by ap-
plying it to different types of differential and integral equations. It validates
the potential and trustworthiness of the GB transform as a mathematical
tool. Furthermore, weighted norm inequalities for integral convolutions
have been constructed for the proposed transform operator.
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1 Introduction

In real-life applications, the study of dynamic relations between individual
components leads to different types of differential equations, integral equa-
tions, or integro-differential equations [21, 25, 36]. On account of extensive
applications, these models crave for efficient techniques to construct their
solutions. Integral transform techniques owing to the contribution of Heave-
side to operational techniques have emerged as an alternative and bridge
between analytic and numerical techniques in solving linear and nonlinear
problems. Integral transform techniques are applicable over a wide class of
problems, such as time-dependent boundary conditions, where the technique
of separation of variables ceases to work. Even in a scenario of impossi-
ble analytic evaluation of transform or inverse transform, a wide variety of
numerical and asymptotic techniques are now available for their evaluation
[7, 10, 11, 19, 23, 28]. This hybrid mixture of techniques preserves some ana-
lytic aspects of the system that serves greater physical insight than a purely
numerical procedure.

Integral transforms occur in a natural way by virtue of the principle of
linear supposition in composing the integral form of the solution of linear
differential equations. Integral transforms are one of the mathematical tools
that have proved their worth not only for their theoretical interests but also
for their accessible features to solve various problems in different fields of sci-
ence and engineering. In recent work, the widely investigated subject of in-
tegral transforms has gained remarkable significance due to its demonstrated
applications over quite challenging fractional operators [5, 15, 16, 30, 31].
The fundamental objective of integral transforms is to take one step forward
to an easier form of the given problem. For example, an ordinary differential
equation with constant coefficients transforms into an algebraic equation of
transformed variable, and a partial differential equation (PDE) reduces to an-
other PDE in one less variable. After the manipulation of the solution in the
transformed domain, the inverse transform retracts the solution in the origi-
nal domain. Different types of integral transforms are effectively utilized to
obtain the solution of differential, difference, and integral equations. Indeed,
the Fourier [9] and Laplace [29, 34] transforms are mostly applied and have
been found to have a wide breadth of applications in mathematics, physics,
statistics, and engineering sciences. Each of the existing integral transforms
admits its strengths and deficiencies, which stimulates the interest to explore
enhanced transforms with the arbitrariness of kernel function. Holding sig-
nificance for centuries, the Fourier and Laplace transform even served as a
generator for innumerable Laplace-type transforms with the imposition of
specific conditions. The renowned Sumudu transform was introduced in the
early 1990s by Watugala [33]. The natural transform [20] was devised in
2008. In 2011, Elzaki [12] framed a new integral transform known as Elzaki
transform. In 2013, Atangana and Kilicman [6] established novel transforms
for differential equations consisting of some kind of singularities. In recent
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years, the substantial interest of researchers resulted in many worth mention-
ing integral transforms, namely, Ramadan Group transform [24], Polynomial
transform [8], Yang transform [35], Aboodh transform [1], Mohand transform
[2], Rangaing transform [13], Sawi transform [18], HY-transform [4], Shehu
transform [22], J-transform [37], ARA transform [27], Formable transform
[26], and so on.

In the present work, a new integral transform operator, “Generalized Bi-
variate transform”, has been proclaimed as a generalization of the recently
introduced Shehu, ARA, and Formable transforms. Its harmony in the class
of Laplace-type transforms marks it as a prime member with inherited advan-
tages of allied integral transforms. By proving fashionable properties along
with application to various differential and integral equations, this work is
further enhanced by the construction of the weighted norm inequalities for
integral convolutions using the proposed transform operator.

2 Formulation of the GB transform

The GB transform of order n of a function f(η) is a semi-infinite convergent
integral. It can be defined as

An[f(η)] = Pn(s, γ) =
s

γn

∫ ∞

0

ηn−1 exp (−s
γ
η)f(η) dη, γ, s > 0. (1)

Equation (1) is equivalent to

An[f(η)] = Pn(s, γ) = s

∫ ∞

0

ηn−1 exp (−sη)f(γη) dη, γ, s > 0, (2)

over the set of functions

F =

{
f(η) : there exist N ∈ (0,∞), ηi > 0 for i = 1, 2;|f(η)| < N exp ( |η|

ηi
),

if η ∈ (−1)i × [0,∞)

