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Letter from the Editor–in–Chief

I would like to welcome you to the Iranian Journal of Numerical Analysis
and Optimization (IJNAO). This journal is published two issues per year
and supported by the Faculty of Mathematical Sciences at the Ferdowsi Uni-
versity of Mashhad. Faculty of Mathematical Sciences with three centers of
excellence and three research centers is well-known in mathematical commu-
nities in Iran.
The main aim of the journal is to facilitate discussions and collaborations
between specialists in applied mathematics, especially in the fields of numer-
ical analysis and optimization, in the region and worldwide. Our vision is
that scholars from different applied mathematical research disciplines, pool
their insight, knowledge and efforts by communicating via this international
journal. In order to assure high quality of the journal, each article is reviewed
by subject-qualified referees.
Our expectations for IJNAO are as high as any well-known applied mathe-
matical journal in the world. We trust that by publishing quality research
and creative work, the possibility of more collaborations between researchers
would be provided. We invite all applied mathematicians especially in the
fields of numerical analysis and optimization to join us by submitting their
original work to the Iranian Journal of Numerical Analysis and Optimization.

The Iranian Journal of Numerical Analysis and Optimization is proud to
publish a special issue on the occasion of their 75th birthday for two well-
known colleagues of numerical linear algebra and optimal control in Iran.
Professor Ali Vahidian Kamyad (born March 11, 1948, Mashhad, Iran) and
Professor Faezeh Toutounian (born November 16, 1947, Mashhad, Iran) have
been members of the editorial board since the beginning of this journal and
played a very important role in improving the quality of IJNAO.

Professor Toutounian received her B. Sc. Mathematics from the Ferdowsi
University of Mashhad (Iran) in 1970. She studied mathematics and statistic
at the Pierre Marie Curie (Paris VI) University, France, and received her
Master of Science degree in 1971 and her Ph.D. in 1975 under the direction
of Professor Jean-Paul Benzecri.

Professor Vahidian received the B.Sc. degree from Ferdowsi University of
Mashhad, Mashhad, Iran, in 1970, the M.Sc. degree from the Tehran Insti-
tute of Mathematics, Tehran, Iran, in 1973, and the Ph.D. degree from Leeds
University, Leeds, U.K., in 1988, under supervision of J. E. Rubio. Since
1972, he has been at Ferdowsi University of Mashhad, where he is currently
a Full Professor in the faculty of Mathematical sciences. His research interests
include optimal control of distributed parameter systems and applications of
fuzzy theory.

After approving the publication of a special issue and announcing the
call for papers, all articles have been peer-refereed according to the scientific
standards of the journal, and the accepted articles have been published under
this issue. In the end, I wish good health, success and happiness to Professor
Toutounian and Professor Vahidian.

Ali R. Soheili
Editor-in-Chief



Short Biography: Professor Faezeh Toutounian

Faezeh Toutounian was born on November 15, 1947 in Mashhad, Iran. She
received her B. Sc. Mathematics from the Ferdowsi University of Mashhad
(Iran) in 1970. She studied mathematics and statistic at the Pierre Marie
Curie (Paris VI) University, France, and received her Master of Science degree
in 1971 and her Ph.D. in 1975 under the direction of Professor Jean-Paul
Benzecri.

After finishing her studies at the Pierre Marie Curie (Paris VI) Univer-
sity, Faezeh joined the Department of Mathematics at Ferdowsi university of
Mashhad, Iran in 1976 and became a full professor there in 1998. When she
arrived at Ferdowsi university, the Department of Mathematics was small and
in early stage of development. Due to his personality, research, and teaching,
Toutounian became one of the dominant faculty members, and his role in the
development of the department to its present state has been substantial.

After joining the Ferdowsi university, Faezeh visited France two times,
each time for an academic year (1985-1986, 1995-1996).

Professor Toutounian is an excellent and devoted teacher. Over the years,
she has given a variety of courses in linear programming, numerical analysis,
numerical linear algebra, iterative methods for linear systems. Undoubtedly,
her courses stimulated some students to choose numerical analysis or numer-
ical linear algebra as their future main research area. She has translated 8
English books into Persian language for her courses. F. Toutounian mentored
22 Ph.D. students many of whom have had distinguished careers of their own.
She has published 75 articles and given more than 20 invited seminars and
conference talks. Faezeh was Head of the Department of Mathematics from
1998–2000. In 2015 was awarded the price of Numerical Linear Algebra of
professor Rajabalipoor (One of the prizes of Iranian Society of Mathemat-
ics). She is an Editorial board of Iranian Journal of Numerical Analysis and
Optimization and Journal of Mathematical Modeling from 2010– now and a
reviewer for Mathematical Reviews since 2019. Toutounian served on a num-
ber of committees of the Ferdowsi university of Mashhad and was a member
of the scientific advisory committee for some 20 international conferences.

Reaching the compulsory retirement age, Professor Toutounian retired
from the Ferdowsi University in October 2013. Nevertheless, she continues
to be partially active in teaching and vigorously engaged in research.



Short Biography: Professor Ali Vahidian Kamyad

Ali Vahidian Kamyad was born in 1948, in Mashhad, and passed ele-
mentary school education at Dyanat School. He finished his high school
education at Ebne Yamin high school in Mashhad. In 1967, he began un-
dergraduate studies in mathematics at Ferdowsi University of Mashhad and
got B.Sc. degree in 1971. Ali began his postgraduate studies at the Tehran
Institute of mathematics under of management of Prof. Mosaheb, and in
1973, got MPhild degree in mathematics. Professor Fatemi, the head of the
mathematics department of Ferdowsi University, invited him to be a lecturer
to teach undergraduate mathematics courses at the Ferdowsi University of
Mashhad. In 1985, he got a scholarship to continue his postgraduate studies
at Leeds University in England on control theory and optimization under the
supervision of Dr. Rubio. After 28 months from the start of Mr. Vahidian’s
doctoral studies at the University of Leeds, the results of his research were
accepted by his supervisor and the University of Leeds. Although the min-
imum period of studying for a doctorate in England is three years, but Dr.
Ali Vahidian Kamyad was able to defend his thesis and obtain a Ph.D. degree
after 28 months.When Ali got his Ph.D. degree, Dr. Rubio suggested that
he continue his research work with Prof. Prichard as a lecturer at Warwick
University. But, Dr. Vahidian Preferred to return to Iran and continue his
academic job at the Ferdowsi University of Mashhad. In 1988, Dr. Vahidian
started his academic job as an assistant professor in applied mathematics. In
1993, Dr. Vahidian continued teaching and research work as associate pro-
fessor, and in 1997 he continued his research works and teaching as professor
and supervising many Master’s and Ph.D. students at Ferdowsi University
in applied mathematics and control engineering as a joint academic member
in the department of power engineering of Ferdowsi University. Professor
Vahidian published many papers on control theory, optimization, industrial
mathematics, and medicine mathematics and also completed much industrial
research in various factories in Iran, especially in Mashhad, and also super-
vised many MSc and Ph.D. students in applied mathematics and control
engineering and economy and management and agricultural studies. Now
many MSc and Ph.D. students under his supervision are academic members
in the many universities in Iran and abroad.
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Estimation of the regression function by
Legendre wavelets

M. Hamzehnejad* , M.M. Hosseini and A. Salemi

Abstract

We estimate a function f with N independent observations by using Leg-
endre wavelets operational matrices. The function f is approximated with
the solution of a special minimization problem. We introduce an explicit
expression for the penalty term by Legendre wavelets operational matri-
ces. Also, we obtain a new upper bound on the approximation error of a
differentiable function f using the partial sums of the Legendre wavelets.
The validity and ability of these operational matrices are shown by several
examples of real-world problems with some constraints. An accurate ap-
proximation of the regression function is obtained by the Legendre wavelets
estimator. Furthermore, the proposed estimation is compared with a non-
parametric regression algorithm and the capability of this estimation is
illustrated.
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498 Hamzehnejad, Hosseini and Salemi

1 Introduction

Let f : [a, b] −→ R with independent observations {(xi, yi), i = 1, . . . , N} .
Consider the following nonparametric regression model to provide an estimate
for f :

yi = f(xi) + ϵi, (1)

where xi ∈ [a, b] and ϵi have Gaussian noise. It is well known that the
following optimization problem approximate the regression function f [7, 13]:

min
f∈S

1

N

N∑
i=1

(yi − f(xi))2 +
λ

N

∫ b

a

(f (r)(x))2dx, (2)

where S denotes the set of functions f satisfying the constraints and the
constant λ is called smoothing parameter. The first term measures close-
ness to the data, while the second term penalizes curvature in the function.
This optimization problem appears in many branches of applied mathematics
including economics, stochastic processes, statistics, machine learning, and
control theory, and several studies have been conducted to determine the
function f [7, 9, 18, 5, 13].

Using linear combinations of basis functions, such as orthogonal polyno-
mials, wavelets, and splines is a popular approach to estimating the function
f [7, 18, 5, 17, 11, 3, 6, 16]. This kind of method can be expressed as a matrix
equation that contains a penalty term. Although it is not possible to get a
clear and accurate answer to this problem, it is necessary to use approximate
methods to solve it. Calculating the penalty term is an important issue for
the authors. Wand and Ormerod [18] obtained an exact explicit expression
for each entry of the penalty matrix by solving numerical integrals.

It is well known that a single method cannot work for all functions without
any restrictions. Some of these restrictions include monotonicity, convexity,
unimodality, or combinations of several types of constraints. For example,
Mammen et al. [8] considered the regression function under the monotonicity
constraint and Meyer [9] considered the regression function under constraints
of convexity and monotone. Also in [1, 12], the authors considered the re-
gression function under combinations of several types of restrictions.

In this paper, by using properties of the Legendre wavelets, we provide an
exact explicit expression for the penalty term only by matrix multiplications,
which reduce the complexity of the problem. Also, an accurate approximation
of differentiable functions is obtained by Legendre wavelets. For this purpose,
we provide an upper bound for the first term of (2). Moreover, by using the
examples that have been mentioned in [9, 1, 4], we show that the Legendre
wavelets are a good candidate for the estimation of regression functions under
various constraints.

The rest of this paper is organized as follows. In Section 2, we state some
definitions and properties of the Legendre wavelets. Furthermore, we recall
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Estimation of the regression function by Legendre wavelets 499

the operational matrix of derivatives, and by using this operational matrix,
we provide an exact explicit expression for the penalty matrix. In Section
2, a new upper bound on the approximation error of the partial sums of
the Legendre wavelets is presented. In Section 3, the performance of the
proposed estimation is compared with a nonparametric regression method,
by numerical examples.

2 Legendre polynomials and wavelets

In this section, we study Legendre polynomials and wavelets by presenting
some necessary definitions and theorems. The well-known Legendre poly-
nomials are defined on the interval [−1, 1] and can be determined by the
following recurrence formulas [15].

(m+ 1)Lm+1(x) = (2m+ 1)xLm(x)−mLm−1(x), m = 1, 2, 3, . . . ,

where L0(t) = 1 and L1(x) = x. The following relation is hold for Legendre
polynomials [15, eq. 3.176a]

Lm(x) =
1

2m+ 1

(
L′
m+1(x)− L′

m−1(x)
)
. (3)

Moreover, we have the following uniform bound for Legendre polynomials
[15]

|Lm(x)| ≤ 1, x ∈ [−1, 1], m ≥ 0. (4)

Legendre wavelets are defined on the interval [0, 1] as follows:

ψn,m(t) =

{√
(m+ 1

2 )2
k+1
2 Lm(2k+1t− (2n+ 1)), n

2k
≤ t < n+1

2k
,

0, otherwise,

where k ∈ N, m = 0, 1, . . . ,M − 1, and n = 0, 1, . . . , 2k − 1. The Legendre
wavelets are an orthonormal basis for L2 [0, 1] and the following orthogonality
holds: ∫ 1

0

ψm,n(t)ψr,s(t)dt = δmrδns.

Let f(t) ∈ L2 [0, 1] . Then

f(t) ≃
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t) = CTΨ(t),

where cn,m =
∫ 1

0
f(t)ψn,m(t)dt. The vectors C and Ψ(t) are 2kM × 1 vectors

given by

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 497–512



500 Hamzehnejad, Hosseini and Salemi

C =
[
c0,0, . . . , c0,M−1, c1,0, . . . , c1,M−1, . . . , c2k−1,0, . . . , c2k−1,M−1

]T
,

Ψ(t) = [ψ0,0(t), . . . , ψ0,M−1(t), ψ1,0(t), . . . , ψ1,M−1(t),

. . . , ψ2k−1,0(t), . . . , ψ2k−1,M−1(t)
]T
.

The Legendre wavelets approximation finds a shape constrained f to the
minimization problem (2). In the minimization problem (2), we set

f(t) ≃
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t).

For simplicity, we can setψ((i−1)×M)+j+1(t) := ψi,j(t) and c((i−1)×M)+j+1 :=

cij for i = 1, . . . , 2k and j = 0, . . . ,M − 1. Hence the following vectors are
obtained:

Ψ(t) = [ψ1(t), . . . , ψ2kM (t)]
T
, C = [c1, c2, . . . , c2kM ]

T
. (5)

Therefore, we have

f(t) =

2kM∑
j=1

cjψj(t),

where ψj(t) are the Legendre wavelets. Therefore the objective function to
minimize (2) is the following penalized least square:

min
cj

1

N

N∑
i=1

yi − 2kM∑
j=1

cjψj(xi)

2

+
λ

N

∫ 1

0

2kM∑
j=1

cjψ
(r)
j (t)

2

dt,

where

∫ 1

0

2kM∑
j=1

cjψ
(r)
j (t)

2

dt =

2kM∑
i=1

2kM∑
j=1

cicj

∫ 1

0

ψ
(r)
i (t)ψ

(r)
j (t)dt.

Suppose that V is a matrix by elements of the form Vij :=
1
N

N∑
l=1

ψi(xl)ψj(xl),

that P is a matrix by elements Pij =
∫ 1

0
ψ
(r)
i (t)ψ

(r)
j (t)dt, and that the ele-

ments of vector b are defined by bi = 1
N

N∑
l=1

ψi(xl)yl, i, j = 1, . . . , 2k−1M , so

the minimization problem (2) has the following quadratic form of minimiza-
tion [5]:
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min
C∈R2kM

1

2
CTV C − bC + λ(

1

2
CTPC). (6)

By taking the derivative of (6) in terms of C and put it equal zero, we obtain
the following equation:

(V + λP )C = b. (7)

Now focus on the second term, to determine an appropriate operator matrix
to solve the problem (2). An important issue is to calculate the elements of
the matrix P . We use Legendre wavelets operational matrix of derivative,
to get the new structure of the matrix P . The following theorems determine
the Legendre wavelet operational matrices of derivatives, which are used to
solve differential equations.

Theorem 1. [10, Theorem 1] Let Ψ(t) be the Legendre wavelets vector as
in (5). Then the derivative of the vector Ψ(t) can be expressed by

dΨ(t)

dt
= DΨ(t),

where D is the 2kM operational matrix

D =


F 0 · · · 0
0 F · · · 0
...

... . . . ...
0 0 · · · F

 ,
where F is an M × M matrix such that (r, s)th entry of F is defined as
follows:

Fr,s =

 2k+1
√
(2r − 1)(2s− 1),

{
r = 2, . . . ,M,

s = 1, . . . , r − 1,
(r + s) odd,

0, otherwise.

Theorem 2. [10, Theorem 2] By using Theorem 1, the operational matrix
for nth derivative can be derived as

dnΨ(t)

dtn
= DnΨ(t),

where Dn is the nth power of the matrix D.

Therefore, using these operational matrices, the elements of the matrix P
in (7) are introduced in the next theorem.

Theorem 3. Let Ψ(t) be the Legendre wavelets vector defined in (5). As-
sume that r is a nonnegative integer and that the elements of the matrix
P = [Pij ] are Pij =

∫ 1

0
ψ
(r)
i (t)ψ

(r)
j (t)dt. Then Pij has the following exact

explicit expression

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 497–512



502 Hamzehnejad, Hosseini and Salemi

Pij = (Dr
i )(D

r
j )

T , i, j = 1, . . . , 2kM, (8)

where Dr
i is the ith row of the operational matrix Dr as in Theorem 2.

Proof. By using Theorem 2, the elements of the matrix P are as follows:

Pij =

∫ 1

0

ψ
(r)
i (t)ψ

(r)
j (t)dt =

∫ 1

0

(Dr
iΨ(t))(Dr

jΨ(t))dt, i, j = 1, . . . , 2kM.

(9)

Let Dr
iΨ(t) =

2kM∑
s=1

d
(r)
is ψs(t). Then

Pij =

∫ 1

0

(
d
(r)
i1 ψ1(t) + · · ·+ d

(r)

i2kM
ψ2kM (t)

)(
d
(r)
j1 ψ1(t) + · · ·+ d

(r)

j2kM
ψ2kM (t)

)
dt

=

∫ 1

0

2kM∑
s=1

2kM∑
l=1

d
(r)
is d

(r)
jl ψs(t)ψl(t)dt =

2kM∑
s=1

2kM∑
l=1

d
(r)
is d

(r)
jl

∫ 1

0

ψs(t)ψl(t)dt.

According to the property of orthogonality, we have∫ 1

0

ψs(t)ψl(t)dt = δsl. (10)

By using (10), Pij =

2kM∑
s=1

d
(r)
is d

(r)
js = (Dr

i )(D
r
j )

T .

Therefore, we can calculate the elements of the matrix P only by a matrix
multiplication. By solving system (7), the appropriate weight coefficients are
obtained to approximate the function f .

3 Error analysis

In this section, we present an error estimate of the partial sums of Legendre
wavelets to the regression function f . For this purpose, we benefit from the
well-known mean-square error (MSE). By using the MSE [16], we measure
the performance of the estimator f̂ as follows:

MSE(f̂, f) =
1

N

N∑
i=1

E
[
f̂(xi)− f(xi)

]2
.

The Legendre wavelets estimator f̂ can be written as

f̂ = (f̂(x1), . . . , f̂(xN )) =

2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(x1), . . . ,

2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(xN )

 .
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We present a new approximation error of the function f , using the partial
sums of Legendre wavelets. We know that

f(t) =

∞∑
n=0

∞∑
m=0

cn,mψn,m(t)

=

2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t) +

2k−1∑
n=0

∞∑
m=M

cn,mψn,m(t) +

∞∑
n=2k

∞∑
m=0

cn,mψn,m(t).

(11)

The last part in (11),
∞∑

n=2k

∞∑
m=0

cn,mψn,m(t) = 0, because the Legendre

wavelets ψn,m(t) are zero outside of the interval [0, 1]. Then∥∥∥∥∥∥f(t)−
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
2k−1∑
n=0

∞∑
m=M

cn,mψn,m(t)

∥∥∥∥∥∥
2

≤
2k−1∑
n=0

∞∑
m=M

|cn,m|2 ∥ψn,m(t)∥2 .

We know that ∥ψn,m(t)∥2 = 1. Therefore

∥∥∥f(t)− f̂(t)∥∥∥2 =

∥∥∥∥∥∥f(t)−
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥∥
2

≤
2k−1∑
n=0

∞∑
m=M

|cn,m|2 . (12)

Hence, the approximation error of the truncated series of Legendre wavelets
depends on the Legendre wavelets coefficients cn,m. Now, we obtain an upper
bound for Legendre wavelets coefficients.

Theorem 4. Suppose that k ∈ N and that f, f ′, . . . , f (r) are absolutely
continuous on [0, 1]. Suppose that V = max

{
Vn, n = 0, . . . , 2k − 1

}
, where

Vn =

∫ n+1

2k

n

2k

∣∣∣f (r+1) (t)
∣∣∣ dt, n = 0, 1, . . . , 2k − 1.

Then for m ≥ r + 1,

|cn,m| ≤


V

2rk(2m−2r+3)···(2m−1)(2m+3)···(2m+2r−1)
√

2k(2m−2r+1)
, r odd,

V

2rk(2m−2r+3)···(2m+1)(2m+5)···(2m+2r−1)
√

2k(2m−2r+1)
, r even.

(13)

Proof. For each 0 ≤ i ≤ r, define the following sequence
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c(i)n,m =

∫ n+1

2k

n

2k

f (i)(t)ψn,m(t)dt

=

√
(m+

1

2
)2

k+1
2

∫ n+1

2k

n

2k

f (i)(t)Lm(2k+1t− (2n+ 1))dt, (14)

where c(0)n,m = cn,m. Let x = 2k+1t− (2n+ 1). Then

c(r+1)
n,m =

√
(m+

1

2
)2

k+1
2

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
Lm(x)

dx

2k+1

=

√
(m+ 1

2 )

2
k+1
2

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
Lm(x)dx. (15)

By using the equation (3), we have

c(r)n,m =

√
(m+ 1

2 )

2
k+1
2 (2m+ 1)

∫ 1

−1

f (r)
(
x+ 2n+ 1

2k+1

)(
L′
m+1(x)− L′

m−1(x)
)
dx.

(16)

Using integration by parts, we have

c(r)n,m =

√
(m+ 1

2 )

2
k+1
2 (2m+ 1)

[
f (r)

(
x+ 2n+ 1

2k+1

)
(Lm+1(x)− Lm−1(x))

]1
−1

+

√
(m+ 1

2 )

2
k+1
2 2k+1(2m+ 1)

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
(Lm+1(x)− Lm−1(x)) dx.

(17)

Using the properties Lm(1) = 1m and Lm(−1) = (−1)m for m ≥ 0, easy
computations shows that the first term of (17) vanishes. Thus we have

c(r)n,m =

√
(m+ 1

2 )

2
k+1
2 2k+1(2m+ 1)

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
(Lm+1(x)− Lm−1(x)) dx.

(18)

From (14) and (18), we obtain the following relation between the coefficients

c(r)n,m =
1

2k+1(2m+ 1)

(
c
(r+1)
n,m−1 − c

(r+1)
n,m+1

)
. (19)

Now, we obtain an upper bound for c(r+1)
n,m . We can see that
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c(r+1)
n,m =

√
(m+ 1

2 )

2
k+1
2

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
Lm(x)dx

=

√
(m+

1

2
)2k+1

∫ n+1

2k

n

2k

f (r+1)(t)Lm(2k+1t− (2n+ 1))dt.

From (9) and by easy computation, we obtain

∣∣∣c(r+1)
n,m

∣∣∣ =√(m+
1

2
)2k+1

∫ n+1

2k

n

2k

∣∣∣f (r+1) (t)
∣∣∣ ∣∣Lm(2k+1t− (2n+ 1))

∣∣ dt
≤
√

(2m+ 1)2k
∫ n+1

2k

n

2k

∣∣∣f (r+1) (t)
∣∣∣ dt ≤ V√2k(2m+ 1). (20)

Applying (20) in (19), we have∣∣∣c(r)n,m

∣∣∣ ≤ 1

2k+1(2m+ 1)

(∣∣∣c(r+1)
n,m−1

∣∣∣+ ∣∣∣c(r+1)
n,m+1

∣∣∣)
≤ V

√
2k(2m− 1) + V

√
2k(2m+ 3)

2k+1(2m+ 1)
. (21)

Since √
2m− 1 +

√
2m+ 3 ≤ 2

√
2m+ 1,

(21) becomes to ∣∣∣c(r)n,m

∣∣∣ ≤ 2V
√
2k(2m+ 1)

2(k+1)(2m+ 1)
=

V√
2k(2m+ 1)

. (22)

Also, by using (22) in (19), we obtain the following upper bound for c(r−1)
n,m :∣∣∣c(r−1)

n,m

∣∣∣ ≤ 1

2k+1(2m+ 1)

(∣∣∣c(r)n,m−1

∣∣∣+ ∣∣∣c(r)n,m+1

∣∣∣)
≤ 1

2k+1(2m+ 1)

(
V√

2k(2m− 1)
+

V√
2k(2m+ 3)

)

=
V

2k+1(2m+ 1)
√
2k

(√
(2m+ 3) +

√
(2m− 1)√

(2m− 1)(2m+ 3)

)

≤
2V
√
(2m+ 3)

2k+1(2m+ 1)
√

2k(2m− 1)(2m+ 3)

=
V

2k(2m+ 1)
√
2k(2m− 1)

.
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If we continue the above process, then by easy computation for an integer
s ≥ 2, we obtain the following upper bound for c(r−s−1)

n,m :

|c(r−s)
n,m | ≤


V

2(s−1)k(2m−2s+5)···(2m−1)(2m+3)···(2m+2s−3)
√

2k(2m−2s+3)
, s odd,

V

2(s−1)k(2m−2s+5)···(2m+1)(2m+5)···(2m+2s−3)
√

2k(2m−2s+3)
, s even.

Then (13) holds when s+ 1 = r.

Now, we are ready to provide an approximation error of the partial sums
of Legendre wavelets. We show that if the regression function f is smooth,
then the partial sums of Legendre wavelets converge to it rapidly.

Theorem 5. Suppose that k ∈ N and that f, f ′, . . . , f (r) are absolutely
continuous on [0, 1]. Moreover, suppose that Ek,M (f(t)) =

∥∥∥f(t)− f̂(t)∥∥∥.
Then for M ≥ r + 1 and r ≥ 1,

Ek,M (f(t)) ≤


V

r2(r−1)k(2M−2r+1)···(2M−1)(2M+3)···(2M+2r−7)
√

2k(2M−2r+1)
, r odd,

V

r2(r−1)k(2M−2r+1)···(2M+1)(2M+5)···(2M+2r−7)
√

2k(2M−2r+1)
, r even.

Proof. Let r be an odd integer. Applying (13) in (12), we obtain

Ek,M (f(t))

≤
2k−1∑
n=0

∞∑
m=M

V

2rk(2m− 2r + 3) · · · (2m− 1)(2m+ 3) · · · (2m+ 2r − 1)
√

2k(2m− 2r + 1)

≤
V

2rk
√

2k(2M − 2r + 1)

2k−1∑
n=0

∞∑
m=M

1

(2m− 2r + 3) · · · (2m− 1)(2m+ 3) · · · (2m+ 2r − 1)

=
V

2rk
√

2k(2M − 2r + 1)

2k−1∑
n=0

∞∑
m=M

1

(2m+ 2r − 1)r−1(1− 4r−4
(2m+2r−1)

) · · · (1− 4
(2m+2r−1)

)

≤
V

2rk
√

2k(2M − 2r + 1)(1− 4r−4
(2M+2r−3)

) · · · (1− 4
(2M+2r−3)

)

2k−1∑
n=0

∫ ∞

M−1

1

(2x+ 2r − 1)r−1
dx

=
2kV

r2rk(2M − 2r + 1) · · · (2M − 1)(2M + 3) · · · (2M + 2r − 7)
√

2k(2M − 2r + 1)

=
V

r2(r−1)k(2M − 2r + 1) · · · (2M − 1)(2M + 3) · · · (2M + 2r − 7)
√

2k(2M − 2r + 1)
.(23)

By a similar approach, the results hold for an even integer r and complete
the proof.

Remark 1. The aim of this remark is to draw an approximation error for
a function f(x), using the partial sums of the Legendre wavelets. Consider
two functions f(x) = 1 + x− 0.45 exp[−5(x− 0.5)2] and f(x) = 1

6x
2|x|. The
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function f(x) = 1 + x − 0.45 exp[−5(x − 0.5)2] is infinitely differentiable.
In Table 1, numerical results are shown for this function for some values of
M,k, and r. The numerical results obtained from this table indicate that
by increasing M , k, and r, the partial sums of Legendre wavelets converge
to the function f(x) rapidly. Also, consider the function f(x) = 1

6x
2|x|

Table 1: Approximation errors of the function f(x) = 1 + x − 0.45exp[−5(x − 0.5)2]
evaluated by Theorem 5.

M k r Ek,M (f(x)) M k r Ek,M (f(x))
10 1 3 1.920× 10−3 10 1 5 6.977× 10−5

15 2 3 5.669× 10−5 15 2 5 1.686× 10−7

20 3 3 3.373× 10−6 20 3 5 8.670× 10−10

[19]. This function and its derivatives are absolutely continuous on [0, 1] and
f (2)(x) = |x|. Also, f (3)(x) = 2H(x) − 1, where H(x) is the Heaviside step
function, which is of bounded variation and f (4)(x) = 2δ(x), where δ(x) is the
Dirac delta function. In Table 55, the numerical results are listed for some
values of M,k, and r. Moreover, the logarithm of absolute errors is displayed

Table 2: Approximation errors of the function f(x) = 1
6
x2|x| evaluated by Theorem 5.

M k r Ek,M (f(x)) M k r Ek,M (f(x))
10 1 3 1.067× 10−4 10 2 3 1.887× 10−5

15 1 3 3.251× 10−5 15 2 3 5.747× 10−6

20 1 3 1.459× 10−5 20 2 3 2.579× 10−6

in Figure 1.

Figure 1: Approximation error of the functions f(x) = 1
6
x2|x| and f(x) = 1 + x −

0.45exp[−5(x− 0.5)2].
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4 Numerical results

In this section, we present some examples to illustrate the validity and ability
of the Legendre wavelets. For this purpose, we use some real-world test
functions. Suppose that (xi, yi), i = 1, . . . , N are N independent data with
the same distribution such that Xi, i = 1, . . . , N have normal distribution,
that is, xi ∼ N(µ, σ). Let yi = f(xi)+ϵi and let xi, ϵi, f be independent with
penalization order r = 2. We consider different kinds of regression functions,
which have different constraints on interval [0, 1].

Remark 2. Choosing the suitable smoothing parameter λ is also an im-
portant issue in solving the minimization problem (2). Corlay [5] showed
that λ = σ2r−1

xi
is a suitable smoothing parameter, where the quantity σxi

is the standard deviation, which scales proportionally with xi. Hence, in all
examples, the coefficient of the penalty term λ

N =
σ2r−1
xi

N is used.

Example 1. Consider two real regression functions f1(x) = 15(x − 0.25)2

[9] and f2(x) = 1 + x− 0.45 exp[−5(x− 0.5)2] [4]. Then f1(x) is convex over
[0, 1] and f2(x) is strictly monotone over [0, 1]. Penalized Legendre wavelets
regression of samples are plotted in Figure 2.

Figure 2: Approximate solution for the regression functions f1(x) and f2(x) in Example
1

Example 2. Consider the real regression function f3(x) = 15x2 sin(3.7x) +
2

σ
√
2π

exp[(− 1
2 (

x−µ
σ )2)] [7, 1], where σ = 0.1 and µ = 0.3. This function

is unimodal (first increasing and then decreasing), concave on [0.55, 1], and
twice differentiable. We approximate the minimization problem (2) for N =
1000 samples of (xi, yi). In Figure 3, the numerical results are shown.

Example 3. Consider the real regression function f4(x) = 10(x − 0.5)3 −
exp[−100(x− 0.25)2][4]. In Figure 4, the numerical results are shown.

In the following example, we compare our method by a nonparametric Re-
gression (NR) method. NR methods are very sensitive to parameters such as
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Figure 3: Approximate solution for the regression function f3(x).

Figure 4: Approximate solution for the regression function f4(x).

the bandwidth selection, the regression order, and the shape of the smoothing
kernel. In these methods, the choice of order and especially the bandwidth
parameter can be a hassle [14]. In the previous example, we observed that
the Legendre wavelets regression (LWR) method provides a good estimate
for N samples (xi, yi), which does not depend on any parameter except the
choice of k and M , where k specifies the level of resolution, 2k sub-intervals
on [0, 1], and M determines the degree of wavelets. Note that the selection
of these two parameters is easy.

Example 4. Consider the functions f1(x) = 1 + x − 0.45 exp[−5(x −
0.5)2], f2(x) = 15x2 sin(3.7x) + 2

σ
√
2π

exp(− 1
2 (

x−µ
σ )2) and f3(x) = −x3 − x2.

In Figure 5, we approximate the minimization problem (2) for N = 250
samples of (xi, yi) and compare this method by a nonparametric regression
method, which are shown in Figure 5.

5 Conclusion

In this paper, Legendre wavelets were used to approximate the regression
function. A new operational matrix was introduced to simplify the mini-
mization problem in (2), which is useful for new research in financial math-
ematics and numerical analysis. Moreover, a new approximation error of
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Figure 5: Comparing the Legendre wavelets estimation (black curve) with the nonpara-
metric regression (blue curve). Due to nonoptimal choices of h, under-fitting occurred
in the first row and over-fitting occurred in the second row for nonparametric regression
for the functions mentioned in Example 3.

a differentiable function f using the partial sums of the Legendre wavelets
was provided. Numerical experiments were performed for a variety of real
regression functions (see [9, 1, 4]). The proposed method was executed on
some popular functions, and the numerical results were compared with the
nonparametric regression method. Finally, the capability of the proposed
method was illustrated.
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Using shifted Legendre orthonormal
polynomials for solving fractional optimal

control problems
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Abstract

Shifted Legendre orthonormal polynomials (SLOPs) are used to approxi-
mate the numerical solutions of fractional optimal control problems. To
do so, first, the operational matrix of the Caputo fractional derivative,
the SLOPs, and Lagrange multipliers are used to convert such problems
into algebraic equations. Also, the method is proposed for solving multidi-
mensional problems, and its convergence is proved. This method is tested
on some nonlinear examples. The results indicate that the technique can
efficiently solve multidimensional problems.
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1 Introduction

For the first time, fractional calculus was introduced in the 17th century. Li-
ouville, Grünwald, Letnikov, Riemann, and Caputo substantially contributed
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to the development of its theoretical foundations [6]. They worked on mass
and heat transfer problems using the terms semi-derivative and semi-integral.
The first book on fractional calculus was written by Oldham and Spanier
[27]. Further details on fractional calculus and some of its applications can
be found in [11, 12, 21, 22].

In recent years, the applications of fractional calculus in engineering and
sciences, including mathematics, fluid dynamics, and physics, have attracted
considerable attentions. Fractional calculus is used to extend the usual no-
tions of derivative and integral to ones with real orders and is based on the
concepts of fractional derivative in the sense of Caputo and fractional integral
in the sense of Riemann–Liouville [22, 27].

When we use a term involving fractional-order derivative(s) in differen-
tial equations of optimal control problems, we obtain fractional optimal con-
trol problems (FOCPs). Many scientific studies confirm the applications of
FOCPs in mathematics, mechanics, medicine, and engineering [13, 23]. For
example, such problems have been used to obtain numerical solutions of
the fractional models of some diseases, such as the fractional-order tumor-
immune model, HIV epidemic, and the glucose-insulin system [2, 15, 24].

Orthonormal polynomials have been applied in various linear and non-
linear problems, because they can be used to convert these problems into
easy-to-solve algebraic equations. They have many useful properties that fa-
cilitate the solution of mathematical problems and provide a way for solving,
expanding, and interpreting solutions in some types of differential equations
[1, 5, 10, 12].

In this article, we use the SLOPs as the basis functions of the method
proposed to solve fractional differential equations. The common approach
adopted in the past studies was to solve the one-dimensional problem. More-
over, most of the studies like [5, 4, 10], just obtained the error bound of the
operational matrix in fractional derivatives. Hence, none of them proved the
convergence of the method under consideration.

Therefore, we aim to develop the method for multidimensional problems
in this paper. Moreover, we prove the convergence of the method. The
outputs reveal that the method is efficient for multidimensional problems.

We organized the paper as follows. In Section 2, we present the important
properties of shifted Legendre polynomials, some preliminary definitions from
fractional calculus, and the operational matrix of fractional derivatives. In
Section 3, we explain the method and the necessary conditions for the FOCPs.
Section 4 discusses the convergence of the proposed technique. In Section 5,
we compare our results with those of the previous researches for nonlinear and
multidimensional examples. Finally, in Section 6, we present the conclusion.
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2 Shifted Legendre orthonormal polynomials

Definition 1. [5] For a function ξ(t), the Riemann–Liouville fractional in-
tegral of order α ≥ 0 is defined by

Iαξ(t) =

{
1

Γ(α)

∫ t

0
(t− z)α−1ξ(z) dz, α > 0, t > 0,

ξ(t), α = 0,
(1)

where
Γ(α) =

∫ ∞

0

zα−1e−zdz,

denotes the gamma function.

Definition 2. [5] For a function ξ(t), the Caputo fractional derivative of
order α is defined by

Dαξ(t) =
1

Γ(n− α)

∫ t

0

(t− z)n−α−1 d
n

dzn
ξ(z) dz, n− 1 < α ⩽ n, t > 0,

(2)

where n is an integer.

Some properties of these operators can be written as

Dα c = 0, c is a constant, (3)

Iα (Dα ξ(t)) = ξ(t)−
n−1∑
k=0

ξ(k)(0)
tk

k!
, (4)

Dα tδ =
Γ(δ + 1)

Γ(δ + 1− α)
tδ−α, (5)

and

Dα (β ξ(t) + γ τ(t)) = β Dα ξ(t) + γ Dα τ(t), (6)

where δ, β, and γ are scalar coefficients.

Definition 3. [3] The Legendre polynomial of degree i, pi(z), is defined on
the interval [−1, 1] by the recurrence relation

pi+1(z) =
2i+ 1

i+ 1
z pi(z)−

i

i+ 1
pi−1(z), i ⩾ 1, (7)

where
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p0(z) = 1, p1(z) = z. (8)

We obtain the shifted Legendre polynomials p∗i (t) on [0, 1] if we use the
change of variable z = 2t− 1:

p∗i+1(t) =
2i+ 1

i+ 1
(2t− 1) p∗i (t)−

i

i+ 1
p∗i−1(t), i ⩾ 1, (9)

p∗0(t) = 1, p∗1(t) = 2t− 1. (10)

These polynomials are orthogonal, in the sense that

⟨p∗j (t), p∗i (t)⟩ =
∫ 1

0

p∗j (t) p
∗
i (t) dt =

{
1

2i+1 , j = i,

0, j ̸= i.
(11)

As shown in [3], if we introduce the SLOPs p̂i(t) ≡
√
2i+ 1 p∗i (t), then∫ 1

0

p̂i(t) p̂j(t)dt =

{
1, j = i,
0, j ̸= i,

(12)

and

p̂i(t) =
√
2i+ 1

i∑
k=0

(−1)i+k (i+ k)!

(i− k)! (k!)2
tk. (13)

Assume that ζ is any element of L2[0, 1] and

ρM = span{p̂0(t), p̂1(t), . . . , p̂M (t)}. (14)

Now, for any h ∈ ρM , we can write h ≃
∑M

i=0 di p̂i(t), where the coefficients
di are determined as follows:

di =

∫ 1

0

h(t) p̂i(t) dt, i = 0, 1, . . . ,M. (15)

We call ζρ ∈ ρM the best approximation of ζ out of ρM whenever

for all h ∈ ρM : ∥ζ − ζρ∥2 ⩽ ∥ζ − h∥2. (16)

Since ζρ ∈ ρM , there exist coefficients ci, i = 0, 1, . . . ,M, such that

ζρ(t) ≃
M∑
i=0

ci p̂i(t). (17)

So, the matrix form of ζρ(t) is
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ζρ(t) ≃ FT △M (t), (18)

where

F =


c0
c1
...
cM

 , △M (t) =


p̂0(t)
p̂1(t)
...

p̂M (t)

 . (19)

Theorem 1. For the SLOPs vector △M (t), the fractional derivative of order
α, in the sense of Caputo, is defined as follows:

Dα△M (t) = D(α)△M (t). (20)

Herein, D(α) denotes the (M+1)×(M+1) operational matrix of the fractional
derivative, given by

D(α) =



0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0
Wα(n, 0) Wα(n, 1) Wα(n, 2) · · · Wα(n,M)

...
...

...
...

...
Wα(M, 0) Wα(M, 1) Wα(M, 2) · · · Wα(M,M)


,

where

Wα(k, j) (21)

=
√

(2j + 1) (2k + 1)

k∑
i=n

j∑
l=0

(−1)k+j+i+l (k + i)! (l + j)!

(k − i)! i! Γ(i− α+ 1) (j − l)! (l!)2 (i+ l − α+ 1)
,

and rows 0 to n-1 are zero.

Proof. See [3].

3 The numerical method

To solve the following problem, we use the operational matrix of fractional
derivatives, the SLOPs and Lagrange multipliers.

min J =

∫ t1

t0

f
(
t, x(t), u(t)

)
dt, (22)

Dα x(t) = ϕ
(
t, x(t), u(t)

)
, n− 1 < α ⩽ n, t ∈ [t0, t1], (23)
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D(k) x(t0) = xk, k = 0, 1, . . . , n− 1. (24)

Here, ϕ
(
t, x(t), u(t)

)
= g
(
t, x(t)

)
+b(t)u(t), and S is the feasible solution set.

Also, u(t) and x(t) denote the control and state variables, respectively, u(t) is
continuous, x(t) is continuously differentiable, g

(
t, x(t)

)
, f
(
t, x(t), u(t)

)
, and

b(t) are smooth functions, b(t) is invertible, f
(
t, x(t), u(t)

)
and ϕ

(
t, x(t), u(t)

)
are convex functions, S is a convex set, and f

(
t, x(t), u(t)

)
is integrable on

I = [t0, t1]. Moreover, f
(
t, x(t), u(t)

)
and g

(
t, x(t)

)
satisfy the Lipschitz

property. In fact,

∥f
(
t, x1(t), u1(t)

)
− f

(
t, x2(t), u2(t)

)
∥ ≤ L(∥x1(t)− x2(t)∥+ ∥u1(t)− u2(t)∥),

(25)

and

∥g
(
t, x1(t)

)
− g
(
t, x2(t)

)
)∥ ≤ K(∥x1(t)− x2(t)∥), (26)

where L and K are positive constants. Approximate x(t) by the SLOPs p̂i(t)
as

xM (t) = CT △M (t), (27)

where CT is an unknown scalar coefficient vector given by

CT =
(
c0 c1 · · · cM

)
. (28)

We defined p̂i(t) and △M (t) in (10) and (19), respectively. By (27), we can
rewrite the dynamic constraint (23) as

CT D(α)△M (t) = g
(
t, CT △M (t)

)
+ b(t)u(t). (29)

So, we obtain

u(t) =
1

b(t)

(
CT D(α)△M (t)− g

(
t, CT △M (t)

))
. (30)

Then, we can rewrite the initial conditions (24) in the form

CT D(k)△M (t0)− xk = 0, k = 0, 1, . . . , n− 1. (31)

Due to (27), (30) and (31), the performance index J can be approximated
by

JM [CT ] =

∫ t1

t0

f̂
(
t, xM (t), DαxM (t))dt+

n−1∑
k=0

(
CT D(k)△M (t0)− xk

)
λk,

(32)
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where

f̂
(
t, xM (t), DαxM (t)) = f

(
t, CT △M (t),

1

b(t)

(
CT D(α) △M (t)− g(t, CT △M (t))

))
, (33)

and λk denotes the Lagrange multiplier, which should be determined [11].
The necessary conditions for the optimality of (22) are subject to the

dynamic constraints (23) and (24) in the form

∂JM
∂ci

= 0, i = 0, 1, . . . ,M,
∂JM
∂λk

= 0, k = 0, 1, . . . , n− 1. (34)

We can use any standard iterative method to solve the aforementioned system
for ci, i = 0, 1, . . . ,M , and λk, k = 0, 1, . . . , n−1. As a result, we obtain x(t)
and u(t) as given in (27) and (30), respectively [3].

4 Convergence analysis

The use of SLOPs operates as a proof of convergence in three steps. In the
first step, we show that the usage is indeed justifiable. In the second step,
we show that the functional derivative of a shifted Legendre polynomial is a
proper approximation for the same derivative. In the third step, we indicate
the difference between the target function for any optimized solution and the
value of the target function of the shifted Legendre approximation, tends to
zero as the number of the shifted Legendre orthonormal basis increases. We
complete these steps by the hypotheses, Lemmas 1 and 2. To find an upper
bound for the operational matrix errors in fractional derivatives and to prove
the convergence, we use the following theorems.

Theorem 2. Let H be a Hilbert space, and let Y be a finite-dimensional
subspace of H. Also, assume that {y1, y2, . . . , yM} is any basis for Y . Given
any x in H, let y0 denotes the unique best approximation of x out of Y .
Then,

∥x− y0∥22 =
G(x, y1, y2, . . . , yM )

G(y1, y2, . . . , yM )
, (35)

where

G(x, y1, y2, · · · , yM ) =

∣∣∣∣∣∣∣∣∣
⟨x, x⟩ ⟨x, y1⟩ · · · ⟨x, yM ⟩
⟨y1, x⟩ ⟨y1, y1⟩ · · · ⟨y1, yM ⟩

...
...

...
...

⟨yM , x⟩ ⟨yM , y1⟩ · · · ⟨yM , yM ⟩

∣∣∣∣∣∣∣∣∣ , (36)

and
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G(y1, y2, · · · , yM ) =

∣∣∣∣∣∣∣
⟨y1, y1⟩ · · · ⟨y1, yM ⟩

...
...

...
⟨yM , y1⟩ · · · ⟨yM , yM ⟩

∣∣∣∣∣∣∣ . (37)

Proof. See [5].

We show that the upper bound of operational matrix errors in fractional
derivatives D(α) can be obtained as

εαD := D(α)△M (t)− D̂α△M (t), (38)

where D̂α is an approximation of the operator D(α) and

εαD =


εαD,0

εαD,1
...

εαD,M

 . (39)

As mentioned in [18], for each element of εαD, an upper bound for the error
related to D(α) can be written as follows:

∥εαD,k∥2 ⩽
√
2k + 1

k∑
i=1

∣∣∣ (k+i)!
(k−i)! i! Γ(i−α+1)

∣∣∣×(G(ti−1, p̂0(t), ..., p̂M (t))
G(p̂0(t),...,p̂M (t))

) 1
2

,

0 ⩽ k ⩽M. (40)

By Theorem 2 and (40), we conclude that εαD tends to zero as the number of
the shifted Legendre orthonormal basis increases [5].

Lemma 1. Let x(t) be a continuously differentiable function, and let xM (t)
denote the approximation of x(t) by the SLOPs. Then,

∥x(t)− xM (t)∥ → 0 as M →∞. (41)

Proof. See [15].

Lemma 2. For x(t) and xM (t) as in Lemma 1, when M →∞,

∥Dα x(t)−Dα xM (t)∥ → 0, (42)

|Dk xM (t0)− xk| = 0, k = 0, 1, . . . , n− 1, (43)

∥ẋ(t)− ẋm(t)∥ → 0. (44)

Proof. See [5].
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We define J1 [CT ] as follows:

J1 [CT ] =

∫ t1

t0

f
(
t, x(t),

1

b(t)

(
D(α) x(t)− g

(
t, x(t)

))
dt

+

n−1∑
k=0

(
D(k) x(t0)− xk

)
λk. (45)

Theorem 3. Consider problems (22)–(24), and let x∗(t) be an optimal so-
lution of min J1 [CT ]. Then,∣∣JM [CT ]− J1 [CT ]

∣∣→ 0 as M →∞. (46)

Proof. Using (27) and (30) we obtain
∣∣JM [CT ]− J1 [CT ]

∣∣ =∣∣ ∫ t1

t0

f
(
t, CT △M (t),

1

b(t)

(
CT D(α) △M (t)− g(t, CT △M (t))

))
dt

+

n−1∑
k=0

(
CT D(k) △M (t0)− xk

)
λk

−
∫ t1

t0

f(t, x∗(t),
1

b(t)
(D(α) x

∗(t)− g(t, x∗(t)))
)
dt

−
n−1∑
k=0

(
D(k) x

∗(t0)− xk
)
λk

∣∣.
According to (24), (31), and Lemmas 1 and 2, we know that

n−1∑
k=0

(
CT D(k)△M (t0)− xk

)
λk = 0

and that
∑n−1

k=0

(
D(k) x

∗(t0)− xk
)
λk = 0. So,∣∣JM [CT ]− J1 [CT ]

∣∣
=
∣∣ ∫ t1

t0

(
f
(
t, CT △M (t),

1

b(t)

(
CT D(α)△M (t)− g(t, CT △M (t))

))
− f

(
t, x(t),

1

b(t)
(D(α) x(t)− g(t, x(t)))

))
dt
∣∣

We know that f satisfies the Lipschitz condition. Therefore,∣∣JM [CT ]− J1 [CT ]
∣∣

≤
∫ t1

t0

(
L (∥CT △M (t)− x(t)∥)

+ ∥ 1

b(t)

(
CT D(α)△M (t)− g

(
t, CT △M (t)

)
−D(α) x(t) + g(t, x(t))

)
∥
)
dt.
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By the Schwartz inequality and separating integrals, we obtain∣∣JM [CT ]− J1 [CT ]
∣∣

≤ L

∫ t1

t0

(∥CT △M (t)− x(t))∥
)
dt

+
1

|b(t)|

∫ t1

t0

(
(∥CT D(α)△M (t)−D(α) x(t)∥) dt

+
1

|b(t)|

∫ t1

t0

(
∥g(t, x(t))− g(t, CT △M (t))∥

))
dt.

We write the upper bounds of integrals and note that g satisfies the Lipschitz
condition. Then,∣∣JM [CT ]− J1 [CT ]

∣∣ ≤ L(t1 − t0)(∥CT △M (t)− x(t)∥

+
(t1 − t0)
|b(t)|

(
∥CT D(α)△M (t)−D(α) x(t)

)
∥

+
K (t1 − t0)
|b(t)|

∥x(t)− CT △M (t)∥.

If M → ∞, then Lemma 1 shows that the first and third terms tend to
zero. Also, the second term tends to zero by Lemma 2. Consequently,
JM [CT ]→ J1[CT ].

Through Theorem 3, we observed that the difference between the value
of the target function for any optimized solution of min J1 [CT ] and that
of the target function for the approximate value of Legendre tends to zero
as M → ∞. Having (27)–(32) in mind, min J1 [CT ] is equivalent to (22).
Hence, the difference between the value of target function (22) and that of
the Legendre approximate target function tends to zero.

5 Numerical experiments

In this section, we prove the accuracy of the proposed technique by providing
some examples and then comparing our achievements with the numerical
results obtained in other papers by the computer with Intel Core i7 CPU up
to 3.5 GHz, RAM 12GB, and the codes written with Wolfram Mathematica
11.

Example 1. Consider the problem

min J =

∫ 1

0

(
(x(t)− t2)2 + (u(t) + t4 − 20 t

9
10

9Γ( 9
10 )

)2
)
dt, (47)

subject to dynamic constraints
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D1.1 x(t) = t2 x(t) + u(t), (48)

x(0) = ẋ(0) = 0. (49)

Due to (48), we obtain u(t) and rewrite (47) as

u(t) = D1.1 x(t)− t2x(t),

min J =

∫ 1

0

(
(CT △M (t)− t2)2

+ (D1.1 CT △M (t)− t2 CT △M (t) + t4 − 20 t
9
10

9Γ( 9
10 )

)2
)
dt

+
(
CT D(0)△M (t0)− x(0)

)
λ0 +

(
CT D(1)△M (t0)− ẋ(0)

)
λ1.

The functional J is minimized by x∗(t) = t2 and u∗(t) = 20 t
9
10

9 Γ( 9
10 )
− t4, with

minimum equal to zero. Table 2 presents the approximate values of J , which
are obtained by the proposed method and the methods utilized in [21, 3],
with different values of M . As the results indicate, our approach is better
than the ones used in [21, 3].

Table 1: Approximations of J with different values of M

M The method The method used in [21] The method used in [3]
4 1.66202× 10−6 6.07530× 10−6 4.76932× 10−6

6 2.44576× 10−7 5.91532× 10−7 5.37825× 10−7

8 5.90947× 10−8 1.21966× 10−7 1.06099× 10−7

9 3.26447× 10−8 7.03371× 10−8 5.44304× 10−8

Table 3 presents the absolute values of errors for the control and state vari-
ables for various values of t. Also, in Figure 6, the approximate and exact
values of the control and state variables are plotted for M = 6.
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Table 2: Absolute errors of x(t) and u(t) at M = 6

t |x∗(t)− x(t)| |u∗(t)− u(t)|
0.1 1.60241× 10−7 1.72334× 10−5

0.2 2.35607× 10−7 4.57424× 10−4

0.3 9.96796× 10−8 2.85637× 10−4

0.4 6.68032× 10−8 2.89849× 10−4

0.5 7.86075× 10−8 1.79588× 10−4

0.6 9.06389× 10−8 2.80773× 10−4

0.7 2.84397× 10−7 1.15197× 10−4

0.8 2.78471× 10−7 2.69036× 10−4

0.9 3.55721× 10−8 2.73064× 10−4

Figure 1: Approximate and exact values of the control and state variables
for M = 6

Example 2. Consider the two-dimensional problem

min J =

∫ 1

0

(
(x1(t)− t2)2 + (x2(t)− t3)2

+ (u1(t)− t4 +
Γ(4)

6 Γ(2.9)
t1.9 − Γ(3)

3 Γ(1.9)
t0.9)2

+ (u2(t)− t5 +
Γ(4)

2 Γ(2.9)
t1.9)2

)
dt, (50)

subject to dynamic constraints

D1.1 x1(t) = 3u1(t)− 3 t2x1(t) + t2 x2(t)− u2(t), (51)

D1.1 x2(t) = −2u2(t) + (2 t2 − 1)x2(t) + t x1(t), (52)

x1(0) = ẋ1(0) = 0, (53)

and

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 513–532



Using shifted Legendre orthonormal polynomials for solving fractional ... 525

x2(0) = ẋ2(0) = 0. (54)

By (51) and (52), we obtain u1(t) and u2(t) as follows:[
u1(t)
u2(t)

]
=

[
1
3 −

1
6

0 − 1
2

] ( [D1.1 x1(t)
D1.1 x2(t)

]
−
[
−3 t2x1(t) + t2 x2(t)

(2 t2 − 1)x2(t) + t x1(t)

] )
.

We define
x1(t) = CT

1 △M (t), CT
1 =

(
c10 c11 · · · c1M

)
,

x2(t) = CT
2 △M (t), CT

2 =
(
c20 c21 · · · c2M

)
,

and rewrite (50) as

min J =

∫ 1

0

(
(CT

1 △M (t)− t2)2 + (CT
2 △M (t)− t3)2

+
(1
3
(D1.1 CT

1 △M (t) + 3 t2 (CT
1 △M (t))− t2 (CT

2 △M (t)))

− 1

6
(D1.1 CT

2 △M (t)− (2 t2 − 1) (CT
2 △M (t))− t (CT

1 △M (t)))− t4

+
Γ(4)

6 Γ(2.9)
t1.9 − Γ(3)

3 Γ(1.9)
t0.9
)2

+
(
− 1

2
(D1.1 CT

2 △M (t)

− (2 t2 − 1) (CT
2 △M (t))− t (CT

1 △M (t)))− t5 + Γ(4)

6 Γ(2.9)
t1.9
)2)

dt

+
(
CT

1 D(0)△M (t0)− x1(0)
)
λ0 +

(
CT

1 D(1)△M (t0)− ẋ1(0)
)
λ1

+
(
CT

2 D(0)△M (t0)− x2(0)
)
λ0 +

(
CT

2 D(1)△M (t0)− ẋ2(0)
)
λ1.

The functions x∗1(t) = t2, x∗2(t) = t3 and u∗1(t) = t4 − Γ(4)
6 Γ(2.9) t

1.9 +
Γ(3)

3 Γ(1.9) t
0.9, u∗2(t) = t5 − Γ(4)

6 Γ(2.9) t
1.9 minimize the functional J , and the mini-

mum value is zero. In Table 4, we present the approximate values of J with
different values of M .

Table 3: Approximate values of J with different values of M

M J
4 2.39801× 10−7

6 3.03043× 10−8

8 6.97336× 10−9

9 6.97321× 10−9

Table 4 presents the absolute values of errors for the state and control vari-
ables for various values of t.
Also, in Figures 2 and 3, the approximate and exact values of the state and
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Table 4: Absolute errors of x1(t), x2(t), u1(t), and u2(t) at M = 6

t |x∗1(t)− x1(t)| |x∗2(t)− x2(t)| |u∗1(t)− u1(t)| |u∗2(t)− u2(t)|
0.1 7.19262× 10−7 1.74666× 10−7 6.4603× 10−6 9.51622× 10−6

0.2 1.0357× 10−6 2.48769× 10−7 1.60228× 10−4 2.89678× 10−5

0.3 3.70976× 10−7 7.82014× 10−8 1.03983× 10−4 1.19302× 10−5

0.4 4.54804× 10−7 1.37132× 10−7 1.05124× 10−4 1.82481× 10−5

0.5 5.92208× 10−7 1.84041× 10−7 6.48507× 10−5 8.03613× 10−6

0.6 9.51419× 10−8 1.81842× 10−8 1.04023× 10−4 1.65065× 10−5

0.7 9.14941× 10−7 2.02377× 10−7 3.7991× 10−5 6.07151× 10−6

0.8 8.57316× 10−7 2.32216× 10−7 9.89654× 10−5 1.59221× 10−5

0.9 2.67307× 10−7 2.16467× 10−9 9.10531× 10−5 1.77034× 10−5

control variables are plotted at M = 6.

Figure 2: Approximate and exact values of the state variable at M = 6

Figure 3: Approximate and exact values of the control variable at M = 6

We can apply this method to another category of problems. In fact, if in
problems (22)–(24), we replace (23) by

φDα x(t) + ψ ẋ(t) = g
(
t, x(t)

)
+b(t)u(t), (55)

n− 1 < α ⩽ n, b(t) ̸= 0, t ∈ [t0, t1],
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then the method still converges according to (44), where φ and ψ are scalar
coefficients. Let us present one example of this form.

Example 3. Recall from [28] the problem

min J =

∫ 1

0

(
u(t)− x(t))2 dt, (56)

subject to dynamic constraints

ẋ(t) + Dαx(t) = u(t)− x(t) + 6 tα+2

Γ(α+ 3)
+ t3, (57)

and

x(0) = 0. (58)

By (57), we can find u(t):

u(t) = ẋ(t) + Dαx(t) + x(t)− 6 tα+2

Γ(α+ 3)
− t3,

min J =

∫ 1

0

(
CT △̇M (t) + Dα(CT △M (t))− 6 tα+2

Γ(α+ 3)
− t3

)2
dt

+
(
CT D(0)△M (t0)− x(0)

)
λ0.

The functions x∗(t) = 6 tα+3

Γ(α+4) and u∗(t) = 6 tα+3

Γ(α+4) minimize the functional
J , and the minimum value is zero. In Table 5, we present the approximate
values of J with different values of M .

Table 5: Approximate values of J at α = 0.9 with different values of M

M J
4 2.32302× 10−7

6 2.32786× 10−10

8 2.98816× 10−12

Table 6 presents the absolute values of errors for the control and state vari-
ables for various values of t.
Also, in Figure 3, the approximate and exact values of the control and state
variables are plotted for M = 6. Tables 3 and 8 present the maximum errors
of u(t) and x(t) with different values of M .
Also, in Figure 5, the control and state variables are plotted for M = 5 and
different values of α.
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Table 6: Absolute errors of x(t) and u(t) at M = 6

t |x∗(t)− x(t)| |u∗(t)− u(t)|
0.1 3.22688× 10−7 2.3951× 10−5

0.2 4.89573× 10−7 1.18457× 10−5

0.3 5.31838× 10−7 1.52362× 10−5

0.4 6.51328× 10−7 5.73914× 10−6

0.5 1.48297× 10−7 1.58438× 10−5

0.6 6.3336× 10−7 2.83551× 10−5

0.7 1.34478× 10−7 1.45402× 10−5

0.8 5.49314× 10−7 7.44278× 10−6

0.9 1.0371× 10−7 1.81787× 10−5

Figure 4: Approximate and exact values of the state and control variables at
M = 6

Table 7: Maximum errors of x(t) and u(t) at M = 3.

M = 3 Maximum errors of x(t) Maximum errors of u(t)
The method 2.36519× 10−3 2.30757× 10−2

Algorithm 1 in [28] 8.8025× 10−3 8.8025× 10−3

Algorithm 2 in [28] 5.1966× 10−3 4.3260× 10−2

Table 8: Maximum errors of x(t) and u(t) at M = 5.

M = 5 Maximum errors of x(t) Maximum errors of u(t)
Our method 2.21121× 10−5 4.7773× 10−4

Algorithm 1 in [28] 1.0903× 10−4 1.0903× 10−4

Algorithm 2 in [28] 4.5321× 10−5 6.3134× 10−4
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Figure 5: Control and state variables for M = 5 and different values of α

6 Conclusion

In this paper, we applied a numerical method to solve a class of fractional
optimal control problems. We used the SLOPs and the operational matrix of
fractional derivatives. Then, we used the Newton iterative technique to solve
these problems. We obtained the error bound of the operational matrix in
fractional derivatives and proved the convergence of the method. We focused
on multidimensional problems, which have never been solved by this tech-
nique. To show the efficiency of the method for multidimensional problems,
we provided some nonlinear examples. Comparison of our results with those
obtained by other techniques in previous studies revealed the accuracy of the
proposed technique for nonlinear and multidimensional problems.
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On stagnation of the DGMRES method

F. Kyanfar

Abstract

Let A be an n-by-n matrix with index α > 0 and b ∈ Cn. In this paper,
the problem of stagnation of the DGMRES method for the singular linear
system Ax = b is considered. We show that DGMRES(A, b, α) has partial
stagnation of order at least k if and only if (0, . . . , 0) belongs to the the joint
numerical range of matrices {Bα+1, . . . , Bα+k}, where B is a compression
of A to the range of Aα. Also, we characterize the nonsingular part of a
matrices A such that DGMRES(A, b, α) does not stagnate for all b ∈ Cn.
Moreover, a sufficient condition for non-existence of real stagnation vectors
b ∈ R(Aα) for the DGMRES method is presented, and the DGMRES
stagnation of special matrices are studied.

AMS subject classifications (2020): 65F10; 15A06; 15A60.

Keywords: Stagnation; DGMRES method; Singular systems.

1 Introduction

Let A be an n-by-n matrix with index α. The index is the size of the largest
Jordan block of A corresponding to the zero eigenvalue. The Drazin inverse
AD of A is the unique n-by-n matrix that satisfies

AAD = ADA, Aα+1AD = Aα, ADAAD = AD.

Since AD can be written as a polynomial in A [2, p. 186], there is a possi-
bility of using Krylov subspace methods to find the Drazin inverse solution
ADb to a possibly inconsistent linear system Ax = b. Such an algorithm,
called DGMRES, developed by Sidi [7]. DGMRES has been considered in
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several studies; see [1, 8]. This algorithm is similar to the GMRES algorithm
developed by Saad and Schultz [6] for solving nonsingular linear systems.
The stagnation of GMRES was studied in [3, 5, 10] and the stagnation of
DGMRES was studied in [11].

Note that while the linear system Ax = b may have no solution, if we
multiply each side by Aα, then the linear system Aα+1x = Aαb is consistent
and has x = ADb as a solution. The DGMRES algorithm works as follows.
Given an initial guess x0, compute the initial residual r0 = b−Ax0. We will
choose approximate solutions xk, k = 1, 2, . . . , n − α, to be of the form x0
plus a linear combination of vectors from the kth Krylov subspace

Kk(A,A
αr0) = span{Aαr0, . . . , A

α+k−1r0}, (1)

such that the residual vector rk = b−Axk satisfies

∥Aαrk∥ = minx∈Kk(A,Aαr0)∥A
α(b−A(x0 + x)∥

= minc1,...,ck∥Aα(b−A(x0 + c1A
αr0 + · · ·+ ckA

α+k−1r0))∥
= minc1,...,ck∥Aαr0 − c1A2α+1r0 − · · · − ckA2α+kr0))∥. (2)

The DGMRES terminates with the exact Drazin-inverse solution in at
most n− α iterations (i.e., ∥Aαrn−α∥ = 0) [7]. Throughout this paper, ∥ · ∥
denotes the Euclidean norm for vectors and the spectral norm for matrices.
Without loss of generality, we assume that x0 = 0 and ∥Aαr0∥ = ∥Aαb∥ = 1,
because if Aαr0 = 0, then the DGMRES algorithm has the solution x0 at the
initial step, in other words, the DGMRES algorithm has no progress.

Definition 1. Let {A1, A2, . . . , Ak} be n× n matrices. The joint numerical
range for (A1, A2, . . . , Ak) is defined and denoted by

W (A1, A2, . . . , Ak) := {(x∗A1x, x
∗A2x, . . . , x

∗Akx) : x ∈ Cn, x∗x = 1}.

Note that in Definition 1, if k = 1, then the joint numerical range coincide
with the standard numerical range.

2 Partial stagnation of DGMRES

In this section, the problem of stagnation of the DGMRES algorithm for
singular linear system Ax = b is studied.

Definition 2. Let A be an n-by-n matrix with index α and a right-hand
side vector b ∈ Cn. We say that DGMRES (A, b, α) has partial stagnation of
order k, if

∥Aαr0∥ = · · · = ∥Aαrk∥ > ∥Aαrk+1∥ ≥ · · · ≥ ∥Aαrn−α∥ = 0. (3)
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Also, if DGMRES (A, b, α) has partial stagnation of order k = n − α − 1,
then DGMRES (A, b, α) has complete stagnation. DGMRES (A, b, α) does
not stagnate, if DGMRES (A, b, α) has not partial stagnation of any order.

In the following result, we state an equivalent definition for partial stag-
nation [11].

Lemma 1. Let A be an n-by-n matrix with index α and a right-hand side
vector b ∈ Cn. Then DGMRES (A, b, α) has partial stagnation of order at
least k if and only if Aαb is perpendicular to span{A2α+1b, . . . , A2α+kb}.

Proof. By using (2), we obtain that for all 1 ≤ i ≤ k,

∥Aαb∥ = minc1,...,ci∥Aαb− c1A2α+1b− · · · − ciA2α+ib))∥.

Therefore, Aαb should be perpendicular to span{A2α+1b, . . . , A2α+kb}.

By using the Core-Nilpotent decomposition and QR decomposition, we
obtain the following decomposition [1].

Let A ∈ Cn×n with α = ind(A) > 0. Then there exists a unitary matrix
Q ∈ Cn×n such that

A = Q

[
B ∗
0 N

]
Q∗, (4)

where B ∈ Cm×m is the compression of A to R(Aα) and N is nilpotent with
index α.

Theorem 1. Let A ∈ Cn×n with index α be as in (4). Then there exists a
vector b ∈ Cn such that DGMRES(A, b, α) has partial stagnation of order at
least k if and only if (0, . . . , 0) ∈W (Bα+1, . . . , Bα+k).

Proof. By Lemma 1, we know that the DGMRES(A, b, α) has partial stag-
nation of order at least k, if and only if (Aαb)∗A2α+ib = 0, i = 1, . . . , k.
Then

(Aαb)∗(Aα+i)(Aαb) = 0, i = 1, . . . , k. (5)

By using (4) and (5), for i = 1, . . . , k,

(Aαb)∗(Aα+i)(Aαb) = (Aαb)∗Q

[
Bα+i ∗
0 Nα+i

]
Q∗(Aαb)

= (Q∗(Aαb))∗
[
Bα+i ∗
0 0

]
Q∗(Aαb) = 0. (6)

Define z =
(
z1
z2

)
= Q∗(Aαb), where z1 ∈ Cm. Since 0 ̸= Aαb ∈ R(Aα) and

the last n−m columns of Q form an orthonormal basis for the R(Aα)⊥, we
obtain that z2 = 0 and hence ∥z1∥ = ∥z∥ = ∥Q∗(Aαb)∥ = 1. Therefore,

z∗
[
Bα+i ∗
0 0

]
z = z∗1B

α+iz1 = 0, i = 1, . . . , k. (7)
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This means that (0, . . . , 0) ∈W (Bα+1, . . . , Bα+k).
Conversely, assume that (0, . . . , 0) ∈ W (Bα+1, . . . , Bα+k). Then there

exists a unit vector z1 ∈ Cm such that z∗1Bα+iz1 = 0, i = 1, . . . , k. Define
z =

(
z1
0

)
∈ Cn. Then (7) holds. We know that the first m columns of Q form

an orthonormal basis for the range of Aα. Then Qz = Q
(
z1
0

)
∈ R(Aα), and

hence the equation Aαx = Qz has a solution x = b. Since z = Q∗(Aαb), by
using (7)

(Q∗(Aαb))∗
[
Bα+i ∗
0 0

]
(Q∗(Aαb)) = z∗1B

α+iz1 = 0, i = 1, . . . , k.

Therefore, (Aαb)∗(Aα+i)(Aαb) = (Aαb)∗(A2α+ib) = 0, i = 1, . . . k. This
shows that Aαb is perpendicular to A2α+ib, i = 1, . . . , k. Then by Lemma 1,
DGMRES(A, b, α) has partial stagnation of order at least k.

3 Complete stagnation of DGMRES

Let A be an n-by-n matrix with index α and let b ∈ Cn. By Definition 2, we
know that DGMRES(A, b, α) has complete stagnation if

∥Aαr0∥ = · · · = ∥Aαrn−α−1∥ > ∥Aαrn−α∥ = 0. (8)

In the following result, we show that ∥Aαrm∥ = 0.

Theorem 2. Let A ∈Mn(C) with index α be as in (4) and let b ∈ Cn. Then
Aαrm = 0, where m is the dimension of R(Aα), the range of Aα.

Proof. The matrix B ∈ Mm(C) is nonsingular, so by using the Cayley–
Hamilton theorem, there exists a polynomial of degree at most m − 1 say
p(x) = am−1x

m−1 + · · ·+ a1x+ a0 such that (B−1)α+1 = p(B). Then by [2,
p. 186] the Drazin inverse AD = Aαp(A). Then

∥Aαrm∥ =minx∈Km(A,Aαb)∥Aα(b−Ax)∥
=mint0,...,tm−1∥Aαb−A2α+1(t0b+ · · ·+ tm−1A

m−1b)∥
≤∥Aαb−A2α+1(a0b+ · · ·+ am−1A

m−1b)∥
=∥Aαb−Aα+1[Aαp(A)]b∥ = ∥(Aα −Aα+1AD)b)∥. (9)

Since Aα+1AD = Aα, we obtain that ∥Aαrm∥ = 0.

Remark 1. Theorem 2 shows that the DGMRES method terminates at most
after m iterations. Then the complete stagnation occurs if m = n− α. This
means that the nilpotent part N in (4) must be equal to the Jordan block of
size α corresponding to zero eigenvalue, N = Jα(0).
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4 Stagnation of real matrices

Let A ∈ Rn×n with α = ind(A) > 0. Then by the core-nilpotent and QR
decompositions for real matrices, there exist an orthogonal matrix Q ∈ Rn×n,
an invertible matrix B ∈ Rm×m, and a nilpotent matrix N ∈ Rn−m×n−m

such that (4) holds. Let A ∈ Rn×n and let e ∈ Rn. Then easy computation
shows that

eTAe = 0 if and only if eT (A+AT )e = 0.

Let A ∈ Rn×n be as in (4) with α = ind(A) > 0. If we are looking for
a real stagnation vector e ∈ R(Aα), it is enough to consider the following
polynomial system:

eT (Aα+i + (Aα+i)T )e = 0, i = 1, 2, . . . , k, eT e = 1. (10)

Meurant [4, Theorem 2.2] presented a sufficient condition for non-existence
of real stagnation vectors b ∈ Rn for the GMRES method. In the following
result, we state a sufficient condition for non-existence of real stagnation
vectors b ∈ R(Aα) for DGMRES method.

Theorem 3. Let A ∈ Rn×n with α = ind(A) > 0 be as in (4) and let
Bi := Bi + (Bi)T , i = α + 1, α + 2, . . . , α + k, where k ≤ m is a natural
number. If there exist real scalars µi, i = 1, 2, . . . , k such that the matrix
µ1Bα+1+ · · ·+µkBα+k is a (positive or negative) definite matrix, then there
is no real stagnation vector e ∈ R(Aα).

Proof. Assume if possible there exist a real stagnation vector e ∈ R(Aα).
Then there exists b ∈ Rn such that e = Aαb and (5) holds. By using the
notations z =

(
z1
z2

)
= QT (Aαb) with ∥z1∥ = 1 in Theorem 1, we obtain that

zT1 B
α+iz1 = 0, i = 1, . . . , k. By (10), zT1 (Bα+i + (Bα+i)T )z1 = zT1 Bα+iz1 =

0, i = 1, . . . , k, and hence zT1 (µ1Bα+1+· · ·+µkBα+k)z1 = 0. Since µ1Bα+1+
· · · + µkBα+k is (positive or negative ) definite, we obtain that z1 = 0, a
contradiction with ∥z1∥ = 1.

Example 1. Let A be as in (4), where B =

 1 2 1
1 −1 2
1 0 −1

 and N =

[
0 0
0 0

]
.

It is readily seen that 10B2 + B3 =

 96 30 44
30 62 −1
44 −1 44

 is positive definite, where

B2 = B2 + (B2)T and B3 = B3 + (B3)T . Then by Theorem 3, there is no
real stagnation vector.
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5 Stagnation of special matrices

Let A be as in (4). If m = 0, then A is nilpotent with index α, which
means that Aα = 0, and hence Aαb = 0 for all b ∈ Cn. Then without
loss of generality, we assume that ∥Aαb∥ = 1 throughout this paper. Also,
we assume that m > 0, which means that B ∈ Mm(C) is invertible and A
is not nilpotent. In this section, we are going to characterize all matrices
B ∈ Mm(C) such that DGMRES(A, b, α) does not stagnate, for all b ∈ Cn

and unitary matrices Q ∈Mn(C).
The decomposition (4) is known as the core-nilpotent decomposition of

A. Moreover, the matrix B is nonsingular. On the other hand, this decom-
position is shown by A = B ⊕N .

Theorem 4. Let B ∈Mm(C) be an invertible matrix and let N ∈Mn−m(C)
be a nilpotent matrix with index α. Then Bα+1 is a scalar matrix if and
only if DGMRES(A, b, α) does not stagnate for any b ∈ Cn and invertible

V ∈Mn(C), where A = V

[
B 0
0 N

]
V −1.

Proof. Assume thatBα+1 = λIm is a scalar matrix, where λ ̸= 0. Let b ∈ Cn

be an arbitrary vector and let V ∈Mn(C) be an arbitrary invertible matrix.
Assume that V = QR is the QR decomposition of V . Then

A = V

[
B 0
0 N

]
V −1 =Q

[
R1 ∗
0 R2

] [
B 0
0 N

] [
R−1

1 ∗
0 R−1

2

]
Q∗

=Q

[
R1BR

−1
1 ∗

0 R2NR
−1
2

]
Q∗.

Note that R2NR
−1
2 is again a nilpotent matrix with index α > 0 and that

R1BR
−1
1 = λIm is a scalar matrix. Since 0 /∈ W ((R1BR

−1
1 )α+1) = {λα+1},

by Theorem 1, DGMRES(A, b, α) does not stagnate, for any b ∈ Cn and
V ∈Mn(C).

Conversely, let DGMRES(A, b, α) do not stagnate for any b ∈ Cn and
let V ∈ Mn(C). Assume if possible Bα+1 is not a scalar matrix. Then
by [9, Theorem 3], there exists an invertible matrix V1 ∈ Mm(C) such that
0 ∈W (V1B

α+1V −1
1 ). Let V1 = Q1R1 be the QR decomposition of V1. Define

the matrix V :=

[
V1 0
0 In−m

]
and the unitary matrix Q :=

[
Q1 0
0 In−m

]
. Then

A = V

[
B 0
0 N

]
V −1 = Q

[
R1BR

−1
1 0

0 N

]
Q∗.

Since 0 ∈W (V1B
α+1V −1

1 ) =W (R1B
α+1R−1

1 ), by Theorem 1, DGMRES(A, b, α)
has a partial stagnation of order at least one, a contradiction. Then Bα+1 is
a scalar matrix.
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Zhou and Wei [11, Section 3] showed that for 2×2matrices, the stagnation
system has no relation with condition number of V and that the stagnation
system always has a real root, where V is the Jordan transformation matrix
of A. Indeed, in the following result, we show that for any 2 × 2 matrix A,
DGMRES(A, b, α) does not stagnate for any Jordan transformation matrix
V ∈M2(C) and b ∈ C2.

Proposition 1. Let A be a nonzero singular 2× 2 matrix with index α = 1
and let b ∈ C2 be an arbitrary vector. Then DGMRES(A, b, α) does not
stagnate.

Proof. The Jordan decomposition of 2-by-2 matrix A has the following form:

A = V

[
λ 0
0 0

]
V −1.

ThenB2 = [λ2] is a scalar matrix, and hence by Theorem 4, DGMRES(A, b, α)
does not stagnate for any b ∈ C2.

In the following example, we show that by changing the right-hand side
vector b, the stagnation of DGMRES(A, b, α) will be removed.

Example 2. Let A = B ⊕N , where

B =


2.5300 −0.4147 −0.6717 −0.3570
−0.4147 1.7306 0.8017 −0.4718
−0.6717 0.8017 −0.5233 0.5021
−0.3570 −0.4718 0.5021 1.2627

 , and N =

[
0 1
0 0

]
.

By choosing the vector b =
[
−0.5291 −0.1187 −1.2012 −0.5129 0 0

]T as the
right-hand side vector, DGMRES(A, b, 2) has partial stagnation of order one
(see Figure 1 (a)).

By choosing b̂ =
[
0.2277 0.4357 0.3111 0.9234 0.4302 0.1848

]T
, as a ran-

dom vector, DGMRES(A, b̂, 2) does not stagnate (see Figure 1 (b)).

6 Conclusion

Let A be an n-by-n matrix with index α > 0 and let b ∈ Cn. A necessary and
sufficient condition for partial stagnation of DGMRES(A, b, α) is obtained,
and also for A ∈ Mn(R), a sufficient condition for the non-existence of real
stagnation vector b ∈ R(Aα) is studied. Moreover, a characterize for matrices
A ∈ Mn(C) such that DGMRES(A, b, α) does not stagnate for every b ∈ Cn

are considered.
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Figure 1: (a) DGMRES(A, b, 2) (b) DGMRES(A, b̂, 2)
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Deception in multi-attacker security game
with nonfuzzy and fuzzy payoffs

S. Esmaeeli, H. Hassanpour*, and H. Bigdeli

Abstract

There is significant interest in studying security games for defense op-
timization and reducing the effects of attacks on various security systems
involving vital infrastructures, financial systems, security, and urban safe-
guarding centers. Game theory can be used as a mathematical tool to
maximize the efficiency of limited security resources. In a game, players
are smart, and it is natural for each player (defender or attacker) to try
to deceive the opponent using various strategies in order to increase his
payoff. Defenders can use deception as an effective means of enhancing
security protection by giving incorrect information, hiding specific security
resources, or using fake resources. However, despite the importance of de-
ception in security issues, there is no considerable research on this field,
and most of the works focus on deception in cyber environments. In this
paper, a mixed-integer linear programming problem is proposed to allocate
forces efficiently in a security game with multiple attackers using game the-
ory analysis. The important subjects of information are their credibility
and reliability. Especially when the defender uses deceptive defense forces,
there are more ambiguity and uncertainty. Security game with Z-number
payoffs is considered to apply both ambiguities in the payoffs and the reli-
ability of earning these payoffs. Finally, the proposed method is illustrated
by some numerical examples.
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1 Introduction

Game theory has many applications in real-world problems, in many fields
such as economics, military, politics, and so on (e.g., see [6, 2, 37]). In real-
world game problems, we may encounter various types of uncertainty or inac-
curacy in information (payoffs). Many researchers have studied game theory
with different types of information ambiguity [3, 38, 39]. Seikh, Dutta, and
Li [36] studied matrix games with rough interval payoffs and investigated two
different solution methodologies to solve such a game. Karmakar, Seikh, and
Castillo [24] developed a matrix game in a type-2 intuitionistic fuzzy environ-
ment. Bigdeli, Hassanpour, and Tayyebi [5] introduced two multiobjective
linear programming problems to compute the optimistic and pessimistic val-
ues of fuzzy multiobjective games and their corresponding Pareto optimal
strategies for each of the players by considering the concept of nearest inter-
val approximation.

Security in maintaining military order and defense has always been a
significant concern in human societies. In recent years, economic and political
security has also become important. Limitations of resources such as money,
personnel, and equipment have made it necessary to optimize the allocation
of security resources. Security games have been successfully applied to solve
many real-world security problems [1, 18, 26, 41]. They are also effective tools
for arguing about the allocation of limited security resources and patrolling
problems [1, 13, 25].

There has been a great deal of interest in research on game theory for
security in airports, ports, transportation, and other infrastructures. Over
the past decade, game theory has been used in various military sectors, com-
puter network security applications, anti-ballistic missile defense systems,
wildlife protection, and so on. Lye and Wing [27] proposed a game-theoretic
method for analyzing security in computer networks. Brown et al. [8] de-
scribed a new two-sided optimization model for planning the pre-positioning
of defensive missile interceptors to counter an attacking threat. Conitzer and
Sandholm [11] proposed a method to perform optimal random strategies in
security games. Tarjom, Clempner, and Poznyak [42] used a method to cal-
culate the Nash equilibrium in the case of one defender and several attackers.
With respect to wildlife protection, Fang et al. [18] used repetitive interac-
tions between rangers and hunters in protected areas to plan a patrol strategy
that allowed rangers to collect hunting signals over time. Bigdeli, Hassan-
pour, and Tayyebi [7] proposed a model for solving a multiobjective security
game with fuzzy payoffs and its application in a metro security system.
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Most security games use the Stackelberg game because security forces
typically commit to specific security policies to arrange their forces. Thus
attackers are empowered to model their attacks under surveillance to take
advantage of any potential weakness of the defender. Furthermore, the main
assumption in Stackelberg security games is that limited security resources
must be deployed strategically, considering differences in priorities of targets
requiring security coverage and the responses of the adversaries to the security
position (e.g., see [7, 4, 42, 43, 44]).

Previous studies assume the perfect surveillance of the defender’s strate-
gies despite the deceptions, while it is natural that if one of the players can
deceive another, he will not hesitate. Defender’s deceptive actions can affect
the attacker’s view of the defender’s strategy, thus on the attacker’s best
response, and vice versa. Despite being relatively ignored in academia, in
the military, deception is as old as war or politics. There are many examples
of military deception in history. The story of the Trojan horse in Ancient
Greece is perhaps the most famous ancient military deception. Also, in an-
cient China, many generals used to resort to deception ruses [30].

As a more recent example, World War II armies deceived their enemies by
designing and building air tanks and wooden artillery. Thus, enemy forces
would overestimate the enemy’s defense capabilities and waste their ammuni-
tion or endanger their equipment. In another example, on a Japanese island
in the Pacific Ocean, wicker planes deceived many American pilots. They
spent a significant portion of their ammunition attacking unreal models by
thinking only that the planes were real. For further study, in [12, 21, 19],
there are numerous examples of deception in the First and Second World
Wars.

Although research on deception in security games has increased in recent
years, there is no noteworthy research in this field. Moreover, most authors fo-
cus on deception in cyber environments (e.g., see [14, 20, 28, 32, 40, 47]). Re-
cently, deceptive methods have also been used to defend information systems.
Cohen and Koike [10] provided a comprehensive discussion of deception to
increase the security of information systems and concluded that “deception”
is a positive factor for the defender and a negative factor for the attacker.
In the security-military sector, Yin et al. [45] examined how fake resources
and concealing the real resources of the defender might affect the attacker’s
beliefs and thus affect his best response. The authors [17] proposed a mathe-
matical model to solve a security game in a fuzzy environment, in which the
defender uses unrealistic resources when confronted with only one attacker.
In the real world, it is important for players to have complete confidence in
their information. Especially in situations where the defender uses deceptive
defense forces, there are more ambiguity and uncertainty. Therefore, not
only players can not accurately estimate their payoffs, but also they cannot
be 100 % sure of these approximated estimates. Therefore, using fuzzy set
theory in such games is necessary. There is no research on multi-attacker
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security games with deceptive resources and fuzzy payoffs based on the best
knowledge of the authors.

The security game has also been studied in [7, 17, 41]. In the multi-
attacker security game solved in [41], the players’ payoffs are considered to
be crisp numbers. In [17], a security game problem in the fuzzy environment
having only one attacker was solved. The fuzzy order used in [17] increases
the number of constraints. In addition, the proposed method cannot be gen-
eralized to the case of multiple attackers. In [7], a multi-attacker security
game with triangular fuzzy payoffs was solved, in which the authors consid-
ered the pessimistic situation and obtained an efficient solution for a cautious
defender. In this paper, a security game problem with different types of at-
tackers and different types of defense forces, such as real, secret, and fake, in
a fuzzy environment is considered.

The remainder of the paper is organized as follows: In Section 2, some
required concepts of fuzzy set theory are given. In Section 3, Stackelberg
games are introduced, and the concept of efficient strategy in these games
with multi-follower is defined. A security game with different types of at-
tackers is introduced in Section 4. In Section 5, a security game problem is
considered in which the defender’s strategies can include deceptive protection
covers, and a multiobjective optimization problem is proposed to obtain an
efficient strategy for the defender. In Section 6, the players’ payoffs are con-
sidered as Z-numbers, and a multiobjective optimization problem is proposed
to get the efficient coverage of the defender when he uses deceptive resources.
In Section 7, four numerical examples are provided to illustrate the proposed
method. Finally, the conclusion is made in Section 8.

2 Basic concepts and definitions

In this Section, some concepts that are used in the paper are given.

Definition 1. A fuzzy set Ã defined on a universe X is given as Ã =
{(x, µÃ(x))|x ∈ X}, where µÃ : X −→ [0, 1] is the continuous member-
ship function of Ã. The membership value µÃ(x) describes the degree of
belongingness of x ∈ X in Ã.

The support of a fuzzy set Ã on X is defined by

supp(Ã) = {x ∈ X | µÃ(x) > 0}.

A fuzzy number is a fuzzy set Ã on the real line R with a continuous
membership function µÃ that can be described as follows [15, 22]:
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µÃ(x) =


0 for all x ∈ (−∞, a1],
fA(x) for all x ∈ [a1, a2],
1 for all x ∈ [a2, a3],
gA(x) for all x ∈ [a3, a4],
0 for all x ∈ [a4,∞),

(1)

where fA represents a continuous and monotonically increasing function on
[a1, a2] and gA is a continuous and monotonically decreasing function on
[a3, a4].

The α-level set of a fuzzy number Ã is defined by the ordinary set Ãα =
{x ∈ X| µÃ(x) ≥ α} for α ∈ (0, 1], and for α = 0, Ãα = cl{x ∈ X|µÃ(x) > 0}
where cl means closure of the set [9]. For α ∈ (0, 1], the α-level set of a fuzzy
number is a closed and bounded interval, denoted as Ãα = [f−1

A (α), g−1
A (α)],

where f−1
A (α) = inf{x| µÃ(x) ≥ α} and g

−1
A (α) = sup{x| µÃ(x) ≥ α}.

Definition 2. [22] The expected interval of a fuzzy number Ã, denoted by
EI(Ã), is defined as follows:

EI(Ã) = [

∫ 1

0

f−1
A (α)dα,

∫ 1

0

g−1
A (α)dα].

A fuzzy number Ã on R is said to be a triangular fuzzy number if its
membership function µÃ : R −→ [0, 1] is

µÃ(x) =

 (x− a1)/(a2 − a1), a1 ≤ x ≤ a2,
(a3 − x)/(a3 − a2), a2 ≤ x ≤ a3,
0, otherwise,

(2)

where a1 and a3 represent the beginning and end points of the support of Ã,
respectively, and a2 is the median value (center).

The triangular fuzzy number defined above, is denoted by Ã = (a1, a2, a3).
The addition of two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), and the multiplication of the triangular fuzzy number Ã by k ∈ R
using the extension principle of Zadeh [34] are obtained as follows:

Ã+ B̃ = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3). (3)

kÃ =

{
(ka1, ka2, ka3), k ≥ 0,
(ka3, ka2, ka1), k < 0.

(4)

Proposition 1. [31] If Ã is a triangular fuzzy number, then its expected
interval can be computed as follows:

EI(Ã) = [
1

2
(a1 + a2),

1

2
(a2 + a3)].

Let A = [AL, AR] and B = [BL, BR] be two intervals. Then,
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A+B = [AL +BL, AR +BR], A−B = [AL −BR, AR −BL], (5)

λA =

{
[λAL, λAR], λ ≥ 0,
[λAR, λAL], λ < 0,

(6)

where λ is a real scalar.
Traditional fuzzy sets were developed to model the uncertainty made by

human doubt when extracting information. However, the classical fuzzy sets
do not account for the reliability of the obtained information. To overcome
this limitation, Zadeh [46] proposed Z-numbers.

Definition 3. [23] A Z-number is an ordered pair of fuzzy numbers denoted
as Z = (Ã, R̃). The first component Ã is a restriction on the values which
a real-valued uncertain variable Y can take. The second component R̃ is a
measure of reliability for the first component.

In above definition, the membership function of the first component Ã, is
µÃ : X → [0, 1], where X is an arbitrary universal set and the membership
function of the second component is µR̃ : [0, 1]→ [0, 1].

In this paper, both parts of Z-numbers are considered to be triangular
fuzzy numbers. To manipulate the problem involving Z-numbers, first, we
convert Z-numbers to triangular fuzzy numbers in three steps, using the
method presented by Kang et al. [23]. Consider a Z-number Z = (Ã, R̃).
Step 1. Convert the second component to a crisp number α as follows:

α =

∫ 1

0
xµR̃(x)dx∫ 1

0
µR̃(x)dx

. (7)

Step 2. Use α as the weight of the first part (restriction). The weighted
Z-number can be denoted as Z̃α = {(x, µZ̃α(x))|µZ̃α(x) = αµÃ(x), x ∈ X}.
Step 3. Convert the irregular fuzzy number (weighted restriction) to regular
fuzzy number. The regular fuzzy set can be denoted as

Z̃ ′ = {(x, µZ̃′(x))|µZ̃′(x) = µÃ(
x√
α
), x ∈

√
αX}.

Example 1. For the triangular fuzzy number Ã = (a1, a2, a3) by some simple
calculations, one can see from (7) that

α =
a1 + a2 + a3

3
.

Let we have an uncertain variable, which takes the value of “almost 3” with
the reliability of “almost 0.9”. One can represents “almost 3” by the trian-
gular fuzzy number (2, 3, 4) (e.g.), and its reliability by the triangular fuzzy
number (0.8, 0.9, 1). Then we have the Z-number Z = ((2, 3, 4), (0.8, 0.9, 1))
to represent such an uncertainty. To handle such a Z-number payoff in our
game problem, first we convert its reliability to a crisp number as follows:
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α =
a1 + a2 + a3

3
= 0.9.

Then, we convert the weighted Z-number to triangular fuzzy number accord-
ing to the proposed approach. So we have

Z̃ ′ = (2
√
0.9, 3

√
0.9, 4

√
0.9) = (1.8974, 2.8461, 3.7948).

3 Stackelberg game

Stackelberg games, also known as the leader-follower games, were first intro-
duced in 1952 by the German economist Van Stackelberg to model leadership
and commitment. In Stackelberg games, the first player is the leader who
chooses a strategy first, then the second player, called the follower, observes
the leader’s strategy and selects a counter-strategy accordingly. In other
words, the game has two players and two stages. In stage 1, the leader’s
action set is [0,∞), whereas the follower’s only available action is to “do
nothing”. In stage 2, the follower’s action set is [0,∞), and the leader’s only
available action is to “do nothing”. The problem in this game is to find the
optimal strategy for the leader, assuming that the follower optimizes his pay-
off according to the logical observations that depend on the chosen strategy
of the leader. The leader is committed to his decision, which means that if he
selects a strategy, then he cannot change it. Therefore, to obtain Stackler-
berg’s solution, first, the maximum value of the follower’s payoff is obtained
for the various strategies of the leader. The payoff of the leader is optimized
on the best response of the follower. The solution from the above process
is called the Stackelberg solution, which can be calculated by the following
bilevel linear programming problem[29]:

max
x

z1(x, y) = c1x+ d1y

where y solves
max

y
z2(x, y) = c2x+ d2y

subject to Ax+By ≤ b,
x ≥ 0, y ≥ 0, (8)

where c1 and c2 are n1-dimensional row coefficient vectors, d1 and d2 are n2-
dimensional row coefficient vectors, A is an m×n1, B is an m×n2 coefficient
matrix, and b is anm-dimensional column constant vector. Moreover, z1(x, y)
and z2(x, y), respectively, represent the payoff functions of the leader and
follower, and x and y represent the strategy of the leader and the follower,
respectively.

If the leader commits to the strategy x, the optimal solution y∗(x) is ob-
tained as the logical solution of the follower, by solving the low-level problem
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of (8). Assuming that the follower gives a logical solution y∗(x), the leader
maximizes his objective function z(x, y∗(x)). In this case, the obtained so-
lution is called the Stackelberg solution. This problem can be solved us-
ing bilevel programming method (see, e.g., [29]). In this paper, we use the
Karush–Kuhn–Tucker (KKT) optimality conditions.

In a Stackelberg game with multi-followers, the leader has to maximize
his payoff in the face of several types of followers. He has to choose a strategy
to get the most payoff against all of the followers.

First, the followers choose their strategies, so each of them plays his best
response. The leader must decide how to play against all of them in order
to earn the highest possible payoff. He cannot play his best response against
all the followers. Because if he plays his best against one of the followers,
he may suffer a significant loss against another, which will reduce his final
payoff. Therefore, to obtain Stacklerberg’s solution, a multiobjective prob-
lem must be solved. Let us call this solution an efficient strategy, defined
mathematically here.

Definition 4. Consider a Stackelberg game with p followers. Suppose that
yj is the chosen strategy of the follower type j and that xj is the chosen
strategy of the leader against the follower j. Let U j

l (x
j , yj) and U j

f (x
j , yj)

be the payoffs of leader and follower type j, respectively, for the selected
strategies. We call the strategy x∗ = (x1∗, x2∗, . . . , xp∗) the efficient strategy
for leader, whenever (x∗, y∗) is an efficient solution of the following multiob-
jective programming problem

Ul(x
∗, y∗) = max

x
(U1

l (x
1, y1∗), . . . , Up

l (x
p, yp∗)),

where yj∗ represents the best response of the follower type j to the leader’s
xj strategy.

4 Security game with multi-attackers

The security game precisely matches the Stackelberg game if we consider
the defender as the leader and the attacker(s) as the follower(s). Thus, in
this game, the defender commits to a strategy first. Then, the attackers
optimize their payoffs, considering the action chosed by the defender. The
defender must first commit to a strategy for placing his resources (manpower,
equipment, ammunition, etc.) on targets. Then the attackers decide which
targets they attack.

Let T = {1, . . . , n} be a set of targets, which may be attacked by p
attackers, and assume that the defender has m security forces to protect
the targets. The defender and each of the attackers, as the players of this
game, try to earn the most payoffs. The attackers select targets that cause
the most damage to the defender. On the other hand, the defender aims
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to optimize resource assignments to minimize damage. Thus, each player
has different strategies for achieving his goal. Each pure strategy of each
attacker is to select a target to attack. The mixed strategy of attacker type
j is Aj = (aj1, . . . , a

j
n), defined as follows:

ajt ≥ 0, for all t ∈ T,
n∑

t=1

ajt = 1, j = 1, . . . p,

where ajt is the portion of the force of attacker type j used in attacking to
the target t.

Each pure strategy of the defender is choosing a set of targets that have
to be protected. If the defender considers only pure strategies, some targets
may not be covered, and the attackers may use this weakness to attack them.
Note that security resources are limited, and the defender may not be able
to cover all the targets fully. Given the limited resources, we define the
defender’s mixed strategy as C = (c1, . . . , cn), where

0 ≤ ct ≤ 1, for all t ∈ T,
n∑

t=1

ct ≤ m.

In fact, ct is the amount of coverage of the target t ∈ T and indicates the
probability of the defender succeeding in preventing an attack on the target
t. The constraint 0 ≤ ct ≤ 1 ensures that the amount of coverage of the
target t have to be less than or equal to one unit of force required for the
target t and to prevent force loss. The constraint

∑n
t=1 ct ≤ m ensures that

all of the allocated covers have not to be more than the number of available
covering forces.

Suppose that defender and the attacker type j choose strategies C and
Aj , respectively. The expected payoffs of the defender and the attacker type
j, are

U j
d(C,A

j) =

n∑
t=1

ajtU
j
d(C, t), j = 1, . . . , p,

U j
a(C,A

j) =

n∑
t=1

ajtU
j
a(C, t), j = 1, . . . , p, (9)

if the target t is attacked by ajt unit of the force of attacker type j and covered
by cover ct, where

U j
d(C, t) = ctU

c,j
d (t) + (1− ct)Uu,j

d (t),

U j
a(C, t) = ctU

c,j
a (t) + (1− ct)Uu,j

a (t). (10)
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In (10), U c,j
d (t) (Uu,j

d (t)) is defender’s payoff when the target t is selected by
attacker type j and covered (uncovered) by the defender. Similarly, U c,j

a (t)
and Uu,j

a (t) are defined for the attacker type j.
This security game, as a Stackelberg game, has several followers (attack-

ers), wherein the defender first selects a strategy, and the attackers surveil
the defender’s actions. Each attacker tries to maximize his payoff by choosing
a strategy that is the best response to the defender’s fixed strategy. This is
while the defender has to maximize his payoff against several types of attack-
ers. He has to decide how to cover the various targets to get the most payoff.
In other words, we are looking for an efficient strategy for the defender. The
defender has to consider the set of best responses of attackers to each of his
strategies.

An efficient strategy is obtained by solving the following bilevel multiob-
jective program:

(P1) Max (U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p))
s.t.

∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,
where Aj solves

Max U j
a(C,A

j)

s.t.
∑n

t=1 a
j
t = 1,

ajt ≥ 0, t = 1, . . . , n,

 j = 1, . . . , p,

where U j
d(C,A

j) and U j
a(C,A

j) for j = 1, . . . , p are given by (9).

Theorem 1. The bilevel multiobjective program (P1) can be solved by solv-
ing the following multiobjective optimization problem:

(P2) Max (U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p))

s.t.

n∑
t=1

ct ≤ m, (11)

0 ≤ ct ≤ 1, t = 1, . . . , n, (12)
ajt ≥ 0,

ajt ≤Mδjt ,∑n
t=1 a

j
t = 1,

0 ≤ kj − (ctU
c,j
a (t) + (1− ct)Uu,j

a (t)) ≤ (1− δjt )M,

kj ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n,

(13)

whereM is a large positive number, and U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p)
are given by (9).

Proof. We prove that the constraints (13) are equivalent to the low-level
problem of (P1). By keeping C, the optimal policy of the defender fixed, the
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optimization problem of attacker type j, which gives his best response to the
defender’s strategy C, is

Max U j
a(C,A

j)

s.t.
∑n

t=1 a
j
t = 1,

ajt ≥ 0, t = 1, . . . , n,

(14)

There is a scalar kj that satisfies together with ajt the following KKT op-
timality conditions (Note that keeping C fixed, each low-level problem is a
linear programming problem, for which the KKT conditions are necessary
and sufficient for optimality):

kj ≥ ctU c,j
a (t) + (1− ct)Uu,j

a (t), t = 1, . . . , n,

ajt (k
j − (ctU

c,j
a (t) + (1− ct)Uu,j

a (t))) = 0, t = 1, . . . , n,
n∑

t=1

ajt = 1,

ajt ≥ 0, t = 1, . . . , n.

(15)

By introducing the binary variables δjt for t = 1, . . . , n, and M as a large
positive number, the constraints (15) are equivalently written as follows:

ajt ≤Mδjt , t = 1, . . . , n,

0 ≤ kj − (ctU
c,j
a (t) + (1− ct)Uu,j

a (t)) ≤ (1− δjt )M, t = 1, . . . , n,
n∑

t=1

ajt = 1,

ajt ≥ 0, t = 1, . . . , n.

(16)

If the defender knows that each attacker attacks at most one target, the
constraints (13) can be equivalently replaced by the following constraints:

ajt ∈ {0, 1},∑n
t=1 a

j
t = 1,

0 ≤ kj − (ctU
c,j
a (t) + (1− ct)Uu,j

a (t)) ≤ (1− ajt )M,

 j = 1, . . . , p,
t = 1, . . . , n.

(17)

A solution to the multiobjective programming problem (P2) is an efficient
strategy for the defender in the security game with multiple attackers.

There are several methods to get an efficient solution to problem (P2) (e.g.,
see [16, 34]). In Section 7, we use the weighted sum method. The weights
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of the objective functions in problem (P2), depending on the importance of
them for the defender, can be determined by consultation with experts or
using methods such as AHP⋆ and TOPSIS⋆⋆.