}
,

where s and γ are the variables of the GB transform.
In integral transforms theory, the recovery of a function from its trans-

formed version is a more sophisticated subject than the evaluation of the
transform itself, which is referred to as the inversion problem. For a given
function, three questions arise at once: Does its inverse transform exist? is
it unique? and how to find it? The uniqueness of Laplace-type transforms is
determined by integration theory, which implies that a given function holds
a unique continuous inverse transform. Moreover, in many cases, finding the
inverse results in another transform with a different kernel function.
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The inversion of the GB transform is given by

f(η) = A−1
n+1

[
An+1[f(η)]

]
=

(−1)n

2πi

∫ c+i∞

c−i∞

1

γ
e

s
γ η

[
(−1)n

(
1

sΓ(n− 1)

∫ s

0

(s− x)n−1

An+1[f(η)](x, γ) dx+

n−1∑
k=0

sk

k!

∂kS(0, γ)

∂sk

)]
ds, (3)

where
S(s, γ) =

∫ ∞

0

e
s
γ ηf(η) dη

is the Shehu transform, which is (n− 1) times differentiable.

Proof. From the definition of the GB transform, we have

An+1[f(η)](s, γ) =
s

γn

∫ ∞

0

ηne
s
γ ηf(η) dη = s(−1)n

∂S(s, γ)

∂sn
.

Thus

1

sΓ(n− 1)

∫ s

0

(s− η)n−1Pn+1(η, γ) dη = (−1)n

(
S(s, γ)−

n−1∑
k=0

sk

k!
S(0, γ)

)
.

Therefore,

(−1)n

sΓ(n− 1)

∫ s

0

(s− η)n−1Pn+1(η, γ) dη +

n−1∑
k=0

sk

k!
S(0, γ) = S(s, γ).

It follows that

(−1)n

2πi

∫ c+i∞

c−i∞

1

γ
e

s
γ
η

[
(−1)n

(
1

sΓ(n− 1)

∫ s

0

(s− x)n−1Pn+1[f(η)](x, γ) dx+

n−1∑
k=0

sk

k!

∂kS(0, γ)

∂sk

)]
ds

=
(−1)n

2πi

∫ c+i∞

c−i∞

1

γ
e

s
γ
η
[
(−1)nS(s, γ)

]
ds

=
(−1)2n

2πi

∫ c+i∞

c−i∞

1

γ
e

s
γ
η
S(s, γ)

]
ds.

Hence,

A−1
n+1

[
An+1[f(η)]

]
=

(−1)2n

2πi

∫ c+i∞

c−i∞

1

γ
e

s
γ ηS(s, γ)

]
ds = f(η).
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Theorem 1 (Sufficient condition for the existence of the GB transform). If
the function f(η) is piecewise continuous on every finite interval 0 < η < ξ
and satisfies

|ηn−1f(η)| ≤ Keβη, (4)

then the GB transform exists for all s
γ > β.

Proof. Let ξ be any positive number. This will give

s

γn

∫ ∞

0

ηn−1e
−s
γ ηf(η)dη =

s

γn

∫ ξ

0

ηn−1e
−s
γ ηf(η)dη+

s

γn

∫ ∞

ξ

ηn−1e
−s
γ ηf(η)dη.

Since the function is continuous on finite intervals, the first integral on the
right-hand side exists. Also, by the hypothesis in (4), the latter integral on
the right-hand side converges∣∣∣∣∣ sγn

∫ ∞

ξ

ηn−1e
s
γ ηf(η) η

∣∣∣∣∣ ≤ s

γn

∫ ∞

ξ

e
−s
γ ηKeβη dη

= lim
α→∞

−sK
γn

e−ξ( s
γ −β)

( sγ − β)

∣∣∣∣∣
α

0

=
sK

γn−1( sγ − β)
.

Thus the GB transform An[f(η)] exists for all s
γ > β.

There are many functions for which most of variants of the Laplace trans-
form do not exist. The GB transform expands the repertoire of Laplace-type
transforms by its applicability over the following functions:

A2

[
1

η

]
=

s

γ2

∫ ∞

0

η2−1e
−s
γ η 1

η
dη =

1

γ
,

A2

[
2eη

2

cos eη
2
]

=
s

γ2

∫ ∞

0

2ηe
−s
γ ηeη

2

cos (eη
2

) dη

=
s

γ2

[
e

−s
γ η sin (eη

2

)

∣∣∣∣∣
∞

0

+
s

γ

∫ ∞

0

e
−s
γ η sin (eη

2

) dη

]
(Integration by parts)

=
s

γ2

[
− sin(1) + A1[sin (eη

2

)]
]
. (5)

and the latter GB transform exists by Theorem 1. Similarly, A2

[
2eη

2 sin eη2
]

can be obtained as per (5).