5 Deception in multi-attacker security game

In a security game, depending on the available budget, a defender can use
deceptive resources to increase his payoff or to reduce the attackers’ desire to
attack targets. For example, in military operations, the security of various
urban or regional centers, different political ceremonies, and so on, defense
forces use some types of covert resources and some types of fake ones. De-
pending on the type of protected targets, the defender uses different deceptive
resources, with different probability of deception failure. For example, hidden
cameras for protected targets, secret police forces, air marshals on the flight
lines, and fake resources are some deceptive resources. The defense force must
be able to have the best arrangement of these resources against the attackers
according to the available budget. In this section, we consider m real forces
and two kinds of deceptive resources: the first kind has a positive effect on
the defender’s payoff. For example, secret forces have positive effects on the
defender’s payoff because they have defensive power. The second kind has
no effect on the defender’s payoff and only reduces the attackers’ desire to
attack targets. These kinds of deceptive resources do not affect the defense
of a target, but they can at least disturb the view of the attackers, and they
can reduce the intensity of their attacks. For example, fake resources cause
errors in the attacker’s observations but do not have defensive power. There-
fore they do not increase the defender’s payoff. We denote the set of the first
(second) kind of deceptive resources by D1 (D2). Accordingly, the defender’s
payoff for a target t ∈ T is

U j
d(C, t) = ctU

c,j
d (t) + (1− ct)Uu,j

d (t) +
∑
i∈D1

(ct,iU
cij
d (t) + (1− ct,i)Uuij

d (t)).

(18)
In (18), for i ∈ D1 and t ∈ T , ct,i is the amount of deceptive resource cov-
erage, and U cij

d (t) (Uuij
d (t)) is the defender’s payoff from deceptive resource

coverage (uncoverage) i against the attacker type j. Note that, obviously, the
defender’s payoff from using a deceptive resource i ∈ D1 and a real resource
are not the same necessarily. Also, obviously ct +

∑
i∈D1

ct,i ≤ 1 because
more coverage for the target t is useless for the defender. If the importance
of a real cover unit differs from a deceptive cover unit, then the mentioned
constraint is changed to wct +

∑
i∈D1

wict,i ≤ 1, where w and wi are the
weights of real cover and each unit cover type i, respectively.

⋆ Analytic Hierarchy Process
⋆⋆ Technique for Order of Preference by Similarity to Ideal Solution
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To determine the attackers’ payoffs, we look at the amount of coverage
that they observe and their reaction. Using deceptive coverage resources by
the defender is not always 100 percent successful in deceiving the attackers.
It is natural that each of them has a failure probability. Suppose that ri is
the probability of deceptive resource’s failure for i ∈ D1 ∪D2. If the vector
of defender choices is C = (c1+

∑
i∈D1∪D2

c1,i, . . . , cn+
∑

i∈D1∪D2
cn,i), then

the attacker’s observation is E = (e1, . . . , en) in which

et = ct +
∑

i∈D1∪D2

rict,i, t = 1, . . . , n. (19)

It is assumed that the failure probability of the deceptive resource depends
only on its structure. Therefore, the failure probability of one type of decep-
tive resource is the same for all attackers. Then the payoff of attacker type
j is

U j
a(E, t) =ctU

c,j
a (t) + (1− ct)Uu,j

a (t) (20)

+
∑

i∈D1∪D2

(rict,iU
cij
a (t) + (1− ri)(1− ct,i)Uuij

a (t)), t = 1, . . . , n.

In (20), U cij
a (t) (Uuij

a (t)) is the payoff of attacker type j in attacking to
the target t with (without any) deceptive resource coverage i.

Now, suppose that the defender’s budget to create deceptive resources is
B, and that he can purchase deceptive resource type i at the cost of Bi per
unit. Then to obtain an efficient defense strategy, he has to consider the
following constraints:

n∑
t=1

∑
i∈D1∪D2

Bict,i ≤ B. (21)

Based on the above discussion, the efficient strategy of the defender is ob-
tained by solving the following multiobjective mixed-integer linear program:

(P3) Max (U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p))
s.t.

∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1 t = 1, . . . , n,
ct +

∑
i∈D1

ct,i ≤ 1, t = 1, . . . , n,∑n
t=1

∑
i∈D1∪D2

Bict,i ≤ B,∑n
t=1 a

j
t = 1,

ajt ≥ 0,

ajt ≤Mδjt ,

0 ≤ kj − U j
a(E, t)) ≤ (1− δjt )M,

kj ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n,

where M is a large positive number.
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6 Deception in multi-attacker security game in a fuzzy
environment

In the real world, the information in a security game is often vague due to
the lack of sufficient evidence. For example, a defender may not accurately
identify any type of attacker, and attackers may not recognize and/or control
different kinds of deceptive resources. Even if they know to some extent what
the deceptive resource is, they cannot be 100% sure of what they have seen.
In this situation, showing the payoffs in the form of Z-numbers is an appropri-
ate suggestion for expressing ambiguity. The first component represents the
player’s payoff from selecting a strategy, and the second component shows
the measure of the reliability of this selection. In our study, both components
of Z-numbers are considered to be triangular fuzzy numbers. For a strategy
profile (C,A), the payoff of attacker type j is U j

a = (Ũ j
a , R̃

j
a), wherein Ũ j

a

and R̃j
a represent the payoff of attacker type j and the reliability of earning

this payoff, respectively. The same definition is applied to the defender, and
his payoff against attacker type j is denoted by U j

d = (Ũ j
d , R̃

j
d). To solve the

problem, we convert the Z-numbers to triangular fuzzy numbers by the pro-
cedure described in Section 2. Finally, considering the described conversion,
we have a triangular fuzzy number for each player’s payoff.

Now we have the following programming problem, in which some param-
eters are triangular fuzzy numbers:

(P4) Max (Ũ1
d (C,A

1), Ũ2
d (C,A

2), . . . , Ũp
d (C,A

p))

s.t.

n∑
t=1

ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,

ct +
∑
i∈D1

ct,i ≤ 1, t = 1, . . . , n,

n∑
t=1

∑
i∈D1∪D2

Bict,i ≤ B,

∑n
t=1 a

j
t = 1,

0 ≤ ajt ≤Mδjt ,

Ũ j
a(E, t) ≤ k̃j ,

k̃j ≤ (1− δjt )M̃ + Ũ j
a(E, t),

kj ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n.

To solve the problem (P4), let for s = a, d and j = 1, . . . , p, EI(Ũ j
s (C,A

j)) =
[U jL

s (C,Aj), U jR
s (C,Aj)] and EI(k̃) = [kjL, kjR] be the expected intervals

corresponding to fuzzy numbers Ũ j
s (C,A

j) and k̃, which are calculated ac-
cording to Proposition 1. Then problem (P4) is transformed into the following
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interval programming problem:

(P5) Max ([U1L
d (C,A1), U1R

d (C,A1)], . . . , [UpL
d (C,Ap), UpR

d (C,Ap)])

s.t.∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,
ct +

∑
i∈D1

ct,i ≤ 1, t = 1 · · · , n,∑n
t=1

∑
i∈D1∪D2

Bict,i ≤ B,∑n
t=1 a

j
t = 1, j = 1, . . . , p,

0 ≤ ajt ≤Mδjt ,
j = 1, . . . , p,
t = 1, . . . , n,

[U jL
a (E, t)), U jR

a (E, t))] ≤ [kjL, kjR],
j = 1, . . . , p,
t = 1, . . . , n,

[kjL, kjR] ≤ (1− δjt )[M,M ] + [U jL
a (E, t)), U jR

a (E, t))],
j = 1, . . . , p,
t = 1, . . . , n,

kjL, kjU ∈ R, δjt ∈ {0, 1}, j = 1, . . . , p.

There are several methods for solving (P5). In most of them, the main
idea is based on intervals’ comparison. Instead, Saati, Memariani, and Ja-
hanshahloo [33] proposed a new approach in which a variable is defined cor-
responding to each interval so that it maximizes the objective functions while
satisfying the constraints. More clearly, to solve problem (P5), we solve the
following problem:

(P6) Max (u1, . . . , up)
s.t.

∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,
ct +

∑
i∈D1

ct,i ≤ 1, t = 1, . . . , n,∑n
t=1

∑
i∈D1∪D2

Bict,i ≤ B,
U jL
d (C,Aj) ≤ uj ≤ U jR

d (C,Aj), j = 1, . . . , p,
U jL
a (E, t)) ≤ vj ≤ U jk

a (E, t)), j = 1, . . . , p,
kjL ≤ kj ≤ kjU , j = 1, . . . , p∑n

t=1 a
j
t = 1,

0 ≤ ajt ≤Mδjt ,
vj ≤ kj ,

kj ≤ (1− δjt )M + vj ,

kjL, kjU ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n,

in which
uj ∈ [U jL

d (C,A1), U1R
d (C,Aj)], j = 1, . . . , p,

vj ∈ [U jL
a (E, t)), U jk

a (E, t))], j = 1, . . . , p,
kj ∈ [kjL, kjU ], j = 1, . . . , p.
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In fact, by solving problem (P6), the best choices of the variables uj , vj , and
kj are determined from their corresponding intervals so that both maximize
the objective functions and satisfy the constraints.

Now, once again, we have a multiobjective problem with crisp parameters.
There are several methods to get an efficient solution to this problem (e.g.,
see [16, 34]). In the solved examples in Section 7, we use the weighted sum
method.

Remark 1. The proposed method was extended to solve a multi-attacker
security game having Z-numbers payoffs. However, it can be used if the
payoffs are triangular fuzzy numbers or real numbers as well. In the first
case, steps 1-3 in Section 2 to convert Z-numbers to triangular fuzzy numbers
are removed, and in the second case, we have to solve the problem (P3).

Remark 2 (Comparison with similar works). As mentioned in Remark 1,
our method can also be used to solve a security game with triangular fuzzy
payoffs. Such a problem was also considered in [7]. Bigdeli, Hassanpour, and
Tayyebi [7] have used a pessimistic approach to solve the problem, but our
method solves the problem without considering a pessimistic or optimistic
point of view. Therefore it is natural to obtain different solutions by the
two methods. Furthermore, there is no significant difference between the
two methods in view of computational complexity. Therefore, in a security
game with triangular fuzzy payoffs, a pessimistic decision-maker can use the
method of [7]. The special feature of our work is that we have considered a
security game with Z-numbers payoffs and deceptive resources, but in [7], it
did not cover these issues.

7 Numerical examples

In this section, we give four examples. In the first example, the defender uses
only real resources. In the second example, the defender uses three types
of deceptive resources: one fake and two types of secret resources. In both
examples, the players’ payoffs are considered to be real numbers. In the third
example, the defender uses two types of deceptive resources, and the players’
payoffs are Z-numbers. The final example is an example solved in [7]. We
solve it by our method and compare the solutions obtained from the two
methods. All of the optimization problems in examples were solved by Lingo
software.

Example 2. In a security game, suppose that three attackers intend to
attack four targets and that a defender has m = 2 forces to protect these
targets. The players’ payoffs are given in Tables 2–4. The weights assigned
to the tables are 0.2, 0.3, and 0.5, respectively.

By solving the problem (P2) by the weighted sum method, the following
efficient strategy is obtained:

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 542–566



558 Esmaeeli, Hassanpour and Bigdeli

Table 1: Game matrix of defender and attacker type 1 in Example 2

target 1 target 2 target 3 target 4
covered (c) uncovered (u) c u c u c u

defender 1.5 -0.5 5 -6 2 -1 9 -8
attacker -1.5 2 -4 5 -2 3 -4 9

Table 2: Game matrix of defender and attacker type 2 in Example 2

target 1 target 2 target 3 target 4
c u c u c u c u

defender 2 -0.5 6 -5 3 -2 11 -10
attacker -1 1 -3 4 -2 3 -4 8

C = (0.34, 0.55, 0.40, 0.62).

Since the defender has two covering resources (two defense forces), it is con-
cluded that 17, 27.5, 20, and 31 percent of the forces should be assigned to
the targets t1, t2, t3, and t4, respectively, and 4.5 % of defense forces are not
assigned.

As the tables show, the target t4 has greater payoffs for the defender than
the other targets. Also, for all three attackers, this target has greater payoffs
than the other targets. Therefore, it is more likely to attack this target. In
the case of the target t1 is the opposite. In the solution obtained by our
method, the highest coverage was obtained for the target t4, and the lowest
coverage was achieved for the target t1.

Example 3. Consider a security game in which three attackers intend to
attack four targets. The defender has m = 1 real security force to protect the
targets. Decision-makers (experts) have provided the following information:
The defender uses three types of deceptive resources. He uses an experienced
and trained secret force with a 0.2 probability of being exposed. At the same
time, a real force acts as a covert force with a lower cost and 0.4 probability
of being exposed (secret normal force). The payoff of an experienced secret
force is 1.3 times more than that of a real security force. The probability that
the attacker will not distinguish these fake resources is 0.4 (i.e., his failure
probability is 0.6). The required budget for each deceptive force unit is 1,

Table 3: Game matrix of defender and attacker type 3 in Example 2

target 1 target 2 target 3 target 4
c u c u c u c u

defender 1 -0.5 6 -4.5 3 -1 10 -9
attacker -1 0.5 -4 5 -3 4 -6 10
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Table 4: Game matrix of defender and attacker type 1 in Example 3

cover’s type target 1 target 2 target 3 target 4
c u c u c u c u

defender real 5 -3 8 -9 2 -2.5 3 -5
real/secret normal force -2 3 -4 6 -3 5 -4 5

attacker experienced secret force -3 3 -5 6 -4 5 -5 5
fake 3 -3 6 -6 5 -5 3 -5

Table 5: Game matrix of defender and attacker type 2 in Example 3

cover’s type target 1 target 2 target 3 target 4
c u c u c u c u

defender real 4 -1 10 -7 1.5 -1 2 -2.5
real/secret normal force -3 2.5 -2 1.5 -2 1 -3 1

attacker experienced secret force -4 2.5 -3 1.5 -2 1 -1 1
fake 2.5 -2.5 1.5 -1.5 1 1 2 -1

3, and 7, respectively, for fake, secret normal, and experienced secret force,
and the defender’s available budget is 12. The players’ payoffs are given in
Tables 4–6.

Solving the problem (P3) by weighted sum method with equal weights for
the objective functions yields the solution given in Table 3.

This means that in order to protect four targets with the mentioned se-
curity resources, the defender must plan the presence of the real security
resource with 42% in the target 1, 50% in the target 3, and 7% in the target
4. The target 2 does not require a real resource, and it is sufficient to be
protected by an experienced secret force unit and 0.79 fake force unit. Like-
wise, the defender must deploy other deceptive security resources according
to Table 3.

Example 4. Consider a security game with three targets and two attackers.
The defender uses m = 1 real security force and two secret sources to protect
the targets. Secret forces are exposed to 0.3 probability. The required budget
for a secret force unit is 5, and the defender’s available budget is 9. The value
of each unit of secret force is 1.5 times that of a real force unit. The players’
payoffs are Z-numbers given in Tables 8 and 9.

Table 6: Game matrix of defender and attacker type 3 in Example 3

cover’s target 1 target 2 target 3 target 4
type c u c u c u c u

defender real 5 -2 6 -4 3 -1 4 -3
real/secret normal force -3 3 -2 5 -2 4 -1 1

attacker experienced secret force -3 3 -2 5 -2 4 -1 1.5
fake 3 -3 5 -4 4 -5 1 -2
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Table 7: Amounts of targets coverages in Example 3

i=real i=experienced secret force i= secret normal force i= fake
t=1 0.42 0 0 0
t=2 0 1 0 0.79
t=3 0.5 0 0.5 0.2
t=4 0.07 0 0.5 0

Table 8: Game matrix of defender and attacker type 1 in Example 4

defender attacker type 1
c u c u

real ((6,6,7), ((-3,-2,-2), ((-3,-3,-2), ((2,3,4),
t1 (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1)) (0.7,0.8,.0.9))

secret ((3,3,4), ((-2,-2,-1), ((-4,-3,-2), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) ,(0.6,0.7,0.8)) (0.6,0.7,0.8))

real ((6,6,7), ((-2,-1.5,-1), ((-5,-4,-3), ((2,3,3),
t2 (0.7,0.8,0.9)) ,(0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9))

secret ((3,4,5), ((-2,-1,-1), ((-2,-2-1), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))

real ((2,4,4), ((-1.5,-1,-1), ((-3,-2,-1), ((1,2,2),
t3 (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1))

secret ((2,2,3), ((-3,-2,-1), ((-2,-2,-1), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))

Table 9: Game matrix of defender and attacker type 2 in Example 4

defender attacker type 2
c u c u

real ((5,5,6), ((-2,-2,-1), ((-2,-2,-1), ((1,2,3),
t1 (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1))

secret ((5,6,6), ((-3,-2,-1), ((-4,-3,-2), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) ,(0.6,0.7,0.8))

real ((4,4,5), ((-1,-0.5,0), ((-2,-1,-1), ((2,2,3),
t2 (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9))

secret ((5,6,6), ((-2,-2,-1), ((-2,-2,-1), ((2,3,4),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))

real ((3,3,4), ((-3,-2,-2), ((-4,-3,-3), ((1,2,4),
t3 (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9))

secret ((3,3,4), ((-1.5,-1,-0.5), ((-3,-2,-1), ((1,3,4),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))
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Table 10: Game matrix of defender and attacker type 1 as triangular fuzzy
numbers in Example 4

defender attacker type 1
c u c u

t1 real (5.75,5.75,6.6) (-2.8,-1.8,-1.8) (-2.8,-2.8,-1.9) (1.8,2.8,3.8)
secret (2.5,2.5,3.3) (-1.6,-1.6,-0.8) (-3.3,-2.5,-1.67) (0.8,1.6,2.5)

t2 real (5.3,5.3,6.2) (-1.78,-1.2,-0.8) (-4.4,-3.5,-2.6) (1.78,2.68,2.68)
secret (3.3,4.1,4.1) (-1.6,-0.8,-0.8) (-1.67,-1.67,-0.8) (0.8,1.67,2.5)

t3 real (1.8,3.8,3.8) (-1.2,-0.8,-0.8) (-2.8,-1.9,-0.9) (0.94,1.9,1.9)
secret (1.6,1.6,2.5) (-2.5,-1.6,-0.8) (-1.67,-1.67,-0.83) (0.8,1.67,2.5)

Table 11: Game matrix of defender and attacker type 2 as triangular fuzzy
numbers in Example 4

defender attacker type 2
c u c u

t1 real (4.7,4.7,5.6) (-1.7,-1.7,-0.8) (-2.84,-1.89,-0.94) (0,1.89,2.84)
secret (4.2,5,5) (-2.5,-1.6,-0.8) (-1.67 ,-0.83,-0.83) (0.83,1.67,2.5)

t2 real (3.5,3.5,4.4) (-0.8,-0.4,0) (-1.7,-0.8,-0.8) (1.78,2.68,2.68)
secret (4.1,4.1,5) (-1.7,-0.8,-0.8) (-1.67,-1.67,-0.83) (1.67,2.5,3.34)

t3 real ( 2.5,2.5,3.3) (-2.6,- 1.8,-1.8) (-3.5,-2.68,-2.68) (0.89,1.78,3.57)
secret (2.5,2.5,3.3) (-1.2,-0.8,-0.4) (-2.5,-2.5,-1.67) (0.83,2.5,3.3)

Now, for the given player’s payoffs, we calculate the
√
α values from (7),

and apply them as the weights of payoffs. Then we have triangular fuzzy
payoffs given in Tables 10 and 1.

Solving the problem (P6) by the weighted sum method (with equal weights
for the objective functions) for these data yields the following solution:

Creal = (0.52, 0.23, 0.04), Csecret = (0, 0.83, 0.97).

This means that the defender should allocate 52%, 23%, and 4% of his real
forces to the targets 1, 2, and 3, respectively. Because of the constraint∑n

t=1 ct ≤ m, not all resources will necessarily be allocated in the optimal
solution. In this example, 79% of the real resources are used and 21% of
them remain unused. Also, with the available budget, he can allocate 41.5%
of the two secret forces (i.e., 0.83 of the two units) to the target 2 and 48.5%
(i.e., 0.97 of the two units) to the target 3.

Example 5. Consider the security game with two targets and three attackers
solved in [7]. The players’ payoffs are given in Tables 12–14.

Solving this example by our method (Problem P6, without deceptive re-
sources) yields the payoff 4.7 and the cover C = Creal = (0.05, 0.95). This
example was solved in [7] with a pessimistic viewpoint and the defender’s
payoff was obtained 3.19 and C = (0.29, 0.79), which is not better than our
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Table 12: Game matrix of defender and attacker type 1 in Example 5

target 1 target 2
c u c u

defender (3,5,6) (-3,-2,-1) (9,10,11) (2,3,5)
attacker (-2,-1,0) (2,4,5) (-2,-1,0) (9,10,11)

Table 13: Game matrix of defender and attacker type 2 in Example 5

target 1 target 2
c u c u

defender (0,1,2) (0,0,0) (1,2,4) (-3,-2,-1)
attacker (-2,-1,0) (0,1,2) (0,0,0) (3,5,6)

solution. Such a result was expected because the solution of [7] is a pessimistic
solution.

8 Conclusions

Optimization of force allocation is an important issue in war situations for
enemy points of attack, and in any situation (whether war or not), for sensi-
tive centers and infrastructure. A motivated attacker monitors defense forces
and takes advantage of the pattern of forces. Defenders must be able to pre-
dict the attacker’s reaction to different defensive strategies with the highest
probability. On the other hand, resource limitation is a major problem in
many security areas. Game theory can be used as a valuable tool to analyze
these issues and especially to determine the optimal strategy in case of a
conflict of interests. Security games are used to solve various security issues
according to the type and number of attackers and defenders.

In this paper, a mathematical model was proposed to allocate defense
forces in a security game with several attackers. Defenders can use deceptive
resources to reduce attack, intensity, productivity, or costs. Applying these
resources can fail with certain probabilities. Given these probabilities and
budget constraints, a mathematical model was introduced to optimize the
allocation of these deceptive resources. In the proposed model, the available

Table 14: Game matrix of defender and attacker type 1 in Example 5

target 1 target 2
c u c u

defender (1,2,4) (-2,-1,0) (2,3,5) (-3,-2,-1)
attacker (-3,-2,-1) (0,1,2) (-5,-3,-2) (2,4,5)

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 542–566



Deception in multi-attacker security game ... 563

budget, the importance of targets for attackers and defenders, and their possi-
ble strategies were considered to optimize the allocation of forces. Also, when
the defender uses deceptive resources, the ambiguity in the amount of players’
payoffs for both players increases. Hence, the players’ payoffs were considered
as Z-numbers. Then, the problem was solved in a two-stage procedure. In the
first stage, the Z-numbers were converted to triangular fuzzy numbers, and
in the second stage, the triangular fuzzy numbers were converted to intervals
using their expected intervals. Then the interval programming problem was
solved by an available method in the literature. Finally, the applicability of
the proposed methods was illustrated by some numerical examples.

There are various types of uncertain data, for example, intuitive fuzzy
numbers, type-2 fuzzy numbers, and so on. The introduced model handles
the payoffs of real, triangular fuzzy numbers, and Z-numbers. However, it
cannot be used for other types of fuzzy numbers (or types of uncertainty).
As a suggestion, security games with multi-attacker can be solved with other
kinds of uncertainty in payoffs.
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A two-phase method for solving
continuous rank-one quadratic knapsack

problems
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Abstract

We propose a two-phase algorithm for solving continuous rank-one
quadratic knapsack problems (R1QKPs). In particular, we study the so-
lution structure of the problem without the knapsack constraint. In fact
an O(n logn) algorithm is suggested in this case. We then use the solu-
tion structure to propose an O(n2 logn) algorithm that finds an interval
containing the optimal value of the Lagrangian dual of R1QKP. In the
second phase, we solve the Lagrangian dual problem using a traditional
single-variable optimization method. We perform a computational test
on random instances and compare our algorithm with the general solver
CPLEX.
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1 Introduction

The quadratic knapsack problem (QKP) deals with minimizing a quadratic
function over one allocation constraint together with simple bounds on deci-
sion variables. Formally, this problem can be written as

minimize
1

2
x̄⊤Qy − c̄⊤x̄, (1a)
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subject to ā⊤x̄ = b, (1b)
0 ≤ x̄ ≤ ū, (1c)

where Q is a symmetric n × n matrix, ā, c̄, ū ∈ Rn, and b ∈ R. The
QKP as a quadratic optimization problem is polynomially solvable when Q
is positive definite matrix [12].

When Q is diagonal with strictly positive diagonal entries, then QKP can
be viewed as a strictly convex separable optimization problem that has many
applications (e.g., resource allocation [1, 13, 14] and multicommodity network
flows [9]). The solution methods for solving this type of QKPs usually rely
on the fact that the optimal solution to the Lagrangian dual subproblems
can be explicitly obtained in terms of the Lagrange multiplier λ of (1b).
Therefore, the problem reduces to find a value for λ such that the solution
to the corresponding Lagrangian subproblem is satisfied equality constraint
(1b).

Helgason, Kennington, and Lall [9] proposed an O(n log n) algorithm for
solving the equation based on searching breakpoints of the Lagrangian dual
problem. Brucker [2] found an O(n) bisection algorithm based on the prop-
erties of the Lagrangian dual function. Dai and Fletcher [4] proposed a two-
phase method. A bracketing phase determines an interval containing the
solution followed by the secant phase that approximates the solution within
the promising interval. This method is modified by Comminetti, Mascaren-
has, and Silva [3] by ignoring the bracketing phase and using a semi-smooth
Newton method instead of the secant method. Liu and Liu [11] considered a
special case of the strictly convex form of the problem. They found the solu-
tion structure of the subproblems and used it in a modified secant algorithm.

Robinson, Jiang, and Lerme [15] used the geometric interpretation of the
problem and proposed an algorithm that works in the primal space rather
than the dual space. This algorithm iteratively fixes variables and terminates
after at most n iterations.

In a more general case, when Q is positive semidefinite in (1), Dussault,
Ferland, and Lemaire [7] proposed an iterative algorithm in which a QKP
with diagonal Q should be solved in each iteration. Paradalos, Ye, and Han
[12] suggested a potential reduction algorithm to solve this class of QKP. di
Serafino et al. [6] proposed a two-phase gradient projection with acceptable
numerical performance compared to similar gradient-based methods.

QKPs with positive definite Q are also solved by a gradient projection
method [4] and an augmented-Lagrangian approach [8].

In this paper, we suppose that Q is a rank-one symmetric matrix, that is,
Q = qq⊤ for some q ∈ Rn. Moreover, we assume that 0 < ū. Without loss of
generality, we assume that qi ̸= 0 for each i. By the changing variables

xi ← qix̄i, ci ←
c̄i
qi
, ai ←

āi
qi
, ui ← max{0, qiūi},
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problem (1) is reduced to

minimize
1

2
(1⊤x)2 − c⊤x, (2a)

subject to a⊤x = b, (2b)
0 ≤ x ≤ u. (2c)

Sharkey and Romeijn [16] studied a class of nonseparable nonlinear knap-
sack problems in which one has to

minimize g(s⊤x)− c⊤x,
subject to a⊤x = b,

l ≤ x ≤ u,
(3)

where g : R → R is an arbitrary real-valued function, and s ∈ Rn is given.
They introduced an algorithm for solving (3) that runs inO(n2 max{log n, ϕ}),
where ϕ is the time required to solve a single-variable optimization problem
min{g(S) − αS : L ≤ S ≤ U} for given α,L, U ∈ R. With g(t) = t2 and s
equal to the all-one vector, problem (2) is a special case of problem (3). That
is, there exists an O(n2 max{log n, 1}) = O(n2 log n) algorithm for solving
problem (2).

In this paper, we consider a two-phase algorithm for solving problem (2).
In Section 2, we study the solution structure of the relaxed version of the
problem in which the equality constraint (2b) is excluded. We show that the
relaxed version could be solved in O(n log n) time. In Section 3, in phase I,
we use the solution structure of the relaxed version to find an interval that
may contain the optimal value of the Lagrangian dual function. This is done
in O(n2 log n) time in the worst case. Then, we perform phase II, in which
we explore the interval by a single-variable optimization method to find the
optimal Lagrangian multiplier with the desired precision. In Section 4, we
perform a computational test. In particular, we compare the algorithm with
the general quadratic programming solver CPLEX.

2 Solution structure of the relaxed version

In this section, we consider the following relaxed version of the problem (2):

minimize f(x) =
1

2
(1⊤x)2 − c⊤x, (4a)

subject to 0 ≤ x ≤ u. (4b)

We propose a characterization of the solution in the primal space. Note
that most of algorithms for such problems use the so-called KKT conditions
to study the solution structure.
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Without loss of generality, we assume that c1 ≥ c2 ≥ · · · ≥ cn ≥ 0,
and that li = 0, i = 1, . . . , n. Given two vectors a, b ∈ Rn, we denote the
set {x : a ≤ x ≤ b} by [a, b]. Finally, given a vector u ∈ Rn, we define
Uk :=

∑k
i=1 ui for k = 1, . . . , n, and U0 := 0.

Now consider the following preliminary lemmas:

Lemma 1. For k = 1, . . . , n define x(k) as

x
(k)
i =

{
ui, i = 1, . . . , k,

0, i = k + 1, . . . , n,

and x(0) as the all-zero vector, and define Gk as

Gk =
1

2
(Uk + Uk−1)− ck = Uk−1 +

1

2
uk − ck.

Then the following assertions hold:

(i) If n̄ is the smallest index in {1, . . . , n} such that Gn̄ ≥ 0, then
mini=1,...,n f(x

(i)) = f(x(n̄−1)).

(ii) If Gk < 0 for all k = 1, . . . , n− 1, then mini=1,...,n f(x
(i)) = f(x(n)).

Proof. (i) For 1 ≤ k ≤ n− 1, we have

Gk −Gk+1 =
1

2
(Uk + Uk−1)− ck −

1

2
(Uk+1 + Uk) + ck+1

= −1

2
(uk + uk+1) + (ck+1 − ck)

< 0.

Thus
G1 < G2 < · · · < Gn̄−1 < 0 ≤ Gn̄ < Gn̄+1 < · · · < Gn.

On the other hand, for 1 ≤ k ≤ n− 1, we have

f(x(k+1))− f(x(k)) = 1

2
U2
k+1 −

k+1∑
i=1

uici −
1

2
U2
k +

k∑
i=1

uici

=
1

2
U2
k+1 − uk+1ck+1 −

1

2
U2
k

=
1

2
(U2

k+1 − U2
k )− uk+1ck+1

=
1

2
(Uk+1 − Uk)(Uk+1 + Uk)− uk+1ck+1

= uk+1

(
1

2
(Uk+1 + Uk)− ck+1

)
= uk+1Gk+1.

(5)
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Now let m > n̄− 1. Then

f(x(m))− f(x(n̄−1)) = f(x(m))− f(x(m−1)) + f(x(m−1)) + · · ·+ f(x(n̄))− f(x(n̄−1))

= umGm + · · ·+ un̄Gn̄ > Gn̄(um + · · ·+ un̄+1)

≥ 0.

Similarly, if m < n̄− 1, then f(x(m))− f(x(n̄−1)) ≥ 0.
(ii) The second part can be easily proved by considering (5).

We need the following result for two-dimensional version of problem (4).

Lemma 2. Consider the following optimization problem:

minimize f(x1, x2) =
1

2
(x1 + x2)

2 − c1x1 − c2x2,

subject to 0 ≤ x1 ≤ u1,
0 ≤ x2 ≤ u2,

(6)

where c1 ≥ c2 ≥ 0 and u1 and u2 are real positive constants. Define set
I := I1 ∪ I2, where I1 = {(u1, x2) : 0 ≤ x2 ≤ u2}, and I2 = {(x1, 0) : 0 ≤
x1 ≤ u1}. Then, problem (6) has no optimal solution outside of I.

Proof. If c1 = c2, then f(x1, x2) = 1
2 (x1 + x2)

2 − c1(x1 + x2) = 1
2z

2 −
c1z = g(z), where z = x1 + x2. It is easy to see that x∗ = (x∗1, x

∗
2) with

x∗1 = min{c1, u1} and x∗2 = min{c1 − x∗1, u2}, is the optimal solution to the
problem, and we have x∗ ∈ I. Assume that c1 ̸= c2. The feasible region of (6)
is equal to I1∪ I2∪ I3∪ I4, where I3 = {(x1, x2) : 0 < x1 < u1, 0 < x2 < u2}
and I4 = {(0, x2) : 0 < x2 < u2} ∪ {(x1, u2) : 0 < x1 < u1}. We show
that there is no optimal solution in I3 and I4. Indeed, we write the KKT
optimality conditions as follows:

x1 + x2 − c1 + α1 − α2 = 0, (7)
x1 + x2 − c2 + β1 − β2 = 0, (8)
α1(x1 − u1) = 0, α2x1 = 0, (9)
β1(x2 − u2) = 0, β2x2 = 0, (10)
0 ≤ x1 ≤ u1, (11)
0 ≤ x2 ≤ u2, (12)
α1, α2, β1, β2 ≥ 0, (13)

where αi and βi, i = 1, 2 are KKT multipliers corresponding to the bound
constraints. If (x1, x2) ∈ I3, then from (9) and (10), we have α1 = α2 = β1 =
β2 = 0. Substituting these values in (7) and (8) implies that c1 = c2, which
contradicts our assumption. On the other hand, if (x1, x2) ∈ I4 and x1 = 0,
then α1 = 0. Now, (7) implies that x2 = c1 + α2 > 0. Thus β2 = 0. From
(8), we have x2 = c2−β1. Therefore, c2 = c1+α2+β1 ≥ c1. This contradicts
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our assumption on ci’s. That is, problem (6) has no optimal solution with
x1 = 0. Now, if x2 = u2, then α1 = 0 and β2. It implies from (7) and (8)
that 0 ≤ α2 + β1 = c2 − c1 ≤ 0. That is, c2 = c1, a contradiction.

Theorem 1. Suppose that x(k) and Gk, k = 1, . . . , n, and n̄ are defined as
in Lemma 1. Then the following assertions hold:

(i) For n̄ > 1, define δ1 and δ2 as δ1 := min {cn̄−1 − Un̄−2, un̄−1} and
δ2 := max {cn̄ − Un̄−1, 0}. Also, define x̄ and x̃ as

x̄ = x(n̄−2) + δ1en̄−1, x̃ = x(n̄−1) + δ2en̄,

where ei is the ith column of the identity matrix of dimension n. Then
min{f(x̄), f(x̃)} is the optimal value of the following optimization prob-
lem:

minimize f(x),

subject to x(n̄−2) ≤ x ≤ x(n̄).
(14)

(ii) For n̄ = 1, define δ := min{c1, u1} and x̃ := δe1. Then f(x̃) is the
optimal value of the following optimization problem:

minimize f(x),

subject to x(0) ≤ x ≤ x(1).

(iii) For Gk < 0 for all k = 1, . . . , n, define δ := min{cn − Un−1, un} and
x̃ := x(n−1) + δen. Then f(x̃) is the optimal value of the following
optimization problem:

minimize f(x),

subject to x(n−1) ≤ x ≤ x(n).

Proof. (i) By Lemma 2, we can partition the optimal solution set as I1 ∪ I2,
where I1 = [x(n̄−2), x(n̄−1)] and I2 = [x(n̄−1), x(n̄)]. We show that f(x̄) =
min{f(x) : x ∈ I1} and f(x̃) = min{f(x) : x ∈ I2}. Indeed, we use a
simple technique of single-variable calculus. Let x ∈ I1. Then x = x(δ),
for some δ ∈ [0, un̄−1], where x(δ) = x(n̄−2) + δen̄−1. Thus the problem
min{f(x) : x ∈ I1} reduces to min{f(x(δ)) : 0 ≤ δ ≤ un̄−1}. On the other
hand, one can write

f(x(δ)) =
1

2
(Un̄−2 + δ)

2 −
n̄−2∑
i=1

ciui − cn̄−1δ.

We have df(x(δ))/dδ = Un̄−2 + δ − cn̄−1. Thus df(x(δ))/dδ = 0 only if
δ = δ′ = cn̄−1 − Un̄−2. Since d2f(x(δ))/dδ2 > 0 and δ′ > 1

2un̄−1 the optimal
value is achieved at δ1.
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To prove f(x̃) = min{f(x) : x ∈ I2}, by the same argument as
the previous paragraph, it suffices to solve single optimization problem
min{f(x(δ)) : 0 ≤ δ ≤ un̄}, where x(δ) = x(n̄−1) + δen̄. It is easy to see
that if δ = δ′ = cn̄ − Un̄−1, then df(x(δ))/dδ = 0. Since δ′ ≤ 1

2un̄, by the
definition of n̄, then f(x̃) is the optimal value of min{f(x) : x ∈ I2}.

The proof of parts (ii) and (iii) is similar.

The following Corollary 1 presents simple conditions under which the
optimal solution to the problem in Theorem 1(i) is x̄ or x̃.

Corollary 1. In Theorem 1(i),

(i) if δ1 = un̄−1, then min{f(x̄), f(x̃)} = f(x̃), and

(ii) if δ2 = 0, then min{f(x̄), f(x̃)} = f(x̄).

Proof. For brevity, we just prove part (i). The proof of the second part is
similar. Under the assumption of part (i), we have

f(x̄)−f(x̃) = 1

2
U2
n̄−1−

n̄−1∑
i=1

ciui−
1

2
c2n̄+

n̄−1∑
i=1

ciui+cn̄(cn̄−Un̄−1) =
1

2
(Un̄−1 − cn̄)2 ≥ 0.

Theorem 1 solves a relaxed version of problem (2). In Theorem 2, we
show that the solution to the relaxed version is the solution to the original
problem.

Theorem 2. Define Gk’s, x(k)’s, n̄, x̄, and x̃ as in Theorem 1. Then, the
following assertions hold:

(i) If 1 < n̄ ≤ n, then min{f(x̄), f(x̃)} is the optimal value of (4), where x̃
and x̄ are defined as in Theorem 1(i).

(ii) If n̄ = 1, then f(x̃) is the optimal value of (4), where x̃ is defined as in
Theorem 1(ii).

(iii) If Gk < 0 for all k = 1, . . . , n, then f(x̃) is the optimal solution to (4),
where x̃ = x(n−1) + δ′en and δ′ = min{cn − Un−1, un}.

Proof. For two vectors x, z ∈ Rn, we have

f(z)− f(x) = 1

2
(1⊤z + 1⊤x)(1⊤z − 1⊤x)− c⊤(z − x). (15)

Let x be a feasible solution to (4). If x = u = x(n), then from the defini-
tion of n̄, we have f(xn̄−1) ≤ f(x), and the result follows from Theorem 1.
Suppose x ̸= u. We show there exists a specially structured feasible solution
x′ that is better than x. Indeed, let k be such that
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Uk ≤ 1⊤x < Uk+1.

Define vector x′ by

x′i =


ui, i = 1, . . . , k,

1⊤x− Uk, i = k + 1,

0, i = k + 2, . . . , n.

Then, clearly x′ is feasible for (4) and

1⊤x′ =

k∑
i=1

x′i + x′k+1 +

n∑
i=k+2

x′i =

k∑
i=1

ui +

n∑
i=1

xi −
k∑

i=1

ui = 1⊤x.

Moreover, we obtain

c⊤x′ =

k∑
i=1

uici + ck+1x
′
k+1 =

k∑
i=1

uici + ck+1

n∑
i=1

xi − ck+1

k∑
i=1

ui

=

k∑
i=1

uici + ck+1

k∑
i=1

xi + ck+1

n∑
i=k+1

xi − ck+1

k∑
i=1

ui

≥
k∑

i=1

uici +

k∑
i=1

(xi − ui)ci +
n∑

i=k+1

xici (by the monotonicity of ci’s)

= c⊤x.

Therefore, (15) implies that f(x′)− f(x) = −c⊤(x′−x) ≤ 0, that is, f(x′) ≤
f(x).

(i) Now, we consider three cases for the index k introduced in the defini-
tion of x′: k ≥ n̄, k < n̄− 2, and k = n̄− 1, n̄− 2. In the latter case, we have
x(n̄−2) ≤ x′ ≤ x(n̄), so the assertion is true by Theorem 1, since

min{f(x̄), f(x̃)} = min{f(x) : x ∈ [x(n̄−2), x(n̄)]} ≤ f(x′) ≤ f(x).

We show in both the other cases, there is a point in the set {x(i)}i=1,...,n

better than x′, that is, f(x(i)) ≤ f(x′) for some i = 1, . . . , n. By Lemma 1,
f(x(n̄−1)) ≤ f(x(i)) and the result follows by Theorem 1.

First, let k ≥ n̄. Then

f(x(k))− f(x′) = 1

2
(1⊤x(k) − 1⊤x′)(1⊤x(k) + 1⊤x′)− c⊤(x(k) − x′)

= −1

2
x′k+1(2Uk + x′k+1) + ck+1x

′
k+1

= −x′k+1

(
1

2
(2Uk + x′k+1)− ck+1

)
.
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On the other hand, we have

2Uk + x′k+1 = 2

n̄−1∑
i=1

ui +

k∑
i=n̄

ui + x′k+1 ≥ Un̄ + Un̄−1.

Therefore,

1

2
(2Uk + x′k+1)− ck+1 ≥

1

2
(Un̄ + Un̄−1)− cn̄ = Gn̄ ≥ 0.

Thus f(x(k)) ≤ f(x′).
Now, let k < n̄− 2. Then

f(x(k+1))− f(x′) = 1

2
(1⊤x(k+1) − 1⊤x′)(1⊤x(k+1) + 1⊤x′)− c⊤(x(k+1) − x′)

=
1

2
(uk+1 − x′k+1)(Uk+1 + Uk + x′k+1)− ck+1(uk+1 − x′k+1)

= (uk+1 − x′k+1)

(
1

2
(2Uk + x′k+1 + uk+1)− ck+1

)
.

On the other hand, we have

2Uk +x
′
k+1+uk+1 ≤ 2Uk +2uk+1 ≤ 2Uk +2

n̄−2∑
i=k+1

ui+un̄−1 = Un̄−2+Un̄−1.

Hence,

1

2
(2Uk + x′k+1 + uk+1)− ck+1 ≤

1

2
(Un̄−2 + Un̄−1)− cn̄−1 = Gn̄−1 < 0.

That is, f(x(k+1)) < f(x′). Thus in both cases, there exist a point, say x(t),
such that f(x(t)) ≤ f(x′) ≤ f(x). Now, by Lemma 1, f(x(n̄−1)) ≤ f(x(t)) ≤
f(x) and the result follows by Theorem 1.

Proof of (ii). Consider the possible values of k at the beginning of the
proof of part (i). Here, we just have k ≥ n̄ = 1. Now, similar argument for
this case proves (ii).

Proof of (iii). Again consider the possible values of k at the beginning of
the proof of part (i). Similar argument with case k < n̄ − 2 for n̄ = n + 1
proves part (iii).

We conclude the following result on the time needed to solve problem (4).

Theorem 3. There exists an O(n log n) time algorithm for problem (4).

Proof. When the index n̄ is determined, the solution can be determined in
O(n) time. We need O(n log n) to sort the vector c, O(n) to compute vector
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G, and O(log n) to find the index n̄. That is, problem (4) can be solved in
O(n log n).

3 The algorithm

In this section, we propose our algorithm for solving problem (2). The al-
gorithm consists of two phases: bounding the optimal Lagrangian multiplier
and computing the optimal solution to the desired precision. The bounding
phase is based on the Lagrangian dual of (2) and the solution structure of
the relaxed version has been described in section 2.

3.1 Lagrangian dual

Let λ be the Lagrange multiplier of equality constraint in (2). Then, the
Lagrangian function is given by

ϕ(λ) := min

{
1

2
(1⊤x)2 − c⊤x+ λ(b− a⊤x) : 0 ≤ x ≤ u

}
= λb+min

{
1

2
(1⊤x)2 − (c+ λa)⊤x : 0 ≤ x ≤ u

}
.

(16)

We have the following statement about the structure of the Lagrangian
function ϕ.

Theorem 4. For a given Lagrange multiplier λ, define n̄ as in Theorem 2.
If n̄ > 1, then

ϕ(λ) = λb+ fλ(x
(n̄−1)), if cn̄(λ) ≤ Un̄−1 ≤ cn̄−1(λ), (Type A)

ϕ(λ) = λb+ pn̄(λ), if Un̄−1 < cn̄(λ), (Type B)
ϕ(λ) = λb+ pn̄−1(λ), if Un̄−1 > cn̄−1(λ), (Type C)

where fλ is the objective function of the optimization part of (16), and

pk(λ) = −
1

2
a2kλ

2 − a⊤dkλ+
1

2
c2k − c⊤dk,

dk = x(k−1) + (ck − Uk−1)ek.

Proof. The proof is based on the four possible cases for δ1 and δ2 in The-
orem 2. We just prove (Type A) and, for the sake of brevity, we omit the
remaining parts.

Suppose that cn̄(λ) ≤ Un̄−1 ≤ cn̄−1(λ). Then we have cn̄−1(λ)− Un̄−2 ≥
un̄−1 and cn̄(λ)−Un̄−1 ≤ 0. Therefore, the values of δ1 and δ2 in Theorem 2
can be determined as
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δ1 =min{cn̄−1(λ)− Un̄−2, un̄−1} = un̄−1,

δ2 =max{cn̄(λ)− Un̄−1, 0} = cn̄(λ)− Un̄−1.

Thus we have x̄ = x(n̄−2) + δ1en̄−1 = x(n̄−1). By some simplifications, we
have fλ(x̃) − fλ(x̄) = 1

2 (cn̄(λ) − Un̄−1)
2 ≥ 0. Now, Theorem 2 implies that

min{fλ(x) : 0 ≤ x ≤ u} = min{f(x̃), f(x̄)} = fλ(x̄) = fλ(x
(n̄−1)).

Now, one may conclude that if n̄ is fixed on an interval [λa, λb], then
ϕ(λ) is a piecewise function that contains exactly three pieces. However, the
following simple example shows that this is not true.

Example 1. Consider problem (2) with the following parameters:

a⊤ =
[
−7 −5 7 −5 7

]
, c⊤ =

[
54 44 15 −8 −70

]
,

u⊤ =
[
62 48 36 84 59

]
.

In Figure 1, we plot ϕ(λ) for λ ∈ [−8.36, 7.00]. We distinct three cases in
(Type A), (Type B), and (Type C) in blue, red, and green, respectively. As
it can be seen in Figure 1, ϕ(λ) consists of four pieces.

-10 -8 -6 -4 -2 0 2 4 6 8
!8:36 5 6 5 7:00

-4000

-3500

-3000

-2500

-2000

-1500

-1000

?
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? values of type I
? values of type II
? values of type III

Figure 1: Plot of ϕ(λ) for the problem of Example 1.

The inner optimization problem in (16) is a special case of problem (4)
that can be solved by Theorem 2. In Theorem 2, it is assumed that coefficients
of the linear term in the objective function are sorted in decreasing order. In
problem (16), the order of coefficients of the linear term depends on λ. From
now on, we denote by ci(λ) the coefficient of xi, that is, ci(λ) = ci + λai.
Moreover, we denote the line {ci(λ) : λ ∈ R} by ℓi. It is easy to see that
when λ becomes greater than the intersection of ℓi and ℓj , ci(λ) and cj(λ)
change position in the ordered list of coefficients.

We use a modification of the well-known plane sweep algorithm to find the
ordered intersection points of lines {ℓi : i = 1, . . . , n}. Now, let λa, λ′, and
λb be three consecutive intersection points. Then, because the Lagrangian
function is unimodal, the optimal Lagrange multiplier λ∗ lies in the interval
[λa, λb] if ϕ(λ′) > ϕ(λa) and ϕ(λ′) > ϕ(λb).

We modify the implementation of the line-sweep algorithm proposed in
[5]. In this algorithm, a vertical line ℓ sweeps the plane from left to right.
The status of the sweep line is the ordered sequence of lines that intersect it.
The status initially contains all lines in the order of decreasing slope, that is,
the order of lines when they intersect with the sweep line at λ = −∞. The
status is updated when ℓ reaches an intersecting point. For example, suppose
that the sequence of four lines ℓl, ℓi, ℓj , and ℓm appears in the status when ℓ
reaches the intersection point of ℓi and ℓj . Then, ℓi and ℓj switch the position
and intersection of lines ℓi and ℓm, and the intersection of ℓj and ℓl are to
be checked. The new detected intersection points are stored to proceed. The
order of cost coefficient of the linear term in ϕ(λ) is unchanged between two
consecutive intersection points.

If ci(λ) < 0 for some i, then xi = 0 in the optimal solution to the ϕ(λ)
subproblem. We introduce a set Z to store the non-vanished variables. To do

11

Figure 1: Plot of the Lagrangian function ϕ(λ) for Example 1.

The inner optimization problem in (16) is a special case of problem (4)
that can be solved by Theorem 2. In Theorem 2, it is assumed that coefficients
of the linear term in the objective function are sorted in decreasing order. In
problem (16), the order of coefficients of the linear term depends on λ. From
now on, we denote by ci(λ) the coefficient of xi, that is, ci(λ) = ci + λai.
Moreover, we denote the line {ci(λ) : λ ∈ R} by ℓi. It is easy to see that
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when λ becomes greater than the intersection of ℓi and ℓj , ci(λ) and cj(λ)
change position in the ordered list of coefficients.

We use a modification of the well-known plane sweep algorithm to find the
ordered intersection points of lines {ℓi : i = 1, . . . , n}. Now, let λa, λ′, and
λb be three consecutive intersection points. Then, because the Lagrangian
function is unimodal, the optimal Lagrange multiplier λ∗ lies in the interval
[λa, λb] if ϕ(λ′) > ϕ(λa) and ϕ(λ′) > ϕ(λb).

We modify the implementation of the line-sweep algorithm proposed in
[5]. In this algorithm, a vertical line ℓ sweeps the plane from left to right.
The status of the sweep line is the ordered sequence of lines that intersect it.
The status initially contains all lines in the order of decreasing slope, that is,
the order of lines when they intersect with the sweep line at λ = −∞. The
status is updated when ℓ reaches an intersecting point. For example, suppose
that the sequence of four lines ℓl, ℓi, ℓj , and ℓm appears in the status when ℓ
reaches the intersection point of ℓi and ℓj . Then, ℓi and ℓj switch the position
and intersection of lines ℓi and ℓm, and the intersection of ℓj and ℓl are to
be checked. The new detected intersection points are stored to proceed. The
order of cost coefficient of the linear term in ϕ(λ) is unchanged between two
consecutive intersection points.

If ci(λ) < 0 for some i, then xi = 0 in the optimal solution to the ϕ(λ)
subproblem. We introduce a set Z to store the non-vanished variables. To do
so, we add a dummy line ℓ0 : c0(λ) = 0. In each intersection of the dummy
line and the other lines, the set Z should be updated. In fact, if ℓi intersect ℓ0
and i ̸∈ Z, then we add i to Z; otherwise, if i ∈ Z, then it should be removed
from Z. In other words, since we sweep the plane from left to right, if ℓi
intersect ℓ0 and ai < 0, then we add i to Z. If ℓi intersect ℓ0 and ai > 0, then
it means that i should be removed from Z. Moreover, Z initially contains the
set of all lines with a positive slope. With this modification, we guarantee that
between two consecutive intersection points, the set of zero-valued variables
is unchanged. It should be noted here that lines with equal slopes are sorted
based on increasing order of ci’s. We summarize the approach in Algorithm
1. This algorithm is used as the first phase in the main algorithm.

Theorem 5. Algorithm 1 runs in O(n2 log n) time.

Proof. Initializing state array ℓ, line indices array p and the queue Q in
steps 3–7 needs O(n log n) time. In each iteration, we perform two main
operations: computing the value of ϕ for a new intersect point λnew and
updating Q. The order of ci(λnew) and the vector G can be updated from
the previous intersection point in O(1) time. Finding n̄ needs O(log n), using
binary search. On the other hand, insertion and deletion on the priority queue
Q takes O(log n) since one can implement the priority queue by a heap to
store the intersection points. Therefore, each iteration of the main loop needs
O(log n) time. Since there are O(n2) intersection points, the algorithm runs
in O(n2 log n).
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Algorithm 1 A plane sweep algorithm for finding an interval containing the
optimal solution to the Lagrangian dual problem.
1: Input: vectors c, a, and u and scaler b.
2: Output: interval [λa, λb] that contains the optimal solution to the prob-

lem maxλ∈R ϕ(λ) or the smallest and largest intersection points.
3: Initialize a state array, ℓ = [1, . . . , n] , with lines ℓ[1], . . . , ℓ[n] sorted in

decreasing order of their slope.
4: Initialize queue Q = ∅.
5: Initialize line indices array p = [1, . . . , n].
6: Fail ← true
7: Insert intersection points of all adjacent lines into Q.
8: Set λprev ← −∞, λprev prev ← −∞
9: while Q is not empty do

10: Pop from Q the current intersection point λnew and the corresponding
two adjacent lines ℓ[i] and ℓ[j].

11: Update state array: ℓ[p[i]]↔ ℓ[p[j]].
12: Update the line indices array: p[i]↔ p[j].
13: Insert the intersection point of ℓ[p[i]] and ℓ[p[i]+1] and the intersection

point of ℓ[p[j]] and ℓ[p[j]− 1] into Q, if there exists any.
14: if ϕ(λprev) > ϕ(λprev prev) and ϕ(λprev) > ϕ(λnew) then
15: Set Fail ← false
16: return [λprev prev, λnew] as the promising interval.
17: end if
18: Set λprev prev ← λprev.
19: Set λprev ← λnew.
20: end while
21: if Fail then
22: return the smallest λLB and the largest λUB intersection points.
23: end if
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Let λLB and λUB be the smallest and greatest intersection points of lines
{ℓi : i = 1, . . . , n}, respectively. The optimal solution to the Lagrangian
problem may lie out of the interval [λLB , λUB ]. In this case, Algorithm 1
fails to find the optimal interval. So, we explore the outside of [λLB , λUB ] in
a separate phase.

First, consider the exploration of (−∞, λLB). Since the components of
vector G in Theorem 2 are linear functions in term of λ, then there exists
λ′LB < λLB such that the order of Gk’s does not change for λ < λ′LB . Indeed,
a similar procedure for finding the smallest intersection of lines ℓi’s can be
used here to compute λ′LB . Now, since ϕ(λ) is unimodal, one can conclude
that

max
(−∞,λLB ]

ϕ(λ) = max
[λ′

LB ,λLB ]
ϕ(λ). (17)

Similarly, for the values of λ > λUB , one can find a threshold, say λ′UB ,
such that

max
[λUB ,∞)

ϕ(λ) = max
[λUB ,λ′

UB ]
ϕ(λ). (18)

We summarize the main algorithm in Algorithm 2.

Algorithm 2 A two-phase algorithm for solving rank-one QKP (2).
1: Run Algorithm 1 to find a promising interval that contains the optimal

Lagrange multiplier.
2: if Algorithm 1 returns an interval [λa, λb] then
3: Solve the optimization problem max[λa,λb] ϕ(λ) and return the optimal

solution.
4: else
5: Solve optimization problems (17) and (18) and store the optimal values.
6: end if
7: return the best λ found as an optimal Lagrange multiplier.

It is clear that Algorithm 2 converges to the optimal solution since the
output interval of Algorithm 1 contains the optimal solution and ϕ(λ) is
unimodal. In fact, the single variable optimization problem in step 3 can be
solved efficiently by a classical root-finding algorithm.

4 Computational experiments

In this section, we compare the running time of Algorithm 2 with the general
convex quadratic programming solver, CPLEX. We implement Algorithm 2
with MATLAB R2019b. All runs are performed on a system with a Core
i7 2.00 GHz CPU and 8.00 GB of RAM equipped with a 64bit Windows
operating system. We solve single variables optimization problems (17), (18),
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Table 1: Parameters for two types of problem instances.

Type a c l u− l
TypeI U(−50, 50) U(−50, 50) U(0, 20) U(1, 100)
TypeII U(−100, 10) U(10, 100) U(0, 20) U(1, 100)

and step 3 in Algorithm 2, using MATLAB built-in function fminbnd, which
is based on the golden section search and parabolic interpolation.

Our testbed contains two types of randomly generated rank-one knapsack
problems up to n = 100, 000 variables. In the first type, the vectors a and c
are integral and generated uniformly from the same interval. We denote this
type by TypeI. In the second type (TypeII), the vectors a and c are positive
and negative randomly generated integral vectors, respectively. In Table 1,
we summarize the parameter values for problem instances.

As a well-known general convex quadratic programming solver, we chose
CPLEX (ver. 12.9) to compare our results.

Based on our numerical results, we set the quadratic programming solver
of CPLEX (qpmethod option) to the barrier. The barrier convergence toler-
ance, convergetol, is set to 1e−12 (The default value is convergetol = 1e−6).
It should be noted here that this setting is applied after we found that the
default value leads to the optimal solutions that have components with a
“meaningful” distance to their correct values. Another point is that for other
optimizers such as primal and dual, CPLEX found the optimal solution in
correct precision, but the running time is too long for large instances. For
brevity, we do not report details related to these experiments.

After completing our experimental tests, we found in [10] that the sparsity
of the Hessian matrix influences the performance of CPLEX. To increase the
performance, we reformulate our problem as

min

{
1

2
y2 − c⊤x : 1⊤x− y = 0, a⊤x = b, 0 ≤ x ≤ u

}
.

We denote the results corresponding to running CPLEX on the original prob-
lem and the aforementioned modification, respectively, by CPLEXorg and
CPLEXref .

Table 2 shows the average running time for five runs of each algorithm/-
solver for each problem size. Dash sign, “-”, denoted the algorithm/solver
encounters out-of-memory status.

In all cases, Algorithm 2 outperforms CPLEXorg. For instances up to
n = 5000, our algorithm and CPLEXref have the same running time, whereas
for larger instances, CPLEXref has smaller running time.
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Table 2: A comparison of running times (in seconds) between our algorithm
and CPLEXorg and CPLEXref .

n Our algorithm CPLEXorg CPLEXref

1000 TypeI 0.06 0.09 0.01
TypeII 0.01 0.06 0.02

1500 TypeI 0.04 0.15 0.02
TypeII 0.02 0.13 0.02

2000 TypeI 0.04 0.27 0.02
TypeII 0.02 0.27 0.02

5000 TypeI 0.09 2.21 0.02
TypeII 0.06 2.12 0.03

10000 TypeI 0.26 16.26 0.04
TypeII 0.23 16.95 0.05

15000 TypeI 0.62 61.20 0.10
TypeII 0.63 65.88 0.10

20000 TypeI 1.16 - 1.20
TypeII 0.88 - 1.02

50000 TypeI 3.22 - 0.11
TypeII 3.19 - 0.11

100000 TypeI 12.19 - 0.14
TypeII 11.31 - 0.17
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5 Conclusions

In this paper, we proposed a two-phase algorithm for rank-one QKPs. To this
end, we studied the solution structure of the problem when it has no resource
constraint. Indeed, we proposed an O(n log n) algorithm to solve this prob-
lem. We then used the solution structure to propose an O(n2 log n) line-sweep
algorithm that finds an interval that contains the optimal Lagrange multi-
plier. Then, the estimated optimal interval was explored for computing the
optimal solution with the desired accuracy. Our computational tests showed
that our algorithm has better running time than CPLEX when CPLEX is
used to solve the original problem. After a reformulation of the problem,
CPLEX outperforms our algorithm for instances with n ≥ 5000.
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1 Introduction

In recent years, there has been a growing interest in fractional computation
[14, 26, 31, 33, 34]. Fractional differential equations have become increasingly
important as they have applications in various fields of science and engineer-
ing [13]. Numerous phenomena in fluid mechanics, viscoelasticity, chemistry,
physics, finance, and other sciences can be described successfully by mod-
els using mathematical tools of fractional calculation, that is, the theory of
fractional-order derivatives and integrals. Much important work on theoreti-
cal analysis [38, 10] has been carried out, but the analytical solutions of most
fractional differential equations cannot be achieved explicitly. Numerical so-
lution strategies based on convergence and stability analysis were used by
many authors [12, 11, 13, 16, 20, 35, 36, 39, 41, 22]. Liu has carried out
extensive research on the finite difference method of fractional differential
equations [22, 23, 24]. The two most frequently used are the Riemann–
Liouville and Caputo type. The difference between the two definitions is in
the order of evaluation [29].

In this paper, we consider the following Riccati equation:{
u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 < x < T,
u(0) = 0.

(1)

Also, we consider the following fractional Riccati equation:

Dαu(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 < α ≤ 1, 0 < x < T, (2)

along with the initial condition

u(0) = 0, (3)

where x ∈ R and p(x), q(x), and r(x) are known functions. Moreover, Dα is
the Caputo derivative operator of the fractional-order α, which is defined as
below:

Dαu(x) =
1

Γ(1− α)

∫ x

0

(x− s)−αu′(s) ds. (4)

In the past, two scholars, Bernoulli (1654-1705) and Riccati (1676-1754) in-
troduced and assessed a particular case of differential equations (2). The
Riccati differential equations (RDEs) and fractional Riccati differential equa-
tions (FRDEs) are used in many physical phenomena. Such applications can
include control systems, robust stabilization, diffusion problems, network
synthesis, optimal filtering, stochastic theory, controls, financial mathemat-
ics, optimal control, river flows, robust stabilization, financial mathematics
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dynamic games, linear systems with Markovian jumps, stochastic control,
econometric models, and invariant embedding [32, 28, 4, 19, 15, 9, 21, 5, 30].
Many researchers have used numerical approaches to solve the RDEs and
FRDEs. Some standard procedures can be referenced, including the differen-
tial transform method [7], series solutions Adomian’s decomposition method
[1], Homotopy perturbation method [1], variational iteration method [18],
Homotopy analysis method [37], piecewise spectral-collocation method [6],
and so on [8, 27, 25, 3].
This paper aims to obtain numerical solutions to (1)–(3) using a high-order
compact finite difference approach.

Several researchers have employed the compact finite difference method
to solve fractional differential equations. Du, Cao, and Sun [14] have used
the compact finite difference method to solve the fractional diffusion-wave
equation. Gao and Sun [17] have also employed the compact finite differ-
ence method to solve the fractional sub-diffusion equation. They have also
proved the stability and convergence of their method. Cui [13] solved the
one-dimensional fractional diffusion equation via a high-order compact finite
difference scheme and obtained a fully discrete implicit system by Grunwald–
Letnikov’s discretization of the Riemann–Liouville derivative.

The present study is organized as follows: In Sections 2, 3, and 4, the
compact finite difference methods are reviewed and applied to solve (1)–
(3). Also, their convergence is discussed. In Section 5, the numerical results
obtained by the proposed methods are presented. We also compare the results
of our approach and those of the proposed methods in [2]. The conclusion
and the advantages of the proposed technique are presented in Section 6.

2 Compact finite difference scheme

In this work, our primary goal is to apply the compact finite difference method
to solve (1)–(3). For this, we first subdivide the range 0 ≤ x ≤ T to N equal
partitions with step length h as follows:

x0 = 0, xi = ih, i = 0, 1, . . . , N, h =
T

N
. (5)

Set

ui ≈ u(xi), u′i ≈ u′(xi).

For the first derivatives, the following compact finite difference scheme was
given in [40]:
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h (

−11
12 u0 − 4u1 + 6u2 − 4

3u3 +
1
4u4),

u′i−1 + 4u′i + u′i+1 = 3
h (−ui−1 + ui+1), i = 1, . . . , N − 1,

u′N−2 + 4u′N−1 = 1
h (−

1
4uN−4 +

4
3uN−3 − 6uN−2 + 4uN−1 +

11
12uN ).

(6)

All above relations have the accuracy of O(h4). The matrix form for (23)
is

A1u
′ =

1

h
B1u, (7)

where

A1 =


0 4 1 0 . . . 0
1 4 1 0 . . . 0

0
. . . . . . . . . . . . 0

... . . . 0 1 4 1
0 . . . 0 1 4 0


(N+1)×(N+1)

,

B1 =



− 11
12 −4 6 4

3
1
4 0 . . . 0

−3 0 3 0 0 0 . . . 0
0 −3 0 3 0 0 . . . 0

0
. . . . . . . . . . . . . . . . . . 0

... . . . 0 0 0 −3 0 3
0 . . . 0 − 1

4
4
3 −6 4 11

12


(N+1)×(N+1)

.

Also, u = [u0, u1, . . . , uN ]T and u′ = [u′0, u
′
1, . . . , u

′
N ]T .

Lemma 1. The coefficient matrix A1 is invertible.

Proof. Let us expand A1 along the first column. Then

det(A1) = −det


4 1 0 . . . 0
1 4 1 . . . 0
... . . . . . . . . .

...
0 . . . 1 4 1
0 . . . 1 4 0


N×N

.

Now, by expanding along the last column, we have

det(A1) = (−1)Ndet


4 1 0 . . . 0
1 4 1 . . . 0
... . . . . . . . . .

...
0 . . . 1 4 1
0 . . . 0 1 4


(N−1)×(N−1)

̸= 0.

According to Lemma 1, from (24), we have u′ = 1
hA

−1
1 B1u. By defining

C = A−1
1 B1, the following relation holds for u′:
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u′ =
1

h
Cu, (8)

and in the component form, we have

u′i =
1

h

N∑
j=0

ci+1,j+1uj , i = 0, . . . , N. (9)

Lemma 2. The coefficient matrix B1 is invertible.

Proof. Let us expand B1 along the first row. Then

det(B1) = −det


−3 0 3 0 0 0 . . . 0
0 −3 0 3 0 0 . . . 0

0
. . . . . . . . . . . . . . . . . . 0

... . . . 0 0 0 −3 0 3
0 . . . 0 − 1

4
4
3 −6 4 11

12


N×N

.

Now, by expanding along the last row, we have

det(B1) = (−1)Ndet


−3 0 3 0 0 0 . . . 0
0 −3 0 3 0 0 . . . 0

0
. . . . . . . . . . . . . . . . . . 0

... . . . 0 0 0 −3 0 3


(N−1)×(N−1)

̸= 0.

According to Lemma 2, it follows that the matrix C is invertible.

3 Compact finite difference scheme for Riccati problem
in α = 1 case and its convergence

This section uses the compact finite difference scheme for the nonfractional
Riccati problem and investigates its convergence. Consider the subsequent
classical Riccati initial value problem

u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 < x < T. (10)

Its initial condition is
u(0) = 0. (11)

Using (10), we have
u′0 = p(x0). (12)

So, using (9), equation (12) can be written as
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1

h

N∑
j=0

c1,j+1uj = p(x0). (13)

For x = xi, one can write (10) as

u′(xi) = p(xi) + q(xi)u(xi) + r(xi)u
2(xi), i = 1, . . . , N. (14)

Thus from (9)

1

h

N∑
j=0

ci+1,j+1uj − p(xi)− q(xi)ui − r(xi)u2i = 0, i = 1, . . . , N. (15)

Equations (13) and (15) form a system including N +1 equations and N +1
unknowns u0, u1, . . . , uN , that can be solved by Maple software.

Now, the convergence analysis of the proposed method for (10) along with
initial conditions (11) is investigated.

Theorem 1. Let U = [u(x0), u(x1), . . . , u(xN )]T be the vector of exact so-
lution to (1) along with its initial condition, and let u = [u0, u1, . . . , uN ]T be
the numerical solution at the same points obtained by (13) and (15). Then

∥E∥ ≤ O(h2), (16)

provided h∥C−1∥∥M∥ ≤ 1, where E = [e0, e1, . . . , eN ]T and ei = u(xi)− ui,
i = 0, . . . , N (∥ · ∥ is the infinity norm).

Proof. According to (13) and (15), for a numerical solution, we have{
1
h

∑N
j=0 c1,j+1uj = p(x0),

1
h

∑N
j=0 ci+1,j+1uj − p(xi)− q(xi)ui − r(xi)u2i = 0, i = 1, . . . , N,

(17)
and for an exact solution, we have{

1
h

∑N
j=0 c1,j+1u(xj) = p(x0) +O(h4),

1
h

∑N
j=0 ci+1,j+1u(xj)− p(xi)− q(xi)u(xi)− r(xi)u

2(xi) = O(h4), i = 1, . . . , N.

(18)
By subtracting (17) and (18), one concludes that

1
h

∑N
j=0 c1,j+1(u(xj)− uj) = O(h4),

1
h

∑N
j=0 ci+1,j+1(u(xj)− uj)− q(xi)(u(xi)− ui)
−r(xi)(u2(xi)− u2i ) = O(h4), i = 1, . . . , N.

(19)
Using the Taylor expansion, we have

u2(xi)− u2i =
∂u2

∂u
|x=xi

(u(xi)− ui) +O(h2), i = 1, . . . , N. (20)
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In relation (19), we have
1
h

∑N
j=0 c1,j+1(u(xj)− uj) = O(h4),

1
h

∑N
j=0 ci+1,j+1(u(xj)− uj)− q(xi)(u(xi)− ui)
−2r(xi)u(xi)(u(xi)− ui) = O(h4) +O(h2), i = 1, . . . , N.

(21)
Thus, one concludes that{∑N

j=0 c1,j+1ej = O(h5),∑N
j=0 ci+1,j+1ej − hq(xi)ei − 2hr(xi)u(xi)ei = O(h3), i = 1, . . . , N,

(22)
where ej = u(xj)− uj , j = 0, . . . , N , and ui ≈ u(xi). Therefore, (22) can be
written as



c11e0 + c12e1 + c13e2 + · · ·+ c1,N+1eN = O(h5),

c21e0 + c22e1 + c23e2 + · · ·+ c2,N+1eN − hq(x1)e1 − 2hr(x1)u(x1)e1 = O(h3),

c31e0 + c32e1 + c33e2 + · · ·+ c3,N+1eN − hq(x2)e2 − 2hr(x2)u(x2)e2 = O(h3),

...
cN+1,1e0 + cN+1,2e1 + cN+1,3e2 + · · ·+ cN+1,N+1eN
−hq(xN )eN − 2hr(xN )u(xN )eN = O(h3).

(23)
The matrix form of the above equations is as follows:

[C − hQ− hRJ ]E = T, (24)

where Q = diag(0, q(x1), . . . , q(xN )), R = diag(0, r(x1), . . . , r(xN )), J =
diag(0, 2u(x1), . . . , 2u(xN )), and

T =


O(h5)
O(h3)
O(h3)

...
O(h3)


(N+1)×1

C =


c11 c12 . . . c1,N+1
c21 c22 . . . c2,N+1

...
... . . . ...

cN+1,1 cN+1,2 . . . cN+1,N+1


(N+1)×(N+1)

.

(25)
By replacing M = Q + RJ in relation (24), we have [C − hM ]E = T .

Because C is invertible, we can write

(I − hC−1M)E = C−1T. (26)

Now, if we assume h∥C−1∥∥M∥ ≤ 1, then we conclude the matrix I −
hC−1M is invertible. By the geometric series theorem, we have

∥(I − hC−1M)−1∥ ≤ 1

1− h∥C−1∥∥M∥
. (27)
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From (26), we have E = (I − hC−1M)−1C−1T . Thus ∥E∥ ≤ ∥(I −
hC−1M)−1∥∥C−1∥∥T∥.

Now from relation (27), we can write ∥E∥ ≤ 1
1−h∥C−1∥∥M∥∥C

−1∥∥T∥.
Because ∥T∥ ≡ O(h3), we can derive ∥E∥ ≤ O(h3)

O(h) ≡ O(h2).

4 Implement the compact finite difference scheme for
the fractional Riccati problem and its convergence

In this section, we introduce a compact finite difference scheme for the frac-
tional Riccati problem of order 0 < α < 1. According to (2), we rewrite the
Caputo derivative in x = xi, i = 1, . . . , N , as

Dαu(xi) =
1

Γ(1− α)

i−1∑
k=0

∫ xk+1

xk

u′(s)

(xi − s)α
ds. (28)

Now, the above equation can be written as

Dαu(xi) ≈
1

Γ(1− α)

i−1∑
k=0

∫ xk+1

xk

u′i(xi − s)−αds

=
1

Γ(1− α)
u′i

i−1∑
k=0

∫ xk+1

xk

(xi − s)−αds

=
1

Γ(1− α)
u′i

i−1∑
k=0

[
(xi − xk)1−α − (xi − xk+1)

1−α

1− α
].

(29)

Substituting xi = ih in (29), we have

Dαu(xi) ≈
1

Γ(1− α)
u′i

i−1∑
k=0

[
h1−α((i− k)1−α − (i− k − 1)1−α)

1− α
]

=
u′i

hα−1Γ(2− α)

i−1∑
k=0

ai−k,

(30)

where ai−k = (i− k)1−α − (i− k − 1)1−α, i = 1, . . . , N and k = 0, . . . , i− 1.

Thus, the solution to (2) can be approximated using the following equa-
tions:
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u′i
hα−1Γ(2− α)

i−1∑
k=0

ai−k = p(xi)+q(xi)ui+r(xi)u
2
i , 0 < α < 1, i = 1, . . . , N,

(31)

where u′i = 1
h

N∑
j=0

ci+1,j+1uj , i = 1, . . . , N. In the matrix form, (31) is equiv-

alent to
Fu′ = ρ(G+Qu+Ru2), (32)

where ρ = hα−1Γ(2−α), Q = diag(q(x1), . . . , q(xN )), R = diag(r(x1), . . . , r(xN )),

u = [u1, . . . , uN ]T , u′ = [u′1, . . . , u
′
N ]T , G =


p(x1)
p(x2)

...
p(xN )

, and

F =


a1 0 0 0 . . . 0
0 a1 + a2 0 0 . . . 0
0 0 a1 + a2 + a3 0 . . . 0
...

...
... . . . . . . ...

0 0 . . . 0 a1 + a2 + · · ·+ aN−1 0
0 0 . . . 0 0 a1 + a2 + · · ·+ aN

 .

(33)
For i = 1, . . . , N , (31) can be used to form a system including N equations

and N unknowns u1, . . . , uN , that can be solved by Maple software.
Now, we discuss the issue of convergence. For convergence analysis of the

fractional case, we need the following Lemma.

Lemma 3. [35] Suppose u ∈ C2[0, xi]. Then

|
∫ xi

0

u′(s)

(xi − s)α
ds−

i−1∑
k=0

u′i

∫ xk+1

xk

(xi − s)−αds|

≤ 1

1− α
[
1− α
12

+
22−α

2− α
− (1 + 2−α)] max

0≤s≤xi

|u′′(s)|h2−α.

(34)

From (30), we have

Dαu(xi) =
1

hα−1Γ(2− α)

i−1∑
k=0

ai−ku
′(xi) +Ri, i = 1, . . . , N, (35)

where according to Lemma 3

Ri ≤
1

1− α
[
1− α
12

+
22−α

2− α
− (1 + 2−α)] max

0≤s≤xi

|u′′(s)|h2−α. (36)

For x = xi, by replacing (35) into (2), we have
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i−1∑
k=0

ai−ku
′(xi) = ρ(p(xi) + q(xi)u(xi) + r(xi)u

2(xi)) + R̃i, i = 1, . . . , N,

(37)
where ρ = hα−1Γ(2− α) and R̃i = hα−1Γ(2− α)Ri, i = 1, . . . , N.

In the matrix form, (37) is equivalent to

FU ′ = ρ(G+QU +RU2) + R̃, (38)

where F is the matrix defined in relation (33), U ′ = [u′(x1), . . . , u
′(xN )]T ,

U = [u(x1), . . . , u(xN )]T , and R̃ = hα−1Γ(2− α)[R1, . . . , RN ]T .

Theorem 2. Let U = [u(x1), . . . , u(xN )]T be the vector of exact solution
to (2) along with its initial condition at points x0, x1, . . . , xN , and let u =
[u1, . . . , uN ]T be the numerical solution obtained by (31). Then

∥E∥ ≤ O(h2−α), (39)

provided h∥C−1∥∥M +N∥ ≤ 1, where E = U − u and

J =


2u(x1) 0 . . . 0

0 2u(x2) . . . 0
... . . . . . . ...
0 . . . 0 2u(xN )

 .

Proof. According to (38) and (32), for the exact and numerical solutions, we
have {

FU ′ = ρ(G+QU +RU2) + R̃,
Fu′ = ρ(G+Qu+Ru2).

(40)

By using (40), one concludes that

F (U ′ − u′) = ρ(Q(U − u) +R(U2 − u2)) + R̃. (41)

Therefore, by replacing u′ = 1
hCu from (8) and U ′ = 1

hCU +T1 into (41),
we have

1

h
C(U − u)− ρF−1Q(U − u)− ρF−1R(U2 − u2) = F−1R̃+ T1, (42)

where T1 ≡ O(h4) is the local truncation error of system (23).
Moreover, U2 − u2 can be written as

U2 − u2 =


u2(x1)− u21
u2(x2)− u22

...
u2(xN )− u2N

 = JE + T2, (43)
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where

T2 =


O(h2)
O(h2)

...
O(h2)

 .

Therefore, by replacing (43) into (42), we have

1

h
CE − ρF−1QE − ρF−1RJE = F−1R̃+ T1 + ρF−1RT2. (44)

By inserting relations M = ρF−1Q and N = ρF−1R into (44), it can be
written as

(C − hM − hN)E = h(F−1R̃+ T1 +NT2), (45)

(I − hC−1(M +N))E = hC−1(F−1R̃+ T1 +NT2). (46)

Now, if h∥C−1∥∥M +N∥ ≤ 1, then (I − hC−1(M +N) is invertible and

E = h(I − hC−1(M +N))−1C−1(F−1R̃+ T1 +NT2),

∥E∥ ≤ h∥(I − hC−1(M +N))−1∥∥C−1∥(∥F−1∥∥R̃∥+ ∥T1∥+ ∥N∥∥T2∥).

It follows that

∥E∥ ≤ h∥C−1∥(∥F−1∥∥R̃∥+ ∥T1∥+ ∥N∥∥T2∥)
1− h∥C−1∥∥M +N∥

. (47)

Therefore, using the relations R̃ = hα−1Γ(2 − α)R and (36), we have
∥R̃∥ ≡ O(h), so

∥E∥ ≤ O(h2)

O(hα)
+
O(h5)

O(hα)
+
O(h3)

O(hα)
= O(h2−α)+O(h5−α)+O(h3−α) ≡ O(h2−α).

(48)

5 Numerical results

This section applies our compact finite difference schemes to two examples to
illustrate their effectiveness. Maple software is used for obtaining numerical
results.

Example 1. Consider the following fractional RDE as the first example:
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Dαu(x) = 1− u2(x), 0 < α ≤ 1, 0 < x < T,
u(0) = u0 = 0.

(49)

The exact solution is u(x) = exp(2x)−1
exp(2x)+1 for α = 1; see [2].

In Figure 1, a comparison between the exact solution for α = 1 and the
numerical solution for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1, and T = 1 is
shown. Table 1 presents numerical solutions at some points of [0, 1] and for
different values of α, at T = 1. Table 2 presents a comparison between the
exact solution for α = 1 and the numerical solution for T = 10. Also, Figure
2 shows a comparison between the exact solution for α = 1 and the numerical
solution for T = 10.

We have calculated the rate of convergence of our methods (denoted by
ROC) with the following formula:

ROC = log2(
Error2h

Errorh
). (50)

Table 3 shows the obtained maximum errors and ROC for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160. Also, Figure 3 shows the numerical and exact
solutions for α = 1, T = 1, and N = 10. The numerical rate of convergence
is highly consistent with our theoretical analysis results.

In Table 4, we compare the approximate solution and exact solution of
the present method with the trigonometric transform method (TTM) [2] at
points 0.2, 0.4, 0.6, 0.8, 1, for α = 1. Also, in Table 5, we compare the error
of solutions of the present method with TTM [2] for α = 1.

Table 1: Exact solutions and numerical solutions of Example 1 for N = 10,
T = 1, and α = 0.3, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1

α 0.3 0.6 0.7 0.8 0.9 0.95 0.99 0.999 1 Exact
x
0.1 5.38× 10−1 2.66× 10−1 2.06× 10−1 1.60× 10−1 1.25× 10−1 1.11× 10−1 1.01× 10−1 9.98× 10−2 9.96× 10−2 9.96× 10−2

0.2 7.43× 10−1 4.34× 10−1 3.53× 10−1 2.88× 10−1 2.37× 10−1 2.16× 10−1 2.00× 10−1 1.97× 10−1 1.97× 10−1 1.97× 10−1

0.3 8.34× 10−1 5.51× 10−1 4.66× 10−1 3.95× 10−1 3.37× 10−1 3.12× 10−1 2.95× 10−1 2.91× 10−1 2.91× 10−1 2.91× 10−1

0.4 8.83× 10−1 6.38× 10−1 5.57× 10−1 4.86× 10−1 4.27× 10−1 4.02× 10−1 3.84× 10−1 3.80× 10−1 3.79× 10−1 3.79× 10−1

0.5 9.14× 10−1 7.05× 10−1 6.31× 10−1 5.64× 10−1 5.07× 10−1 4.83× 10−1 4.66× 10−1 4.62× 10−1 4.62× 10−1 4.62× 10−1

0.6 9.34× 10−1 7.57× 10−1 6.91× 10−1 6.30× 10−1 5.79× 10−1 5.56× 10−1 5.40× 10−1 5.37× 10−1 5.37× 10−1 5.37× 10−1

0.7 9.48× 10−1 7.99× 10−1 7.41× 10−1 6.87× 10−1 6.41× 10−1 6.21× 10−1 6.07× 10−1 6.04× 10−1 6.04× 10−1 6.04× 10−1

0.8 9.58× 10−1 8.32× 10−1 7.82× 10−1 7.35× 10−1 6.95× 10−1 6.78× 10−1 6.66× 10−1 6.64× 10−1 6.64× 10−1 6.64× 10−1

0.9 9.65× 10−1 8.59× 10−1 8.16× 10−1 7.76× 10−1 7.42× 10−1 7.28× 10−1 7.18× 10−1 7.16× 10−1 7.16× 10−1 7.16× 10−1

1.0 9.71× 10−1 8.81× 10−1 8.44× 10−1 8.10× 10−1 7.82× 10−1 7.70× 10−1 7.63× 10−1 7.61× 10−1 7.61× 10−1 7.61× 10−1

Example 2. Let the following FRDE be the second example

Dαu(x) = 1 + 2u(x)− u2(x), 0 < α ≤ 1, 0 < x < T, (51)

with the initial condition
u0 = u(0) = 0. (52)

The exact solution for α = 1 is u(x) = 1 +
√
2 tanh(

√
2x+ 1

2 log(
√
2−1√
2+1

)); see
[2].

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 585–606



Numerical solution of nonlinear fractional Riccati differential ... 597

Table 2: Comparison between the exact solution and numerical solutions of
Example 1 for α = 1, T = 10, and N = 100

x Numerical solution Exact solution Error
1 0.7615917576 0.7615941559 2.3983554× 10−6

2 0.9640223166 0.9640275800 5.2634336× 10−6

3 0.9950446865 0.9950547536 1.0067173× 10−5

4 0.9993096449 0.9993292997 1.9654751× 10−5

5 0.9998709681 0.9999092042 3.8236123× 10−5

6 0.9999133772 0.9999877116 7.4334413× 10−5

7 0.9998538332 0.9999983369 1.4450373× 10−4

8 0.9997188603 0.9999997749 2.8091453× 10−4

9 0.9994538522 0.9999999695 5.4611733× 10−4

Table 3: Maximum absolute errors and ROC of Example 1 for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160

N Maximum Absolute Error ROC
5 7.95× 10−4 −
10 1.91× 10−5 5.38
20 9.47× 10−7 4.33
40 3.43× 10−8 4.79
80 1.16× 10−9 4.88
160 3.99× 10−11 4.87
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Exact

Figure 1: Comparison between the exact solution of Example 1 for α = 1
and numerical solutions for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1 and T = 1

Table 4: Comparison between the approximation solution and exact solution
of the presented method with TTM [2] for α = 1, T = 1, and N = 10 for
Example 1

x TTM [2] proposed method Exact
0.0 0.0 0.0 0.0
0.2 0.197773 0.197378 0.197374
0.4 0.380422 0.379951 0.379949
0.6 0.537449 0.537051 0.537050
0.8 0.664285 0.664036 0.664037
1.0 0.761671 0.761572 0.761594

In Figure 4, a comparison between the exact solution for α = 1 and the
numerical solution for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1 and T = 1 is
shown. Also, Table 6 presents numerical solutions at some points of [0, 1] and
for different values of α at T = 1.
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exact solution

Figure 2: Comparison between the exact solution and numerical solutions of
Example 1 for α = 1, T = 10, and N = 100
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Figure 3: Comparison between the exact solution and numerical solutions of
Example 1 for α = 1, T = 1, and N = 10

Table 7 shows the obtained maximum errors and ROC for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160 Also, Figure 5 shows the numerical and exact
solutions for α = 1, T = 1, and N = 10. The numerical rate of convergence
is highly consistent with our theoretical analysis results.
Table 8 represents the present method and the achieved results of parti-
cle swarm optimization (PSO) [2], modified homotopy perturbation method
(MHPM) [2], Chebyshev wavelets (CW) [2], fractional variational itera-
tion method (FVI) [2], Legendre wavelets method (LWM) [2], and Pad´e-
variational iteration method (PVI) [2].
Table 9 presents a comparison between the exact solution for α = 1 and the
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Table 5: Comparison between the absolute error of solution by our method
with TTM [2] for α = 1 and T = 1, for Example 1

x Error of proposed method Error of TTM [2]
0.0 0.0 0.0
0.2 1.4598× 10−6 7.2107× 10−4

0.4 1.5961× 10−6 1.7216× 10−3

0.6 4.6060× 10−7 2.7186× 10−3

0.8 1.1006× 10−6 3.3906× 10−3

1.0 1.9061× 10−5 3.6117× 10−3

Table 6: Exact solutions and Numerical solutions of Example 2 for N = 10,
T = 1, and α = 0.3, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1

α 0.3 0.6 0.7 0.8 0.9 0.95 0.99 0.999 1 Exact
x
0.1 1.38 3.79× 10−1 2.65× 10−1 1.92× 10−1 1.44× 10−1 1.25× 10−1 1.13× 10−1 1.10× 10−1 1.10× 10−1 1.10× 10−1

0.2 1.92 7.21× 10−1 5.25× 10−1 3.94× 10−1 3.04× 10−1 2.70× 10−1 2.47× 10−1 2.42× 10−1 2.41× 10−1 2.41× 10−1

0.3 2.14 1.02 7.80× 10−1 6.05× 10−1 4.82× 10−1 4.35× 10−1 4.02× 10−1 3.95× 10−1 3.95× 10−1 3.95× 10−1

0.4 2.24 1.29 1.02 8.22× 10−1 6.74× 10−1 6.16× 10−1 5.76× 10−1 5.68× 10−1 5.67× 10−1 5.67× 10−1

0.5 2.30 1.51 1.25 1.03 8.75× 10−1 8.10× 10−1 7.66× 10−1 7.56× 10−1 7.55× 10−1 7.55× 10−1

0.6 2.34 1.70 1.45 1.24 1.07 1.01 9.64× 10−1 9.54× 10−1 9.53× 10−1 9.53× 10−1

0.7 2.36 1.84 1.62 1.43 1.27 1.20 1.16 1.15 1.15 1.15
0.8 2.37 1.96 1.77 1.59 1.45 1.39 1.35 1.34 1.34 1.34
0.9 2.38 2.05 1.89 1.74 1.61 1.56 1.53 1.52 1.52 1.52
1.0 2.39 2.12 1.99 1.87 1.76 1.72 1.69 1.69 1.68 1.68

numerical solution for T = 8. Also, Figure 6 shows a comparison between the
exact solution for α = 1 and the numerical solution for T = 8 and N = 80.

Table 7: Maximum absolute errors and ROC of Example 2 for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160

N Maximum Absolute Error ROC
5 6.35× 10−3 −
10 3.63× 10−5 7.45
20 3.63× 10−6 3.32
40 1.73× 10−7 4.39
80 7.05× 10−9 4.62
160 2.98× 10−10 4.57
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Figure 4: Comparison between exact solution of Example 2 for α = 1 and
numerical solutions for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1 and T = 1

u

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Numerical solution
Exact solution

Figure 5: Comparison between the exact solution and numerical solution of
Example 2 for α = 1, T = 1, and N = 10
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Table 8: Comparison of the numerical solutions of the equation in Example
2 with α = 1 and T = 1

x SJOM [2] MHPM [2] PSO [2] CW [2] FVI [2] PVI [2] LWM [2] Our Method Exact
0.6 1.007291 1.370240 1.296320 1.349150 1.331462 1.873658 1.296302 0.953552 0.953567
0.7 1.253674 1.367499 1.416139 1.481449 1.497600 2.112944 1.416311 1.152926 1.152950
0.8 1.467499 1.794879 1.506936 1.599235 1.630234 2.260134 1.506913 1.346363 1.346365
0.9 1.629901 1.962239 1.569252 1.705303 1.724439 2.339134 1.569221 1.526897 1.526913
1.0 1.787222 2.087384 1.605580 1.801763 1.776542 2.379356 1.605571 1.689487 1.689500

Table 9: Comparison between the exact solution and numerical solutions of
Example 2 for α = 1, T = 8, and N = 80

x Numerical solution Exact solution Error
0.8 1.346362994 1.346363655 6.6128045× 10−7

1.6 2.246290755 2.246285959 4.7957279× 10−6

2.4 2.395782816 2.395756424 2.6391922× 10−5

3.2 2.412338083 2.412281528 5.6554231× 10−5

4.0 2.414131848 2.414012382 1.1946588× 10−4

4.8 2.414445422 2.414192625 2.527976× 10−4

5.6 2.414746423 2.414211383 5.3504015× 10−4

6.4 2.415345681 2.414213335 1.1323455× 10−3

7.2 2.416609669 2.414213538 2.3961302× 10−3

8.0 2.418416749 2.414213559 4.2031900× 10−3

x
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u
(x

)

0

0.5

1

1.5

2

2.5

numerical solution
exact solution

Figure 6: Comparison between the exact solution and numerical solutions of
Example 2 for α = 1, T = 8, and N = 80

6 Conclusions

This paper proposed a high-order compact finite difference method for the
Riccati problem. The convergence analysis has been discussed. The numer-
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ical results presented in Tables 1–9 showed that the method is effective and
that the numerical experiment is very consistent with our theoretical analysis
results.
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solution of a time-fractional telegraph
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method
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Abstract

In this paper, a two-dimensional time-fractional telegraph equation is
considered with derivative in the sense of Caputo and 1 < β < 2. The aim
of this work is to extend the Crank–Nicolson method for this time-fractional
telegraph equation. The stability and convergence of the numerical method
are investigated. Also, the accuracy and efficiency of the proposed method
are demonstrated by numerical experiments.
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1 Introduction

Fractional calculus can be used to model many complex problems. It has
been used in many fields of science, engineering, and finance [1, 4, 18, 25, 26];
this fact is the main source of inspiration for most of the recent studies
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conducted on fractional calculus. The classical telegraph equation is used
in random walk theory [2]. The time-fractional telegraph equation (TFTE)
models the neutron transport process in the core of a nuclear reactor [27, 28].

In recent decades, the fractional telegraph equation has been solved by
many researchers. Here, we briefly describe some of the studies that have
been conducted in this field of research. Chen, Liu, and Anh [5] proposed
the analytic solution of the TFTE using the separating variables method.
The homotopy analysis method was used for the TFTE by Das et al. [6].
Yildirim [31] applied the homotopy perturbation method to solve space- and
time-fractional telegraph equations. Momani [17] used Adomian decompo-
sition methods to obtain the analytic and approximate solutions of space-
and time-fractional telegraph equations. Biazar, Ebrahimi, and Ayati [3]
proposed the variational iteration method to solve the fractional telegraph
equation. Jiang and Lin [11] presented the exact solution of the TFTE using
the reproducing kernel theorem. Nikan, Avazzadeh, and Machado [19] used a
mesh-free spectral approach based on LRBF-FD to solve the TFTE with the
fractional derivative described in the sense of Caputo. A radial basis function
collocation method was used for solving the nonlinear TFTE by Sepehrian
and Shamohammadi [22]. Hosseini et al. [9, 10] considered the meshless local
radial point interpolation method, and Mohebbi, Abbaszadeh, and Dehghan
[16] used the radial basis function technique for the TFTE. Shivanian applied
spectral meshless radial point interpolation methods in [23], and the meshless
local Petrov–Galerkin scheme was used in [24] to approximate the TFTE.

Many researchers have studied the fractional telegraph equation by using
the finite difference method. Liang, Yao, and Wang [15] considered the TFTE
by using a fast, high-order difference scheme. The finite difference method
was used to solve the linear TFTE by Li and Cao [14]. Wang and Mei [29]
considered the TFTE using a Legendre spectral Galerkin method in space and
the generalized finite difference scheme in time. For a time-space-fractional
telegraph equation, Zhao and Li [32] used a finite difference method in time
and a Galerkin finite element method in space. A numerical method for the
TFTE was proposed by Wei, Liu, and Sun [30], in which they discretized this
equation with a new finite difference scheme in time and a local discontinuous
Galerkin (LDG) method in space.

In this work, we find an approximate solution to the following TFTE [13]:

∂βu(x, y, t)

∂tβ
+
∂β−1u(x, y, t)

∂tβ−1
+ u(x, y, t) = ∆u(x, y, t) + f(x, y, t),

(x, y) ∈ Ω ⊂ R2, 0 ≤ t ≤ T, (1)

with initial and boundary conditions

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω = Ω ∪ ∂Ω, (2)
∂u(x, y, 0)

∂t
= ψ(x, y), (x, y) ∈ Ω = Ω ∪ ∂Ω, (3)
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u(x, y, t) = h(x, y, t), (x, y) ∈ ∂Ω, t > 0, (4)

where 1 < β < 2,∆ is the Laplace operator, ∂Ω is the boundary of Ω,
f(x, y), φ(x, y), ψ(x, y), and h(x, y, t) are continuous functions, u(x, y, t) ∈
C2(Ω̄ × [0, T ]) is an unknown function, and the fractional derivatives are
defined in the sense of Caputo, as follows:

∂β−1u(x, y, t)

∂tβ−1
=

1

Γ(2− β)

∫ t

0

∂u(x, y, s)

∂s
(t− s)1−βds, 1 < β < 2, (5)

∂βu(x, y, t)

∂tβ
=

1

Γ(2− β)

∫ t

0

∂2u(x, y, s)

∂s2
(t− s)1−βds, 1 < β < 2. (6)

The Crank–Nicolson difference scheme can be used easily for space-
fractional equations, but some manipulations are needed for time-fractional
equations [12]. In [19, 13], a semi-discrete scheme based on the Crank–
Nicolson method was used to discretize the time-fractional equation. In this
work, the discretization of time-fractional derivatives is similar to [12]. The
general idea for proving stability and convergence is taken from [19], but our
approach differs from that in the details.

The remainder of this paper is organized as follows. In Section 2, the
discretization of (1) is described. The stability and the convergence of the
proposed method are proved in Sections 3 and 4, respectively. Section 5 is
devoted to the numerical tests. Finally, the conclusion is given in Section 6.

2 Discretization of the problem

In this section, we explain the discretization of (1) by using the Crank–
Nicolson difference scheme, such that the proposed difference schemes are
uniquely solvable.

Consider ∆x and ∆y as the grid sizes in space for the finite difference
scheme, where {(xi, yi) , xi = i∆x, yj = j∆y, 0 ≤ i ≤ I, 0 ≤ j ≤ J ; I, J ∈ R}
covers Ω. Also, N is a positive integer, and the grid size in time for the finite
difference scheme is ∆t = T

N . Assume that uni,j is the value of u (xi, yj , tn) .
The following lemma provides suitable tools for the discretization of (1).

Lemma 1. If g(t) ∈ C2[0, T ] and 1 < β < 2, then

(a) ∫ tk

tk−1

g′(s)(tn− 1
2
− s)1−βds

=
(∆t)1−β

(2− β)

[
(n− k + 1

2
)2−β − (n− k − 1

2
)2−β

]
[g (tk)− g (tk−1)]

+O(∆t)3−β , k = 1, 2, . . . , N − 1.
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(b) ∫ t
n− 1

2

tn−1

g′(s)(tn− 1
2
− s)1−βds

=
(∆t)1−β

(2− β)22−β
[g (tn)− g (tn−1)] +O( ∆t)3−β , n ∈ N.

Proof. The Taylor expansion allows us to write

g′(s) =
g (tk)− g (tk−1)

∆t
− 1

2∆t
[(tk − s)2g′′ (η1)− (tk−1 − s)2 g′′ (η2)],

η1 ∈ (s, tk) , η2 ∈ (tk−1, s) .

It is easy to show that∫ tk

tk−1

(tk − s)2(tn− 1
2
− s)1−βds = ω1(∆t)

4−β , ω1 ∈ R,∫ tk

tk−1

(tk−1 − s)2(tn− 1
2
− s)1−βds = ω2(∆t)

4−β , ω2 ∈ R.

Thus,∫ tk

tk−1

g′(s)(tn− 1
2
− s)1−βds

=
g (tk)− g(tk−1)

∆t

∫ tk

tk−1

(tn− 1
2
− s)1−βds

− 1

2∆t
g′′(η1)

∫ tk

tk−1

(tk − s)2 (tn− 1
2
− s)1−βds

+
1

2∆t
g′′(η2)

∫ tk

tk−1

(tk−1 − s)2 (tn− 1
2
− s)1−βds

=
g (tk)− g(tk−1)

∆t
× (∆t)2−β

2− β

[
(n− k + 1

2
)2−β − (n− k − 1

2
)2−β

]
+ ω(∆t)3−β , ω ∈ R.

This completes the proof of part (a). Part (b) can be proved in the same
way.

By defining bs =
(
s+ 1

2

)2−β −
(
s− 1

2

)2−β
, s = 1, 2, . . . , 1 < β < 2,

it is easy to show that
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n−1∑
k=1

(
uki,j − uk−1

i,j

)(
(n− k + 1

2
)2−β − (n− k − 1

2
)2−β

)
+

1

22−β

(
uni,j − un−1

i,j

)
= −

[
bn−1u

0
i,j +

n−2∑
k=1

(bn−k−1 − bn−k)u
k
i,j + (

1

22−β
− b1)un−1

i,j

]
+

1

22−β
uni,j .

(7)
By using part (b) of Lemma 3, the discretization of (5) at the grid point
(xi, yj) and the time step

(
1− 1

2

)
is as follows:

∂β−1u(x, y, t)

∂tβ−1
|1−

1
2

i,j =
1

Γ(2− β)

∫ t
1− 1

2

t0

∂u(xi, yj , s)

∂s
(t1− 1

2
− s)1−βds

=
(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1i,j − u0i,j

]
+O(∆t)3−β .