Theorem 2 (Uniqueness of the GB transform). Let f(η) and g(η) be the
continuous functions, defined for η ≥ 0 and having the GB transform for
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order n, Pn(s, γ), and Qn(s, γ), respectively. If Pn(s, γ) = Qn(s, γ), then
f(η) = g(η).

Proof. From the definition of the GB transform of order n, if c is sufficiently
large, then the integral expression can be obtained as

f(η) =
(−1)n

2πi

∫ c+i∞

c−i∞

1

u
e

s
γ η[(−1)nPn(s, γ)] ds.

By hypothesis, Pn(s, γ) = Qn(s, γ) and

f(η) =
(−1)n

2πi

∫ c+i∞

c−i∞

1

u
e

s
γ η[(−1)nQn(s, γ)] ds = g(η).

3 Dualities between the GB transform and some integral
transforms

In this section, the associative nature of the GB transform with other well-
known transforms is illustrated. This association of the GB transform en-
hances to exploration of other transforms simultaneously under the study of
the GB transform.

• GB-ARA duality:

Pn(s, γ) =
1

γn−1
G

(
n,
s

γ

)
, (6)

Pn(s, 1) = G (n, s) ,

where [27]

Gn[f(η)](s) = G (n, s) = s

∫ ∞

0

ηn−1e−sηf(η) dη.

• GB-Formable duality:

Pn(s, γ) =
1

γn−1
R[ηn−1f(η)], (7)

P1(s, γ) = B(s, γ),

where [26]
R[f(η)] = B(s, γ) =

s

γ

∫ ∞

0

e−
s
γ ηf(η) dη.

• GB-Shehu duality:
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Pn(s, γ) =
s

γn
S[ηn−1f(η)], (8)

P1(s, γ) =
s

γ
V (s, γ),

where [22]
S[f(η)] = V (s, γ) =

∫ ∞

0

e−
s
γ ηf(η) dη.

• GB-Natural duality:

Pn(s, γ) =
s

γn−1
N [ηn−1f(η)], (9)

P1(s, γ) = sR(s, γ),

where [20]
N [f(η)] = R(s, γ) =

1

γ

∫ ∞

0

e−
s
γ ηf(η) dη.

• GB-Aboodh duality:

Pn(s, γ) =
s2

γn+1
A[ηn−1f(η)]

(
s

γ

)
, (10)

P1(s, 1) = s2A[f(η)](s),

where [1]
A[f(η)](s) =

1

s

∫ ∞

0

e−sηf(η) dη.

• GB-J duality:

Pn(s, γ) =
s

γn+1
J [ηn−1f(η)], (11)

P1(s, γ) =
s

γ2
J(s, γ),

where [37]
J [f(η)] = J(s, γ) = u

∫ ∞

0

e
−s
γ ηf(η) dη.

• GB-Laplace Carson duality:

Pn(s, γ) =
1

γn−1
L∗[η

n−1f(η)]

(
s

γ

)
, (12)

P1(s, 1) = L∗[f(η)](s),

where [3]
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L∗[f(η)](s) = s

∫ ∞

0

e−sηf(η) dη.

• GB-Elzaki duality:

Pn(s, γ) =
s2

γn+1
E [ηn−1f(η)]

(γ
s

)
, (13)

P1(1, γ) =
1

γ2
E [f(η)](γ),

where [12]
E [f(η)](γ) = γ

∫ ∞

0

e
−η
γ f(η) dη.

• GB-Sumudu duality:

Pn(s, γ) =
1

γn−1
S[ηn−1f(η)]

(γ
s

)
, (14)

P1(1, γ) = S[f(η)](γ),

where [33]
S[f(η)](γ) = 1

γ

∫ ∞

0

e
−η
γ f(η) dη.

4 Properties of the GB transform

In this section, some basic properties such as the linearity property, the shift-
ing in domains, the derivative property, and the convolution property are
presented, which enable us to determine the GB transform in applications.

Property 1 (Linearity property). Suppose that f(η) and g(η) are two func-
tions for which the GB transform exists. Then

An [αf(η) + βg(η)] = αAn [f(η)] + βAn [g(η)] , (15)

where α and β are nonzero arbitrary constants.

Property 2 (Change of scale). Suppose that the GB transform exists for
the given function f(αη). Then

An [f(αη)] = Pn(s, αγ), (16)

where α is an arbitrary constant.

Property 3 (Shifting in s-domain).

An[e
−αηf(η)] =

s

s+ γα
Pn(s+ γα, γ), (17)
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where α is an arbitrary constant.

Property 4 (Shifting in η-domain).

An[uαf(η − α)] =
e

−s
γ α

γn−1
A1[(η + α)n−1f(η)], (18)

where uα is the unit function and α is an arbitrary constant.

Property 5 (Shifting in n-domain).

An[η
mf(η)] = γm An+m[f(η)], (19)

where m ≥ 0 or n− 1 ≥ m.

The proofs of Properties 1–5 can be easily proved by usual calculus.

Property 6 (GB transform for derivatives). Suppose that f(η), f ′(η), . . .,
fm−1(η) are continuous and of exponential order on [0,∞) while fm(η) is
piecewise continuous on [0,∞). Then

An[f
m(η)] = (−1)n−1 s

γ

∂n−1

∂sn−1

[(
s

γ

)m−1

A1[f(η)]−
m−1∑
k=0

(
s

γ

)m−(k+1)

fk(0)

]
.

(20)

Proof. We have

An[f
m(η)]

=
s

γn

∫ ∞

0

ηn−1e
−s
γ ηfm(η) dη

=
1

γn−1
A1[η

n−1fm(η)]

=
1

γn−1
R[ηn−1fm(η)] (Duality between GB and Formable transforms)

= (−1)n−1s
∂n−1

∂sn−1

[
R[fm(η)]

s

]
= (−1)n−1s

∂n−1

∂sn−1

[
sm−1

γm−1
R[f(η)]−

m−1∑
k=0

sm−(k+1)

γm−(k+1)
fk(0)

]

= (−1)n−1 s

γ

∂n−1

∂sn−1

[(
s

γ

)m−1

A1[f(η)]−
m−1∑
k=0

sm−(k+1)

γm−(k+1)
fk(0)

]
.

(Using the GB-Formable duality)
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Property 7 (GB transform of the convolution). Suppose that P1(s, γ) and
Q1(s, γ) are the GB transform of order one of the functions f(η) and g(η),
respectively. Then

An[f(η) ∗ g(η)] = (−1)n−1sγ

n−1∑
r=0

Cn−1
r

∂n−1−r

∂sn−1−r

(
1

s2

)
r∑

k=0

Cr
k

∂r−k

∂sr−k
P1(s, γ).

∂k

∂sk
Q1(s, γ), (21)

where the convolution (i.e., f(η) ∗ g(η) ) of the functions f(η) and g(η) is
given by the integral

f(η) ∗ g(η) =
∫ η

0

f(η)g(η − ζ) dζ.

Proof. We have

An[f(η) ∗ g(η)]

=
1

γn−1
A1[η

n−1(f(η) ∗ g(η))]

= (−1)n−1sγ
∂n−1

∂sn−1

[
P1(s, γ).Q1(s, γ)

s2

]
(Using the GB-Formable duality)

= (−1)n−1sγ

n−1∑
r=0

Cn−1
r

∂n−1−r

∂sn−1−r

(
1

s2

)
∂r

∂sr
(P1(s, γ).Q1(s, γ))

= (−1)n−1sγ

n−1∑
r=0

Cn−1
r

∂n−1−r

∂sn−1−r

(
1

s2

) r∑
k=0

Cr
k

∂r−k

∂sr−k
P1(s, γ).

∂k

∂sk
Q1(s, γ)

where Cj
i is the binomial coefficient.

Now, computational simplicity of the GB transform is presented by its
evaluation for some elementary functions.
Example 1. Consider

An[η
meαη] = (m+ n− 1)!

sγm

(s− αγ)m+n
, (22)

where m ≥ 0 or n− 1 ≥ m and α is an arbitrary constant.
Proof. We have

An+1[η
meαη] =

s

γn+1

∫ ∞

0

ηm+ne−(
s−αγ

γ )η dη

=
(m+ n)

γn
s

s− αγ

∫ ∞

0

ηm+n−1e−(
s−αγ

γ )η dη
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=
(m+ n)(m+ n− 1)

γn
sγ

(s− αγ)2

∫ ∞

0

ηm+n−2e−(
s−αγ

γ )η dη

...

=
(m+ n)!

γn
sγm+n

(s− αγ)m+n+1
= (m+ n)!

sγm

(s− αγ)m+n+1
.

Example 2. Consider

An[sinαη] =
s(n− 1)!