(8)

By using Lemma 3 and relation (7), the discretization of (5) at the grid point
(xi, yj) and the time step

(
n− 1

2

)
is as follows:

∂β−1u(x, y, t)

∂tβ−1
|n−

1
2

i,j =
1

Γ(2− β)

n−1∑
k=1

∫ tk

tk−1

∂u(xi, yj , s)

∂s
(tn− 1

2
− s)1−βds

+
1

Γ(2− β)

∫ t
n− 1

2

tn−1

∂u (xi, yj , s)

∂s
(tn− 1

2
− s)1−βds

=
(∆t)1−β

Γ(3− β)

{
−bn−1u

0
i,j −

n−2∑
k=1

(bn−k−1 − bn−k)u
k
i,j

−( 1

22−β
− b1)un−1

i,j +
1

22−β
uni,j

}
+O(∆t)3−β , n ≥ 2, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(9)
In addition, similar to (8) and (9), and by using the relation

∂u

∂t

∣∣∣∣k
i,j

=
uki,j − u

k−1
i,j

∆t
+

∆t

2

∂2u

∂t2
(xi, yj , η1) , k ≥ 1, η1 ∈ (tk−1, tk) ,

(10)
we obtain

∂βu(x, y, t)

∂tβ

∣∣∣∣1−
1
2

i,j

=
(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1i,j − u0i,j

∆t
− ∂u

∂t

∣∣∣∣0
i,j

]
+O(∆t)2−β ,

(11)
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∂βu(x, y, t)

∂tβ
|n−

1
2

i,j

=
(∆t)1−β

Γ(3− β)

{
−bn−1

∂u

∂t

∣∣∣∣0
i,j

−
n−2∑
k=1

(bn−k−1 − bn−k)
uki,j − u

k−1
i,j

∆t

−( 1

22−β
− b1)

un−1
i,j − u

n−2
i,j

∆t
+

1

22−β

uni,j − u
n−1
i,j

∆t

}
+O(∆t)2−β , n ≥ 2, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(12)
Having the Taylor expansion in mind, we can write

u(xi, yj , tn− 1
2
) =

un−1
i,j + uni,j

2
+O(∆t)2,

n ≥ 1, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1,

(13)

∆u(xi, yj , tn− 1
2
) =

∆un−1
i,j +∆uni,j

2
+O(∆t)2

=
1

2

{
un−1
i+1,j − 2un−1

i,j + un−1
i−1,j

(∆x)2
+
un−1
i,j+1 − 2un−1

i,j + un−1
i,j−1

(∆y)2

+
uni+1,j − 2uni,j + uni−1,j

(∆x)2
+
uni,j+1 − 2uni,j + uni,j−1

(∆y)2

}
+O(∆x)2 +O(∆y)2 +O(∆t)2,

n ≥ 1, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.
(14)

Using the finite difference schemes (11), (8), (13), and (14), the discretization
of (1) at the grid point (xi, yj) and the time step

(
1− 1

2

)
is as follows:

(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1i,j − u0i,j

∆t
− ∂u

∂t

∣∣∣∣0
i,j

]
+

(∆t)1−β

Γ(3− β)
× 1

22−β

(
u1i,j − u0i,j

)
+
1

2

(
u1i,j + u0i,j

)
=
1

2

{
u0i+1,j − 2u0i,j + u0i−1,j

(∆x)2
+
u0i,j+1 − 2u0i,j + u0i,j−1

(∆y)2

+
u1i+1,j − 2u1i,j + u1i−1,j

(∆x)2
+
u1i,j+1 − 2u1i,j + u1i,j−1

(∆y)2

}
+ f

1− 1
2

i,j +O(∆x)2 +O(∆y)2 +O(∆t)2−β ,

1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.
(15)

Using the finite difference schemes (12), (9), (13), and (14), the discretization
of (1) at the grid point (xi, yj) and the time step

(
n− 1

2

)
can be written as

follows:
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(∆t)1−β

Γ(3− β)

{
−bn−1

∂u

∂t

∣∣∣∣0
i,j

−
n−2∑
k=1

(bn−k−1 − bn−k)
uki,j − u

k−1
i,j

∆t

− (
1

22−β
− b1)

un−1
i,j − u

n−2
i,j

∆t
+

1

22−β

uni,j − u
n−1
i,j

∆t

}

+
(∆t)1−β

Γ(3− β)

{
−bn−1u

0
i,j −

n−2∑
k=1

(bn−k−1 − bn−k)u
k
i,j

− (
1

22−β
− b1)un−1

i,j +
1

22−β
uni,j

}
+
un−1
i,j + uni,j

2

=
1

2

{
un−1
i+1,j − 2un−1

i,j + un−1
i−1,j

(∆x)2
+
un−1
i,j+1 − 2un−1

i,j + un−1
i,j−1

(∆y)2

+
uni+1,j − 2uni,j + uni−1,j

(∆x)2
+
uni,j+1 − 2uni,j + uni,j−1

(∆y)2

}
+ f

n− 1
2

i,j +O(∆x)2 +O(∆y)2 +O(∆t)2−β ,

n ≥ 2, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(16)

Finally, rearranging (15) and (16) and neglecting the truncation errors, it
is obvious that the coefficient matrix of the unknowns is strictly diagonally
dominant and so, it is nonsingular [8]. Therefore, by neglecting the truncation
errors in (15) and (16), the unknowns

[
uni,j
]
(1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1)

can be obtained for n = 1 and n ≥ 2, respectively. Hence, the proposed
Crank–Nicolson scheme is uniquely solvable.

3 Stability

In this section, we study the stability of the proposed Crank–Nicolson scheme
for (1) with initial and boundary conditions (2)–(4). To do so, we introduce
the following spaces and recall some theorems and lemmas, which will be
used hereafter.

H1(Ω) =
{
v ∈ L2(Ω) : Dv ∈ L2(Ω)

}
,

H1
0 (Ω) =

{
v ∈ H1(Ω) : Dv|∂Ω = 0

}
,

H2(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ 2

}
.

Theorem 1 (The Cauchy–Schwarz inequality). [21]
If u and v are members of an inner product space Ω with inner product ⟨·, ·⟩,
then

|⟨u, v⟩| =
∣∣∣∣∫

Ω

uvdx

∣∣∣∣ ≤ ∥u∥L2∥v∥L2 .
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Theorem 2. (Green’s theorem) [21]
If Ω is a boundary domain in Rn, then∫

Ω

∇u.∇vdx =

∫
∂Ω

v
∂u

∂n
ds−

∫
Ω

∆u v dx, for u ∈ H2(Ω), v ∈ H1(Ω).

Theorem 3 (The Poincare–Friedrich inequality). [21]
Let Ω be a boundary domain in Rn. Then, there exists a constant cp > 0
such that

∥u∥2L2 ≤ cp∥∇u∥2L2 , for all u ∈ H1
0 (Ω).

Theorem 4 (The discrete Gronwall theorem). [20]
Assume that kn is a nonnegative sequence and that the sequence ϕn satisfies
the following relations:

ϕ0 ≤ g0,

ϕn ≤ g0 +
n−1∑
s=0

ps +

n−1∑
s=0

ksϕs, n ⩾ 1.

If g0 ≥ 0 and pn ≥ 0 (for n ≥ 0), then

ϕn ≤

(
g0 +

n−1∑
s=0

ps

)
exp

(
n−1∑
s=0

ks

)
, n ⩾ 1.

We state some useful relations in Lemmas 2 and 3. These are easy to
prove.

Lemma 2. It holds that ∥u∥∥v∥ ≤ γ2

2 ∥u∥
2+ 1

2γ2 ∥v∥2, for all u, v ∈ Ω, for all γ ∈
R.

Lemma 3. If bs =
(
s+ 1

2

)2−β −
(
s− 1

2

)2−β
(s = 1, 2, . . . , 1 < β < 2), then

bn < bn−1 < · · · < b2 < b1 < 1.

Neglecting the truncation errors, equations (15) and (16) can be written
as

(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1i,j − u0i,j

∆t
− ∂u

∂t

∣∣∣∣0
i,j

]

+
(∆t)1−β

Γ(3− β)
× 1

22−β
(u1i,j − u0i,j) +

1

2
(u1i,j + u0i,j)

=
1

2

(
∆u1i,j +∆u0i,j

)
+ f

1− 1
2

i,j , 1 ⩽ i ⩽ I − 1, 1 ⩽ j ⩽ J − 1,

(17)

and
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(∆t)1−β

Γ(3− β)

{
− bn−1

∂u

∂t

∣∣∣∣0
i,j

−
n−2∑
k=1

(bn−k−1 − bn−k)
uki,j − u

k−1
i,j

∆t

− (
1

22−β
− b1)

un−1
i,j − u

n−2
i,j

∆t
+

1

22−β

uni,j − u
n−1
i,j

∆t

}

+
(∆t)1−β

Γ(3− β)

{
−bn−1u

0
i,j −

n−2∑
k=1

(bn−k−1 − bn−k)u
k
i,j

−( 1

22−β
− b1)un−1

i,j +
1

22−β
uni,j

}
+
un−1
i,j + uni,j

2

=
∆un−1

i,j +∆uni,j
2

+ f
n− 1

2
i,j , n ⩾ 2, 1 ⩽ i ⩽ I − 1, 1 ⩽ j ⩽ J − 1,

(18)
respectively. Let ũni,j (1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, n = 1, 2, . . .) be the
approximate solution of (17) and (18) with respect to the round-off error,
and let uni,j (1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, n = 1, 2, . . .) be the exact solution
of (17) and (18). Define

eni,j = uni,j − ũni,j (0 ≤ i ≤ I, 0 ≤ j ≤ J, and n = 0, 1, . . .).

By considering en instead of eni,j , we obtain the following round-off error
equations:

(∆t)1−β

Γ(3− β)
× 1

22−β

{[
e1 − e0

∆t
− δe0

]
+ (e1 − e0)

}
+
1

2
(e1+e0) =

1

2
(∆e1+∆e0),

(19)
(∆t)1−β

Γ(3− β)

{
−bn−1δe

0 −
n−2∑
k=1

(bn−k−1 − bn−k)
ek − ek−1

∆t

−( 1

22−β
− b1)

en−1 − en−2

∆t
+

1

22−β

en − en−1

∆t

}
+

(∆t)1−β

Γ(3− β)

{
−bn−1e

0 −
n−2∑
k=1

(bn−k−1 − bn−k) e
k − (

1

22−β
− b1)en−1

+
1

22−β
en
}
+
en−1 + en

2
=

∆en−1 +∆en

2
, n ⩾ 2,

(20)

where δe0 = ∂u
∂t

∣∣0
i,j
− ∂ũ

∂t

∣∣0
i,j
. Now, we are ready to present the following

theorem.

Theorem 5. If ek ∈ H1
0 (Ω), then the solutions of the finite difference ap-

proaches (17) and (18) are unconditionally stable.

Proof. Let α = (∆t)1−β

Γ(3−β) . If we multiply (19) by
(
e1− e0), then we obtain
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α

22−β(∆t)

〈
e1 − e0, e1 − e0

〉
+

α

22−β

〈
e1 − e0, e1 − e0

〉
+

1

2

〈
e1 + e0, e1 − e0

〉
− 1

2

〈
∆e1 +∆e0, e1 − e0

〉
=

α

22−β

〈
δe0, e1 − e0

〉
.

(21)
Applying Theorem 2 (Green’s theorem) to

〈
∆e1 +∆e0, e1 − e0

〉
in the left

side of (51) and applying Theorem 1 (the Cauchy–Schwarz inequality) and
Lemma 2 to the right side of (51), we can write

α

22−β(∆t)

∥∥e1 − e0∥∥2 + α

22−β

∥∥e1 − e0∥∥2 + 1

2
(
∥∥e1∥∥2 − ∥∥e0∥∥2)

+
1

2
(
∥∥∇e1∥∥2 − ∥∥∇e0∥∥2) ≤ α

22−β

{∥∥δe0∥∥2
2

+

∥∥e1 − e0∥∥2
2

}
.

Therefore, ∥∥∇e1∥∥2 ≤ ∥∥e0∥∥2 + ∥∥∇e0∥∥2 + α

22−β

∥∥δe0∥∥2 ,
and by applying Theorem 3 (the Poincaré–Friedrich inequality), we find a
constant cp > 0 such that∥∥∇e1∥∥2 ≤ (cp + 1)

∥∥∇e0∥∥2 + αcp
22−β

∥∥∇δe0∥∥2 . (22)

If we multiply (20) by
(
en − en−1

)
, then we find

α

22−β(∆t)

〈
en − en−1, en − en−1

〉
+

α

22−β

〈
en, en − en−1

〉
+

1

2

〈
en + en−1, en − en−1

〉
− 1

2

〈
∆en +∆en−1, en − en−1

〉
= αbn−1

〈
δe0, en − en−1

〉
+ α

n−2∑
k=1

(bn−k−1 − bn−k) ⟨
ek − ek−1

∆t
, en − en−1⟩

+ α(
1

22−β
− b1)⟨

en−1 − en−2

∆t
, en − en−1⟩+ αbn−1

〈
e0, en − en−1

〉
+ α

n−2∑
k=1

(bn−k−1 − bn−k)
〈
ek, en − en−1

〉
+ α(

1

22−β
− b1)

〈
en−1, en − en−1

〉
.

(23)
Applying Theorem 2 (Green’s theorem) to

〈
∆en +∆en−1, en − en−1

〉
in the

left side of (23) and applying Theorem 1 (the Cauchy–Schwarz inequality)
and Lemma 2 to the right side of (23), we obtain
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α

22−β(∆t)
∥en − en−1∥2 + (

α

22−β
∥en∥2 − α

22−β

〈
en, en−1

〉
)

+
1

2
(∥en∥2 −

∥∥en−1
∥∥2) + 1

2
(∥∇en∥2 −

∥∥∇en−1
∥∥2)

≤ αbn−1(
γ2

2

∥∥δe0∥∥2 + ∥∥en − en−1
∥∥2

2γ2
)

+ α

n−2∑
k=1

(bn−k−1 − bn−k) (
γ2

2
∥e

k − ek−1

∆t
∥2 + 1

2γ2
∥∥en − en−1

∥∥2)
+ α(

γ2

2
∥e

n−1 − en−2

∆t
∥2 + 1

2γ2
∥en − en−1∥2)

+ αbn−1(
γ2

2

∥∥e0∥∥2 + ∥∥en − en−1
∥∥2

2γ2
)

+ α

n−2∑
k=1

(bn−k−1 − bn−k) (
γ2

2

∥∥ek∥∥2 + 1

2γ2
∥∥en − en−1

∥∥2)
+ α(

γ2

2
∥en−1∥2 + 1

2γ2
∥en − en−1∥2), γ ∈ R.

(24)

Furthermore, from Lemma 3, we deduce that

αbn−1

γ2
+

α

γ2

n−2∑
k=1

(bn−k−1 − bn−k) +
α

γ2
≤ 2α

γ2
, γ ∈ R. (25)

Having (25) in mind, equation (23) gives

α

22−β(∆t)
∥en − en−1∥2 + α

22−β
∥en∥2 + 1

2
∥en∥2 + 1

2
∥∇en∥2

≤αbn−1
γ2

2

{∥∥δe0∥∥2 + ∥∥e0∥∥2}+
αγ2

2

n−2∑
k=1

(bn−k−1 − bn−k)
∥∥ek∥∥2

+
αγ2

2(∆t)2

n−2∑
k=1

(bn−k−1 − bn−k)
∥∥ek − ek−1

∥∥2 + αγ2

2(∆t)2
∥∥en−1 − en−2

∥∥2
+ (

αγ2

2
+

1

2
)
∥∥en−1

∥∥2 + 2α

γ2
∥∥en − en−1

∥∥2 + α

22−β

〈
en, en−1

〉
+

1

2

∥∥∇en−1
∥∥2 , γ ∈ R.

(26)
By using Theorem 1 (the Cauchy–Schwarz inequality) and Lemma 2, we
obtain

α

22−β

〈
en, en−1

〉
≤ α

22−β

{
∥en∥2

2
+

∥∥en−1
∥∥2

2

}
. (27)
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Consider the following relations:

αγ2

2(∆t)2

n−2∑
k=1

(bn−k−1 − bn−k)
∥∥ek − ek−1

∥∥2 + αγ2

2(∆t)2
∥∥en−1 − en−2

∥∥2
≤ αγ2

(∆t)2

n−2∑
k=1

(bn−k−1 − bn−k)
(∥∥ek∥∥2 + ∥∥ek−1

∥∥2)
+

αγ2

(∆t)2

(∥∥en−1
∥∥2 + ∥∥en−2

∥∥2) .
(28)

If we use (27)–(28) and assume that γ2 = 23−β(∆t), then relation (26)
allows us to write
1

2
× α

22−β
∥en∥2 + 1

2
∥en∥2 + 1

2
∥∇en∥2

≤ αbn−1
γ2

2

{∥∥δe0∥∥2 + ∥∥e0∥∥2}+
αγ2

2

n−2∑
k=1

(bn−k−1 − bn−k)
∥∥ek∥∥2

+
αγ2

(∆t)2

n−2∑
k=1

(bn−k−1 − bn−k)
(∥∥ek∥∥2 + ∥∥ek−1

∥∥2)+ αγ2

(∆t)2
∥∥en−2

∥∥2
+ (

αγ2

2
+

αγ2

(∆t)2
+

α

2× 22−β
+

1

2
)
∥∥en−1

∥∥2 + 1

2

∥∥∇en−1
∥∥2 , n ≥ 2.

(29)
By using Theorem 3 (the Poincaré–Friedrich inequality), we find a constant
cp > 0 such that relation (29) implies

1

2
∥∇en∥2 ≤αbn−1γ

2

2
cp
∥∥∇e0∥∥2 + αbn−1γ

2

2
cp
∥∥∇δe0∥∥2

+
αγ2

2
cp

n−2∑
k=1

(bn−k−1 − bn−k)
∥∥∇ek∥∥2

+
αγ2

(∆t)2
cp

n−2∑
k=1

(bn−k−1 − bn−k)(
∥∥∇ek∥∥2 + ∥∥∇ek−1

∥∥2)
+

αγ2

(∆t)2
cp
∥∥∇en−2

∥∥2 + (
αγ2

2
+

αγ2

(∆t)2

+
α

2× 22−β
+

1

2
)cp
∥∥∇en−1

∥∥2 + 1

2

∥∥∇en−1
∥∥2 , n ≥ 2.

(30)

We may assume without loss of generality that there exist constants θ1, θ2 ≥ 0
such that relations (22) and (30) can be written as
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∥∥∇δe0∥∥2 ,

∥∇en∥2 ≤
(
θ1
∥∥∇e0∥∥2 + θ2

∥∥∇δe0∥∥2)+ n−1∑
k=1

(
ck
∥∥∇ek∥∥2) ,

n ≥ 2, θ1, θ2 ≥ 0, ck > 0 for k = 1, . . . , n− 1.

(31)

By Theorem 4 (the discrete Gronwall theorem), equation (31) yields

∥∇en∥2 ≤
(
θ1
∥∥∇e0∥∥2 + θ2

∥∥∇δe0∥∥2) exp(n−1∑
k=1

ck

)
, n ≥ 1, θ1, θ2 ≥ 0,

and according to Theorem 3 (the Poincare–Friedrich inequality), there exists
a constant ĉp > 0 such that

∥en∥2 ≤ ĉp
(
θ1
∥∥∇e0∥∥2 + θ2

∥∥∇δe0∥∥2) exp(n−1∑
k=1

ck

)
, n ≥ 1, θ1, θ2 ≥ 0.

(32)
By using Lemma 3, it is easy to show that

n−1∑
k=1

ck ≤
(
2αγ2 +

8αγ2

(∆t)2
+

α

22−β
+ 1

)
cp + 1. (33)

Set θ =
(
2αγ2 + 8αγ2

(∆t)2 + α
22−β + 1

)
cp+1. Then, it follows from relations (32)

and (33) that

∥en∥ ≤
√
ĉp

(
θ1 ∥∇e0∥2 + θ2 ∥∇δe0∥2

)
exp(θ), n ≥ 1, θ1, θ2, θ ≥ 0, ĉp > 0,

where θ1, θ2, θ, ĉp are independent of n.

4 Convergence

In this section, we study the convergence of the proposed Crank–Nicolson
scheme for (1) with initial and boundary conditions (2)–(4).

Let uni,j (1 ≤ i ≤ I−1, 1 ≤ j ≤ J−1, n = 1, 2, . . .) be the exact solution of
(17) and (18), and let Un

i,j (1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, n = 1, 2, . . .) be the
exact solution of (15) and (16). Define ξni,j = Un

i,j − uni,j (1 ≤ i ≤ I − 1, 1 ≤
j ≤ J − 1, n = 1, 2, . . .). By considering ξn instead of ξni,j we obtain
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(∆t)1−β

Γ(3− β)
× 1

22−β

ξ1

∆t
+

(∆t)1−β

Γ(3− β)
× 1

22−β
ξ1 +

1

2
ξ1

=
∆ξ1

2
+O(∆x)2 + (O(∆y)2 +O(∆t)2−β),

(34)

and

(∆t)1−β

Γ(3− β)

{
−

n−2∑
k=1

(bn−k−1 − bn−k)
ξk − ξk−1

∆t
− (

1

22−β
− b1)

ξn−1 − ξn−2

∆t

+
1

22−β

ξn − ξn−1

∆t

}
+

(∆t)1−β

Γ(3− β)

{
−

n−2∑
k=1

(bn−k−1 − bn−k) ξ
k − (

1

22−β
− b1)ξ

n−1 +
1

22−β
ξn

}

+
ξn−1 + ξn

2

=
∆ξn−1 +∆ξn

2
+

(
O(∆x)2 +O(∆y)2 +O(∆t)2−β

)
, n ≥ 2.

(35)

Now, we are ready to present our next theorem.

Theorem 6. If ξk ∈ H1
0 (Ω), then the solutions of the finite difference ap-

proaches (17) and (18) are unconditionally convergent.

Proof. Let α = (∆t)1−β

Γ(3−β) . If we multiply (34) by
(
ξ1
)
, then we obtain

α

22−β(∆t)

〈
ξ1, ξ1

〉
+

α

22−β

〈
ξ1, ξ1

〉
+

1

2

〈
ξ1, ξ1

〉
− 1

2

〈
∆ξ1, ξ1

〉
=<

(
O(∆x)2 +O(∆y)2 +O(∆t)2−β

)
, ξ1 > 0.

(36)

Applying Theorem 2 (Green’s theorem) to
〈
∆ξ1, ξ1

〉
in the left side of (36)

and applying Theorem 1 (the Cauchy–Schwarz inequality) and Lemma 2 to
the right side of (36), we find that

α

22−β(∆t)

∥∥ξ1∥∥2 + α

22−β

∥∥ξ1∥∥2 + ∥∥ξ1∥∥2
2

+
1

2

∥∥∇ξ1∥∥2
≤
∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β

∥∥2
2

+

∥∥ξ1∥∥2
2

.

Therefore,
∥∇ξ1∥2 ≤ ∥O(∆x)2 +O(∆y)2 +O(∆t)2−β∥2. (37)

If we multiply (35) by
(
ξn − ξn−1

)
, then we obtain
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α

22−β(∆t)

〈
ξn − ξn−1, ξn − ξn−1

〉
+

α

22−β

〈
ξn, ξn − ξn−1

〉
+

1

2

〈
ξn + ξn−1, ξn − ξn−1

〉
− 1

2

〈
∆ξn +∆ξn−1, ξn − ξn−1

〉
= α

n−2∑
k=1

(bn−k−1 − bn−k) ⟨
ξk − ξk−1

∆t
, ξn − ξn−1⟩

+ α(
1

22−β
− b1)⟨

ξn−1 − ξn−2

∆t
, ξn − ξn−1⟩

+ α

n−2∑
k=1

(bn−k−1 − bn−k)
〈
ξk, ξn − ξn−1

〉
+ α(

1

22−β
− b1)

〈
ξn−1, ξn − ξn−1

〉
+ <

(
O(∆x)2 +O(∆y)2 +O(∆t)2−β

)
, ξn − ξn−1

〉
.

(38)

Again, using Theorem 1 (the Cauchy–Schwarz inequality) and Lemma 2, we
can write

< (O(∆x)2+O(∆y)2 +O(∆t)2−β), ξn − ξn−1 >

≤ ∥O(∆x)2 +O(∆y)2 +O(∆t)2−β∥2 + ∥ξ
n∥2

2
+

∥∥ξn−1
∥∥2

2
.

Simplifying relation (38) (similar to Theorem 5, in which the simplification
of (23) resulted in (29)) and using the recent relation, we obtain

1

2
× α

22−β
∥ξn∥2 + 1

2
∥∇ξn∥2

≤
∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β

∥∥2 + αγ2

2

n−2∑
k=1

(bn−k−1 − bn−k)
∥∥ξk∥∥2

+
αγ2

(∆t)2

n−2∑
k=1

(bn−k−1 − bn−k) (
∥∥ξk∥∥2 + ∥∥ξk−1

∥∥2) + αγ2

(∆t)2
∥∥ξn−2

∥∥2
+ (

αγ2

2
+

αγ2

(∆t)2
+

α

2× 22−β
+ 1)

∥∥ξn−1
∥∥2 + 1

2

∥∥∇ξn−1
∥∥2 , n ≥ 2.

By Theorem 3 (the Poincaré–Friedrich inequality), there exists a constant
cp > 0 such that
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1

2
∥∇ξn∥2 ≤ ∥O(∆x)2 +O(∆y)2 +O(∆t)2−β∥2

+
αγ2

2
cp

n−2∑
k=1

(bn−k−1 − bn−k) ∥∇ξk∥2

+
αγ2

(∆t)2
cp

n−2∑
k=1

(bn−k−1 − bn−k) (
∥∥∇ξk∥∥2 + ∥∥∇ξk−1

∥∥2)
+

αγ2

(∆t)2
cp
∥∥∇ξn−2

∥∥2
+ (

αγ2

2
+

αγ2

(∆t)2
+

α

2× 22−β
+ 1)cp

∥∥∇ξn−1
∥∥2

+
1

2

∥∥∇ξn−1
∥∥2 , n ≥ 2.

(39)

As we know, ξ0 = 0. Without loss of generality, relations (37) and (39) can
be written as∥∥∇ξ1∥∥2 ≤ ∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β

∥∥2 ,
∥∇ξn∥2 ≤ 2

∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β
∥∥2 + n−1∑

k=1

Ck

∥∥∇ξk∥∥2 ,
n ≥ 2, Ck > 0 for k = 1, . . . , n− 1.

(40)

Thus, by using Theorem 4 (the discrete Gronwall theorem), the set of equa-
tions (40) yields

∥∇ξn∥2 ≤ 2
∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β

∥∥2 exp(n−1∑
k=1

Ck

)
, n ≥ 1,

and according to Theorem 3 (the Poincaré–Friedrich inequality), there exists
a constant cp > 0 such that

∥ξn∥2 ≤ 2cp
∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β

∥∥2 exp(n−1∑
k=1

Ck

)
, n ≥ 1.

(41)
By using Lemma 3, it is easy to show that

n−1∑
k=1

Ck ≤
(
2αγ2 +

8αγ2

(∆t)2
+

α

22−β
+ 2

)
cp + 1. (42)

Set ζ =
(
2αγ2 + 8αγ2

(∆t)2 + α
22−β + 2

)
cp+1. Then, relations (41) and (42) allow

us to write

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607–628



A numerical approximation for the solution of a time-fractional telegraph ... 623

∥ξn∥ ≤
√

2cp exp(ζ)
∥∥O(∆x)2 +O(∆y)2 +O(∆t)2−β

∥∥ , n ≥ 1, ζ ≥ 0, cp > 0. (43)

5 Numerical experiments

In this section, we present some numerical tests that confirm the validity of
the proposed numerical method. To measure the accuracy of the proposed
method, we use the maximum absolute error given by

L∞ = max
1≤i≤I,1≤j≤J

∣∣∣Ũi,j(T )− Ui,j(T )
∣∣∣ ,

where Ũi,j(T ) and Ui,j(T ) denote the numerical solution and the exact solu-
tion of (1) with initial and boundary conditions (2)–(4) at (xi, yj) and time
T , respectively.

Example 1. Consider a two-dimensional test problem of the form (1),
with Ω = [0, 1] × [0, 1], f(x, t) =

(
24t4−β

Γ(5−β) +
24t5−β

Γ(6−β) + 2t4π2
)
sin(πx + πy) +

t4 sin(πx + πy), and suppose that the initial and boundary conditions are
assumed using the exact solution u(x, y, t) = t4 sin(πx + πy); see [13]. Now,
we provide some tests.

Test 1 Kumar, Bhardwaj, and Dubey [13] considered this example using
a local meshless method with 2025 points on Ω. They reported the maximum
absolute errors and CPU time with β = 1.7, 1.9 and different values for ∆t
at the time T = 1.0. Using the proposed method, we repeated this test. We
considered this example by assuming I = J = 45 (2025 points on Ω). To
solve the linear system of equations, we used the GMRES-m method with
m = 20.

Table 1 presents the maximum absolute errors and CPU time obtained by
Kumar, Bhardwaj, and Dubey [13] and the results of the proposed method
with β = 1.7, different values for ∆t, and 2025 points on [0, 1] × [0, 1] at
T = 1.0. Table 2 presents the maximum absolute errors and CPU time
obtained in [13] and the results of the proposed method with β = 1.9, different
values for ∆t, and 2025 points on [0, 1]× [0, 1] at T = 1.0.

As Tables 1 and 2 show, the maximum absolute errors and the CPU time
of [13] and those of the proposed method are close, but the CPU time of the
proposed method is smaller than that of [13].

The following tests show that the proposed method provides acceptable
accuracy with a smaller number of points on Ω.
Test 2 We considered this example by the proposed method with ∆x =
∆y = 0.1, β = 1.5, 1.9, and different values for ∆t. According to Table 3,
with different values for ∆t, the maximum absolute errors were small enough
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at T = 1.0. Also, decreasing the size of the time step increased the CPU time
very slowly and improved the accuracy. The value ∆t = 1

80 was selected for
the next test.
Test 3 We considered this example by the proposed method with ∆t = 1

80 ,
β = 1.5, 1.9, and different values for ∆x,∆y. According to Table 4, the
accuracy was acceptable. Also, the CPU time was reasonable with ∆x =
∆y = 1

10 ,
1
20 . Moreover, by decreasing ∆x and ∆y to 1

40 ,
1
80 , the CPU time

increased rapidly, and the accuracy did not improve significantly. According
to relation (43), the convergence rate of our method depends on ∆x, ∆y,
and ∆t. In this case, the space steps decrease, but the time step is constant.
Therefore the accuracy does not improve.

As shown in Tests 2 and 3, a very small size the of space step is not
recommended, but small size of a time step is recommended. According to
Diethelm, Garrappa, and Stynes [7], a high-order space discretization for a
time-fractional partial differential equation is not advisable. They believe
that to reach a high convergence, we must choose very small size of the time
step in comparison with the size of the space step. Our experiments confirmed
this idea.

Table 1: Comparison of the maximum absolute errors and CPU time with
β = 1.7, different values for ∆t, and 2025 points on [0, 1]× [0, 1] at T = 1.0

∆t L∞ [13] L∞ CPU (s) [13] CPU (s)
1
10 1.2917e− 02 1.2575e− 02 1.751 1.414
1
20 5.4532e− 03 8.7100e− 03 2.210 1.996
1
40 2.3351e− 03 5.0648e− 03 3.062 2.746

Table 2: Comparison of the maximum absolute errors and CPU time with
β = 1.9, different values for ∆t, and 2025 points on [0, 1]× [0, 1] at T = 1.0

∆t L∞ [13] L∞ CPU (s) [13] CPU (s)
1
10 2.7619e− 02 1.6456e− 02 1.751 1.298
1
20 1.3079e− 02 1.0294e− 02 2.210 1.613
1
40 6.1953e− 03 5.7166e− 03 3.062 2.119

6 Conclusion

The Crank–Nicolson difference scheme can be used easily for space-fractional
equations, but some manipulations are needed for time-fractional equations.
In this paper, the Crank–Nicolson method was extended for the discretiza-
tion of a TFTE. The solvability, stability, and convergence of this proposed
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Table 3: Maximum absolute errors and CPU time for different values of ∆t
and β, with ∆x = ∆y = 0.1 at T = 1.0

β = 1.5 β = 1.9
∆t L∞ CPU(s) L∞ CPU (s)
1
10 1.3159e− 02 0.1069 1.9190e− 03 0.1041
1
20 1.0567e− 02 0.1249 1.2971e− 03 0.1269
1
40 7.5001e− 03 0.1673 8.3675e− 03 0.1713
1
80 5.5027e− 03 0.2944 5.7025e− 03 0.2908
1

160 4.3813e− 03 0.6513 1.9956e− 03 0.6423
1

320 3.7898e− 03 1.7490 3.3609e− 03 1.7547

Table 4: Maximum absolute errors and CPU time for different values of ∆x,
∆y, and β, with ∆t = 1

80 at T = 1.0

β = 1.5 β = 1.9
∆x = ∆y L∞ CPU(s) L∞ CPU (s)

1
10 5.5027e− 03 0.2944 5.7025e− 03 0.2908
1
20 3.1200e− 03 0.4722 3.6015e− 03 0.4273
1
40 2.5315e− 03 3.6787 3.0738e− 03 2.2135
1
80 2.3744e− 03 74.7221 2.9432e− 03 35.9883

method were proved. The numerical results were accurate enough. Accord-
ing to the numerical tests, to reach a high convergence, a very small size
of the space step is not recommended, but a small size of the time step is
recommended.
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Abstract

The complexity of solving differential equations in real-world applica-
tions motivates researchers to extend numerical methods. Among different
numerical and semi-analytical methods for solving initial and boundary
value problems, the differential transform method (DTM) has received no-
table attention. It has developed and experienced generalizations for im-
plementing other types of mathematical problems such as optimal control,
calculus of variations, and integral equations. This review aims to provide
insight into DTM. History, theoretical base, applications, computational
aspects, and its revisions are reviewed. The present study helps to un-
derstand the theory, capabilities, and features of the DTM, as well as its
drawbacks and limitations.
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1 Introduction

There are many practical problems, which are formulated as boundary value
problems (BVPs). They have appeared, for example, in studying the bound-
ary layer flow [61], the squeezing nanofluids [62], the formation of rogue waves
in the ocean [20], electrical heating of conductors [26], and modeling the be-
havior of induction motors [6]. In addition, other types of important prob-
lems, such as calculus of variations or optimal control problems, are reduced
to a set of BVPs or initial value problems (IVPs). The multitude of such
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applications and the complexity of solving BVPs motivated the researcher to
develop solving methods. Solving strategy has three categories as follows:

• Analytical methods: Methods that find the exact or analytical solu-
tion of the BVPs as a function or closed-form are known as analytical
methods. Direct integration [44], method of images [44], separation
of variables, and Green’s function method [37] are some examples of
analytical methods. Despite exact results, the analytical methods are
usually restricted to simple or special forms of BVPs. Moreover, they
require manual calculations that make their implementation on com-
puters difficult.

• Numerical algorithms: Numerical methods are suitable for computeri-
zation while their results contain errors and convergences issues should
be checked. These types of methods are based on the numerical approxi-
mation of derivatives like finite difference [51] and shooting method [52].
Some of the numerical methods have also motivated from the physics
of the problem, such as lattice Boltzmann [83].

• Semi-analytical methods: When the result of a method is a function or
a sequence of functions converging to the exact solution, the method is
semi-analytical. Collocation finite element [52], Galerkin finite element
[52], Adomian decomposition [22], and iterative approximations [55] are
some examples of semi-analytical methods. They have the advantage
of finding function answers and computer implementation while they
have errors in results.

Among semi-analytical methods, the differential transform method (DTM)
is one of the most popular and practical algorithms. This method was intro-
duced by Zhou [95] in 1986 for solving IVPs in the field of electrical circuits.
The method is based on the calculation of the coefficients of the Taylor se-
ries of the problem’s solution. The method has been developed for solving
BVPs in one and more dimensions, integral equations, calculus of variations,
and optimal control. Especially in the last decade, it was used for analyzing
several physical phenomena with stochastic and fractional behavior.

These applications and implementations of the DTM are motivations for
reviewing the method in the present work. The aim is to give a comprehensive
review of the method, including the theory, improvements, and applications.
Some examples related to the method are explained to show its accuracy and
benefits. Finally, the restrictions and drawbacks of the method are noted.

The present review helps researchers who are attending to use the method
for solving a practical problem to be familiar with this method and its limi-
tations.

The review is organized as follows: after introductions in Section 1, the
literature review and history are given in Section 2. Section 3 assigns the
method description, benefits, and drawbacks. Finally, some concluding re-
marks are expressed in Section 4.
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2 Literature review

This section is divided into two subsections: the historical and application
reviews. A graphical review based on the research’ subjects is also included.

2.1 Historical review

In this subsection, the papers with independent research on extending or
improving the DTM have been reviewed in historical order.

• 1986: The concept of differential transform was established by Zhou,
a Chinese researcher in the field of electrical engineering. The method
was originally explained in [95] for IVPs.

• 1996: DTM has been extended to cover the hybrid boundary conditions
for eigenvalue problems in [23].

• 1998: The method was improved in the case of BVPs in an infinite
horizon. As a practical implementation, it has been implemented to
solve the Blasius problem efficiently in [94].

• 1999: The two-dimensional differential transform has been proposed for
solving IVPs with partial differential equations in [24].

• 2003: Following the extensions for two-dimensional DTM, new theo-
rems were given in [14] with applications of the method for diffusion
equation.

• 2004: The three-dimensional DTM was introduced for solving systems
of partial differential equations (PDEs) accompanied by the initial con-
ditions in [15]. The DTM has also been applied to find accurate solu-
tions for algebraic differential equations of ordinary type in [16].

• 2005: The integro-differential equations with boundary conditions were
the next type of problems examined for their solution by DTM in [9].
General theorems were derived, and the method was successfully ap-
plied to solve examples of linear and nonlinear integro-differential prob-
lems.

• 2006: The DTM was extended to solve difference equations with dif-
ferent types and orders in [10]. Solving differential-difference equations
with boundary conditions with DTM have been also reported in [11].

• 2007: The concept of fractional derivatives and the growing topic of
fractional differential equations cause to define the fractional differential
transform. In [65], the theory of fractional DTM was established for
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solving ordinary fractional with initial conditions. The method was
later proposed using generalized Taylor series and Caputo fractional
derivative.

• 2008: The fractional DTM for ordinary equations has been more gener-
alized for equations with multi-order in [31]. The method of fractional
DTM has been extended to linear PDEs of fractional order in [69].
The extension of the method to systems of fractional PDEs with initial
conditions was also given in [32]. A modified DTM based on Laplace
transform and Padé approximation was introduced to find oscillatory
solutions.

• 2009: The two-dimensional DTM was implemented to solve a class
of linear and nonlinear Volterra integral equations in [87]. To resolve
the complexity of computation in a multidimensional DTM, a reduced
method was introduced in [53]. The method is based on the separa-
tion of variables. The efficiency of the method has been demonstrated
by its application on several IVPs. In the follow-up to the fractional
derivatives, the DTM was examined for fractional integro-differential
equations in [12]. Another notable work is [76], where the DTM is
combined with Padé approximation to solve BVPs with infinite horizon.
The fuzzy DTM was introduced in [7] to solve fuzzy differential equa-
tions. The method is based on the generalized H-differentiability. The
DTM was also applied to solving nonlinear optimal control problems in
[43]. Two approaches for finite and infinite horizon problems were pro-
posed based on the minimum principle and the dynamic programming
on Hamilton–Jacobi–Bellman equations, respectively, in combination
with DTM.

• 2010: To accelerate the convergence of the DTM solution, a multi-step
DTM was proposed in [70]. In this version of DTM, the solution is a
piecewise function consisting of a finite number of DTM solutions for
consecutive time intervals. Another derivation of DTM called projected
DTM, was also proposed in [45]. In this method, the solution of two-
dimensional PDEs is obtained with DTM for one variable while the
coefficients are functions of the other variable.

• 2011: The piecewise DTM has been further extended for solving frac-
tional chaotic dynamical systems in [8]. It is indeed the extension of
[70] in fractional cases.

• 2012: Random DTM is another version of DTM for solving random
differential equations based on the mean fourth calculus proposed in
[90]. The results of the implementation of the method for Riccati dif-
ferential problems show the efficiency of this approach. A combination
of the Adomian decomposition method and DTM was proposed in [29]
for solving fractional differential equations.
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• 2013: The fuzzy DTM method [7] has been extended to cover solv-
ing Volterra integral equations in [81]. A combination of DTM with
Adomian polynomial was proposed in [34] to overcome the problem of
nonlinear terms in ordinary differential equations (ODEs) when DTM
is used. For the calculus of variation problem with a differentiable
solution, there exists a two-point boundary problem obtained by the
Euler–Lagrange equation. Using the method proposed in [67], this
problem was solved by the DTM to derive a numerical method for
finding semi-analytical stationary functions. A DTM for solving lin-
ear optimal control problems with a quadratic performance index was
introduced in [80]. The method uses the Pontryagin maximum princi-
ple to obtain a BVP, which is finally solved by DTM. Reduced DTM
is examined for solving two-dimensional Volterra integral equations in
[2]. Based on the simulations, the results of reduced MTD are more
accurate in comparison with traditional DTM.

• 2014: In [3], the nonlinear integro-differential equations with propor-
tional delay are under investigation with DTM. Some theorems related
to the delayed functions and their transforms were also proved in addi-
tion to the numerical simulation. To enlarge the domain of convergence
of DTM, a method was proposed in [17]. The Laplace–Padé resumma-
tion was examined to solve partial differential algebraic equations.

• 2015: The generalized DTM method for IVPs on fractional PDEs has
been extended to BVPs in [27]. DTM was applied in [35] as a new
tool to compute the Laplace transform of real-valued single variable
functions. The Cauchy-type singular integral equations are solved by a
proposed method based on DTM in [4]. The forms of differential trans-
form of kernel functions were obtained with high-accuracy solutions on
several examples with two kernel types. DTM was also used to solve
optimal control problems in [66]. The method is based on applying the
DTM to the BVPs resulting from sufficient conditions for solving linear
and nonlinear optimal control problems.

• 2016: Two-dimensional extended DTM was proposed for solving PDEs
with local fractional derivatives in [93]. The concept of this version
of DTM for nondifferential functions was analyzed, and basic theorems
were proved. The efficiency and accuracy of the method were shown via
numerical simulations. A class of BVPs defined for nonlinear singular
second-order ODE was examined with DTM in [91]. The method ben-
efits from the Adomian polynomials to overcome the nonlinear terms.
In addition, to demonstrate the applicability of the method by some
examples, an upper bound for the error was also obtained. Multi-point
BVPs also found their DTM solution. The problem of unknown initial
conditions in these types of problems was resolved in [92]. The first
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two DTM coefficients were taken unknown and were determined from
a system of algebraic equations.

• 2017: A version of DTM was introduced in [88] for solving comfortable
fractional differential equations. The generalized DTM for solving frac-
tional problems was further studied from a theoretical perspective in
[71]. The sufficient conditions for convergence of the method and esti-
mation of truncation error were obtained. An efficient version of multi-
step DTM was addressed in [70]. The method reduces the number of
subintervals and consequently improves the computational complexity
of multi-step DTM.

• 2018: The projected DTM was combined with integral transform to
provide an efficient method for solving fractional PDEs in [82]. The
results showed that the method is accurate and fast convergent. Fuzzy
DTM was extended for solving fuzzy Volterra integro-differential equa-
tions in [19]. The method is based on a generalization of Seikkala
differentiability for fuzzy functions.

• 2019: The switching DTM was introduced in [61] to cover infinite hori-
zons, that is, boundary conditions at infinity. In the proposed ap-
proach, the solution has two parts: a DTM solution and an analytical
solution that matches the condition at infinity.

• 2020: In [30], the method of [29] was applied for computing two-
dimensional DTM solutions of PDE problems. The method reduced
the computational complexity of traditional two-dimensional DTM. A
combination of differential transform and smoothed particle hydrody-
namics was proposed in [57] for solving transient heat conduction prob-
lems. Numerical simulations showed that the method is robust and
accurate. Tarig transform was combined with projected DTM to de-
velop an effective method for solving fractional nonlinear PDEs in [60].

• 2021: As recent applications of DTM to practical problems, we can
address [46], where the problem of thermal distribution through a
longitudinal trapezoidal moving fin has been investigated using one-
dimensional Padé-DTM. Similar work for a moving rod was reported
in [84], where two-dimensional Padé-DTM is implemented.

• 2022: A comparison between sinc approximation and DTM on nonlin-
ear Hammerstein integral equations has been made in [50]. In the case
of separable kernels, the DTM performs more accurately and faster than
the sinc approximation. Integro-differential equations with a retarded
argument have notable engineering applications. In [42], these types of
problems have been solved by DTM with satisfactory and applicable
results.
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To demonstrate the review of fulfilled research on the concept of DTM, a
graphical tree of a subject is given in Figure 1. There are four main blocks
determining the top subjects, along with subblocks indicating the details.
The related references to each subject are written close to the related box.

Figure 1: Subjective review of researches on DTM

• Fluid mechanics: Fractional coupled Burgers’ equations [58], Blssius
equation of boundary layer flow [94], nanoparticle migration [56], nano
boundary-layers over-stretching surfaces [77], magnetohydrodynamics
(MHD) boundary-layer equations [76], MHD in a laminar liquid film
[78], parametric investigation of the thermal analysis for solar collectors
[28], the study of time-dependent MHD heat transfer flow of Jeffrey
fluid [54], and analysis an unsaturated single-phase fluid flow in porous
media [25].

• Electrical engineering: Solving telegraph equation by DTM [18] and
reduced DTM [86, 85], solving Thomas-Fermi equation by the improved
DTM [38], and dynamic simulation of power systems [59].

• Acoustics: KdV and modified KdV equations [48], two-dimensional
fractional Helmholtz equation [5], and Kadomtsev–Petviashvili equa-
tions [63].

• Physics: Solving a model of fractional telegraph point reactor kinetics
[39] and solving Fokker–Planck equation [41].

• Quantum Mechanics: Klein–Gordon equation [79] and Burgers–Huxley
equations [1].

• Structures and vibration: Vibration analysis of a rotating tapered can-
tilever Bernoulli–Euler beam [72], nonlinear oscillators [64], analysis
and prediction of vibration of a nanobeam [40], investigation of flapwise
bending free vibration of isotropic rotating Timoshenko microbeams

7

Figure 1: Subjective review of researches on DTM

2.2 Application review

In this subsection, some notable applications of DTM in the real world and
practical problems are listed.

• Fluid mechanics: Fractional coupled Burgers’ equations [58], Blssius
equation of boundary layer flow [94], nanoparticle migration [56], nano
boundary-layers over-stretching surfaces [77], magnetohydrodynamics
(MHD) boundary-layer equations [76], MHD in a laminar liquid film
[78], parametric investigation of the thermal analysis for solar collectors
[28], the study of time-dependent MHD heat transfer flow of Jeffrey
fluid [54], and analysis an unsaturated single-phase fluid flow in porous
media [25].

• Electrical engineering: Solving telegraph equation by DTM [18] and
reduced DTM [86, 85], solving Thomas-Fermi equation by the improved
DTM [38], and dynamic simulation of power systems [59].

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 629–657



636 Mehne

• Acoustics: KdV and modified KdV equations [48], two-dimensional
fractional Helmholtz equation [5], and Kadomtsev–Petviashvili equa-
tions [63].

• Physics: Solving a model of fractional telegraph point reactor kinetics
[39] and solving Fokker–Planck equation [41].

• Quantum Mechanics: Klein–Gordon equation [79] and Burgers–Huxley
equations [1].

• Structures and vibration: Vibration analysis of a rotating tapered can-
tilever Bernoulli–Euler beam [72], nonlinear oscillators [64], analysis
and prediction of vibration of a nanobeam [40], investigation of flapwise
bending free vibration of isotropic rotating Timoshenko microbeams
[13], analyzing the thermal buckling of a functionally graded circular
plate [33], solving nonlinear Duffing oscillator [68], and buckling anal-
ysis of nanobeams [47].

• Miscellaneous applications: Population growth estimation [73], solving
a typhoid fever model [74], solving tumor-immune system [49], analysis
of fish-farm model [89], solving the model of pollution for a system of
lakes [17], and modeling of jamming transition problem in traffic flow
[36].

3 How does DTM work?

In this section, the basic definitions and fundamental properties of the differ-
ential transform method are presented. Let us consider the following ordinary
differential equation:

T (x, u(x), u′(x), u′′(x), . . . , u(n)(x)) = 0, (1)

where T is a transformation on a class of sufficiently differentiable functions
u(x). Assume that under specific conditions, the above-mentioned differential
equation has a unique solution u(x) satisfying in

u(0) = u0, u
′(0) = u′0, . . . , u

(n)(0) = u
(n)
0 , (2)

where u0, u′0, . . . , u
(n)
0 are given. Now, the aim of DTM in the simplest case

is to solve the IVP (1)–(2). Let us consider the Taylor series of the solution
in a neighborhood of x = 0:

u(x) =

∞∑
k=0

u(k)(0)

k!
xk. (3)

It may be also rewritten as
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u(x) =

∞∑
k=0

U(k)xk, (4)

where
U(k) =

u(k)(0)

k!
(5)

Therefore, if the values of U(k) are available, then the solution may be con-
structed from (4). This is the key of the DTM method that defines a trans-
formation from u(x) to the set of coefficients {U(1), U(2), . . .} and vice versa.
This transformation is called the differential transformation. Now, in DTM,
U(k)’s are substituted in (1) converting it to a system of algebraic equations.
This will be performed using the basic properties of the differential trans-
form. Some of these properties are listed below:
Let us assume, for simplicity, that DT−−→ denotes the differential transform. If
λ is a constant scalar, u(x) DT−−→ U(k), and v(x) DT−−→ V (k), where U(k) and
V (k) are differential transformations of u(x) and v(x), respectively, then

• u(x) + v(x)
DT−−→ U(k) + V (k);

• λu(x)
DT−−→ λU(k);

• u(x)v(x)
DT−−→

∑k
i=0 U(i)V (k − i);

• u′(x)
DT−−→ (k + 1)U(k + 1);

• u′′(x)
DT−−→ (k + 1)(k + 2)U(k + 2);

• u(n)(x)
DT−−→ (k + 1)(k + 2) · · · (k + n)U(k + n);

• u(x) =
∫ x

0
v(s)ds

DT−−→ U(k) =

{
V (k−1)

k , k ≥ 1,
0, k = 0;

• u(x) = xn
DT−−→ U(k) = δ(k − n) =

{
1, k = n,
0, k ̸= n;

• u(x) = eλx
DT−−→ U(k) = λk

k! .

These properties will be obtained directly for the definition of the differential
transform given by (5).

In what follows, the implementation of the method for solving a simple
IVP is given.

Example 1. Let us consider the following IVP:

(x2 + 9)u′′ + 2xu′ = 0, (6)

u(0) = π, u′(0) =
4

3
. (7)
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The problem has the following unique solution:

u(x) = 4 tan−1
(x
3

)
+ π. (8)

To implement the DTM on this problem, let us assume that u(x) DT−−→ U(k).
Then, by the above-mentioned properties of differential transform and sub-
stituting the corresponding transforms of individuals terms of (6), we have

k∑
i=0

(δ(i− 2) + 9δ(i)) (k − i+ 1)(k − i+ 2)U(k − i+ 2)

+2

k∑
i=0

δ(i− 1)(k − i+ 1)U(k − i+ 1) = 0. (9)

Regarding the initial conditions in (7) and the definition of Dirac delta func-
tion, the transformed problem is defined by the following recursive converted
equation:

U(0) = π, (10)

U(1) =
4

3
, (11)

U(k + 2) =
−k

9(k + 2)
U(k), k ≥ 0. (12)

The unknown coefficients will be calculated from the above relations, and
then the solution of the problem in the form of an infinite series is determined
by (4). One can truncate this series with n terms as

un(x) =

n∑
k=0

U(k)xk (13)

to approximate the solution. For example, the solution for n = 8 with 4-digit
accuracy is calculated as follows:

u8(x) = 3.1416 + 1.3333x− 0.04934x3 + 0.0033x5 − 0.0003x7. (14)

The approximate solution (14) has decreasing coefficients and indicates that
{un(x)} converges pointwise to the solution of the problem when 0 ≤ x < 1.
As also depicted in Figure 2, the obtained DTM solution (14) is very close
to the exact one. However, when x > 1, the convergence of the sequence of
approximations does not guarantee. For instance, in Figure 3, the exact and
the DTM solutions have been drawn for 0 ≤ x ≤ 4. As it can be seen, despite
the coincidence of the DTM and exact solutions in [0, 1], the DTM solution
diverges for x > 1. Therefore, when using the DTM, we have to check the

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 629–657



Differential transform method ... 639

x

u
(x

)

0 0.2 0.4 0.6 0.8 1

3.2

3.4

3.6

3.8

4

4.2

4.4

Exact solution
DTM solution

Figure 2: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 1.

k∑
i=0

(δ(i− 2) + δ(i)) (k − i+ 1)(k − i+ 2)U(k − i+ 2)

+

k∑
i=0

δ(i− 1)(k − i+ 1)U(k − i+ 1)− U(k) = δ(k − 2). (18)

The first boundary condition leads to U(0) = 1, however the value of U(1)
is unknown and will be found by using the second boundary condition. Let
us assume temporary that U(1) = α. Then implementing the conditions and
properties of Dirac delta function results in

U(0) = 1, (19)
U(1) = α, (20)

U(2) =
1

2
, (21)

U(3) = 0, (22)

U(4) = − 1

24
, (23)

U(k + 2) = −k − 1

k + 2
U(k), k ≥ 3. (24)

Therefore, the solution with n = 8 terms has the following form:

un(x) = 1.0000 + αx+ 0.5000x2 − 0.0417x4 + 0.0208x6 − 0.0130x8. (25)

Now, we implement the second boundary condition at x = 1 to the above
solution and find α = −0.3674. The exact value of α, which is obtained from

11

Figure 2: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 1.

range of validity of the solution. In the next example, the implementation of
the method on a BVP is discussed.