2i

[
(s+ iαγ)n − (s− iαγ)n

(s2 + α2γ2)n

]
, (23)

An[cosαη] =
s(n− 1)!

2

[
(s+ iαγ)n + (s− iαγ)n

(s2 + α2γ2)n

]
, (24)

An[sinhαη] =
s(n− 1)!

2

[
(s+ αγ)n − (s− αγ)n

(s2 − α2γ2)n

]
, (25)

An[coshαη] =
s(n− 1)!

2

[
(s+ αγ)n + (s− αγ)n

(s2 − α2γ2)n

]
, (26)

where α is an arbitrary constant.

Now, using the linearity property given in 1 and basic calculus, above
results can be proved easily.

Further applications of the GB transform over some elementary and spe-
cial functions are given in Table 1.

5 Weighted norm inequalities for integral convolution
of the GB transform

Theorem 3. Suppose that f(η) and g(η) are complex valued continuous
functions on [0,∞) such that the GB transforms

Pα(s, γ) = Aα

[
f(η)

Γα

]
and Qβ(s, γ) = Aβ

[
g(η)

Γβ

]
(27)

exist for some α, β > 0 and s
γ > s0 ≥ 0.

Then, for any arbitrary λ > 0, p > 1

(
1
p + 1

q = 1

)
, δ ∈ [0,min(p, q)], and

ξ ∈ [0,∞), the following inequality holds [14]:
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Table 1: GB transform of some special functions

f(η) GB transform

1 Γ(n)s1−n

η Γ(n+ 1) γ
sn

ηm Γ(m+ n) γm

sn+m−1

eαη Γ(n) s
(s−γα)n

e−αη Γ(n) s
(s+γα)n

ηmeαη Γ(m+ n) sγm

(s−γα)m+n

sin (αη)
(
1 + (αγ)2

s2

)n
2

s1−nΓ(n) sin
(
n tan−1

(
αγ
s

))
cos (αη)

(
1 + (αγ)2

s2

)n
2

s1−nΓ(n) cos
(
n tan−1

(
αγ
s

))
η sin (αη) Γ(n+ 1) γs

(s2+α2γ2)
1
2
(n+1)

sin
(
(1 + n) tan−1

(
αγ
s

))
η cos (αη) Γ(n+ 1) γs

(s2+α2γ2)
1
2
(n+1)

cos
(
(1 + n) tan−1

(
αγ
s

))
sin (αη)− αη cos (αη) Γ(n) αs

(s2+αγ)
1
2
(n+1)

[
−αn cos

(
(1 + n) tan−1

(
αγ
s

))
+ 1

γ

√
s2 + α2γ2 sin

(
(1 + n) tan−1

(
αγ
s

))]
sin (αη) + αη cos (αη) Γ(n) αs

(s2+αγ)
1
2
(n+1)

[
αn cos

(
(1 + n) tan−1

(
αγ
s

))
+ 1

γ

√
s2 + α2γ2 sin

(
(1 + n) tan−1

(
αγ
s

))]
cos (αη)− αη sin (αη) Γ(n) αs

(s2+αγ)
1
2
(n+1)

[
s
γ cos

(
(1 + n) tan−1

(
αγ
s

))
+ α(n− 1) sin

(
(1 + n) tan−1

(
αγ
s

))]
cos (αη) + αη sin (αη) Γ(n) αs

(s2+αγ)
1
2
(n+1)

[
s
γ cos

(
(1 + n) tan−1

(
αγ
s

))
+ α(n+ 1) sin

(
(1 + n) tan−1

(
αγ
s

))]
sin (αη + β) s

(s2+α2γ2)
n
2
Γ(n) sin

(
β + n tan−1

(
αγ
s

))
cos (αη + β) s

(s2+α2γ2)
n
2
Γ(n) cos

(
β + n tan−1

(
αγ
s

))
eαη sin (βη) Γ(n) n

(s−αγ)n

(
1 + β2γ2

(αγ−s)2

)−n
2 sin

(
n tan−1

(
βγ

s−αγ

))
eαη cos (βη) Γ(n) n

(s−αγ)n

(
1 + β2γ2

(αγ−s)2

)−n
2 cos

(
n tan−1

(
βγ

s−αγ

))
sinh (αη) 1

2
sΓ(n)

(s2−α2γ2)n [−(s− γα)n + (s+ γα)n]

cosh (αη) 1
2

sΓ(n)
(s2−α2γ2)n [(s− γ|α|)n + (s+ γ|α|)n]

eαη sinh (βη) Γ(n) n
(s−αγ)n

(
1− β2γ2

(αγ−s)2

)−n [
−
(
1 + βγ

αγ−s

)n
+
(
1− βγ

αγ−s

)n]
eαη cosh (βη) Γ(n) n

(s−αγ)n

[(
1 + βγ

αγ−s

)−n

+
(
1− βγ

αγ−s

)−n
]

δ(η − α) αn−1 s
γn exp (α s

γ )

J0(αη) (−1)n−1s ∂n−1

∂sn−1

[
1√

s2−α2γ2

]
U(η − α)

∑n−1
k=0

1
sk

(
α
γ

)n−k−1

exp (−α
γ s)

∣∣∣∣∣∣h(ξη)∣∣∣∣∣∣
[δ; α+β, λ]

≤
∣∣∣∣∣∣f(ξη)∣∣∣∣∣∣

[p; α, β+λ]

∣∣∣∣∣∣g(ξη)∣∣∣∣∣∣
[q; β, α+λ]

, (28)

where

||(·)||[p, α, β] =

[∫ 1

0

ηα−1(1− η)β−1|(·)|p dη

B(α, β)

] 1
p

(29)

and h(η), 0 ≤ η <∞, is a continuous solution to the integral equation:

Aα+β

[
h(η)

Γ(α+ β)

]
=

1

s
Pα(s, γ)Qβ(s, γ). (30)

Equivalently, h(η) is such function that ηα+β−1h(η)/Γ(α + β) is the convo-
lution of the functions ηα−1f(η)/Γα and ηβ−1g(η)/Γβ.

Proof. Consider a continuous function h(η), such as
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h(η) = ⟨f(ηδ)g(η(1− δ))⟩(α, β), η ∈ [0,∞]. (31)

Indeed, the left-hand side of (30) with this function h(η) and s
γ > s0 yields

1

Γ(α)Γ(β)

s

γα+β

∫ ∞

0

ηα+β−1e
s
γ η

∫ 1

0

δα−1(1− δ)β−1f(ηδ)g(η(1− δ)) dδ dη.

(32)
Substituting ν = ηδ ∈ [0, η], the change of the order of integration assembles
(32) as

1

Γ(α)Γ(β)

s

γα+β

∫ ∞

0

να−1f(ν)

∫ ∞

ν

e
s
γ η(η − ν)β−1g(η − ν) dη dν. (33)

Another substitution µ = η − ν ∈ [0,∞) reformulates (33) as

1

Γ(α)Γ(β)

s

γα+β

∫ ∞

0

να−1f(ν)

∫ ∞

ν

e−(µ+ν) s
γ (µ)β−1g(µ) dµ dν

=
1

s
Pα(s, γ)Qβ(s, γ), (34)

where Pα(s, γ) and Qβ(s, γ) are defined in (27).

6 Applications of the GB transform

In this section, the application of the GB transform is demonstrated for the
purpose to solve various Lane–Emden type differential equations, wave-like
partial differential equations, and convolution-type integral equations. The
success of the newly proposed transform with simplified computation suggests
its further implementation to physical problems in sciences and engineering.
Problem 1. Consider the linear Lane–Emden differential equation as

u′′(η) +
2

η
u′(η) + u(η) = 0, (35)

subject to initial conditions

u(0) = 1, u′(0) = 0. (36)

Solution 1. Application of A2 on the both sides of (35) implies

− s2

γ2
A′

1[u(η)]−
s

γ2
A′

1[u(η)] +
s

γ2
u(0) +

1

γ

[
s

γ
A1[u(η)−

s

γ
u(0)]

]

+
A1[u(η)]

s
− A′

1[u(η)] = 0.
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The use of given initial conditions and reordering of terms give

A′
1[u(η)] +

A1[u(η)]

s
= − s

(s2 + γ2)
,

−γs d
ds

[
A1[u(η)]

s

]
=

sγ

(s2 + γ2)
,

A1[ηu(η)] =
sγ

(s2 + γ2)
.

The utilization of the inverse GB transform yields

u(η) =
sin η
η

,

which is an exact solution.
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Figure 1: Comparison between the GB transform and LT-HPM solution

In Figure 1, the comparison of solution profiles for problem 1 reveals well
agreement of the solution obtained by the GB transform with a series solution
of LT-HPM [32].