Example 2. Let us consider the following BVP:

(1 + x2)u′′ + xu′ − u = x2, (15)

u(0) = 1, u(1) = −
√
5

6
+

√
2

3
+ 1. (16)

The problem has the following unique solution:

u(x) = −
√
5

6
x+

1

3

√
1 + x2 +

1

3
(2 + x2). (17)

The corresponding equation in the transform space has the following form:

k∑
i=0

(δ(i− 2) + δ(i)) (k − i+ 1)(k − i+ 2)U(k − i+ 2)

+

k∑
i=0

δ(i− 1)(k − i+ 1)U(k − i+ 1)− U(k) = δ(k − 2). (18)

The first boundary condition leads to U(0) = 1, however the value of U(1)
is unknown and will be found by using the second boundary condition. Let
us assume temporary that U(1) = α. Then implementing the conditions and
properties of Dirac delta function results in

U(0) = 1, (19)
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Figure 3: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 4.

the exact solution, is −0.3727. The resulting DTM solution in this case is
close to the exact one as depicted in Figure 4.

If the interval of the solution is extended to [0, 2], with boundary condition
u(2) = 2, then the exact solution remains unchanged and α = 0.8320 differs
from −0.3727, the exact value of u′(0). Therefore, a large deviation from the
exact solution is anticipated. When the two curves are compared (Figure 4),
we can see that the behavior of the DTM solution differs from the exact one
due to the power of x above 1. This is similar to the case of IVPs, except
that here the constraint on the second point forces the solution to prevent
large oscillations.

3.1 Extensions and improvements
After the early implementation of DTM to initial and boundary value prob-
lems for ODEs, the researchers extended the method for other types of math-
ematical problems as encountered in section 2. In the present section, some
of these modifications are explained.

3.2 Multi-step DTM
As indicated in Example 2, the domain where the DTM solution is valid is
usually narrow. In order to extend the solution for large intervals of indepen-
dent variables, the multi-step DTM is proposed. The method is applied in
sub-intervals instead of the entire domain. The solution is, indeed, a piece-
wise function of particular DTM solutions of the following form:

12

Figure 3: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 4.

U(1) = α, (20)

U(2) =
1

2
, (21)

U(3) = 0, (22)

U(4) = − 1

24
, (23)

U(k + 2) = −k − 1

k + 2
U(k), k ≥ 3. (24)

Therefore, the solution with n = 8 terms has the following form:

u8(x) = 1.0000 + αx+ 0.5000x2 − 0.0417x4 + 0.0208x6 − 0.0130x8. (25)

Now, we implement the second boundary condition at x = 1 to the above
solution and find α = −0.3674. The exact value of α, which is obtained from
the exact solution, is −0.3727. The resulting DTM solution in this case is
close to the exact one as depicted in Figure 4.

If the interval of the solution is extended to [0, 2], with boundary condi-
tion u(2) = 2, then the exact solution remains unchanged and α = 0.8320
differs from −0.3727, for the exact value of u(2). Therefore, a large deviation
from the exact solution is anticipated. When the two curves are compared
(Figure 4), we can see that the behavior of the DTM solution differs from
the exact one due to the power of x above 1. This is similar to the case of
IVPs, except that here the constraint on the second point forces the solution
to prevent large oscillations.
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Figure 4: Exact and numerical solutions of Example 2 for 0 ≤ x ≤ 1 and
0 ≤ x ≤ 2.

u(x) =


∑N

k=0 U0(k)x
k, x ∈ [0, x1],∑N

k=0 U1(k)(x− x1)
k, x ∈ [x1, x2],

...
...∑N

k=0 Up(k)(x− xp−1)
k, x ∈ [xp−1, xp].

(26)

The initial condition for each piece is obtained from the previous stage.
Therefore, the method has errors but leads to better results compared to
the traditional one. As an example, the multi-step DTM solution has been
obtained for Example 1 as follows:

u(x) =



3.1416 + 1.3333x− 0.0494x3 + 0.0033x5 − 0.0003x7, x ∈ [0, 1],
3.2705 + 1.0797x+ 0.1086x2 − 0.0230x3 − 0.00066x4

− 0.0020x5 + 0.0016x6 − 0.0002x7, x ∈ [1, 2],
3.6890 + 0.7183x+ 0.1688x2 − 0.0518x3 + 0.0326x4

− 0.0151x5 + 0.0030x6 − 0.0002x7, x ∈ [2, 3],
4.5191 + 0.6477x2 − 0.3598x3 + 0.1439x4 − 0.0336x5

+ 0.0040x6 − 0.0002x7, x ∈ [3, 4].
(27)

Figure 5 demonstrates the resulting multi-step DTM solution, the exact
and the one-step DTM solution. Comparing these curves elucidate that the
multi-step DTM is more close to the exact solution and does not diverge like
the traditional DTM solution.
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Figure 4: Exact and numerical solutions of Example 2 for 0 ≤ x ≤ 1 and
0 ≤ x ≤ 2.

3.1 Extensions and improvements

After the early implementation of DTM to initial and boundary value prob-
lems for ODEs, the researchers extended the method for other types of math-
ematical problems as encountered in Section 2. In the present section, some
of these modifications are explained.

3.2 Multi-step DTM

As indicated in Example 2, the domain where the DTM solution is valid is
usually narrow. In order to extend the solution for large intervals of indepen-
dent variables, the multi-step DTM is proposed. The method is applied in
sub-intervals instead of the entire domain. The solution is, indeed, a piece-
wise function of particular DTM solutions of the following form:

u(x) =


∑N

k=0 U0(k)x
k, x ∈ [0, x1],∑N

k=0 U1(k)(x− x1)k, x ∈ [x1, x2],
...

...∑N
k=0 Up(k)(x− xp−1)

k, x ∈ [xp−1, xp].

(26)

The initial condition for each piece is obtained from the previous stage.
Therefore, the method has errors but leads to better results compared to
the traditional one. As an example, the multi-step DTM solution has been
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obtained for Example 1 as follows:

u(x) =



3.1416 + 1.3333x− 0.0494x3 + 0.0033x5 − 0.0003x7, x ∈ [0, 1],
3.2705 + 1.0797x+ 0.1086x2 − 0.0230x3 − 0.00066x4

− 0.0020x5 + 0.0016x6 − 0.0002x7, x ∈ [1, 2],
3.6890 + 0.7183x+ 0.1688x2 − 0.0518x3 + 0.0326x4

− 0.0151x5 + 0.0030x6 − 0.0002x7, x ∈ [2, 3],
4.5191 + 0.6477x2 − 0.3598x3 + 0.1439x4 − 0.0336x5

+ 0.0040x6 − 0.0002x7, x ∈ [3, 4].
(27)

Figure 5 Demonstrates the resulting multi-step DTM solution, the exact
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Figure 5: Exact, DTM, and multi-step DTM solutions of Example 1 for
0 ≤ x ≤ 4.

3.3 Infinite horizons
There are BVPs with conditions at infinity; that is, the domain of the inde-
pendent variable is not bounded. In this subsection, two approaches of DTM
when facing this situation are reviewed.

3.3.1 Padé Approximation

One of the well-known methods to approximate a real-valued function as a
rational function is Padé approximation, which is usually used when simu-
lating the behavior of a function at infinity is desired. This method has been
combined with DTM to solve the infinite horizon BVP for the first time in
[76]. Despite the application of this method in solving problems with condi-
tions at infinity, such as [78, 75], it seems that this approach is not applicable.
To illustrate this issue, let us consider the following rational function:

RL,M (x) =
p0 + p1x+ p2x

2 + · · ·+ pLx
L

1 + q1x+ q2x2 + · · ·+ qLxM
. (28)

Moreover, RL,M is the Padé approximation of u(x) if its value and derivatives
coincide with those of u(x) at x = 0, that is

RL,M (0) = u(0), (29)
R′

L,M (0) = u′(0), (30)
R′′

L,M (0) = u′′(0), (31)
...

14

Figure 5: Exact, DTM, and multi-step DTM solutions of Example 1 for
0 ≤ x ≤ 4.

and the one-step DTM solution. Comparing these curves elucidate that the
multi-step DTM is more close to the exact solution and does not diverge like
the traditional DTM solution.

3.3 Infinite horizons

There are BVPs with some conditions at infinity; that is, the domain of the
independent variable is not bounded. In this subsection, two approaches of
DTM when facing this situation are reviewed.
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3.3.1 Padé Approximation

One of the well-known methods to approximate a real-valued function as a
rational function is Padé approximation, which is usually used when simu-
lating the behavior of a function at infinity is desired. This method has been
combined with DTM to solve the infinite horizon BVP for the first time in
[76]. Despite the application of this method in solving problems with condi-
tions at infinity, such as [78, 75], it seems that this approach is not applicable.
To illustrate this issue, let us consider the following rational function:

RL,M (x) =
p0 + p1x+ p2x

2 + · · ·+ pLx
L

1 + q1x+ q2x2 + · · ·+ qLxM
. (28)

Moreover, RL,M is the Padé approximation of u(x) if its value and derivatives
coincide with those of u(x) at x = 0, that is

RL,M (0) = u(0), (29)
R′

L,M (0) = u′(0), (30)
R′′

L,M (0) = u′′(0), (31)
...

R
(L+M)
L,M (0) = u(L+M)(0). (32)

Therefore, in approximating u(x) ≈ RL,M (x), the rational function has the
initial value and derivatives as the main function. Also, far field behavior
may be controlled with degrees of RL,M .
Let us examine the method on a famous problem in fluid dynamics (see [76]):

u′′′ + uu′′ − βu′2 −Mu′ = 0, (33)
u(0) = 0, u′(0) = 1, (34)
u′(+∞) = 0. (35)

Clearly, by the application of DTM, a polynomial approximating the solution
in the vicinity of x = 0 will result. However, the polynomial does not have
marginal behavior at infinity as required by (35). To cope with the problem,
after finding the DTM solution un(x), a Padé approximation with L+M = n
is obtained. Therefore, the following relation should be occurred:

U(0)+U(1)x+U(2)x2+· · ·+U(n)xn =
p0 + p1x+ p2x

2 + · · ·+ pLx
L

1 + q1x+ q2x2 + · · ·+ qLxM
. (36)

Two initial conditions will translate to U(0) = 0 and U(1) = 1, however the
degree of equation requires another initial condition. Therefore, U(2) is taken
as an unknown α, which will be determined from u′(+∞) = 0 after finding
the rational approximation. Then L +M unknown coefficients a0, a1, . . .,
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aL, b1, b2, . . ., bM will be found by equating two sides up to xL+M .

Studying the results of this method in [78] in detail shows that the method
does not lead to valid solutions easily. For example, the following Padé-DTM
solution is claimed in [76] for β = 1.5 and M = 50:

R10,10(x) = (x− 22.6935x2 − 20.8798x3 − 31.0628x4 − 19.2098x5

−0.841719x6 + 16.6574x7 + 1.82323x8 + 5.78142x9

−0.00715648x10)/(1− 19.1112x− 97.9261x2 − 202.307x3

−222.828x4 − 119.697x5 + 11.8529x6 + 70.5985x7 + 55.4051x8

+22.1859x9 + 4.17935x10)

If we draw the above u(x) near the origin with step size larger than 10−5,
then the solution agrees with physics as depicted in Figure 7 of [76]. However,
when we take distance from x = 0, the solution shows different behavior.
In Figure 6, the claimed solution is drawn for 0 ≤ x ≤ 2 with step size
∆x = 0.01. It has a clear jump near 1 = 1.4, which is unexpected. Therefore,
it cannot be the correct solution. If the step size of the graph is finer, then
the amplitude of the jump increases, indicating a singularity in the rational
function. When we examine the roots of the denominator, it reveals that
it has two real roots, approximately at x = 0.0423118 and x = 1.40647.
The first one is visible when the step size of plotting is smaller than 10−5.
Therefore, the resulting solution is not acceptable near the x = 0 nor beyond
x = 1. This is just an example, and there are other examples showing the
inefficiency of the Padé-DTM. Because of the following problems, using Padé
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with DTM is not recommended in general:

• Rational functions may have singularities as indicated in the case study.

• In taking the derivative, the degree of the numerator and denomina-
tor will change. This may lead to RL,M (x) → 0 at infinity without
obtaining a condition on α. As an example, as indicated in [21], for a
Blasius problem, the Padé approximation does not match the required
asymptotic behavior.

• Even the marginal condition of u at infinity satisfies, there is no guar-
antee that the resulting Padé has the same rate of convergence as the
exact solution.

3.3.2 Switching DTM

Another DTM-based method for problems with a boundary condition at
infinity was proposed in [61]. The method finds a solution consisting of two
parts; the first part is a DTM solution, and the second part is a solution of
the differential equation satisfying the marginal condition. The method has
a successful implementation, but it is case-dependent in finding the second
part of the solution.
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• In taking the derivative, the degree of the numerator and denomina-
tor will change. This may lead to RL,M (x) → 0 at infinity without
obtaining a condition on α. As an example, as indicated in [21], for a
Blasius problem, the Padé approximation does not match the required
asymptotic behavior.

• Even the marginal condition of u at infinity satisfies, there is no guar-
antee that the resulting Padé has the same rate of convergence as the
exact solution.

3.3.2 Switching DTM

Another DTM-based method for problems with a boundary condition at
infinity was proposed in [61]. The method finds a solution consisting of two
parts; the first part is a DTM solution, and the second part is a solution of
the differential equation satisfying the marginal condition. The method has
a successful implementation, but it is case-dependent in finding the second
part of the solution.

3.4 Multidimensional DTM

One of the most important and practical extensions of DTM is multidimen-
sional DTM. Let us consider, for example, a two-dimensional BVP or IVP
having u(t, x) as the solution. The two-dimensional extension of DTM trans-
form u(t, x)

DT−−→ U(k, h) is defined as

U(k, h) =
1

k!h!

[
∂k+hu(t, x)

∂tkxh

]
(0,0)

, (37)

and the inverse transform is

u(t, x) =

∞∑
k=0

∞∑
h=0

U(k, h)tkxh. (38)

Substituting (37) into the equations and applying the boundary-initial con-
ditions will result in a set of algebraic equations. Then the equations are
solved for U(k, h), and the truncated inverse transform (38) gives an ap-
proximate solution. Some of the properties of the two-dimensional DTM
transform used to build the algebraic equations are listed below. Assume
that u(t, x) DT−−→ U(k, h), that w(t, x) DT−−→ W (k, h), and that λ is a constant
scalar.

• u(t, x) + w(t, x)
DT−−→ U(k, h) +W (k, h).
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• λu(t, x)
DT−−→ λU(k, h).

• u(x)w(x)
DT−−→

∑k
i=0

∑k
j=0 U(i, h− j)W (k − i, j).

• ∂u(t,x)
∂t

DT−−→ (k + 1)U(k + 1, h).

• ∂u(t,x)
∂x

DT−−→ (h+ 1)U(k, h+ 1).

• ∂i+ju(t,x)
∂ti∂xj

DT−−→ (k+1)(k+2) · · · (k+i)(h+1)(h+2) · · · (k+j)U(k+i, h+j).

• tixj
DT−−→ δ(k − i, h− j).

Now, the two-dimensional DTM in its traditional form is applied to a prob-
lem.

Example 3. Let us consider the following IVP defined on the telegraph
equation (see [18]):

∂2u

∂x2
=
∂2u

∂t2
+ 2

∂u

∂t
+ u, (39)

u(0, x) = ex,
∂u

∂t
(0, x) = −2ex. (40)

The exact solution is u(t, x) = ex−2t.
The corresponding differential transform of (39) is as follows:

(h+ 1)(h+ 2)U(k, h+ 2) = (k + 1)(k + 2)U(k + 2, h) + 2(k + 1)U(k + 1, h)

+U(k, h). (41)

Taking differential transform from two sides of initial conditions implies that

U(0, h) =
1

h!
, (42)

U(1, h) =
−2
h!
. (43)

Now, the following recursive relation is obtained to find the coefficients:

U(k + 2, h) =
(h+ 1)(h+ 2)U(k, h+ 2)− 2(k + 1)U(k + 1, h)− U(k, h)

(k + 1)(k + 2)
.

(44)
Setting k = 0, 1, 2 in (44) and then h = 0, 1, . . . , 4 in the results, we obtain
the coefficients U(k, h) and construct an approximate solution as

u4,4(t, x) = 1 + x+ 0.5x2 + 0.1667x3 + 0.0417x4

−2t− 2tx− tx2 − 0.3333tx3 − 0.0833tx4

+2t2 + 2t2x+ t2x2 + 0.3333t2x3 + 0.0833t2x4
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−1.3333t3 − 1.3333t3x− 0.6667t3x2 − 0.2222t3x3

−0.0556t3x4 + 0.6667t4 + 0.6667t4x+ 0.3333t4x2

+0.1111t4x3 + 0.0278t4x4. (45)

The absolute errors of the resulting DTM solution on an 8×8 grid are given in
Table 1. The error is small near the initial condition, and the DTM solution
approximates the exact solution. However, it grows slowly with t and x. The
error may be reduced by increasing the number of terms in (45) since the
DTM solution is convergent to the exact one in this case (see [18]).

Table 1: The absolute error of the DTM solution of Example 3

t, x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0005 0.0012 0.0027
0.1 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0010 0.0021
0.2 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0005 0.0014
0.3 0.0010 0.0011 0.0012 0.0014 0.0015 0.0015 0.0013 0.0008
0.4 0.0040 0.0045 0.0050 0.0056 0.0062 0.0068 0.0073 0.0077
0.5 0.0119 0.0133 0.0148 0.0166 0.0185 0.0205 0.0227 0.0249
0.6 0.0286 0.0320 0.0357 0.0399 0.0446 0.0497 0.0554 0.0615
0.7 0.0599 0.0669 0.0748 0.0836 0.0934 0.1043 0.1163 0.1296

3.4.1 Projected DTM

The projected DTM was introduced in [45] to reduce the computational com-
plexity and simplify the solution in the case of multidimensional DTM. In this
approach, the differential transform is applied on only one variable. There-
fore, the coefficients are not constant and are functions of the remaining
variables. For example, in Example 3, if we take the differential transform
with respect to t, then the unknown coefficients are in the form of U(h, x).
Consequently, instead of (38), the solution has simpler form as

u(t, x) =

∞∑
k=0

U(k, x)tk, (46)

which requires lower computational task. If we apply the method to Example
3, then the corresponding equation is changed to

∂2U

∂x2
(k, x) = (k + 1)(k + 2)U(k + 2, x) + 2(k + 1)U(k + 1, x) + U(k, x) (47)

with initial conditions:

U(0, x) = ex, (48)
U(1, x) = −2ex. (49)
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The coefficients are also calculated from

U(k + 2, x) =
∂2U
∂x2 (k, x)− 2(k + 1)U(k + 1, x)− U(k, x)

(k + 1)(k + 2)
. (50)

Setting k = 0, 1, . . . and using the initial conditions, will result in U(2, x) =
2ex, U(3, x) = − 4

3e
x, U(4, x) = 1

6e
x, . . .. Then, the truncated solution up to

4 terms is
up4(t, x) = ex − 2ext+ 2ext2 − 4

3
ext3 +

1

6
ex. (51)

From a computational viewpoint, calculating each coefficient in (44) requires
13 elementary operations, while in (44), nine operations are required. On the
other hand, the number of terms in u4,4 is 4 times than in up4. Therefore, in
this case, the projected DTM has lower complexity of order 5.78 with respect
to the traditional DTM. However, it should be noted that when estimating the
solution at a mesh on (t, x), the computation of ex terms has more complexity
than the power of x but is more accurate.

3.4.2 Reduced DTM

Another approach for simplifying and reducing the computational cost of
multidimensional DTM is the reduced DTM proposed in [53]. This modifi-
cation benefits from a separation of variables. The solution u(t, x) in two-
dimensional, for example, is written as

u(t, x) = f(t)g(x). (52)

Then, one-dimensional DTM is applied, and the corresponding differential
transform is obtained similar to the projected DTM.

4 Advantages and disadvantages of DTM

In the previous section, the implementation of DTM on a set of different
problems was expressed. Based on the results of these examples and other
references, the DTM has advantages and disadvantages as a semi-analytical
method for solving initial and boundary value problems. In this section, we
mention some of these advantages and disadvantages.

4.1 Advantages of DTM

The advantages of DTM may be encountered as follows:
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• The solution has a closed form as a series. This enables us to use it
quickly for more analysis, such as calculating derivatives, for example.

• DTM usually results in high-accuracy solutions in the domain of con-
vergence.

• Low computational complexity in solving the transformed equations for
linear systems.

• The method does not require discretization; therefore, the results are
not affected by this type of error.

• Based on the literature review, the method is flexible to be adopted
with various kinds of dynamical systems and boundary conditions.

4.2 Disadvantages of DTM

When using DTM, we have to care about the restrictions of the method.
Some of the disadvantages of this method that restricts its application are
listed below:

• The implementation of the method for nonlinear systems may lead to
complex forms of the algebraic system of equations that restrict the
implementation of the method to linear systems. There are, however,
some approaches, such as the polynomial expansion of nonlinear terms
or using Adomian decomposition. Such tricks may reduce the degree
of nonlinearity, however, they add additional errors and increase com-
putational complexity.

• The domain of convergence is usually small, and the results are valid
close to x = 0. The multi-step DTM resolves this problem relatively.
However, as inferred from Figure 5, the multi-step solution itself leads
to accumulated errors that show the limited use of the method in short
ranges.

• Documented efforts to extend DTM to infinite horizon problems, such
as Padé approximation and switching DTM, do not guarantee valid and
general solutions.

5 Concluding remarks

The method of differential transform was described and reviewed in this pa-
per. Progress in the implementation, application, and improvements of DTM
was expressed. The method gives an analytical solution that has advantages
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in comparison with the numerical methods for boundary/initial value prob-
lems. However, detailed investigations showed that the method has conver-
gence restrictions. Indeed, when using DTM, it is important to note that the
solution is accurate in an interval close to the initial conditions.
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1 Introduction

Let I1, I2, . . . , IN ∈ N. The multidimensional array X = (Xi1i2···iN ) (1 ≤
ij ≤ Ij , j = 1, . . . , N) is called an N -mode tensors with I1I2 · · · IN entries.
There has been increasing research on tensors in recent years. For instance,
Chang, Pearson, and Zhang [8] generalized the Perron–Frobenius theorem for
nonnegative matrices to the nonnegative tensors. Eigenvalues, eigenvectors,
symmetric hyperdeterminants were defined by Qi [31] for the real super-
symmetric tensors, and their properties were described. In [30], the restart
techniques are described for the tensor infinite Arnoldi method.

In this work, we introduce two new projection methods for solving the
low-rank Sylvester tensor equation

X ×1 A
(1) + X ×2 A

(2) + · · ·+ X ×N A(N) = B, (1)

where the matrices A(n) ∈ RIn×In , n = 1, 2, . . . , N, and right-hand side
tensor B ∈ RI1×I2×···×IN are given, and X ∈ RI1×I2×···×IN is an unknown
tensor. The Sylvester tensor equation (1) has a unique solution if and only if
λ1 + λ2 + · · ·+ λN ̸= 0, for all λi ∈ σ(A(i)), i = 1, 2, . . . , N, where σ(A(i)) is
the spectral of matrix A(i) [9]. In this study, it is assumed that the Sylvester
tensor equation has a unique solution. The Sylvester tensor equations are
one of the famous problems arising from the discretization of a linear partial
differential equation in high dimensions by the use of finite elements, finite
differences, and spectral methods [27, 28, 37]. The Sylvester matrix equation

A(1)X +XA(2)T = B,

is a special case of the Sylvester tensor equation (1), where X is a 2-mode
tensor. Many iteration methods for computing approximate solutions for
the Sylvester tensor equations (1) have been introduced in recent years. For
example, Chen and Lu [9] proposed the GMRES method based on tensor
form (GMRES-BTF) to solve the Sylvester tensor equation. Also, to speed
up the convergence of the GMRES-BTF method, they proposed precondi-
tioned GMRES-BTF. Beik, Saberi Movahed, and Ahmadi-Asl [4] presented
some iterative methods based on the tensor format to solve the Sylvester
tensor equations (1). In [33, 34], Saberi–Movahed et al. introduced the ten-
sor format of restarted Simpler GMRES, (SGMRES-BTF(m)), to solve the
Sylvester tensor equation and described an accelerating method in accor-
dance with a modification of the generalized conjugate residual with inner
orthogonalization (GCRO) method based on the tensor format. Bi-conjugate
gradient (BiCG) and bi-conjugate residual (BiCR) methods as well as their
preconditioned versions based on the tensor format, have been presented in
[39]. The tensor form of the global least squares method is proposed in [24].
Huang, Xie, and Ma [22] proposed the tensor form of the GMRES method
for solving a class of tensor equations via the Einstein product. Furthermore,
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for the case in which the coefficient tensor is symmetric, they proposed the
MINRES and SYMMLQ methods based on the tensor format. Dehdezi and
Karimi [15] extended the conjugate gradient squared and the conjugate resid-
ual squared methods to solve the generalized coupled Sylvester tensor equa-
tions. In [16], the authors proposed a gradient based iterative method version
for solving the tensor equations and presented a new preconditioner to accel-
erate the convergence rate of the proposed iterative methods. A projection
method has been introduced in [3] to find approximations of linear systems
in low-rank tensor format. Kressner and Tobler [25] proposed the Krylov
subspace for the case in which the right-hand side tensor has a low-rank.
Recently, Bentbib, El-Halouy, and Sadek [5] introduced a new projection
method to compute approximate solutions for the low-rank Sylvester tensor
equations. The extended Krylov-like methods were proposed in [6] to find the
solutions for the low-rank Sylvester and Stein tensor equations. The block
and extended block Hessenberg algorithms for solving the Sylvester tensor
equation with low-rank right-hand side (1) were presented in [12]. Hessen-
berg based methods are among the popular methods in terms of the Krylov
subspace methods, with less need for arithmetic operations and less storage
space compared to the Arnoldi-based methods. The Hessenberg process con-
structs nonorthogonal bases for the associated Krylov subspace. The schemes
based on the Hessenberg process have recently received great attention; see,
for instance, [32, 35, 19, 17, 21, 12]. This motivated us to introduce two new
projection schemes, employing the global Hessenberg process on the matrix
Krylov subspaces. The main idea of this scheme is to project the problem
onto a matrix or an extended matrix Krylov subspace. Then the reduced
problem can be solved by using the recursive blocked algorithm [11]. Com-
plexity consideration is given to show that the global and extended global
Hessenberg processes are less expensive than the global and extended global
Arnoldi ones.

We use the following notations. For the matrices X and Y in Rn×n,
we consider the following inner product ⟨X,Y ⟩F = tr(XTY ), where tr(·)
denotes the trace. The associated norm is the Frobenius norm denoted by
∥E∥F . The notation X⊥FY means that ⟨X,Y ⟩F = 0. The n × n identity
matrix is denoted by I(n). Moreover, e(k)j denotes the jth canonical vector
of Rk, and 0m×n denotes the m× n zero matrix.

The remainder of this paper is organized as follows. In section 2, we
review some basic notations and definitions. In section 3, the global Hessen-
berg process with maximum strategy and an approach for solving (1) with
a right-hand side tensor of a specific rank is described. The extended global
Hessenberg approach is presented in section 4. The complexity of the new
methods is considered in section 5. Some numerical examples for evaluating
the performance of our approaches are given in section 6. Finally, section 7
gives a brief conclusion.
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2 Preliminaries

In this part, the notations and basic definitions of tensors are presented.
Throughout this paper, we denote tensors by Euler script letters. Matrices
and vectors are denoted by capital and lowercase letters, respectively. Also,
the Kronecker product of matrices A and B is denoted by A ⊗ B and the
Kronecker product of tensors A and B, is denoted by A⊗B. Norm of an Nth
order tensor X ∈ RI1×I2×···×IN is denoted by ∥X∥F and is defined as follows:

∥X∥F =
√
⟨X ,X⟩ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

X 2
i1i2···iN .

Definition 1 ([13]). Denote the N -mode (matrix) product of a tensor X ∈
RI1×I2×···×IN and a matrix U ∈ RJ×In by X ×n U. It is of dimension I1 ×
I2 × · · · × In−1 × J × In+1 × · · · × IN and defined as

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

Xi1i2···iNujin .

Proposition 1 ([13]). Let A ∈ RI1×I2×···×IN be an Nth order tensor, let
B ∈ RJ×Im , C ∈ RK×In , and let W ∈ RIn×In . Then

A×m B ×n C = A×n C ×m B,

A×n W ×n C = A×n CW.

Definition 2 ([14]). Assume that X ∈ RI1×I2×···×IN is an Nth order tensor
and that {U} is a set of matrices Un ∈ RIn×In(n = 1, . . . , N). Then their
product in all possible modes (n = 1, 2, . . . , N) is of size I1 × I2 × · · · × IN
and defined as follows:

X × {U} = X ×1 U1 ×2 U2 · · · ×N UN ,

and

X × {U}T = X ×1 U
T
1 ×2 U

T
2 · · · ×N UT

N .

Definition 3 ([13]). . The outer product of two tensors A ∈ RI1×I2×···×IM

and B ∈ RJ1×J2×···×JN is denoted by A ◦ B ∈ RI1×I2×···×IM×J1×J2×···×JN ,
with entries

Ci1···iM j1···jN = Ai1···iMBj1···jN .

If v1, v2, . . . , vN are N vectors of sizes Ii, i = 1, . . . , N, then their outer prod-
uct is an Nth order tensor of size I1 × I2 × · · · × IN and is given by
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v1 ◦ · · · ◦ vNi1,...,iN = v1(i1) · · · vN (iN ).

Definition 4 ([13]). An Nth order tensor X ∈ RI1×I2×···×IN is called a rank
one tensor if it can be written as the outer product of N vectors ai ∈ RIi (i =
1, . . . , N) as follows:

X = a1 ◦ a2 ◦ · · · ◦ aN .

If a tensor can be written as a sum of R rank one tensors, then it is called a
rank R tensor.

Definition 5 ([26]). The Kronecker product of two tensorA = a1◦a2◦· · ·◦aN
and B = b1 ◦ b2 ◦ · · · ◦ bN is defined as

A⊗ B = (a1 ⊗ b1) ◦ · · · ◦ (aN ⊗ bN ).

Proposition 2 ([5]). Assume that A ∈ RI1×I2×···×IN and B ∈ RI1×I2×···×IN

are Nth order tensors, that A ∈ Rkn×In , and that B ∈ RIn×Jn . Then

(A⊗ B)×n (A⊗B) = (A×n A)⊗ (B ×n B).

Proposition 3 ([5]). The product of a rank one tensor A = a1◦a2◦· · ·◦aN ∈
RI1×I2×···×IN and a set of matrices Un ∈ RIn×In , (n = 1, . . . , N) is defined
as follows:

A× {U} = U1a1 ◦ · · · ◦ UNaN . (2)

Definition 6 ([13]). The CP decomposition of an Nth order tensor A ∈
RI1×I2×···×IN is written as follows:

A =

R∑
r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(N)
r ,

where R ∈ N and a
(i)
r ∈ RIi , (i = 1, . . . , N). Assume that a(i)r , (i =

1, . . . , N), are normalized. Then the CP decomposition is given by

A =

R∑
r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(N)

r ,

where λr ∈ R.

Definition 7 (Left inverse[35]). Consider Zk ∈ Rn×k as a matrix partitioned
as follows:

Zk =

[
Z1k

Z2k

]
,

where Z1k is a k × k matrix. If the matrix Z1k is nonsingular, then a left
inverse of Zk is defined as follow
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ZL
k =

[
Z−1
1k , 0k×(n−k)

]
.

Definition 8 ([7]). Let A = [A1, A2, . . . , Ap] and B = [B1, B2, . . . , Bl] be
matrices of dimension n× ps and n× ls, respectively, where Ai and Bj (i =
1, . . . , p; j = 1, . . . , l) are n × s matrices. Then the ⋄-product of matrices A
and B denoted by AT ⋄B is the p× l matrix defined by:

(AT ⋄B)i,j = ⟨Ai, Bj⟩F .

Some properties that are verified by the ⊗- and ⋄-products are as follows:

1. (DA)T ⋄B = AT ⋄ (DTB).

2. AT ⋄ (B(L⊗ I(p)) = (AT ⋄B)L.

In what follows, we assume that the right-hand side B in (1) is of rank R.
As known [13], by using the CP decomposition, B can be written as

B =

R∑
r=1

b
(r)
1 ◦ · · · ◦ b

(r)
N , (3)

where B(i) =
[
b
(1)
i , b

(2)
i , . . . , b

(R)
i

]
∈ RIi×R, i = 1, . . . , N, are the factor ma-

trices. By simple calculations, we can rewrite the relation (3) as

B = IR ×1 B
(1) · · · ×N B(N), (4)

in which IR denotes the identity tensor of Nth order of size R×R× · · · ×R
with ones along the super-diagonal.

3 Global Hessenberg process with maximum strategy

The global Hessenberg process with maximum strategy was first presented
in [17] by Heyouni to build a basis of the matrix Krylov subspace

Km(A, V ) =

{
m−1∑
i=0

γiA
i V, where γi ∈ R for i = 0, 1, . . . ,m− 1

}
,

where A ∈ Rn×n and V ∈ Rn×s. The global Hessenberg process with maxi-
mum strategy can be summarized in Algorithm 1 [17].

By employing Algorithm 1 with m = mi and s = R for the pair
(A(i), B(i)), we obtain Vmi+1 = [V

(i)
1 , . . . , V

(i)
mi+1] ∈ Rn×(mi+1)R with V (i)

k ∈
Rn×R, for k = 1, . . . ,mi+1, and the upper Hessenberg matrix H̄mi = (h

(i)
i,j) ∈

R(mi+1)×mi , which satisfy

A(i)Vmi = Vmi+1(H̄mi ⊗ I(R)), (5)
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Algorithm 1 The Global Hessenberg process with Maximum Strategy
1. Input: Nonsingular matrix A, initial block V , and an integer m.
2. Determine i0 and j0 such that |Vi0,j0 | = max {|Vi,j |}1≤j≤s

1≤i≤n ; β = Vi0,j0 ;

V1 = V/β; l1 = i0; c1 = j0.

3. For k = 1, 2, . . . ,m
4. U = AVk.
5. For j = 1, 2, . . . , k

6. hj,k = Ulj ,cj ; U = U − hj,kVj .
7. End For.
8. Determine i0 and j0 such that |Ui0,j0 | = max {|Ui,j |}1≤j≤s

1≤i≤n

hk+1,k = Ui0,j0 ; Vk+1 = U/hk+1,k; lk+1 = i0; ck+1 = j0.

9. End For.

= Vmi(Hmi ⊗ I(R)) + h
(i)
mi+1,mi

V
(i)
mi+1(e

(mi)
T

mi
⊗ I(R)), (6)

where Hmi
denotes the matrix obtained from H̄mi

by deleting its last row.
As [5], we consider an approximate solution of (1) as

Xm = (Ym ⊗ IR)× {Vm}, (7)

where {Vm} denotes a set of matrices {Vm1 ,Vm2 , . . . ,VmN
} and Ym is an

m1×· · ·×mN tensor satisfying the low-dimensional Sylvester tensor equation

N∑
i=1

Ym ×i Hmi
= βEm, (8)

where β =
∏N

i=1 βi and Em = (e
(m1)
1 ◦ · · · ◦ e(mN )

1 ).

Proposition 4. Let Rm be the residual tensor corresponding to the approx-
imate solution Xm of (1). Then

Rm = −
N∑
i=1

hmi+1,mi
(Ym ×i e

(mi)
T

mi
)⊗ IR ×1 Vm1 · · · ×i V

(i)
mi+1 · · · ×N VmN

,

(9)

where Ym is the solution to (8).

Proof. The proof is similar to that of Proposition 6 in [12].

Theorem 1. Let Xm be an approximate solution of (1). Then the corre-
sponding residual Rm satisfies

∥Rm∥ ≤
√

((2nR− (m− 1))
m

2
)N

√√√√ N∑
i=1

| hmi+1,mi
|2 ∥Ym ×i eTmi

∥2, (10)

where m = max
1≤i≤N

mi.
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Proof. The proof is similar to that of Theorem 7 in [12].

Furthermore, from the fact that

∥Vmj
∥2 ≤ nmjR, i = 1, . . . , N,

we have

∥Rm∥ ≤
√
(nmR)N

√√√√ N∑
i=1

| hmi+1,mi |2 ∥Ym ×i eTmi
∥2. (11)

The upper bounds (10) and (11) are pessimistic. We propose the following
approximation, which is derived heuristically,

∥Rm∥ ≈ Em := N
√
(nmR)

√√√√ N∑
i=1

| hmi+1,mi
|2 ∥Ym ×i eTmi

∥2. (12)

Similar to Algorithm 2 in [5], the global Hessenberg process with the max-
imum strategy for the Sylvester tensor equation (1) can be summarized in
Algorithm 2.

Algorithm 2

1. Input: Coefficient matrices A(i), i = 1, . . . N, and the right-hand side in low-rank
representation,
B =

[
B(1), B(2), . . . , B(N)

]
.

2. Output: An approximate solution Xm for equation (1).
3. Choose a tolerance ϵ > 0, integer parameters k′

i , i = 1, . . . , N. Set ki = 0,mi = k
′
i .

4. For i = 1 : N
5. For j = ki + 1 : ki + k

′
i

6. Construct the basis
[
Vki+1, . . . , Vki+k

′
i

]
and the matrix Hmi by

Algorithm 1.
7. End For
8. End For
9. Solve the low-dimensional equation

∑N
i=1 Ym ×i Hmi = βEm by the recursive

blocked algorithms presented in [11].
10. Compute the estimated residual norm of Rm,

i.e., Em = N
√

(nmR)

√∑N
i=1 | hmi+1,mi |2 ∥Ym ×i eTmi

∥2.

11. If Em > ϵ, set ki = ki + k
′
i , mi = ki + k

′
i for i = 1, . . . , N, and go to step 4.

12. Compute the approximate solution by Xm = (Ym ⊗ I(R))×1 Vm1 · · · ×N VmN .
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4 The extended global Hessenberg process

We first recall the extended matrix Krylov subspace. Let A ∈ Rn×n and
V ∈ Rn×s. The extended global Hesssenberg process corresponding to the
pair (A, V ) is defined as follows [17]:

Ke
m(A, V ) = span(V,A−1V,AV, . . . , Am−1V,A−mV ),

= Km(A, V ) +Km(A−1, A−1V ).

The algorithm proceeds by running one step of the Global Hessenberg process
with A and one step with A−1, while maintaining orthogonalization among
all generated vectors and the n × s matrices Yj = e

(n)
lj
e
(s)T

cj whose entries
are zero except (Yj)lj ,cj = 1. The first two block vectors V (1)

1 and V (2)
1 are

obtained as follows:

V
(1)
1 = V/r11, (13)

where r11 = Vl1,c1 and |Vl1,c1 | = max{|Vi,j |}1≤j≤s
1≤i≤n, and

V
(2)
2 =W/r2,2, (14)

whereW = A−1V −r1,2V (1)
1 , r1,2 = (A−1V )l1,c1 , r2,2 =Wl2,c2 , and |Wl2,c2 | =

max{|Wi,j |}1≤j≤s
1≤i≤n.

Let Vi = [V
(1)
i , V

(2)
i ] be the ith n× 2s block vector of Vm = [V1, . . . , Vm]

and let
Hi,j =

[
h2i−1,2j−1 h2i−1,2j

h2i,2j−1 h2i,2j

]
,

be the 2× 2 block matrix (i, j) of the upper block Hessenberg matrix Hm ∈
R2(m+1)×2m. Then we compute the two block vectors V (1)

k+1 and V (2)
k+1 by the

relation[
V

(1)
k+1 V

(2)
k+1

]
(Hk+1,k ⊗ I(s)) = [AV

(1)
k , A−1V

(2)
k ]−

k∑
j=1

[V
(1)
j , V

(2)
j ](Hj,k ⊗ I(s)),

(15)

where the entries of coefficients matrices Hk+1,k and Hi,k, for i = 1, . . . , k,
will be determined such that the relations

V
(1)
k+1⊥FY1, . . . , Y2k and (V

(1)
k+1)l2k+1,c2k+1

= 1,

and
V

(2)
k+1⊥FY1, . . . , Y2k+1 and (V

(2)
k+1)l2k+2,c2k+2

= 1
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hold for k = 1, . . . ,m. The determination of indices l2k+1, c2k+1 and
l2k+2, c2k+2 is similar to that of indices l1, c1 and l2, c2, respectively. The
main steps of the extended global Hessenberg process algorithm to generate
Vm and Hm may be summarized as follows.

Algorithm 3 The Extended Global Hessenberg process with Maximum
Strategy
1. Input: Nonsingular matrix A, initial block V , and an integer m.
2. Determine i0 and j0 such that |Vi0,j0 | = max {|Vi,j |}1≤j≤s

1≤i≤n ; r1,1 = Vi0,j0 ;

V
(1)
1 = V/r1,1; l1 = i0; c1 = j0; .

3. W = A−1V ; r1,2 =Wl1,c1 .

4. W =W − r1,2V
(1)
1 , |Wi0,j0 | = max{|Wi,j |}1≤j≤s

1≤i≤n; r2,2 =Wi0,j0 ;

V
(2)
1 =W/r2,2; l2 = i0, c2 = j0.

5. For k = 1, 2, . . . ,m

6. W = AV
(1)
k .

7. For i = 1, . . . , k

8. h2i−1,2k−1 =Wl2i−1,c2i−1
, W =W − h2i−1,2k−1V

(1)
i ;

h2i,2k−1 =Wl2i,c2i , W =W − h2i,2k−1V
(2)
i .

9. End For.
10. Determine i0 and j0 such that |Wi0,j0 | = max {|Wi,j |}1≤j≤s

1≤i≤n ;

h2k+1,2k−1 =Wi0,j0 ; V
(1)
k+1 =W/h2k+1,2k−1; l2k+1 = i0; c2k+1 = j0.

11. W = A−1V
(2)
k .

12. For i = 1, . . . , k.

13. h2i−1,2k =Wl2i−1,c2i−1
, W =W − h2i−1,2kV

(1)
i ;

h2i,2k =Wl2i,c2i ; W =W − h2i,2kV
(2)
i .

14 End For.
15 h2k+1,2k =Wl2k+1,c2k+1

, W =W − h2k+1,2kV
(1)
k+1.

16. Determine i0 and j0 such that |Wi0,j0 | = max {|Wi,j |}1≤j≤s
1≤i≤n ;

h2k+2,2k =Wi0,j0 ; V
(2)
k+1 =W/h2k+2,2k; l2k+2 = i0; c2k+2 = j0.

17. End For.

Suppose that the matrix Pm is defined by [Y1, Y2, . . . , Y2m]. Then

PT
m ⋄ Vm = Lm,

where Lm ∈ R2m×2m is a unit lower triangular matrix. So, we have L−1
mi

(PT
mi
⋄

Vmi) = I(2mi). As in [1], we consider VL
m = (Pm(L−T

m ⊗ I(s)))T = (L−1
m ⊗

I(s))PT
m , as a left inverse for the ⋄-product, which verifies the relation VL

m ⋄
Vm = I(2ms). Using this matrix, we can state the following proposition.

Proposition 5. Let Tm = VL
m+1 ⋄ (AVm), and suppose that m steps of

Algorithm 3 have been carried out. Then

AVm = Vm+1(Tm ⊗ I(s)), (16)
= Vm(Tm ⊗ I(s)) + Vm+1(Tm+1,mE

T
m ⊗ I(s)), (17)
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where Ti,j is the 2× 2 block (i, j) of Tm and ET
m = [02×2(m−1), I

(2)], and Tm

is obtained by removing the two last rows of Tm.

Proof. The proof is similar to the case for the classical Arnoldi process in
[20].

As [36], in the following proposition, we derive some recursive relations,
which can be used to significantly reduce the computational cost of the basic
algorithm.

Proposition 6. Let Tm = [t:,1, . . . , t:,2m] and Hm = [h:,1, . . . , h:,2m] be two
2(m+1)×2m block upper Hessenberg matrices, let ℓ(k+1) = (ℓi,j) = H−1

k+1,k,
and let r1,1, r1,2, r2,2 be as defined in Algorithm 3. Then for the odd columns,
we have

t:,2j−1 = h:,2j−1, j = 1, . . . ,m,

and for the even columns, we have

(k = 1) t:,2 =
1

r2,2
(r1,1e

2(m+1)
1 − r1,2t:,1),

t:,4 = (e
2(m+1)
2 −

[
T1h1:2,2
0(2m−2)×2

]
)ℓ

(2)
22 ,

ρ(2) = (ℓ
(2)
11 )

−1ℓ
(2)
12 ,

(1 < k ≤ m) t:,2k = t:,2k + t:,2k−1ρ
(k),

t:,2k+2 = (e
2(m+1)
2k −

[
Tkh1:2k,2k
0(2m−2k)×2

]
)ℓ

(k+1)
22 ,

ρ(k+1) = (ℓ
(k+1)
11 )−1ℓ

(k+1)
12 .

Proof. Starting from (15), we have

AV
(1)
k = Vk+1(Hk+1,ke

(2)
1 ⊗ I(s)) + Vk(Hke

(2k)
2k−1 ⊗ I

(s))

= Vk+1(Hke
(2k)
2k−1 ⊗ I

(s)).

Pre-multiplying the above relation by VL
m+1, we get

VL
m+1 ⋄AV

(1)
k = VL

m+1 ⋄ Vk+1(Hke
(2k)
2k−1 ⊗ I

(s))

= (VL
m+1 ⋄ Vk+1)Hke

(2k)
2k−1

=

[
I(2k+2)

0(2m−2k)×(2k+2)

]
Hke

(2k)
2k−1

=

[
Hk

0(2m−2k)×(2k+2)

]
e
(2k)
2k−1.

Hence,
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t:,2k−1 = h:,2k−1, k = 1, . . . ,m.

From the lines 2 and 3 of Algorithm 3, we have

r2,2V
(2)
1 = r1,1A

−1V
(1)
1 − r1,2V (1)

1 .

Pre-multiplying this relation by A, we get

r2,2AV
(2)
1 = r1,1V

(1)
1 − r1,2AV (1)

1 .

Pre-multiplying the above relation by VL
m+1, we have

(VL
m+1 ⋄AV

(2)
1 ) =

1

r2,2
(r1,1(VL

m+1 ⋄ V
(1)
1 )− r1,2(VL

m+1 ⋄AV
(1)
1 )).

Consequently,
t:,2 =

1

r2,2
(r1,1e

2(m+1)
1 − r1,2h:,1),

In addition, from (15), one gets

V
(2)
k = AVk+1(Hk+1,ke

(2)
2 ⊗ I(s)) +AVk(Hke

(2k)
2k ⊗ I(s)).

This relation implies that

VL
m+1 ⋄AVk+1(Hk+1,ke

(2)
2 ⊗ I(s))

= VL
m+1 ⋄ V

(2)
k − VL

m+1 ⋄ (AVk(Hke
(2k)
2k ⊗ I(s))

= e
2(m+1)
2k − (VL

m+1 ⋄AVk)He
(2k)
2k

= e
2(m+1)
2k −

[
Tkh1:2k,2k
0(2m−2k)×2k

]
.

On the other hand, for the left-hand side of this relation, we deduce

VL
m+1 ⋄AVk+1(Hk+1,ke

(2)
2 ⊗ I(s))

= VL
m+1 ⋄ [AV

(1)
k+1 AV

(2)
k+1]

[
h2k+1,2kI

(s)

h2k+2,2kI
(s)

]
= h2k+1,2kVL

m+1 ⋄AV
(1)
k+1 + h2k+2,2kVL

m+1 ⋄AV
(2)
k+1

= h2k+1,2kt:,2k+1 + h2k+2,2kt:,2k+2.

Hence

t:,2k+2 =
1

h2k+2,2k
(−h2k+1,2kt:,2k+1 + e

2(m+1)
2k −

[
Tkh1:2k,2k
0(2m−2k)×2k

]
).
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By using the inverse of the 2×2 upper triangular matrix Hk+1,k and defining
ρ(k+1) = (ℓ

(k+1)
11 )−1ℓ

(k+1)
12 , this relation can be written as follows:

t:,2k+2 = t:,2k+1ρ
(k+1) + (e

2(m+1)
2k −

[
Tkh1:2k,2k

0(2m−2k)×2k)

]
)ℓ

(k+1)
22 ,

which completes the proof.

4.1 Extended global Hessenberg process for low-rank
Sylvester tensor equation

In this subsection, we consider the extended global Hessenberg process de-
rived in the previous subsection for the pair (A(i), B(i)), i = 1, . . . , N. By
applying Algorithm 3 with s = R to the pair (A(i), B(i)), i = 1, . . . , N, the
block matrices Vmi

= [V
(i)
1 , . . . , V

(i)
mi ], i = 1, . . . , N, are obtained and the

following relation holds, for i = 1, . . . , N ,

A(i)Vmi
= Vmi+1(Tmi

⊗ I(R))

= Vmi
(Tmi

⊗ I(R)) + V
(i)
mi+1(T

(i)
mi+1,mi

ET
mi
⊗ I(R)), (18)

where ET
mi

=
[
02×2, . . . , 02×2, I

(2)
]
∈ R2×2mi , and Tmi

= (T
(i)
i,j ) ∈ R2(mi+1)×2mi

is the restriction ofA(i) to the extended global Krylov subspaceKe
mi

(A(i), B(i)).
Using Line 1 of Algorithm 3, we have

B(i) = r
(i)
11 (V

(i)
1 )(1), for i = 1, 2, . . . , N.