Problem 2. Consider the linear, nonhomogeneous Lane–Emden differential
equation

u′′(η) +
2

η
u′(η) + u(η) = 6 + 12η + η2 + η3 (37)

with initial conditions

u(0) = 0, u′(0) = 0. (38)

Solution 2. Application of A2 on the both sides of (37) implies
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− s2

γ2
A′

1[u(η)]−
s

γ2
A′

1[u(η)] +
s

γ2
u(0) +

1

γ

[
s

γ
A1[u(η)]−

s

γ
u(0)

]

+
A1[u(η)]

s
− A′

1[u(η)] =
6

s
+

244

s2
+ 6

γ2

s3
+ 24

γ3

s4
.

Use of given initial conditions and reordering of terms give

A′
1[u(η)] +

A1[u(η)]

s
= − γ2

(s2 + γ2)

[
6

s
+ 24

γ

s2
+ 6

γ2

s3
+ 24

γ3

s4

]
,

−γs d
ds

[
A1[u(η)

s

]
=

γ3

(s2 + γ2)

[
6

s
+ 24

γ

s2
+ 6

γ2

s3
+ 24

γ3

s4

]
,

A1[ηu(η)] = 6
γ3

s3
+ 24

γ4

s4
.

Utilization of the inverse GB transform yields

u(η) = η2 + η3,

which is an exact solution.
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Figure 2: Comparison between the GB transform and LT-HPM solution

In Figure 2, the graphical comparison of the solution for Problem 2 reflects
the good agreement of the solution obtained by the GB transform and the
series solution of LT-HPM [32].

In Problems 1 and 2, the GB transform has been found to be indepen-
dently efficient in constructing the exact solution of linear Lane–Emden type
equations, whereas Laplace transform demands modification of governing
equations or other collaborative techniques to drive exact or approximate so-
lutions. The same fact can be stated for the Shehu transform and Formable
transform in comparison with the GB transform.
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Problem 3. Consider the Bessel differential equation with polynomial coef-
ficients as

u′′(η) +
1

η
u′(η) + u(η) = 0 (39)

with initial data
u(0) = 1, u′(0) = 1. (40)

Solution 3. Application of A2 on the both sides of (39) implies

− s2

γ2
A′

1[u(η)]−
s

γ2
A′

1[u(η)] +
s

γ2
u(0)

+
1

γ

[
s

γ
A1[u(η)]−

s

γ
u(0)

]
+

A1[u(η)]

s
− A′

1[u(η)] = 0.

Use of (40) and reordering of terms give

(−s2 − γ2)

γ2
A′

1[u(η)] +
A1[u(η)]

s
= 0.

The solution of the above equation yields

A1[u(η)] =
αs√
s2 + γ2

.

Utilization of the inverse GB transform yields

u(η) = αJ0(η).

Use of the initial data provides

u(η) = J0(η),

where J0 is the Bessel function.

Problem 4. Consider the wave-like partial differential equation

∂2u(ξ, η)

∂η2
=
∂2u(ξ, η)

∂ξ2
+ u(ξ, η) (41)

with boundary conditions

u(0, η) = cosh (η) and ∂u(0, η)

∂ξ
= 1 (42)

and initial conditions

u(ξ, 0) = sin (ξ) + 1 and
∂u(ξ, 0)

∂η
= 1. (43)

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 553–575



569 A novel integral transform operator ...

Solution 4. Application of the GB transform of order one and the given
initial conditions to (41) and (42) give

∂2

∂ξ2
P1(ξ, s, γ) + P1(ξ, s, γ)

(
1− s2

γ2

)
+ (sin (ξ) + 1)

s2

γ2
= 0 (44)

with boundary conditions

P1(0, s, γ) =
s

s2 − γ2
and ∂

∂ξ
P1(0, s, γ) = 1. (45)

Here to obtain the solution of (44), the homotopy perturbation technique
proposed by He [17] has been applied. In the view of (44), a perturbation
equation can be readily constructed by embedding homotopy parameter θ ∈
[0, 1] as

(1−θ)

[
∂2P1

∂ξ2
−∂

2P∗1,0
∂ξ2

]
+θ

[
∂2P1

∂ξ2
+

(
1− s2

γ2

)
P1+

s2

γ2
(sin (ξ)+1)

]
= 0. (46)

Assume that the solution of the (46) can be expanded as

P1(ξ, s, γ) = P1,0(ξ, s, γ) + θP1,1(ξ, s, γ) + θ2P1,2(ξ, s, γ) + · · · . (47)

Substitution of (47) into (46) and equating the coefficients of identical powers
of θ serve the system as

θ0 :
∂2P1,0

∂ξ2
− ∂2P∗1,0

∂ξ2
= 0,

P1,0(0, s, γ) =
s2

s2 − γ2
, and

∂

∂ξ
P1,0(0, s, γ) = 1,

θ1 :
∂2P1,1

∂ξ2
+

(
1− s2

γ2

)
P1,0 + (1 + sin (ξ)) s

2

γ2
= 0, (48)

P1,1(0, s, γ) = 0, and
∂

∂ξ
P1,1(0, s, γ) = 0,

...