As in the case of the global Hessenberg process, for the low-rank Sylvester
tensor equation (1), we seek an approximate solution of the form

Xm = (Ym ⊗ IR)× {Vm}, (19)

where {Vm} denotes a set of matrices Vmi
∈ Rn×2Rmi , i = 1, . . . , N, and

Ym ∈ R2m1×···×2mN satisfies the low-dimensional Sylvester tensor equation

N∑
i=1

Ym ×i Tmi
= βmEm, (20)

where βm =
∏N

i=1 r
(i)
11 and Em = (e

(2m1)
1 ◦ · · · ◦ e(2mN )

1 ). In this case, the
residual corresponding to Xm can be written as
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Rm = −
N∑
i=1

(Ym ×i T
(i)
mi+1,mi

ET
mi

)⊗ IR ×1 Vm1
. . .×i V

(i)
mi+1 . . .×N VmN

.

(21)

We can easily obtain

∥Rm∥ ≤
√

((2nR− 2m+ 1)m)N

√√√√ N∑
i=1

∥Ym ×i T
(i)
mi+1,miE

T
mi
∥ (22)

and

∥Rm∥ ≤
√

(2nmR)N

√√√√ N∑
i=1

∥Ym ×i T
(i)
mi+1,miE

T
mi
∥, (23)

where m = max
1≤i≤N

mi. Finally, the following estimate is derived heuristically:

∥Rm∥ ≈ Em := N
√

(2nmR)

√√√√ N∑
i=1

∥Ym ×i T
(i)
mi+1,mi

ET
mi
∥. (24)

For the extended global Hessenberg process, the main part of Algorithm
2 remains the same except that the lines 6, 9, and 10 must be changed as
follows:

6. Construct the basis
[
Vki+1, . . . , Vki+k

′
i

]
and the matrix Tmi by Algo-

rithm 3 and the formulas of Proposition 6.

9. Solve the low-dimensional equation
∑N

i=1 Ym ×i Tmi = βmEm by the
recursive blocked algorithms presented in [11].

10. Compute the estimated residual norm of Rm, that is,
Em = N

√
(2nmR)

√∑N
i=1 ∥Ym ×i T

(i)
mi+1,mi

ET
mi
∥2.

5 Complexity consideration

In this section, we present the required number of operations to solve the
low-rank Sylvester tensor equation (1) for I1 = I2 = · · · = IN . Let Nnz de-
note the number of nonzero elements of matrix A, and suppose that the LU
decomposition of A is available for computing the block matrix W = A−1V .
We compare the required operations for the extended global Hessenberg pro-
cess and the extended global Arnoldi process [18]. Algorithm 3 requires
(2n2s+ 4ns) operations for computing the block matrices V (1)

1 and V (2)
1 . In

addition, the iteration k of this algorithm involves
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• V (1)
k+1, which requires 2sNnz + ns(4k + 1)− 4k2 operations,

• V (2)
k+1, which requires 2n2s+ ns(4k + 3)− (2k + 1)2 operations.

Note that the global Arnoldi process (Algorithm 2 in [18]) requires 2n2s+10ns
operations for computing the global QR decomposition [V,A−1V ], and the
iteration k of this process involves

• U = [AV
(1)
k , A−1V

(2)
k ], which requires 2sNnz + 2n2s operations.

• Hi,j = V T
i ⋄ U, U = U − Vi(Hi,j ⊗ I(s)), i = 1, 2, . . . , k, which require

16nsk operations.

• the global decomposition of U , that is, U = Vk+1(Hk+1,k⊗ I(s)), which
requires 10ns operations.

Therefore, for computing an approximation of the solution of Sylvester tensor
equation (1), the total cost number of operations required to perform m
iterations of the extended global versions of Arnoldi and Hessenberg processes
is approximately shown in Table 1. In addition, the total cost number of
operations required to perform m iterations of the global Hessenberg process
(Algorithm 1) and the modified global Arnoldi process (Algorithm 2.2 in
[23]) is presented in this table. According to Table 1, when solving the low-
rank Sylvester tensor equation (1), the global and extended global Hessenberg
processes are less expensive than the global and extended global Arnoldi ones.
On the other hand, these Hessenberg processes use the maximum strategy.
Hence they involve some data movement. However, these processes need
slightly less storage than the Arnoldi processes per iteration.

Table 1: Operation count for the global and extended global versions of
Hessenberg and Arnoldi processes.

Process Number of operations
Global Arnoldi N(2mRNnz + (m+ 1)(2m+ 3)nR− (m(m+ 1))/2)
Global Hessenberg N(2mRNnz + (m+ 1)2nR− (m(m+ 1)(2m+ 1))/6)
Extended Global Arnoldi N(2mRNnz + 2(m+ 1)n2R+ (m+ 1)(8m+ 10)nR)
Extended Global Hessenberg N(2mRNnz + 2(m+ 1)n2R+ 4(m+ 1)2nR−m(8m2 + 18m+ 13)/3)

6 Numerical experiments

In this section, some test problems with N = 3 are used to examine the ro-
bustness of two new presented methods for solving the low-rank Sylvester
equation (1). All the numerical experiments were performed in double-
precision floating-point arithmetic in MATLAB 2021a. The machine we have
used is an Intel(R) Xeon(R) CPU E5-2680 v4@2.40 GHz, 128 GB of RAM,
using the Tensor Toolbox [2]. We employ the recursive blocked algorithms
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introduced in [11] to solve the low-dimensional Sylvester tensor equations (8)
and (20). The step size parameter k′ associated with one cycle is equal to 3.
The algorithms stopped whenever Em ≤ 10−7, where Em is the estimate of
∥Rm∥. We also compare the numerical behavior of the methods in terms of
the number of cycles (Cycle), the norm of residual ∥Rm∥, the norm of error
∥X ∗ − Xm∥, where X ∗ is the exact solution, and the CPU time in seconds
(CPU time) required only for constructing the Krylov subspace basis and the
solution of reduced Sylvester tensor equation. Note that we use the proce-
dure cp_als(B, R) from the toolbox [2] to compute the CP decomposition of
the right-hand side B. In Table 2, we report ∥B − Bcp∥, where the Bcp is the
CP decomposition corresponding to the right-hand side tensor B, using the
procedure cp_als(B, R). The results of examples are reported in Table 2. For
each example, the rank R and the dimension n are presented in this table.
In Figure 1 , by plotting the norm of residual ∥Rm∥F versus the number of
cycles, we display the convergence history of the global and extended global
Arnoldi and Hessenberg algorithms for Examples 1–5.

Example 1. In this example, as in [5], we consider the matrices A(i), i =
1, 2, 3, corresponding to discretization of the operator

L(u) = ∆u− f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂y
+ g(x, y),

in the unit square [0, 1]× [0, 1] with Dirichlet homogeneous boundary condi-
tions. The number of inner grid points in each direction is n0 for the operator
L. The discretization of the operator L yields matrices extracted from the
Lyapack package [29], using the command fdm and denoted as

A(i) = fdm(n0, f1(x, y), f2(x, y), g(x, y)), i = 1, 2, 3,

with f1(x, y) = exy, f2(x, y) = sin(x, y), g(x, y) = y2 − x2, n = n20. The
right-hand side tensor is chosen in such a way that the exact solution of the
Sylvester tensor equation (1) has the form X ∗ = x1 ◦ x2 ◦ x3, with xi =
rand(n, 1), for i = 1, 2, 3.

Example 2. Assume that in the Sylvester tensor equation (1), the coefficient
matrices are presented as [5]

A(i) = gallery(′poisson′, n0), i = 1, 2, 3,

where n = n20. The right-hand side tensor is constructed such that the exact
solution X of the Sylvester tensor equation (1) is a tensor with entries equal
to one.

Example 3. Let A(i), i = 1, 2, 3, be defined as [10]

A(i) = rand(n,n)+ diag(ones(n,1) ∗ alfa),
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where alfa = 8 and the right-hand side tensor is constructed as in Example
1.

Example 4. Consider the Sylvester equation (1) with the coefficient matrices
generated by [38]

A(i) = diag(rand(n-1,1),-1)+ diag(2 + diag(rand(n,n))), i = 1, 2, 3,

and the right-hand side tensor is constructed as in Example 1.

Example 5. The coefficient matrices A(i), i = 1, 2, 3, for the Sylvester tensor
equation (1) are defined as

A(i)(l, j) =
1

1 + |l − j|
,

and the right-hand side tensor is constructed as in Example 1.

Table 2: Results of Examples 1–5.

Example Algorithm ∥B − Bcp∥ ∥Rm∥ ∥X ∗ −Xm∥ Cycle CPU time

Global Arnoldi 3.655e− 08 8.549e− 08 9.903e− 11 30 2.879
Example 1 Global Hessenberg 3.655e− 08 2.901e− 07 2.667e− 10 28 2.558
n = 400 ,R = 4 Extended Global Arnoldi 3.655e− 08 4.197e− 08 3.173e− 11 7 0.261

Extended Global Hessenberg 3.655e− 08 1.411e− 07 1.162e− 10 6 0.110

Global Arnoldi 1.355e− 08 1.406e− 08 1.560e− 08 14 0.138
Example 2 Global Hessenberg 1.355e− 08 1.573e− 08 1.735e− 08 14 0.229
n = 400 , R = 3 Extended Global Arnoldi 1.355e− 08 1.375e− 08 1.603e− 08 5 0.079

Extended Global Hessenberg 1.355e− 08 4.528e− 08 2.652e− 08 4 0.058

Global Arnoldi 1.532e− 05 1.531e− 05 3.731e− 07 19 0.612
Example 3 Global Hessenberg 1.532e− 05 1.530e− 05 3.729e− 07 18 0.479
n = 500 , R = 3 Extended Global Arnoldi 1.532e− 05 1.531e− 05 3.731e− 07 9 0.429

Extended Global Hessenberg 1.532e− 05 1.531e− 05 3.731e− 07 8 0.267

Global Arnoldi 1.980e− 07 1.980e− 07 2.698e− 08 5 0.049
Example 4 Global Hessenberg 1.980e− 07 1.984e− 07 2.704e− 08 4 0.046
n = 500 ,R = 3 Extended Global Arnoldi 1.980e− 07 1.980e− 07 2.698e− 08 3 0.082

Extended Global Hessenberg 1.980e− 07 1.980e− 07 2.698e− 08 3 0.077

Global Arnoldi 1.038e− 08 1.034e− 08 2.567e− 09 12 0.120
Example 5 Global Hessenberg 1.038e− 08 1.161e− 08 2.622e− 09 11 0.144
n = 500 , R = 3 Extended Global Arnoldi 1.038e− 08 1.042e− 08 2.567e− 09 5 0.115

Extended Global Hessenberg 1.038e− 08 1.034e− 08 2.566e− 09 5 0.112

As can be seen from Table 2 and Figure 1, Global Arnoldi, Extended
Global Arnoldi, and Global Hessenberg, Extended Global Hessenberg meth-
ods are shown a similar behavior. In addition, for all examples, the number
of cycles of Extended Global Hessenberg is less than or equal to that of the
other methods. In Examples 1, 2, 3, and 5, the CPU time of Extended
Global Hessenberg method is less than the others. The results of Example 4
show that when the required number of cycles is small for Global Hessenberg
method, this method outperforms the other methods in terms of CPU times.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5

Figure 1: Convergence history of the global and extended global Arnoldi and
Hessenberg algorithms for Examples 1–5.

7 Conclusion

In this study, for computing the approximate solutions of the Sylvester tensor
equation (1) with the low-rank right-hand side, two new projection methods
based on the Hessenberg process were proposed. The theoretical results of
these methods were presented and analyzed as well. The global and extended
global Hessenberg algorithms were compared, in terms of CPU times, cycles,
and the number of operations, with the global and extended global Arnoldi
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algorithms, respectively. Numerical examples showed that the global and
extended global Hessenberg algorithms are efficient and feasible for solving
the low-rank Sylvester tensor equation (1).
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Abstract

In this paper, we present an efficient method to solve linear time-delay
optimal control problems with a quadratic cost function. In this regard,
first, by employing the Pontryagin maximum principle to time-delay sys-
tems, the original problem is converted into a sequence of two-point bound-
ary value problems (TPBVPs) that have both advance and delay terms.
Then, using the continuous Runge–Kutta (CRK) method, the resulting
sequences are recursively solved by the shooting method to obtain an opti-
mal control law. This obtained optimal control consists of a linear feedback
term, which is obtained by solving a Riccati matrix differential equation,
and a forward term, which is an infinite sum of adjoint vectors, that can
be obtained by solving sequences of delay TPBVPs by the shooting CRK
method. Finally, numerical results and their comparison with other avail-
able results illustrate the high accuracy and efficiency of our proposed
method.
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1 Introduction

In recent years, optimization and control of systems with time delay have
been considered in much research because the time delay in many processes
cannot be ignored. To more accurately express the behavior of a natural
phenomenon, we need a more complex system. Some of the applications of
these issues are in the chemical, electronic, medicine, engineering, biological,
economy, and so on [22, 19, 12, 7, 8, 41].

In general, two methods are provided to solve optimal control problems
(OCPs). The first approach involves the use of necessary and (or) sufficient
conditions of optimality by applying the Pontryagin minimum (maximum)
principle or optimality principle. The minimum principle was presented in
1956 by the Russian mathematician Lev Pontryagin and his students, and
its primary application was to maximize the terminal velocity of a rocket.
This result was obtained using the classical ideas of variational calculus.
The equations obtained from these conditions can be solved numerically.
This approach yields indirect methods, which are known as analytical-based
methods; see [39, 43, 17, 13].

In another approach, an OCP is considered an optimization problem. in-
stead of using the optimality conditions, the dynamic constraints are trans-
formed into an algebraic equations system by discretizing the time interval
and parameterizing the variables of the problem. Therefore, the OCP be-
comes a nonlinear programming problem of dimension finite. The result-
ing nonlinear programming problem can then be solved using optimization
techniques. This approach yields direct methods. We refer the reader to
[11, 2, 18, 26, 8]. Since direct methods do not need to calculate the opti-
mality conditions, they can be used for a wide range of OCPs. However,
the lack of guarantee for the optimal solution and the high amount of mem-
ory resources and time for producing a close approximation is among the
disadvantages of these methods.

In the case of time-delay OCPs, in 1963, Oǧuztöreli [35] was one of the
pioneers in the analytical-based approach (also, see [36]). For the first time,
Kharatishvili [24] generalized the Pontryagin maximum principle for OCPs
with a constant delay in the state variable. Then in [25], he gave similar
results on OCPs with delay in the control variable. After that, in 1968, a
maximum principle for OCPs with multiple constant delays in state and con-
trol was proved by Halanay [16]. In 1972, Ray and Soliman [42] also obtained
similar results. Guinn [14] transformed the delayed OCP with constant delay
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in the state variable into a higher-dimensional undelayed OCP. Banks [3] de-
rives a maximum principle for control systems with a time-dependent delay
in the state variable.

The system resulted from the necessary conditions that Kharatishvili
provided, which was a two-point boundary value problem involving both
advance and delay terms. This type of problem does not have an exact
solution, except in exceptional cases. Therefore, there are many attempts
available in the literature to approximately solve this problem; for example,
see [29, 44, 30, 31, 32, 20, 21, 6].

The following articles can be mentioned as the latest studies. For OCPs
with time-invariant delayed systems, Mirhosseini-Alizamini, the second au-
thor, and Heydari [32] applied the variational iteration method and then
obtained a suboptimal solution for the two-point boundary value problem
(TPBVP). Moreover, Mirhosseini-Alizamini and the second author [31] in-
vestigated infinite horizon OCPs with time-variant delayed systems. Also,
using a Hermite interpolation polynomial for delay terms and employing a
second-order finite difference formula for the first-order derivatives, Jajarmi
and Hajipour [21] converted the TPBVP obtained from the time-delay OCP
into a system of linear algebraic equations and then solved it. Recently, using
an algorithm based on the forward and backward difference approximation,
Bouajaji et al. [6] solved the system obtained from the application of the
Pontryagin maximum principle to a delayed OCP.

In this work, we investigate a family of time-delay OCPs with a quadratic
cost functional that should be minimized subject to a linear time-delay system
with constant delay in the state variable. Using the Pontryagin minimum
principle for delayed systems from [24] and then applying continuous Runge–
Kutta (CRK) methods, we convert a time-delay OCP into a sequence of
linear TPBVPs and thereafter solve it recursively by the shooting method to
obtain the optimal control law.

The rest of the paper is organized as follows: The CRK methods are pre-
sented in Section 2. After that, in Section 3, we introduce the Shooting CRK
(SCRK) method and apply it to a delayed TPBVP. Then, in the continua-
tion of this section, we present a basic algorithm for the proposed method.
In the next section, we will use a generalization of this algorithm to solve a
time-delay OCP. Section 4 describes the Pontryagin maximum principle for
our delayed OCP and designs an algorithm based on the previous algorithm
defined in Section 3 for solving the final system. In Section 5, we give sev-
eral numerical examples to demonstrate the effectiveness and accuracy of the
proposed technique. Finally, with the conclusion in Section 6, we end the
article.
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2 CRK methods

In this section, we describe the CRK methods. Consider f(t, x(t)) ∈
C0([t0, tf ] × Rd,Rd). The CRK methods were originally designed to treat
the initial value problem for the following ordinary differential equation:{

ẋ(t) = f(t, x(t)), t0 ≤ t ≤ tf ,
x(t0) = x0.

(1)

Some of the implicit Runge–Kutta methods are equivalent to collocation
methods; see [46]. Thus, they sequentially provide a continuous extension
of the approximate solution without any additional evaluation of f . Indeed,
the next question is whether there is such a continuous extension for each
Runge–Kutta process that is given sequentially by the method itself?

Nørsett and Wanner partially answered this question by proving that a
large number of Runge–Kutta methods are the same as the somewhat per-
tubed collocation method that is somewhat perturbed. After that, Zennaro
[47] presented a continuous extension of the solution provided by a Runge–
Kutta method, which includes the collocation solution if it is equivalent to
collocation and behaves similarly in other cases.
Let ∆ = {t0, . . . , tn, . . . , tN = tf} be an arbitrary mesh. Then for the nu-
merical solution of the ordinary differential equation (1), an s-stage discrete
Runge–Kutta method has the form

xn+1 = xn + hn+1

s∑
i=1

biki, (2)

ki = f(tin, xn + hn+1

s∑
j=1

aijkj), i = 1, . . . , s, (3)

where ci =
∑s

j=1 aij , t
i
n = tn + cihn+1, i = 1, . . . , s, and hn+1 = tn+1 − tn.

In addition, the Runge–Kutta method (2) and (3) is denoted by (A, b). Let
the solution have advanced to the point t = tn. Zennaro [47] showed that
for this s-stage Runge–Kutta method of order p, there is a CRK method of
degree d, if there exist s polynomials bi(θ), i = 1, . . . , s, of degree less than
or equal to d, independent of f . This method reads as follows:

η(tn + θhn+1) = xn + hn+1

s∑
i=1

bi(θ)ki, 0 ≤ θ ≤ 1, (4)

ki = f(tin, xn +

s∑
j=1

aijkj), i = 1, . . . , s, (5)

where
η(tn) = xn, η(tn + hn+1) = xn+1,

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 680–703



684 Jabbari-Khanbehbin, Gachpazan, Effati and Miri

and xn is an approximate solution obtained by applying the Runge–Kutta
method for x(tn). This method, which is usually expressed as (A, b(θ)), can
also be related to the following CRK tableau:

C A
bT (θ)

.

In fact, {ci, aij}’s are the same as the coefficients of the discrete Runge–Kutta
method. Now, we recall the consistency of the discrete Runge–Kutta method
from [5].

Definition 1. [5, Definition 5.1.3] Consider p ≥ 1 the largest integer having
the following property: For every mesh point and Cp-continuous right-hand-
side function f(t, x) in (1), the local solution zn+1(t) to the local problem{

z
′

n+1(t) = f(t, zn+1(t)), tn ≤ t ≤ tn+1,
zn+1(t) = x∗n,

(6)

satisfies
∥zn+1(tn+1)− xn+1∥ = O(hp+1

n+1)

uniformly with respect to x∗n belonging to a bounded subset of Rd and re-
spect to n = 0, . . . , N−1, Then we say that the discrete Runge–Kutta method
(A, b) is consistent with order p.

Similarly, with the above notations, we say that the continuous extension
(4) is consistent with uniform order q if q ≥ 1 is the largest integer having
the following property:

max
tn≤t≤tn+1

∥zn+1(t)− η(t)∥ = O(hq+1
n+1),

for every mesh point and Cq-continuous right-hand-side function f(t, x) in
(1).

According to Definition 1, the convergence results in discrete and CRK
methods for ordinary differential equations have been proved in the following
theorem; see [5].

Theorem 1. [5, Theorem 5.1.4] Suppose that the Runge–Kutta method (2)
and (3) is consistent with order p and that f(t, x) defined in (1) is a right-
hand-side Cp-continuous function. Then, on any bounded interval [t0, tf ],
the method has discrete global order (or, equivalently, is convergent of order)
p. In other words,

max
1≤n≤N

∥x(tn)− xn∥ = O(hp),

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 680–703



Shooting continuous Runge–Kutta method ... 685

in which h = max
1≤n≤N

hn.
Moreover, let the continuous extension (4) have the uniform order q. Then

the CRK method (4) and (5) has the uniform global order (or, equivalently,
uniformly convergent of order) q′ = min (q + 1, p), which means that

max
t0≤t≤tf

∥x(t)− η(t)∥ = O(hq
′
).

Then, Baker and Paul [1] generalized this idea for a CRK method to delay
differential equations with a general delay differential equation of the form{

ẋ(t) = f(t, x(t), x(t− τ(t)), t > t0,
x(t) = ϕ(t), t0 − τ(t0) ≤ t ≤ t0, (7)

in which f : R×Rn×Rn → Rn and τ(t) ≥ 0. Moreover, ϕ ∈ C0[t0−τ(t0), t0]
denotes the initial information of the state variable x. For delay differential
equations, Baker and Paul [1] modified (4) and (5) as follows :

η(tn + θhn+1) = xn + hn+1

s∑
i=1

bi(θ)ki, 0 ≤ θ ≤ 1, (8)

ki = f(tin, Xi, η(t
i
n − τ(tin))), i = 1, . . . , s, (9)

Xi = xn + hn+1

s∑
j=1

aijkj , i = 1, . . . , s. (10)

When the delay is constant and hn+1 ≤ τ , then η(tin − τ) is known for any i
(0 ≤ ci ≤ 1). In this case, η(tin−τ) is available from the past, so this method
is an explicit CRK method. The pair formed by (A, b) and (A, b(θ)) is called
the underlying CRK method.

Theorem 2. [5, Theorem 6.3.1] Assuming the delay differential equation (7),
suppose that f(t, x, y) ∈ [t0, tf ]×Rn×Rn is a Cp-continuous function. Then
the delay τ(t) ∈ [t0, tf ]×Rn is a Cp-continuous function and ϕ(t) is the initial
Cp-continuous function. In addition, let ∆ = {t0, t1, . . . , tn, . . . , tN = tf} be
the mesh containing all points of discontinuity with the order less than or
equal to p being in [t0, tf ]. Also, assume that the underlying CRK method
has the uniform and discrete orders q and p, respectively. Then for the delay
differential equation, the CRK method (8), (9), and (10) has uniform global
and discrete global orders q′ = min (p, q + 1). In other words,

max
1≤n≤N

∥x(t)− η(t)∥ = O(hq
′
),

and
max

1≤n≤N
∥x(tn)− xn∥ = O(hq

′
),
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where h = max
1≤n≤N

hn.

3 Outline of SCRK method for a delay TPBVP

In the present section, we first state details of the proposed method on a
TPBVP with only a time-delay term. Therefore, consider the following basic
form of a first-order TPBVP with a time delay:

ẋ(t) = f1(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,
ẏ(t) = f2(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,
x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
y(tf ) = β.

(11)

For solving this problem, we need to use the solutions to a sequence of ini-
tial value problems that are made by substituting the initial guess y(t0) = z
instead of the terminal condition y(tf ) = β in (11).

To approximate a solution to the boundary value problem (11), we involve
a parameter z, by choosing the parameters z = zk such that

lim
k→∞

y(tf , zk) = y(tf ) = β,

where y(t) is the solution to the boundary value problem (11) and y(t, zk)
denotes the solutions to the constructed initial value problem with initial
conditions x(t) = ϕ(t), t0 − τ ≤ t ≤ t0 and y(t0) = zk.

This technique is called the Shooting method. For starting, we choose
a parameter z1 such that it determines the initial evaluation at which the
object is fired from the point (t0, ϕ(t0)) and along the curve indicated by the
solution to the problem

ẋ(t) = f1(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,
ẏ(t) = f2(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,
x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
y(t0) = z1.

(12)

If y(tf , z1) is not sufficiently close to β, then we correct the approximation
by choosing elevations z2, z3, and so on, until y(tf , zk) is sufficiently close to
β.

For determining the parameters zk, we must solve this problem:

y(tf , z)− β = 0. (13)

To solve this nonlinear equation, we use the secant method. For this method,
we need to choose initial approximations z1 and z2 and then generate the
remaining terms of the sequence by the following formula:
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Algorithm 1 SCRK method for time-delay TPBVP

Step 1. Set N (the number of subintervals), h =
tf−t0

N
, K = 1, M (the maximum number

of iterations), and s (the number of stages of the CRK method), and choose z1, z2,
and tolerance error bound ϵ.

Step 2. While L ≤M , do
• Set x0 = α and y(t0) = z1,

Step 3. For k = 1, 2, · · · ,
• solve (12), using the CRK method (15).
• Set x0 = α and y(t0) = z1,

Step 4. Check the stop condition,
• If |yN − β| < ϵ, then the procedure is complete, and jump to Step 7,
• else, go to the next step.

Step 5. If k = 1, then set y(t0) = z2 and back to Step 3,
• else, go to the next step,

Step 6. Calculate the next approximation for zk+1 from (14), set y(t0) = zk+1, and back
to Step 3.

• end for
Step 7. Stop the algorithm and output (tn, xn, yn).

• end while
Step 8. Output (maximum number of iterations exceeded).

• Stop

zk+1 = zk −
y(tf , zk)− β

y(tf , zk)− y(tf , zk−1)
(zk − zk−1), k = 3, 4, . . . . (14)

To obtain y(tf , z1) in (12), we use the CRKmethod (8), (9), and (10) for a sys-
tem of delay differential equations. For a given mesh∆ = {t0, . . . , tn, . . . , tN =
tf}, let h =

tf−t0
N . In each underlying mesh interval [tn, tn+1], CRK formulas

for (12) are as follows:

k1,i = f1(t
i
n, Xi, Yi, ηx(t

i
n − τ1), ηy(tin − τ2)), i = 1, . . . , s,

k2,i = f2(t
i
n, Xi, Yi, ηx(t

i
n − τ1), ηy(tin − τ2)), i = 1, . . . , s,

Xi = xn + h
∑s

j=1 aijk1,j , i = 1, . . . , s,
Yi = yn + h

∑s
j=1 aijk2,j , i = 1, . . . , s,

ηx(tn + θh) = xn + h
∑s

i=1 bi(θ)k1,i, 0 ≤ θ ≤ 1,
ηy(tn + θh) = yn + h

∑s
i=1 bi(θ)k2,i, 0 ≤ θ ≤ 1,

(15)

Note that at the endpoint of the interval, the stop condition must be
checked. In the following algorithm, we describe an SCRK method for a
time-delay TPBVP.
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Example 1. Consider the following second-order delay boundary value prob-
lem: 

x
′′
(t) = − 1

16 sinx(t)− (t+ 1)x(t− 1) + t, 0 ≤ t ≤ 2,

x(t) = t− 1
2 , t ≤ 0,

x(2) = − 1
2 .

(16)

With the new condition x′
(0) = z, instead of solving (16), we need to solve

a sequence of initial value problems of the form
x

′′
(t) = − 1

16 sinx(t)− (t+ 1)x(t− 1) + t, 0 ≤ t ≤ 2,

x(t) = t− 1
2 , t ≤ 0,

x
′
(0) = z.

(17)

Now, we try to make the value of y(2, z) as close to β = − 1
2 as possible by

adjusting the value of z. Before that, by assuming y(t) = x
′
(t), we turn the

delay second-order system (17) into a delay first-order system as follows:
x

′
(t) = y(t), 0 ≤ t ≤ 2,

y
′
(t) = − 1

16 sinx(t)− (t+ 1)x(t− 1) + t,

x(t) = t− 1
2 , t ≤ 0,

y(0) = z.

(18)

We solve this problem by applying Algorithm 1. For this purpose, we use the
explicit Runge–Kutta of discrete order p = 4 with the following coefficients:

0 0
1
2

1
2 0

1
2 0 1

2 0
1
2 0 0 1 0

1
6

1
3

1
3

1
6

Moreover, we set

b1(θ) =
1

2
θ2 +

2

3
θ, b3(θ) =

1

3
θ,

b2(θ) =
1

3
θ, b4(θ) =

1

2
θ2 − 1

3
θ.

Table 1 indicates a comparison between the approximate result of our
SCRK method and the results obtained in [34].
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Table 1: Approximation values of x(t) in Example 1

xn(1) xn(1.5) xn(2)
n Ref. [34] Proposed method Ref. [34] Proposed method Ref. [34] Proposed method
4 -1.854384 -1.983957 -1.719174 -1.884111 -0.499976 -0.499999
6 -2.018854 -2.032385 -1.896332 -1.922809 -0.499999 -0.500000
8 -2.066385 -2.052802 -1.946231 -1.939199 -0.499999 -0.500000
10 -2.078723 -2.063029 -1.959110 -1.947469 -0.499999 -0.500000
12 -2.081821 -2.068830 -1.962343 -1.952141 -0.500000 -0.500000

4 Design of SCRK method for an OCP with time delay
in state variable

In this section, we first use the Pontryagin maximum principle to solve our
delayed OCP. Then, for solving the final system, we describe an algorithm
based on Algorithm 1. Through this section, by PC1([t0, tf ],Rn) we de-
note the class of continuous functions from [t0, tf ] into Rn whose first-order
derivatives are piecewise continuous, and similarly, PC([t0, tf ],Rn) denotes
the class of piecewise continuous functions from [t0, tf ] into Rn.

Consider the linear system with delay in the state variable{
ẋ(t) = Ax(t) +A1x(t− τ) +Bu(t), t0 ≤ t ≤ tf ,
x(t) = ϕ(t), t0 − τ ≤ t ≤ t0, (19)

where u(t) in PC([t0, tf ],Rn) and x(t) in PC1([t0−τ, tf ],Rn) are the control
and state variables, respectively. In fact, the parameter τ > 0 is nonnegative
and indicates the time delay. Furthermore, the initial state function ϕ(t) is
continuous in C([t0 − τ, t0],Rn), and finally, the matrices A, B, and A1 are
real constants with appropriate dimensions. For t ∈ [t0, tf ], our aim is to
obtain, u∗(t), the optimal control law minimizing the quadratic cost function

J =
1

2

∫ tf

t0

(uT (t)Ru(t) + xT (t)Qx(t))dt+
1

2
xT (tf )Qfx(tf ), (20)

in which R ∈ Rm×n is a positive definite matrix and Q and Qf ∈ Rn×n are
positive semi-definite matrices.

For time-delay OCPs, it follows from [24] that the pontryagin maximum
principle provides the necessary conditions of optimality for the problem (19)
and (20) as follows:
ẋ(t) = Ax(t) +A1x(t− τ)−BR−1BTλ(t), t0 ≤ t ≤ tf ,

λ̇(t) =

{
−Qx(t)−ATλ(t)−AT

1 λ(t+ τ), t0 ≤ t ≤ tf − τ,
−Qx(t)−ATλ(t), tf − τ < t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
λ(tf ) = Qfx(tf ).

(21)
The Hamiltonian function from which the above conditions are derived is
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H(x, u, λ, t) = λT (t)[Ax(t) +Bu(t) +A1x(t− τ) +
1

2
xT (t)Qx(t)+

1

2
uT (t)Ru(t)], (22)

where λ(t) ∈ PC1([t0, tf ],Rn) is called co-state vector. Moreover,

u∗(t) = −R−1BTλ(t), (23)

for t0 ≤ t ≤ tf , is the optimal control law. We recall that the system (21)
is a TPBVP with both time-advance and time-delay terms. Unfortunately,
in general, this problem does not have any analytical solution. Therefore,
providing an efficient method for solving this difficult problem numerically is
very important.

At first, we produce a sequence of TPBVP as

ẋ(k)(t) = −Sλ(k)(t) +Ax(k)(t) +A1x
(k)(t− τ), t0 ≤ t ≤ tf ,

λ̇(k)(t) =

{
−ATλ(k)(t)−Qx(k)(t)−AT

1 λ
(k−1)(t+ τ), t0 ≤ t ≤ tf − τ,

−ATλ(k)(t)−Qx(k)(t), tf − τ < t ≤ tf ,
x(k)(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
λ(k)(tf ) = Qfx

(k)(tf ),

x(0)(t) ≡ 0, λ(0)(t) ≡ 0, t0 ≤ t ≤ tf ,
(24)

where S = BR−1BT and k = 1, 2, . . .. Therefore,

u(k)(t) = −R−1BTλ(k)(t) (25)

is the sequence of controls. Now, we are ready to obtain a closed-loop optimal
control. We can define the co-state vector by

λ(k)(t) = g(k)(t) + P (t)x(k)(t), (26)

in which g(k)(t) ∈ Rn is the kth adjoint vector and P (t) ∈ Rn×n is an
unknown function matrix with positive-definite property [45, 44].
Consider the following extended sequence of the TPBVP (24):

ẋ(k)(t) = [A− SP (t)]x(k)(t)− Sg(k)(t) +A1x
(k)(t− τ), t0 ≤ t ≤ tf ,

ġ(k)(t) =


−P (t)A1x

(k)(t− τ)− [A− SP (t)]T g(k)(t)
−AT

1 P (t+ τ)x(k−1)(t+ τ)−AT
1 g

(k−1)(t+ τ), t0 ≤ t ≤ tf − τ,
−P (t)A1x

(k)(t− τ)− [A− SP (t)]T g(k)(t), tf − τ < t ≤ tf ,
x(k)(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
g(k)(tf ) = 0,

x(0)(t) ≡ 0, g(0)(t) ≡ 0, t0 ≤ t ≤ tf .
(27)
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We note that by substituting (26) into the first equation of (24), the kth
optimal closed-loop system is constructed, which is the first equation of the
system (27). Similarly, substituting (26) in the second equation of (24) and
comparing the result with the derivative of (26), we obtain the second equa-
tion of the system (27). Also,

−Ṗ (t) = P (t)A+ATP (t)− P (t)BR−1BTP (t) +Q,

P (tf ) = Qf , (28)

is a Riccati matrix differential equation.
Moreover, from (25) and (26), the sequence of controls is converted to

u(k)(t) = −R−1BT (P (t)x(k)(t) + g(k)(t)), k = 1, 2, . . . . (29)

The system (27) is similar to (11), except that (27) has advance terms in
addition to the delay terms. Now, we want to use Algorithm 1 to solve this
advance-delay TPBVP. By using the SCRK method, we have the following
CRK iteration formula of (27) in the mesh interval [tn, tn+1]:

η(k)x (tn + θh) =x(k)n + h

s∑
i=1

bi(θ)[Ψ(tin)(x
(k)
n + h

s∑
j=1

aijk1,j)

− S(g(k)n + h

s∑
j=1

aijk2,j) +A1η
(k)
x (tin − τ)], t0 ≤ t ≤ tf ,

(30)

η(k)g (tn + θh) =



g
(k)
n + h

∑s
i=1 bi(θ)[−ΨT (tin)(g

(k)
n + h

∑s
j=1 aijk2,j)

−P (tin)A1η
(k)
x (tin − τ)−AT

1 P (t
i
n + τ)x(k−1)(tin + τ)

−AT
1 g

(k−1)(tin + τ)], t0 ≤ t ≤ tf − τ,
g
(k)
n + h

∑s
i=1 bi(θ)[−ΨT (tin)(g

(k)
n + h

∑s
j=1 aijk2,j)

−P (tin)A1η
(k)
x (tin − τ)], tf − τ < t ≤ tf ,

(31)

where tin = tn + cih, Ψ(tin) = A− SP (tin), and 0 ≤ θ ≤ 1. Also,{
x(k)(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
g(k)(tf ) = 0,

(32)

are the known initial and final conditions.
As already mentioned, for the constant delay, if 0 ≤ ci ≤ 1 and h ≤ τ ,

then η(tin−τ) is known for any i. Hence, ηx(tin−τ) in (30) and (31) is known,
and there is no so-called overlapping. On the other hand, x(k−1)(tin + τ) and
g(k−1)(tin + τ) are obtained from the previous iteration by the assumptions
x(0)(t) ≡ 0 and g(0)(t) ≡ 0.
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Theorem 3. Consider TPBVP (27).

i) Assume that the right-hand-side functions corresponding to ẋ(k)(t) and
ġ(k)(t) and the initial function ϕ(t) are Cp-continuous in their domains
(p is the discrete order of the underlying CRK method). Then the
sequences {η(k)x (t)} and {η(k)g (t)} obtained from CRK formulas (30)
and (31) with initial and boundary conditions (32), converge uniformly
to the solution of TPBVP (27).

ii) Under the assumptions of part (i), the sequences {u(k)(t)} and {J (k)},
which are defined as follows

u(k)(t) = −R−1BT [P (t)η(k)x (t) + η(k)g (t)], (33)

J (k) =
1

2
(η(k)x (tf ))

TQfη
(k)
x (tf ) +

1

2

∫ tf

t0

[(η(k)x (t))TQη(k)x (t)

+ (u(k)(t))TRu(k)(t)]dt, (34)

converge to optimal control u∗(t) and the optimal value of objective
function, J∗, respectively.

Proof. i) Consider the vector function F as follows:

F (t, x, g, u, v, w, z) = (ẋ(t), ġ(t))T , t0 ≤ t ≤ tf ,

and u, v, w, z denote delay and advance terms corresponding to the vari-
ables x(t) and g(t). Also, ẋ(t) and ġ(t) are the functions defined in (27).
Because F and ϕ are Cp-continuous functions and τ is a constant delay,
according to Theorem 2, the sequences {η(k)x (t)} and {η(k)g (t)} from the
CRK method are uniformly convergence to the exact solutions of (27).

ii) Suppose that {η(k)x (t)} and {η(k)g (t)} are solution sequences produced
by the CRK method, which are convergence to η̂x(t) and η̂g(t) under
the assumptions of part (i). We take the limit from the (33) as k →∞,

û(t) := lim
k→∞

u(k)(t) = −R−1BT [P (t)( lim
k→∞

η(k)x (t)) + lim
k→∞

η(k)g (t)]

= −R−1BT [P (t)η̂x(t) + η̂g(t)].

Since η̂x(t) and η̂g(t) are the exact solutions of necessary conditions
(27), so û(t) is the optimal control u∗(t).
Similarly, we take the limit from the (34) as follows:

Ĵ := lim
k→∞

J (k)

= lim
k→∞

((
1

2
(η(k)x (tf ))

TQfη
(k)
x (tf ))
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+
1

2
lim
k→∞

(

∫ tf

t0

[(η(k)x (t))TQη(k)x (t) + (u(k)(t))TRu(k)(t)]dt)

=
1

2
( lim
k→∞

(η(k)x (tf ))
TQf ( lim

k→∞
η(k)x (tf ))

+
1

2

∫ tf

t0

[( lim
k→∞

(η(k)x (t))T )Q( lim
k→∞

η(k)x (t))

+ ( lim
k→∞

(u(k)(t))T )R( lim
k→∞

u(k)(t))]dt

=
1

2
η̂Tx (tf )Qf η̂x(tf ) +

1

2

∫ tf

t0

[η̂Tx (t)Qη̂x(t) + ûT (t)Rû(t)]dt,

so, Ĵ is the optimal value of the performance index J .

According to Theorem 3, it can be concluded that for enough iterations
of the CRK method, for example, N iterations, where N depends on a given
error criterion, we can obtain a suboptimal control as follows:

u(N)(t) = −R−1BT [P (t)η(N)
x (t) + η(N)

g (t)]. (35)

In this case, the continuous suboptimal state function is as ηx(t) ∼= η
(N)
x (t).

To calculate a more accurate state function, the suboptimal control function
resulting from equation (35), can be placed in (19), and we then solve the
obtained initial value problem. Finally, by placing this pair of suboptimal
control and state in the objective function, we have

J (N) =
1

2
(η(N)

x (tf ))
TQfη

(N)
x (tf ) +

1

2

∫ tf

t0

((η(N)
x (t))TQη(N)

x (t)

+ (u(N)(t))TRu(N)(t))dt. (36)

For given ε > 0, if the stop condition,∣∣∣J (N) − J (N−1)

J (N)

∣∣∣ < ε,

is satisfied, then the suboptimal control (35) will have the desired accuracy.
Now, to implement the above method, we provide the following simple algo-
rithm.

5 Numerical examples

Now, we are ready to present several examples for showing the efficiency of
the SCRK method.

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 680–703



694 Jabbari-Khanbehbin, Gachpazan, Effati and Miri

Algorithm 2 SCRK method for time-delay OCPs

Step 1. Solve P (t) from (28).
Step 2. Put k = 1, x(0) ≡ 0, and g(0) ≡ 0. Then obtain a continuous approximation for

x(k)(t) and g(k)(t) from the kth TPBVP (30), (31), and (32) with the shooting
method (Algorithm 1).

Step 3. Let N = k and obtain u(N)(t) from (35).
Step 4. Obtain J(N) from (36).
Step 5. If

∣∣∣J(N)−J(N−1)

J(N)

∣∣∣ < ε, then the procedure is complete, and go to the next step;

• else, let k := k + 1, and back to Step 2.
Step 6. Stop the algorithm and consider the output u(N)(t) as the desired closed-loop

suboptimal control law.

Example 2. Consider the delay system{
ẋ = x(t) + u(t) + x(t− 1), t ≥ 0,
x(t) = 1, −1 ≤ t ≤ 0, (37)

to minimize this quadratic cost functional

J =
3

2
x2(2) +

1

2

∫ 2

0

u2(t)dt. (38)

It follows from [4] that the exact solution for u(t) is

u∗(t) =

{
δ(e2−t + (1− t)e1−t), 0 ≤ t ≤ 1,
δe2−t, 1 ≤ t ≤ 2,

(39)

and that J∗ = 3.1017, where δ = −0.3932. According to (37) and (38), we
have Q = 0, R = 1, Qf = 3, A = 1, B = 1, and A1 = 1. Hence, (28) can be
rewritten as {

ṗ(t) + 2p(t)− p2(t) = 0,
p(2) = 3,

(40)

which has the unique solution

p(t) =
6e4−2t

2− 3(1− e4−2t)
. (41)

For the first time, Banks and Burns [4] proposed a numerical method to
solve this problem based on averaging approximations. Then Pananisamy
and Rao [38] solved it by using the Walsh functions. After that, Mirhosseini-
Alizamini, the second author, and Heydari [32] used the variational iteration
method. Furthermore, Jajarmi and Hajipour [20] employed a finite difference
method for solving this problem. We apply our proposed method according
to Algorithm 2 to this example. Comparison results of the optimal values
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of J obtained by our proposed technique and other mentioned methods are
listed in Table 2. The curves depicted from the obtained approximations for
the state and control variables of problems (37) and (38) are shown in Figure
6.

Table 2: Value of cost functional for various methods in Example 2

Method J
Banks and Burns [4] 3.0833

Pananismay and Rao [38] 3.0879
Mirhosseini-Alizamini, Effati, and Heydari [32] 3.1091

Jajarmi and Hajipour [20] 3.101717
Proposed SCRK method 3.101667

Optimal cost J∗ 3.1017

(a) State variable x(t) (b) Control variable u(t)

Figure 1: Simulated curves of (a) state variable and (b) approximation and exact values
of control variable for Example 2

Now, we give another example.

Example 3. Consider the time-delay system{
ẋ = u(t)− x(t− 1), 0 ≤ t ≤ 1,
x(t) = 1, −1 ≤ t ≤ 0, (42)

to minimize this quadratic cost functional

J =

∫ 1

0

[
1

2
x2(t) +

1

2
u2(t)]dt. (43)

Now, our aim is to obtain the optimal control, u(t), subject to (42) that
minimizes (43). Moreover, the Riccati equation for this example is
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ṗ(t)− p2(t) + 1 = 0,
p(1) = 0,

(44)

and has the unique solution

p(t) = − tanh(t− 1) (45)

The exact solutions for u(t) and x(t) are, respectively, obtained as follows:

u∗(t) = 1 +
1

cosh(1)
(sinh(t− 1)− cosh(t)), (46)

x∗(t) =
1

cosh(1)
(cosh(t− 1)− sinh(t)). (47)

Moreover, it follows from [33] that the optimal value of cost functional
is J∗ = 0.1480542786. It can be shown that the approximate value of the
cost functional calculated by the proposed SCRK method is equal to J =
0.1480542988. It is clear that the approximate value of J is very close to the
optimal value. Also, we depict the simulation curves of the trajectory of x(t),
control variable u(t), and their exact values in Figure 2.

(a) State variable x(t) (b) Control variable u(t)

Figure 2: Approximation and exact values of state and control variables for Example
3

For the first time, Eller, Aggarwal, and Banks [10] presented the next
example and then studied by other authors in [23, 37, 9, 40].

Example 4. Consider the linear time-varying delay system{
ẋ = x(t) + u(t) + x(t− 1), 0 ≤ t ≤ 2,
x(t) = 1, −1 ≤ t ≤ 0,

(48)
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to minimize this quadratic functional

J =

∫ 2

0

[x2(t) + u2(t)]dt. (49)

Therefore, the Riccati equation for this example is{
ṗ(t) + 2p(t)− 1

2p
2(t) + 2 = 0,

p(2) = 0,
(50)

and the unique solution for this Riccati equation is

p(t) = 2− 2
√
2 tanh(

√
2t+ tanh−1(

√
2

2
)− 2

√
2). (51)

In Table 3, we compare the results of the suggested method with the reported
results in [10, 23, 37, 9, 40, 21]. Figure 3 shows the approximate values of
the state and control variables of the problem (48) and (49).

Table 3: Values of cost functional for various methods in Example 4

Method J
Eller, Aggarwal, and Banks [10] 6.45

Dadebo and luus [9] 6.26775
Oh and Luus [37] 6.23711

Jamshidi and malek-Zavarei [23] 6.5
Santos and Sanchez-Diaz [40] 6.97
Jajarmi and Hajipour [21] 6.219615
Proposed SCRK method 6.200623

(a) State variable x(t) (b) Control variable u(t)

Figure 3: Simulated curves of (a) state and (b) control variables for Example 4

Example 5. In this example, we want to minimize the cost functional
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J = 5x21(2) +
1

2

∫ 2

0

u2(t)dt, (52)

with the following two-dimensional delay system:
ẋ1(t) = x2(t), 0 ≤ t ≤ 2,
ẋ2(t) = −x1(t)− x2(t− 1) + u(t), 0 ≤ t ≤ 2,
x1(0) = 10, x2(0) = 0, −1 ≤ t ≤ 0.

(53)

Now, our aim is to obtain the optimal control u∗(t) subject to (53) that
minimizes (52). It follows from [4] that this problem has the exact solution

u∗(t) =

{
δ sin(2− t) + δ

2 (1− t) sin(t− 1), 0 ≤ t ≤ 1,
δ sin(2− t), 1 ≤ t ≤ 2,

(54)

in which the optimal cost is J∗ = 3.3991 and δ = 2.5599. In this two-
dimensional example, we have A =

[
0 1
−1 0

]
, A1 =

[
0 0
0 −1

]
, B =

[
0
1

]
, Q =[

0 0
0 0

]
, Qf =

[
10 0
0 0

]
, and R = 1.

Thus, instead of the Riccati equation, we have a system consisting of four
equations and four variables. After applying the proposed method to this
example, we obtained the minimum value of J = 3.3993. In Table 4, the
comparison of the result obtained with our proposed method and the result
based on the techniques presented in [4, 28, 27, 15, 32] is shown. Also, Figures
3 and 5 show the corresponding state trajectories of x1(t), x2(t) and control
variable u(t), respectively.

Table 4: Cost functional values of various methods for Example 5

Method J
Banks and Burns [4] 3.2587

Lee [28] 3.4827
Khellat [27] 3.43254

Haddadi, Ordokhani, and Razzaghi [15] 3.21663
Mirhosseini-Alizamini, Effati, and Heydari [32] 3.3991

Proposed SCRK method 3.3993

6 Conclusion

We employed The CRK method to solve a class of time-delay OCPs with
delay in the state variable and with quadratic cost functional in this paper. At
first, by employing the Pontryagin maximum principle for time-delay systems,
the delay OCP was converted to a sequence of TPBVPs that have both
delays and advance terms. After that, by applying the CRK method together
with the shooting method, we constructed two sequences in which the delay
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(a) State variable x1(t) (b) State variable x2(t)

Figure 4: Simulated curves of state variables for Example 5

Figure 5: Control variable u(t) for Example 5

and advance terms are known. Then we showed that by establishing the
continuity condition, these sequences converge to the exact solution of the
problem. The numerical results were presented to illustrate the high accuracy
and efficiency of our proposed approach. Further research can be done on
the extension of the SCRK method for solving time-delay OCPs with time-
dependent delays in the control and state variables.
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1 Introduction

The Schrödinger equation is a crucial equation in quantum mechanics, a
science that studies submicroscopic phenomena. It can arise from the Brow-
nian path integral. In [6], the path integral method to the Lévy-α process
was generalized, and the space fractional equations were derived.

Consider the space fractional coupled nonlinear Schrödinger (CNLS)
equations{
ıut + ξ(−∆)

α
2 u + η

(
|u|2 + θ|v|2

)
u = 0,

ıvt + ξ(−∆)
α
2 v + η

(
|v|2 + θ|u|2

)
v = 0,

a1 ≤ x ≤ a2, 0 < t < T.