θj :
∂2P1,1

∂ξ2
+

(
1− s2

γ2

)
Pj−1 = 0,

P1,j(0, s, γ) = 0, and ∂

∂ξ
P1,j(0, s, γ) = 0.

Utilizing the freedom of initialization, set initial approximation as
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P1,0(ξ, s, γ) = P∗1,0(ξ, s, γ) = ξ +
s2

s2 − γ2
, (49)

which satisfies the obtained boundary conditions in (45).
Substitution of preceding components will drive the rest of components

of the expanded solution in (47) as

P1,1(ξ, s, γ) =

(
ξ3

6
− ξ + sin (ξ)

)
s2

γ2
− ξ3

6
,

P1,2(ξ, s, γ) =

(
ξ5

120
− ξ3

6
+ ξ − sin (ξ)

)
s4

γ4
−

(
−ξ5

60
+
ξ3

6
− ξ + sin (ξ)

)
s2

γ2
+

ξ5

120
,

(50)
...

Therefore, the expression for the expanded solution can be written as

P1(ξ, s, γ) = ξ +
s2

s2 − γ2
+

(
ξ3

6
− ξ + sin (ξ)

)
s2

γ2
− ξ3

6

+

(
ξ5

120
− ξ3

6
+ ξ − sin (ξ)

)
s4

γ4

−

(
−ξ5

60
+
ξ3

6
− ξ + sin (ξ)

)
s2

γ2
+

ξ5

120
. (51)

Utilizing the inverse GB transform over (51) with observation that A−1
1

[
u(η) s

n+1

γn+1

]
=

u(η)d
nδ(η)
dηn in which δ(η) is the Dirac delta function, that is, universally zero

except at the origin. Thus, corresponding terms will get vanished, and the
solution will reduce to

u(ξ, η) = ξ + cosh (η)− ξ3

6
+

ξ5

120
+ · · · ≃ cosh (η) + sin (ξ),

which is an exact solution.

Problem 5. Consider Abel’s integral equation as

t =

∫ η

0

1√
η − ξ

u(ξ) dξ. (52)

Solution 5. Application of the GB transform of order one and its convolution
property to (52) give
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γ

s
=
γ

s
Γ

(
−1

2
+ 1

)(
u

s

)−1
2

A1[u(η)],

1√
π

(
u

s

)−1
2

= A1[u(η)].

Utilization of the inverse GB transform yields

2

π
η

1
2 = u(η),

which is an exact solution.
Problem 6. Consider the convolution type Volterra integral equation of first
kind:

sin η =

∫ η

0

u(η − ξ)u(η) dξ. (53)

Solution 6. Application of the GB transform of order one and its convolution
property to (53) give

sγ

s2 + γ2
=
γ

s
A2

1[u(η)],

A1[u(η)] =
s√

s2 + γ2
.

Utilization of the inverse GB transform yields

u(η) = J0(η),

which is an exact solution.
Problem 7. Consider convolution type Volterra integral equation of second
kind:

u(η) = η +

∫ η

0

u(ξ) sin (η − ξ) dξ. (54)

Solution 7. Application of the GB transform of order one and its convolution
property to (54) will derive

A1[u(η)] =
γ

s
+
γ

s
A1[u(η)]A1[sin η].

Thus,

A1[u(η)] =
γ

s
+
γ3

s3
.

Utilization of the inverse GB transform yields

u(η) = η +
η3

6
,
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which is an exact solution.

7 Conclusion

In this paper, a new integral transform operator called the GB transform has
been presented along with sufficient conditions for its existence. The explana-
tion of the duality of the GB transform with other transforms enhanced it as
a generalized version of members in the class of Laplace-type transforms. For
theoretical interest, the present work proved the worth of the GB transform
with essential properties, viz., uniqueness, linearity, convolution, and so on.
In view of applicability, the accessible features of the proposed transform are
demonstrated in solving Lane–Emden type, wave-like, and convolution-type
equations. In addition, the construction of weighted norm inequalities for
integral convolution with the GB transform extends the scope of its study
for the future also. In the future, we intend to apply the GB transform over
fractional equations and will propose their bounds.
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