(1)
Given the conditions of the initial boundary value as follows:

u(x, 0) =u0(x), v(x, 0) = v0(x), a1 ≤ x ≤ a2,
v(a1, t) =u(a2, t) = 0, v(a1, t) = v(a2, t) = 0, 0 ≤ t ≤ T,

where ı is the imaginary unit, ξ > 0, η > 0, θ ≥ 0 are some constants,
and 1 < α < 2. In [5], the fractional Laplacian was designated as

(−∆)
α
2 u(x, t) = H −1 (|ϕ|αH (u(x, t))) ,

in which H stands for the Fourier transform applied to the spatial variable x.
Assuming that −∞D

α
xu(x, t) and xD

α
+∞u(x, t) are the left and right Riemann–

Liouville fractional derivatives of order α ∈ R+ given by

−∞D
α
xu(x, t) =

1

Γ(n− α)
∂n

∂xn

∫ x

−∞
(x− µ)n−1−αu(µ, t)dµ,

xD
α
+∞u(x, t) =

1

Γ(n− α)
∂n

∂xn

∫ +∞

x

(µ− x)n−1−αu(µ, t)dµ,

respectively, the Riesz fractional derivative can be calculated as

∂α

∂|x|α
u(x, t) = −(−∆)

α
2 u(x, t) = − 1

2 cos πα
2

[
−∞Dα

xu(x, t) + xD
α
+∞u(x, t)

]
.

In general, analyzing and understanding the behavior of the exact solu-
tions of the space fractional CNLS equations is so challenging. In recent years,
some numerical methods have been proposed to solve the CNLS equations.
The difference method [12, 13, 11], the Crank–Nickelson scheme [1], and the
collocation method [2] have been presented to solve the CNLS equations.

The discretization of the CNLS equations leads to the solution of the com-
plex symmetric linear systems. The coefficient matrix consists of the sum of
the symmetric positive definite, diagonal-plus-Toeplitz, matrix and the com-
plex identity scaled matrix. Recently, Dai and Wu [4] developed a suited 2×2
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linear system and employed the block Gauss–Seidel (BGS) iteration scheme
to solve the resulting linear systems. Then they analyzed the convergence
of the BGS scheme for the corresponding 2×2 linear system. In this work,
we establish a fast block Gauss–Seidel over-relaxation (BGSOR) scheme for
solving the two-by-two linear system that arises from the discretization of
CNLS equations. Notably, the new method allows the corresponding sys-
tems to be solved without the need to compute the inverse of the coefficient
matrices. Moreover, it should be pointed out that the BGS method can be
regarded as a special case of the new method when the relaxation parameter
is set to be one.

The arrangement of this work is as follows. In Section 2, the model
problem will be studied, and a linearly implicit difference technique will be
presented. Application, convergence theory, and finding the optimal param-
eter for the BGSOR method are proposed in Section 3. Section 4 is devoted
to giving some numerical examinations. In Section 5, we finally made some
conclusions.

2 Model problem and a linearly implicit difference
scheme

The domain Ω = (a1, a2)×(0, T ) is divided into a uniform grid of mesh points
(xj , tk), where

xj = a1 + jh, h =
a2 − a1
m+ 1

, 0 ≤ j ≤ m+ 1,

and
tk = kτ, τ =

T

n
, 0 ≤ k ≤ n.

At grid points, the values of functions u(x, t), v(x, t) are, respectively, denoted
by ukj = u(xj , tk), v

k
j = v(xj , tk), and U k

j ,V
k
j are the approximate solutions

of (1).
The following equation gives a discrete approximation to ∂α

∂|x|α u(x, t) [10]:

∂α

∂|x|α
u(xj , tk) = −

Ψα

hα

[ ∞∑
l=0

w̃
(α)
k u(xj−l+1, tk)+

∞∑
l=0

w̃
(α)
k u(xj+l−1, tk)

]
+O(h2),

(2)
where Ψα = 1

2 cos(πα
2 ) and {w̃α

k } is defined as follows:

w̃
(α)
0 =

α

2
g
(α)
0 , w̃

(α)
l =

α

2
g
(α)
l +

(
1− α

2

)
g
(α)
l−1, l ≥ 1,

g
(α)
0 = 1, g

(α)
l =

(
1− α+ 1

l

)
g
(α)
l−1, l = 1, 2, . . . .
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Ortigueira [7] proposed the following fractional central difference operator:

∆α
hu(x) =

∞∑
l=−∞

ĝ
(α)
l u(x− lh),

where
ĝ
(α)
l =

(−1)kΓ(α+ 1)

Γ(α2 − l + 1)Γ(α2 + l + 1)
.

As stated in [7], the coefficient {ĝ(α)l } satisfies∣∣∣∣2 sin(x2
)∣∣∣∣2 =

∞∑
l=−∞

ĝ
(α)
l eılx, x ∈ R.

When α > −1, the recursive relations for {ĝ(α)l } are as follows:

ĝ
(α)
0 =

Γ(α+ 1)

Γ2(α/2 + 1)
, ĝ

(α)
l =

(
1− α+ 1

α/2 + l

)
ĝ
(α)
l−1, l ≥ 1;

ĝ
(α)
−l = ĝ

(α)
l , l ≥ 1.

Lemma 1. [10] Assume that u(x) ∈ C5(R) and that its all derivatives of
order up to 5 belong to L1(R). Then, it holds

−∆α
hu(x)

hα
=
∂αu(x)

∂|x|α
+O(h2). (3)

From Lemma 1, it follows that

(−∆)
α
2 u(xj , tk) =

∆α
hu(x)

hα
+O(h2) = 1

hα

M∑
l=1

ĝ
(α)
j−l(xj , tk) +O(h

2).

Now, we consider the following numerical scheme for solving (1) [12]:

ı
U k+1

j −U k−1
j

2τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
U k+1

l + U k−1
l

2

)
+ ρ
(
|U k

j |2 + β|V k
j |2
)

+
U k+1

l + U k−1
l

2
= 0,

ı
V k+1
j − V k−1

j

2τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
V k+1
l + V k−1

l

2

)
+ ρ
(
|V k

j |2 + β|U k
j |2
)

+
V k+1
l + V k−1

l

2
= 0,

(4)
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where 1 ≤ j ≤ m, 1 ≤ k ≤ n − 1. Another scheme should be provided for
the numerical solution at k = 1. We consider the following scheme for this
purpose (see [3]):

ı
U 1

j − U 0
j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−lU

(1)
l + ρ

(
|U 0

j |2 + β|V 0
j |2

)
U 1

j = 0,

ı
V 1
j − V 0

j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−lV

1
l + ρ

(
|V 0

j |2 + β|U 0
j |2

)
V

(1)
j = 0,

ı
U 1

j − U 0
j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
U 1

l + U 0
l

2

)

+ ρ

(
3

2
|U 1

j |2 −
1

2
|U 0

j |2 + β

(
3

2
|V (1)

j |2 −
1

2
|V 0

j |2
))

U 1
j + U 0

j

2
= 0,

ı
V 1
j − V 0

j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
V 1
l + V 0

l

2

)

+ ρ

(
3

2
|V 1

j |2 −
1

2
|V 0

j |2 + β

(
3

2
|U 1

j |2 −
1

2
|U 0

j |2
))

V 1
j + V 0

j

2
= 0.

The structure of the first and second difference equations in (4) is the same.
Set

U k+1 =[U k+1
1 , . . . ,U k+1

m ]T , bk+1 = [bk+1
1 , . . . , bk+1

m ]T ,

µ =
ξτ

hα
, dk+1

j = ητ
(
|U k

j |2 + β|V k
j |2
)
, Dk+1 = diag(dk+1

1 , . . . , dk+1
m ).

So, at each time step, we need to solve the following systems of linear equa-
tions:

Ak+1U k+1 = bk+1, 1 ≤ k ≤ n− 1,

Bk+1V k+1 = ck+1, 1 ≤ k ≤ n− 1,
(5)

where Ak+1 = T +Dk+1 + ıI and bk+1 is as follows:

bk+1 =



ıU k−1
1 − µ

m∑
l=1

ĝ
(α)
1−lU

k−1
l − dk+1

1 U k−1
1

ıU k−1
2 − µ

m∑
l=1

ĝ
(α)
2−lU

k−1
l − dk+1

2 U k−1
2

...

ıU k−1
m−1 − µ

m∑
l=1

ĝ
(α)
m−1−lU

k−1
l − dk+1

m−1U
k−1
m−1

ıU k−1
m − µ

m∑
l=1

ĝ
(α)
m−lU

k−1
l − dk+1

m U k−1
m


.

Moreover, T is the Toeplitz matrix, which has the following structure:
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T = µ


ĝ
(α)
0 ĝ

(α)
−1 · · · ĝ

(α)
2−m ĝ

(α)
1−m

ĝ
(α)
1 ĝ

(α)
0 · · · ĝ(α)3−m ĝ

(α)
2−m

...
... . . . ...

...
ĝ
(α)
m−2 ĝ

(α)
m−3 · · · ĝ

(α)
0 ĝ

(α)
−1

ĝ
(α)
m−1 ĝ

(α)
m−2 · · · ĝ

(α)
1 ĝ

(α)
0

 . (6)

Also, it should be noted that Bk+1 and ck+1 can be obtained by changing
the roles of U and V in Ak+1 and bk+1.

3 The BGSOR iteration method

To establish the BGSOR iteration method, we need to give some preliminar-
ies. Let us first consider the iterative solution of the linear equation

AU = b, (7)

in which A ∈ Cℓ×ℓ is a nonsingular complex symmetric matrix as follows:

A = T +D + ıI,

where T is the symmetric positive definite (SPD) and Toeplitz matrix des-
ignated in (6), D = diag(d1, d2, . . . , dℓ) with di ≥ 0, i = 1, 2, . . . , ℓ, is the
diagonal matrix, U, b ∈ Cℓ. Let U = x + ıy and b = f + ıg be complex
vectors, where y, z, p, q ∈ Rℓ. So, the system can be rewritten as a particular
form, namely,

A x ≡
(
−I Q
Q I

)( y
x

)
=
(
f
g

)
≡P, (8)

where Q = D + T. We are now in a position to design a new method for
solving (8).

To introduce the BGSOR iteration method, we consider the following
decomposition for the coefficient matrix (8):

A = (ωD − E )− (E T − (1− ω)D) =: M −N , (9)

where
D =

(
−I 0
0 I

)
, E =

(
0 0
−Q 0

)
,

and ω is a positive parameter, which is known as the relaxation parameter.
Using the decomposition (9), the BGSOR iteration method is stated as

M z(k+1) = N z(k) + P, k = 0, 1, 2, . . . ,
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where M and N are defined as (9), and z(k) = (y(k);x(k)).Note that y(k) and
x(k) are twoM -vectors that stand for the iterations. Also, z(0) is an arbitrary
initial guess. Thereupon, the iterations take the following procedure:{

y(k+1) = 1
ω

(
(ω − 1)y(k) +Qx(k) − f

)
,

x(k+1) = 1
ω

(
(ω − 1)x(k) + g −Qy(k+1)

)
.

(10)

As can be seen, there is not any system solution in each iteration, and only
two matrix-vector multiplication are needed. This can be very important
because the new scheme requires insignificant computational efforts and just
contains the matrix-vector multiplications. Furthermore, if ω = 1, then the
iteration scheme (10) reduces to{

y(k+1) = Qx(k) − f,
x(k+1) = g −Qy(k+1),

(11)

which is presented in [4] and known as the BGS iteration method. Therefore,
the BGS iteration method is a special case of the BGSOR iteration method.

Next, we investigate the convergence of the BGSOR method for solving
(8), and then we obtain the optimal value of the relaxation parameter ω. In
the following, we recall a result that will be useful later.
Lemma 2. [14] Suppose that the quadratic equation x2− px+ q = 0, where
p and q are real numbers. Both roots of the equation are less than one in
modulus if and only if |q| < 1 and |p| < 1 + q.

Theorem 1. Consider A = D + T + ıI ∈ Rℓ×ℓ as a matrix, where D and
T are diagonal and Toeplitz SPD matrices, respectively. The necessary and
sufficient condition for convergence of the BGSOR iteration method to the
solution of (8) for any initial guess, is

ω >
1 + µmax(Q)

2
,

where µmax(Q) is the largest eigenvalue of Q.
Proof. Let λ be an eigenvalue of the iteration matrix G = M−1N , and let
x = [u;v] be the corresponding eigenvector. Without loss of generality, let
λ ̸= 0. Then

(D − ωE )−1(E T − (1− αD))x = λx,

equivalently,

(1− ω)u−Qv =− λωu, (12)
(ω − 1)v =λ(Qu+ ωv). (13)

We can derive from (12) and the positive definiteness of Q that

v = ((λ− 1)ω + 1)Q−1u. (14)
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Substituting (14) into (13), gives

−λQ2u = ((λ− 1)ω + 1)2u. (15)

This shows that if µ is an eigenvalue of Q, then

λµ2 =− ((λ− 1)ω + 1)
2 (16)

=− (λ2ω2 + 2ω(1− ω)λ+ (ω − 1)2). (17)

From (17), we get

λ2 −
(
2ω2 − 2ω − µ2

ω2

)
λ+ (

ω − 1

ω
)2 = 0. (18)

Now it follows from Lemma 2 that |λ| < 1 if and only if

|ω − 1| < ω,

|2ω2 − 2ω − µ2|7 < 2ω2 − 2ω + 1.

It is straightforward to see that |ω − 1| < ω is equivalent to ω > 1
2 . By some

easy manipulations, we can observe, whenever

(2ω − 1)2 > µ2, (19)

the second inequality holds. The inequality (19) is ensured, if

|2ω − 1| > µ or |2ω − 1| < −µ,

equivalently,
ω <

1− µ
2

or ω >
1 + µ

2
. (20)

Evidently, the first inequality of (20) cannot be true. On the other hand,
holding the second inequality of (20) ensures ω > 1

2 , and then it completes
the proof.

In the following, we would like to find the optimal value of the relaxation
parameter ω, denoted by ω∗. To do so, ω∗ should be computed to minimize
the spectral radius of the iteration matrix of the BGSOR method, that is,

ρ (Gω∗) = arg min
ω>

1+µmax(Q)
2

ρ (Gω) .

To compute the optimal value of w, we state and prove the next theorem.

Theorem 2. Assume that the hypothesis of Theorem 1 are met. Then the
optimal value of the relaxation parameter and the corresponding optimal
convergence factor in the BGSOR iteration method are as follows:
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ω∗ =
1

2

(
1 +

√
1 + ρ2(Q)

)
, (21)

and
ρ (Gω∗) = 1− 1

ω∗ =

(
ρ(Q)

1 +
√

1 + ρ2(Q)

)2

.

Proof. If λ is an eigenvalue of the iteration matrix Gω, then λ < 0 or λ ∈
C \ R, according to (16). First, we consider the case λ < 0. So, there exists
an eigenvalue µ of Q such that (18) holds true. The discriminant of this
quadratic equation is

∆ =

(
2ω2 − 2ω − µ2

ω2

)2

− 4

(
ω − 1

ω

)2

,

and the roots of (18) are as follows:

λ1,2(ω) =
2ω2 − 2ω − µ2

2ω2
±
√
∆

2
.

From (16), we get
(λ− 1)ω + 1 = ±µ

√
−λ. (22)

Set

fω(λ) =(λ− 1)ω + 1 = ωλ+ 1− ω,
g(λ) =± µ

√
−λ.

Clearly, the function fω passes through the point (1, 1), that is, fω(1) = 1
and the slope of fω(λ) is ω. Figure 1 displays the points of intersections of
the functions fω(λ) and g(λ) for an arbitrary value of ω. This figure shows
that by increasing ω, the maximum of absolute values of the abscissas of the
points of intersection of the functions fω(λ) and g(λ), that is, max{λ1, λ2},
decrease, while fω(λ) gets tangent to g(λ). In the tangent case, we have
λ1 = λ2, and it indicates that ∆ = 0. From ∆ = 0, it is straightforward to
verify that µ = 0 or 4ω2−4ω−µ2 = 0. The case µ = 0 is impossible, because
of the positive definiteness of Q. Thus, 4ω2 − 4ω − µ2 = 0. This quadratic
equation has two roots, as follows:

ω± =
1

2

(
1±

√
1 + µ2

)
.

Due to the condition ω > 1+µmax(Q)
2 , ω− is not acceptable. So, we consider

ω+ =
1

2

(
1 +

√
1 + µ2

)
,

and in this case, we have
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λ1 = λ2 = λ+ =
1

ω+
− 1.

Now suppose that ω > ω+. In this case, the roots of the quadratic equation
(18) are complex and conjugate, which are as follows:

λ1,2(ω) =
−2ω2 + 2ω + µ2

2ω2
± ı
√
∆′

2
,

where

∆′ = 4

(
ω − 1

ω

)2

−
(
2ω2 − 2ω − µ2

ω2

)2

.

Then
|λ1,2| = 1− 1

ω
.

By recalling that ω > ω+ and having in mind that w+ > 1, we have

1− 1

ω+
< 1− 1

ω
,

and this shows that ω+ is the best choice for ω. On the other hand, the curve
g(λ) = ±ρ(Q)

√
−λ serves an upper bound for each curve as ±µ

√
−λ, where

0 ≤ µ ≤ ρ(Q). Summarizing the above results, we see that

ρ (Gω∗) = min
ω

max
ω> 1+µmax

2

|1− 1

ω
| = 1− 1

ω∗ =

(
ρ(Q)

1 +
√

1 + ρ2(Q)

)2

,

where ω∗ was considered as in (21).

Remark 1. In Theorem 2, for computing ω∗, we need to compute ρ(q). One
may use a few iterations of the power method to compute λmax(Q). On the
other hand, because of positive definiteness of Q, we have

ρ(Q) = λmax(Q) = ∥Q∥2.

So, we can compute ∥Q∥2 instead of ρ(Q). In practice, the normest command
of Matlab can be used to compute an estimation of ∥Q∥2.

4 Numerical experiments

This section is devoted to numerical experiments to evaluate the effectiveness
of the BGSOR iteration scheme for solving linear systems (8). The numerical
results of the proposed method are compared with those of the GMRES [8, 9]
and the BGS methods. In all the test problems, we use the restart version
of GMRES with a restarting number 10. The initial guess is assumed to be
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λ

(1, 1)

λ1

••
λ2

g
fω

Figure 1: The graph of the functions fω(λ) and g(λ).

performed for each test, and then the average of CPU times and iterations
are reported (The average of the iteration numbers were rounded). For the
BGSOR method, the optimal parameter is computed according to the rule
(21). The numerical results were carried out under Matlab-R2017 on a
laptop running Windows 10 and an Intel (R) Core(TM) i5-8265U CPU @
1.60 GHz 8 GB.

Example 1. Let θ = 0. The system (1) is then decoupled and becomes

ıut + (−∆)
α
2 u + 2|u|2u = 0,

when the initial value

u(x, 0) = sech(x) · exp(2ıx),

is applied. In this example, the original problem was truncated in [−20, 20].
Set u(−20, t) = u(20, t) = 0. For this problem, we choose the parameters
ξ = 1.3 and η = 1.2.

We set m = 800, 1600, 3200, 6400 and examine two values of α, α =
1.3, 1.6. When α = 1.3, we set n = 4m; otherwise, we choose n = 6m. The
optimal values of the relaxation parameter in the BGSOR method for α = 1.3
are given in Table 1, and the ones for α = 1.6 are given in Table 3.

In Tables 2 and 4, we have listed the numerical results at t = 2. From
these tables, we observe that the BGSOR method is superior to the examined
methods in terms of both the iterations and the elapsed CPU times.

Example 2. For the following coupled system with θ ̸= 0:

11

Figure 1: The graph of the functions fω(λ) and g(λ).

a random vector, and iterations are terminated when

Res =
∥rk∥2
∥r0∥2

< 10−9,

where rk = P −A z(k) is the residual at the kth iteration or if the maximum
number of iterations maxit = 1000 is exceeded. The terms “IT” and “CPU”
in the tables refer to the total number of iterations and the elapsed CPU time
in seconds for convergence, respectively. We comment that five runs were
performed for each test, and then the average of CPU times and iterations
are reported (The average of the iteration numbers were rounded). For the
BGSOR method, the optimal parameter is computed according to the rule
(21). The numerical results were carried out under Matlab-R2017 on a
laptop running Windows 10 and an Intel (R) Core(TM) i5-8265U CPU @
1.60 GHz 8 GB.

Example 1. Let θ = 0. The system (1) is then decoupled and becomes

ıut + (−∆)
α
2 u + 2|u|2u = 0,

when the initial value

u(x, 0) = sech(x) · exp(2ıx),

is applied. In this example, the original problem was truncated in [−20, 20].
Set u(−20, t) = u(20, t) = 0. For this problem, we choose the parameters
ξ = 1.3 and η = 1.2.

We set m = 800, 1600, 3200, 6400 and examine two values of α, α =
1.3, 1.6. When α = 1.3, we set n = 4m; otherwise, we choose n = 6m. The
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Table 1: The optimal parameters ω∗ for BGSOR method with α = 1.3 and n = 4m at
t = 2 for Example 1.

ℓ
800 1600 3200 6400

ω∗ 1.002 1.004 1.006 1.009

optimal values of the relaxation parameter in the BGSOR method for α = 1.3
are given in Table 1, and the ones for α = 1.6 are given in Table 3.

In Tables 2 and 4, we have listed the numerical results at t = 2. From
these tables, we observe that the BGSOR method is superior to the examined
methods in terms of both the iterations and the elapsed CPU times.

Table 2: Numerical results with α = 1.3 and n = 4m at t = 2 for Example 1.

Method
ℓ 800 1600 3200 6400

BGSOR
IT 5 5 5 5
CPU 0.016 0.051 0.171 0.955

BGS
IT 5 6 6 7
CPU 0.018 0.072 0.228 1.705

GMRES(10)
IT 6 7 7 7
CPU 0.080 0.112 0.352 3.610

Example 2. For the following coupled system with θ ̸= 0:

{
ıut + (−∆)

α
2 u + 2

(
|u|2 + |v|2

)
u = 0,

ıvt + (−∆)
α
2 v + 2

(
|v|2 + |v|2

)
v = 0,

− 20 ≤ x ≤ 20, 0 < t ≤ 2.

(23)
We will use{
u(x, 0) = sech(x+D0) · exp(ıv0x), v(x, 0) = sech(x−D0) · exp(−ıv0x),
u(−20, 0) = u(20, 0) = 0, v(−20, 0) = v(20, 0) = 0,

(24)
as the initial conditions. In this case, we choose the parameters D0 = 1,
v0 = 2, ξ = 1.4, and η = 1.2.

The discretization of the coupled system of (23) leads to the solution
of the linear systems of equations of the form (5). We assume that these
coefficient matrices are A and B. These matrices have the same structure.
Tables 5 and 7 show the optimal values of the relaxation parameter of A and
B in the BGSOR method for different values of α and m.

In Tables 6 and 8, we report the results for the BGSOR, BGS, and GM-
RES(10) iterative methods at t = 2. These results clearly show that the
BGSOR method leads to a faster overall convergence time than the other ex-
amined methods. Besides, the BGSOR method gets less iteration numbers.
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Table 3: The optimal parameters ω∗ for the BGSOR method with α = 1.6 and n = 6m

at t = 2 for Example 1.

ℓ
800 1600 3200 6400

ω∗ 1.010 1.022 1.050 1.108
Table 4: Numerical results with α = 1.6 and n = 6m at t = 2 for Example 1.

Method
ℓ 800 1600 3200 6400

BGSOR
IT 6 7 8 10
CPU 0.018 0.068 0.311 2.015

BGS
IT 7 9 14 28
CPU 0.022 0.093 0.571 4.462

GMRES(10)
IT 8 9 10 13
CPU 0.112 0.185 0.235 6.941

Table 5: The optimal parameters ω∗ of A and B for the BGSOR method with α = 1.3
and n = 4m at t = 2 for Example 2.

ℓ
800 1600 3200 6400

ω∗(A)
1.002 1.004 1.006 1.008

ω∗(B)
1.002 1.004 1.006 1.008

Table 6: Numerical results with α = 1.3 and n = 4m at t = 2 for Example 2.

Method
ℓ 800 1600 3200 6400

A B A B A B A B

BGSOR
IT 5 5 5 5 5 5 5 5
CPU 0.013 0.010 0.052 0.023 0.173 0.145 0.938 0.841

BGS
IT 5 5 6 6 6 6 7 7
CPU 0.020 0.014 0.069 0.064 0.213 0.228 1.641 1.145

GMRES(10)
IT 6 6 7 7 7 7 8 8
CPU 0.064 0.017 0.093 0.049 0.155 0.139 2.812 1.377

5 Conclusion

In this paper, the BGSOR scheme has been presented to solve the com-
plex symmetric linear systems deriving from the discretization of the space
fractional CNLS equation. We have analyzed the convergence theory of the
method, and we have shown that the method is convergent under a suitable
condition. The optimal value of the relaxation parameter and the rate of
convergence factor for the BGSOR method were also provided. Our results
have verified that the BGSOR method performs better than some existing
methods.
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Table 7: The optimal parameters ω∗ of A and B for the BGSOR method with α = 1.6

and n = 6m at t = 2 for Example 2.

ℓ
800 1600 3200 6400

ω∗(A)
1.010 1.022 1.050 1.122

ω∗(B)
1.010 1.022 1.050 1.122

Table 8: Numerical results with α = 1.6 and n = 6m at t = 2 for Example 2.

Method
ℓ 800 1600 3200 6400

A B A B A B A B

BGSOR
IT 6 6 7 7 9 9 10 10
CPU 0.021 0.017 0.071 0.069 0.346 0.248 1.941 2.003

BGS
IT 7 7 10 10 15 15 35 35
CPU 0.025 0.020 0.106 0.112 0.607 0.592 6.832 5.483

GMRES(10)
IT 8 8 9 9 11 11 13 13
CPU 0.088 0.061 0.093 0.082 0.448 0.412 3.376 3.251
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Abstract

The focus of this article is on the study of discrete optimal control prob-
lems (DOCPs) governed by time-varying systems, including time-varying
delays in control and state variables. DOCPs arise naturally in many multi-
stage control and inventory problems where time enters discretely in a nat-
ural fashion. Here, the Euler–Lagrange formulation (which are two-point
boundary values with time-varying multi-delays) is employed as an effi-
cient technique to solve DOCPs with time-varying multi-delays. The main
feature of the procedure is converting the complex version of the discrete-
time optimal control problem into a simple form of differential equations.
Since the main problem is in discrete form, then the Euler–Lagrange equa-
tion changes to an algebraic system with initial and final conditions. The
graphic representation of numerical simulation results shows that the pro-
posed method can effectively and reliably solve DOCPs with time-varying
multi-delays.
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1 Introduction

It is well known that discrete calculus is an important tool for describing
natural phenomenas, which is expanded from classic calculus [18, 3, 7, 13].
By employing discrete calculus in optimal control problem (OCP), also well-
known as discrete optimal control problem (DOCP), one can uniquely dis-
cover how to model natural phenomena. Discrete differential equations gov-
ern the dynamics of a dynamical system in a DOCP are one of the newest
exciting mathematical challenges [16, 21, 22, 12].

The primary difference between continuous and discrete-time systems
arises from the necessity to convert analog signals to digital values, as well
as the time required for a computer system to calculate and execute the
corrective action to the output.

A discrete time-control study on COVID-19 to address the quarantine
and vital environmental loads has been explored in [2]. Mehraeen et al. [14]
proposed an approach to obtain the optimal solutions based on the Hamilton–
Jacobi–Isaacs equation for the discrete-time nonlinear system by using neu-
ral networks. In [11], the authors proposed an improved stability analysis
method called a delay-mode-based functional method by weakening a con-
dition in the Lyapunov–Krasovskii functional method. Adaptive dynamic
programming as an effective intelligent control method has played an im-
portant role in seeking solutions for optimal control. Approximate dynamic
programming techniques are used to solve the value function, and hence the
optimal control policy, in discrete-time nonlinear OCPs having continuous
state and action spaces; see([1, 5]). The adaptive dynamic programming algo-
rithm was introduced in [20] for solving infinite-horizon undiscounted OCPs
in discrete-time systems.

Discrete-time OCPs occur in many multi-stage control and scheduling
problems, as may be expected. Originally, continuous-time OCPs can also be
discretized suitably and subsequently formalized as discrete-time OCPs. Al-
though due to the expansion of mathematical methods for solving continuous-
time OCPs, this is not currently necessary. There are efficient methods for
discrete-time OCPs in the literature.

To solve combined discrete-time OCPs and optimal parameter selection
problems concerned with general constraints, a computational method was in-
troduced in [4]. The DOCP for discrete-time linear system control constraint
was investigated in [23], in which the control input is a one-dimensional vari-
able whose range is contained in a bounded closed interval. Li, Teo, and
Duan [10] considered a class of DDTOCP that contains nonlinear inequal-
ity constraints on both the state and control. In [19], authors discussed a
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delay optimal tracking control for discrete-time systems with quadratic per-
formance indexes when they are affected by persisting disturbances.

This paper presents a novel approach to solving DOCP, including time-
varying delays. A general formula of the structure for DOCP with time-
varying delays can be considered as follows:

J(u(·)) =
kf−1∑
k=k0

F (xk, uk, k), (1)

subject to time-varying delay in a dynamic system

xk+1 = G(xk, xk−τk , uk, uk−ωk
, k), k0 ≤ k ≤ kf , (2)

with initial conditions:

xk = ϕk, k0 − τk0
≤ k ≤ k0,

uk = Θk, k0 − ωk0
≤ k ≤ k0, (3)

where x(·) is the state variable vector, u(·) is the control variable vector, k
represents the time, F and G are given functionals, k0 and kf are fixed, ϕk
and Θk are specific functions, τk ≥ 0 is delay function for state variable, and
ωk ≥ 0 is delay function for control variable.

Whenever the associated dynamic system of DOCP depends on prior in-
formation at a particular time, it can be considered that it is the DOCP with
time-varying delays. A realistic distributed assumption, instead of a tradi-
tional point-wise assumption, creates interesting cases of delays [17]. Discrete
derivatives are essential for explaining physical phenomena with memories,
as previous information about predators and even prey can have an impact
on birth rates, rather than the current model of predator-prey relationships
and hereditary traits; thus, DOCP with time-varying delays is applied to all
physical processes with realistic distribution assumptions and experiences [6].
As it can be seen, the problem satisfying (1)–(3) includes the delay system.
A delay system is a specific form of partial differential equation with infi-
nite dimensions. Therefore, these types of mathematical problems are very
important in engendering and physical sciences.

Generally, time-delays systems can be found in control systems, lasers,
traffic models, metal cutting, transmission lines, epidemiology, cell cycle,
protein, production population dynamics, and neuroscience. Therefore, it is
important to propose a beneficial method for solving time-delays systems.
Also, solving optimal control problems is complicated in normal mode, espe-
cially in non-linear modes. As a result, they become much more complicated
in modes whose systems have time delays. So it is very valuable to work on
such issues.

As a review of this paper, the framework of this paper is organized as
follows:

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 719–738



722 Abdolkhaleghzade, Effati and Rakhshan

Section 2 includes the proposed technique for solving DOCP with time-
varying delays in state and control variables. Finally, Section 3 contains a
number of numerical examples that demonstrate the model’s effectiveness.
We conclude in the last section.

2 Main results

There are several kinds of variational problems in calculus [9, 8]. Here, we
propose the two-boundary value problem based on classical Euler–Lagrange
equations to solve DOCP with time-varying delay. Therefore, we review
some necessary definitions and theoretical concepts to derive our efficient
technique.

Definition 1. Suppose that xk (respectively, xk+1) takes on variations δxk
(respectively, δxk+1) from their optimal values x̄k (respectively, x̄k+1) satis-
fying

xk = x̄k + δxk, xk+1 = x̄k+1 + δxk+1. (4)

Now with these variations, the performance index (1) becomes

Ĵ = J(x̄ko
, ko) =

kf−1∑
k=k0

F (x̄k, x̄k+1, k)

J = J(xko , ko) =

kf−1∑
k=k0

F (x̄k + δxk, x̄k+1 + δxk+1, k). (5)

Definition 2. The first variation δJ is the first order approximation of the
increment ∆J = J − Ĵ . So, applying the Taylor series expansion of (5), we
obtain

δJ =

kf−1∑
k=k0

∂F (x̄k, x̄k+1, k)

∂x̄k
δxk +

∂F (x̄k, x̄k+1, k)

∂x̄k+1
δxk+1. (6)

Theorem 1. For xk to be a contender for an optimum, the first variation
of J must be zero on xk, that is, δJ(xk, δxk) = 0 for all admissible values of
δxk. This is a necessary condition. As a sufficient condition for minimum,
we have the second variation δ2J > 0, and for maximum, δ2J < 0.

Proof. The researchers can consider the proof in detail in (see [8, p. 37]).

Lemma 1. Suppose that gk is a function in which the domain and range are
each a discrete set of values. If gk is a discrete function satisfying
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kf∑
k=k0

gkδxk = 0, (7)

where the function δxk is discrete in the interval [k0, kf ], then gk = 0 for
every k ∈ [k0, kf ].

Proof. Let gk0 ̸= 0 for some k0. Assume that δxs = 0 if s ̸= k0 and δxk0 = 1.
Then δ is a discrete function. In addition,

∑
k δxkgk = gk0 = 0, which is a

contradiction.

Definition 3 (Gateaux derivative). Suppose thatX and Y are locally convex
topological vector spaces, U ⊂ X is open, and f : X → Y . The Gateaux
differential of f at u ∈ U in the direction ψ ∈ X, denoted by df(u;ψ), is
defined as

df(u;ψ) = lim
k→0

f(u+ kψ)− f(u)
k

=
d

dk
f(u+ kψ)

∣∣
k=0

. (8)

If the limit (8) exists for every ψ ∈ X, then the function f is called Gateaux
differentiable at u [15].

This paper investigates a structured strategy for finding the necessary
optimality condition for the problem (1)–(3). It means that the DOCP with
time-varying delays is analyzed in order to find the optimal control u(·) with
the minimum performance index (1). Therefore, we investigate the necessary
optimally condition of the DOCP with time-varying delays as follows.

Theorem 2 (Necessary conditions for DOCP with time-varying delays).
Suppose that the DOCP defined by (1)–(3) with k0, xk0

, and kf is fixed.
Also, suppose that X is a locally convex topological vector spaces, and that
U ⊂ X is an open subset. In addition, assume that the following regularity
conditions are satisfied:

R1. xk, xk−τk ∈ X;

R2. uk, uk−ωk
∈ U ;

R3. τk : N −→ N and ωk : N −→ N are natural-valued functions, and
τ(·), ω(·) ≥ 0 ;

R4. k0 ∈ Z, kf ∈ Z, Θ : Z −→ Z, and ϕ : Z −→ Z are known;

R5. J is Gateaux differentiable at uk;

R6. F and G are locally convex topological vector spaces.

Then any solution u(·) ∈ U must satisfy the following conditions:

N1. The state dynamics, for k0 ≤ k ≤ kf :

xk+1 = G
(
xk, xk−τk , uk, uk−ωk

, k
)
, k0 ≤ k ≤ kf . (9)
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N2. The adjoint dynamics:
∂F

∂xk
− λk + λTk+1

∂G

∂xk
+ λTk+1ψk = 0, k > τk,

∂F

∂xk
− λk + λTk+1

∂G

∂xk
= 0, O.W.,

(10)

where

ψk =
∂G

∂xk−τk

,

F = F (xk, uk, k),

G = G
(
xk, xk−τk , uk, uk−ωk

, k
)
.

N3. The optimal control dynamics:
∂F

∂uk
+ λTk+1

∂G

∂uk
+ λTk+1ηk = 0 , k > ωk,

∂F

∂uk
+ λTk+1

∂G

∂uk
= 0, O.W.,

(11)

where ηk =
∂G

∂uk−ωk

.

N4. The Boundary conditions:

xk = ϕk, k ≤ k0, (12)
uk = Θk, k ≤ k0, (13)
∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

∣∣
k=kf

= 0. (14)

Proof. The required condition for the DOCP with time-varying delays is
found by utilizing the variational method. Suppose that

J̄(u(·)) =
kf−1∑
k=k0

F (xk, uk, k) + λTk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
,

(15)

where λ(·) is the Lagrange multiplier. Let δxk, δuk, δxk−τk , δuk−ωk
, and

δλk be the variation of xk, uk, xk−τk , uk−ωk
, and λk, respectively. We then

define a family of curves as follows:
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xϵk = xk + ϵδxk,
xϵk+1 = xk+1 + ϵδxk+1,
xϵk−τk

= xk−τk + ϵδxk−τk ,
uϵk = uk + ϵδuk,
uϵk−ωk

= uk−ωk
+ ϵδuk−ωk

,
λϵk+1 = λk+1 + ϵδλk+1.

(16)

Let

L(k) = L
(
xk, xk+1, xk−τk , uk, uk−ωk

, k
)

= F (xk, uk, k) + λTk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
,

(17)

and

Lϵ(k) = L(xϵk, x
ϵ
k+1, x

ϵ
k−τk

, uϵk, u
ϵ
k−ωk

, k)

= F (xϵk, u
ϵ
k, k) + (λϵk+1)

T
(
G(xϵk, x

ϵ
k−τk

, uϵk, u
ϵ
k−ωk

, k)− xϵk+1

)
.

(18)

Also note that according to Definition 3, we get

δJ̄(uk; δuk) = lim
ϵ→0

J(uk + ϵδuk)− J(uk)
ϵ

=

kf∑
k=k0

lim
ϵ→0

Lϵ(k)− L(k)
ϵ

=

kf∑
k0

d

dϵ
Lϵ(k) |ϵ=0 . (19)

The variational of functional J̄(u(·)) is given as

δJ̄(u(·)) =
kf−1∑
k=k0

d

dϵ
Lϵ(k) |ϵ=0=

kf−1∑
k=k0

[∂Lϵ(k)

∂xϵk

dxϵk
dϵ

+
∂Lϵ(k)

∂xϵk+1

dxϵk+1

dϵ

+
∂Lϵ(k)

∂xϵk−τk

dxϵk−τk

dϵ
+
∂Lϵ(k)

∂uϵk

duϵk
dϵ

+
∂Lϵ(k)

∂uϵk−ωk

duϵk−ωk

dϵ
+
∂Lϵ(k)

∂λϵk+1

dλϵk+1

dϵ

]
|ϵ=0 .

(20)

Also, according to (16), we have

dxϵk
dϵ

= δxk,
dxϵk+1

dϵ
= δxk+1,

duϵk
dϵ

= δuk,

dλϵk+1

dϵ
= δλk+1,

dxϵk−τk

dϵ
= δxk−τk ,

duϵk−ωk

dϵ
= δuk−ωk

. (21)
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Therefore,

δJ̄(u(·)) =
kf−1∑
k=k0

[∂L(k)
∂xk

δxk +
∂L(k)

∂xk+1
δxk+1 +

∂L(k)

∂xk−τk

δxk−τk

+
∂L(k)

∂uk
δuk +

∂L(k)

∂uk−ωk

δuk−ωk
+
∂L(k)

∂λk+1
δλk+1

]
. (22)

Also, we get from (17) that

∂L(k)

∂xk
=
∂F (xk, uk, k)

∂xk
+ λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂xk
,

∂L(k)

∂xk−τk

= λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂xk−τk

,

∂L(k)

∂uk
=
∂F (xk, uk, k)

∂uk
+ λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂uk
,

∂L(k)

∂uk−ωk

= λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂uk−ωk

,

∂L(k)

∂λk+1
= G(xk, xk−τk , uk, uk−ωk

, k)− xk+1,

∂L(k)

∂xk+1
= −λk+1. (23)

Also, we can rearrange the term, including xk+1 in (22), as follows:

kf−1∑
k=k0

∂L(xk, xk−τk , xk+1, uk, uk−ωk
, λk+1)

∂xk+1
δxk+1

=
∂L
(
xkf−1, xkf−τk−1−1, xkf

, ukf−1, ukf−ωk−1−1, λkf

)
∂xkf

δxkf

−
∂L
(
xk0−1, xk0−τk−1−1, xk0 , uk0−1, uk0−ωk−1−1, λk0

)
∂xk0

δxk0

+

kf−1∑
k=k0

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

= [
∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk)

∂xk
δxk] |

k=kf

k=k0

+

kf−1∑
k=k0

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk. (24)

We then conclude the first variation of J̄(u(·)) from equations (22)–(24) as
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δJ̄(u(·)) =
[∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

]
|k=kf

k=k0

+

kf−1∑
k=k0

(∂L(k)
∂xk

δxk +
∂L

(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

+
∂L(k)

∂xk−τk

δxk−τk +
∂L(k)

∂uk
δuk +

∂L(k)

∂uk−ωk

δuk−ωk
+
∂L(k)

∂λk+1
δλk+1

)
. (25)

Therefore, the first variation is obtained as follows:

δJ̄(u(·)) =
[∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

]
|k=kf

k=k0

+

kf−1∑
k=k0

[( ∂F
∂xk

− λk

)
δxk +

∂F

∂uk
δuk

+ δλk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
+ λTk+1

(
∂G

∂xk
δxk +

∂G

∂uk
δuk +

∂G

∂xk−τk

δxk−τk +
∂G

∂uk−ωk

δuk−ωk

)]
. (26)

Let

ψk =
∂G

∂xk−τk

, ηk =
∂G

∂uk−ωk

. (27)

Since xk is specified function for k ≤ k0, and τk : N −→ N, then

δxki−τki
= 0, for all ki ∈ [k0, kf − 1] and ki − τki ≤ 0; (28)

otherwise,

λTki+1ψki
= 0, ki − τki

> 0. (29)

Similar to equations (28) and (29), we have

δuki−ωki
= 0, for all ki ∈ [k0, kf − 1] and ki − ωki ≤ 0; (30)

otherwise,

λTki+1ηki
= 0, ki − ωki

> 0. (31)

Equation (26) can be rewritten as follows:

δJ̄(u(·)) =
[∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

]
|k=kf

k=k0

+

kf−1∑
k=k0

[( ∂F
∂xk
− λk + λTk+1

∂G

∂xk

)
δxk +

( ∂F
∂uk

+ λTk+1

∂G

∂uk

)
δuk

+ δλk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
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+ λTk+1ψkδxk−τk + λTk+1ηkδuk−ωk

]
. (32)

In (32), the coefficients δλk, δxk, and δuk must be zero in order to gain
the minimization of J̄(u(·)) and J(u(·)). Also, Euler–Lagrange equations are
derived from (29) and (31) as follows:

xk+1 = G
(
xk, xk−τk , uk, uk−ωk

, k
)
, k0 ≤ k ≤ kf , (33)


∂F

∂xk
− λk + λTk+1

∂G

∂xk
+ λTk+1ψk = 0, k − τk > 0,

∂F

∂xk
− λk + λTk+1

∂G

∂xk
= 0, O.W.,

(34)


∂F

∂uk
+ λTk+1

∂G

∂uk
+ λTk+1ηk = 0, k − ωk > 0,

∂F

∂uk
+ λTk+1

∂G

∂uk
= 0, O.W.,

(35)

with the following conditions:

xk = ϕk, k0 − τk0
≤ k ≤ k0, (36)

uk = Θk, k0 − ωk0
≤ k ≤ k0, (37)

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

|k=kf
= 0. (38)

3 Numerical examples

Some of the proposed features, including the efficiency and applicability of the
technique, are discussed in this section with numerical examples. Our first
example uses a non-autonomous DOCP with a time-varying state variable
to implement the suggested method. In the second example, we also present
the results of solving an autonomous DOCP with constant delays for state
and control variables by the introduced method, indicating that we can solve
optimal control problems with delays efficiently by this method.
Example 1. Consider the following cost functional:

J =

14∑
k=0

(
x2k + u2k

)
, (39)

subject to non-autonomous recursive equation with time-varying delays
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xk+1 = Akxk +A1kxk−τk +Bkuk, 0 ≤ k ≤ 14, (40)

and the following condition

xk = 1, k ≤ 0, (41)

where τk is the delay function satisfying τk > 0 for 0 ≤ k ≤ 14, and Ak = k,
A1k = 1, and Bk = 1. The approach presented in this article has been applied
to solve the DOCP with time-varying delays (39)–(41). The numerical results
of this example are shown when τk = 3 − k2. The Lagrange function L is
defined as follows:

L(k) =L
(
xk, xk+1, xk−τk , uk, k

)
=x2k + u2k + λk+1(xk + kxk−3+k2 + uk − xk+1). (42)

Therefore, the necessary conditions for the problem (39)–(41) are obtained
as follows:


xk+1 = xk + kxk−τk + uk, 0 ≤ k ≤ 14,{
2xk − λk + λk+1k + λk+1 = 0, k − 3 + k2 ≤ 0,
2xk − λk + λk+1k = 0, O.W.,

2uk + λk+1 = 0, 0 ≤ k ≤ 14.

(43)

Additionally, the following conditions contribute to obtain the solution:

xk = 1, k ≤ 0, (44)
λ15 = 0. (45)

The numerical results of state and control variables of Example 1 are
shown in Figure 1 when τk = 3 − k2. Also, we show the convergence
curve of the performance index function to illustrate the performance of the
proposed method, in Figure 2.

Example 2. Consider the following linear multi-delays time invariant prob-
lem to minimize the following functional:

J(u) =
1

2

100∑
k=0

(x2k +
1

2
u2k), (46)

subject to

xk = −xk + xk−τ + uk −
1

2
uk−ω, 0 ≤ k ≤ 100, (47)

and the following condition
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(a) State variable xk

(b) Control variable uk

Figure 1: Approximation of state and control variable of Example 1.

Figure 2: The convergence of performance index function of Example 1.
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xk = 1, k ≤ 0, (48)
uk = 0, k ≤ 0. (49)

Note that in this example,

τ = 6, ω = 8.

The Lagrange function is defined as follows:

L(k) =L
(
xk, xk+1, xk−τk , uk, uk−ωk

, k
)

=
1

2
x2k +

1

4
u2k + λk+1(−xk + xk−6 + uk −

1

2
uk−8 − xk+1). (50)

The following equations give the optimal solution:
xk+1 = −xk + xk−6 + uk −

1

2
uk−8 0 ≤ k ≤ 100,{

xk − λk − λk+1 + λk+1 = 0, k − 6 ≤ 0,
xk − λk − λk+1 = 0, O.W.,{
1
2uk + λk+1 − 1

2λk+1 = 0, k − 8 ≤ 0,
1
2uk + λk+1 = 0, O.W.,

(51)

with the boundary conditions:

xk = 1, k ≤ 0, (52)
uk = 0, k ≤ 0, (53)
λ100 = 0. (54)

The analytic solution to this problem is not available. In Figure 3, the state
and control variables of problem (46)–(48) are depicted. To demonstrate
the performance of the proposed method, we show the convergence curve of
the performance index function in Figure 4.

Example 3. Consider the following two-Dimensional nonlinear time-delays
autonomous problem to minimize the following functional:

J(u1(·), u2(·)) =
kf−1∑
k=0

(x21(k) + x22(k) + u21(k) + u22(k)), (55)

subject to

x1(k + 1) = x22(k − 2)− 0.2u1(k), 0 ≤ k ≤ kf − 1, (56)
x2(k + 1) = x21(k − 2)− 0.2u2(k), 0 ≤ k ≤ kf − 1, (57)

and the following conditions

x1(k) = 1, −2 ≤ k ≤ 0, (58)
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(a) State variable xk

(b) Control variable uk

Figure 3: Approximation of state and control variable of Example 2

Figure 4: Convergence of performance index function of Example 2.
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x2(k) = −1, −2 ≤ k ≤ 0. (59)

The following equations give the optimal solution:

L(k) =L
(
xk, xk+1, xk−τk , uk, k

)
=x21(k) + x22(k) + u21(k) + u22(k) + λ1(k + 1)(x22(k − 2)− 0.2u1(k))

+ λ2(k + 1)(x21(k − 2)− 0.2u2(k))− λ1(k + 1)x1(k + 1)

− λ2(k + 1)x2(k + 1), (60)

From equation (34)–(38), we get
∂F

∂x1(k)
− λ1(k) + λT1 (k + 1)

∂G

∂x1(k)
= 0, k − 2 ≤ 0,

∂F

∂x2(k)
− λ2(k) + λT2 (k + 1)

∂G

∂x2(k)
= 0, 0 < k − 2,

(61)

{
2x1(k)− λ1(k) + λ1(k + 1)(2x2(k − 2)) = 0, k − 2 ≤ 0,

2x1(k)− λ1(k) = 0, 0 < k − 2,
(62)

{
2x2(k)− λ2(k) + λ2(k + 1)(2x1(k − 2)) = 0, k − 2 ≤ 0,

2x2(k)− λ2(k) = 0, 0 < k − 2,
(63)

{
2u1(k)− 0.2λ1(k + 1) = 0, k − 2 ≤ 0,

2u2(k)− 0.2λ2(k + 1) = 0, 0 < k − 2,
(64)

{
x1(k + 1) = x22(k − 2)− 0.2u1(k),

x2(k + 1) = x21(k − 2)− 0.2u1(k),
(65)

with the boundary conditions:

x1(k) = 1, −2 ≤ k ≤ 0, (66)
x2(k) = −1, −2 ≤ k ≤ 0. (67)

The analytic solution to this problem is not available. In Figure 5, the state
variable of the problem (55)–(58) is depicted. Similar to the previous ex-
amples, we show the convergence curve of the performance index function in
Figure 7. Also, the control variable is illustrated in Figure 6.
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(a) State variable x1(k)

(b) State variable x2(k)

Figure 5: Approximation of state variable of Example 3
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(a) Control variable u1(k)

(b) Control variable u2(k)

Figure 6: Approximation of control variable of Example 3

Figure 7: Convergence of performance index function of Example 3.
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4 Conclusion

By introducing a new Lagrange multiplier, the original DOCP with time-
varying delays problem has been transformed into DOCP problems without
time-delay terms to avoid solving the DOCP problem with time-delay terms.
In this regard, we utilized the discrete method to derive the new Euler–
Lagrange delay formula with a two-point boundary to solve DOCP with
time-varying delays. It is important to give a way to solve DOCP with time-
varying delays, according to its application. In this technique, we utilized
the variation method to construct the Euler–Lagrange formula with a two-
point boundary in order to solve DOCP with time-varying delays, which has
not been done before. Moreover, two illustrations were supplied to demon-
strate how the technique could be used. The performance index influenced
the DOCP problem of discrete time-delay systems, and also an approximate
regulator was proposed. The simulation results showed that it is simple to
implement and robust.
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