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Strong approximation for Itô
stochastic differential equations

M. Namjoo∗

Abstract

In this paper, a class of semi-implicit two-stage stochastic Runge-Kutta
methods (SRKs) of strong global order one, with minimum principal er-
ror constants are given. These methods are applied to solve Itô stochas-

tic differential equations (SDEs) with a Wiener process. The efficiency of
this method with respect to explicit two-stage Itô Runge-Kutta methods
(IRKs), Itô method, Milstien method, semi-implicit and implicit two-stage
Stratonovich Runge-Kutta methods are demonstrated by presenting some

numerical results.

Keywords: Stochastic differential equations; Strong approximation; Runge-
Kutta methods.

1 Introduction

In recent years, a great deal of concern has been raised regarding the study of
SDEs as an important area of research. Many phenomena in science and en-
gineering have been modeled by deterministic ordinary differential equations
(DODEs). However, some of the parameters and initial data are not known
with complete certainty due to lack of information. Therefore, to represent a
more accurate model of the behavior of such phenomena they usually should
be modeled by SDEs. Some areas where SDEs have been used extensively in
modeling phenomena include chemistry, physics, engineering, mathematical
biology and finance (see, for example, [5], [7]). Since explicit solutions are
known only for a few equations, the study of numerical methods have become
more important and these must be designed to be implemented with a certain
order of accuracy. Consider the autonomous Itô SDE given by

dy(t) = g0(y(t))dt+ g1(y(t))dW (t), y(t0) = y0, t ∈ [t0, tf ], (1)
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2 M. Namjoo

where g0 and g1 are real-valued functions which are called the drift coeffi-
cient and the diffusion coefficient, respectively, andW (t) is a one-dimensional
standard Wiener process, whose increment ∆W (t) =W (t+ h)−W (t) has a
Gaussian distribution with mean 0 and variance h, i.e. W (t + h) −W (t) ∼
N(0, h) =

√
h N(0, 1), and the solution y(t) is an Itô process. A Wiener pro-

cess (named after N. Wiener) is sometimes called Brownian Motion, which is
a term used to describe the phenomenon of the erratic behaviour of a particle
in a liquid, acted on by random impulses, in the absence of friction. Equation
(1) can also be written as a stochastic integral equation

y(t) = y0 +

∫ t

t0

g0(y(s))ds+

∫ t

t0

g1(y(s))dW (s),

where the first integral is a mean square Riemann-Stieltjes integral and the
second integral is a stochastic integral which can be interpreted in many
ways (see [10]). The two most studied interpretations are due to Itô and
Stratonovich that depend on the points of the partitioning in which the inte-
grand is evaluated. If the lower end point tn is chosen, it leads to Itô integral
and if midpoint (tn + tn+1)/2 is chosen, it leads to Stratonovich integral.
The Stratonovich interpretation follows the common rules of integral calcu-
lus, while the Itô formulation has the advantage of preserving the martingale
property of Wiener process. It is always possible to switch from one interpre-
tation to the other, because an Itô SDE can be converted to a Stratonovich
SDE (and vice versa) by means of the following formula (see [5])

ḡ0(y) = g0(y)−
1

2
g′1(y)g1(y),

where equation (1) is in the Stratonovich form when ḡ0 is used in place of g0.
There are different numerical methods for solving these kinds of differential
equations (see, for example, [1], [6], [8]). Numerical methods for SDEs are
recursive methods where trajectories, in other words, the sample paths of
solution are computed at discrete time steps. These methods are classified
to strong and weak. Only strong convergence will be considered in this
paper. Strong convergence is required, when each trajectory of the numerical
method must be closed to the exact solution. Formally, if yN is the numerical
approximation to y(tN ) after N steps with constant stepsize h = (tf − t0)/N ,
then yN is said to converge strongly to y(tN ) with strong order p if there
exists C > 0 (independent of h) and δ > 0 such that

E(|yN − y(tN )|) ≤ Chp, h ∈ (0, δ).

An outline of this paper is as follows: In Section 2, the semi-implicit SRKs for
SDEs are introduced, moreover order conditions for a class of SRKs with order
one are stated. In particular, the new class of semi-implicit two-stage SRKs
for SDEs with minimum principal error constants is constructed and the fixed
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point iteration algorithm will be used to improve the semi-implicit method.
In Section 3 we have some numerical results which show the efficiency of this
method.

2 The semi-implicit Itô Runge-Kutta methods for SDEs

The most famous numerical method that can be obtained from a stochastic
Taylor expansion is Milstein method. This method for the SDE problem (1)
is given by

yn+1 = yn + hg0(yn) + J1g1(yn) +
1

2
(J1

2 − h)g′1(yn)g1(yn),

where J1 =W (tn+h)−W (tn) with h = (tf−t0)/N for some integer N . This
method converges with strong order one as long as E(y20) < ∞, and g0, g

′
0,

g1, g
′
1 and g′′1 satisfy a uniform Lipschitz condition. Higher order numerical

methods can be obtained by truncating farther terms of the stochastic Taylor
expansion. This technique involves considerable complexities in implementa-
tion because of the approximation of higher order stochastic integrals and
the evaluation of high order derivatives of both the drift and diffusion coef-
ficients. Thus, it is important to be able to derive derivatives free numerical
methods and this leads to SRKs. For the SDE (1) SRKs is given by (see [2]):

Yi = yn +
s∑
j=1

Z
(0)
ij g0(Yj) +

s∑
j=1

Z
(1)
ij g1(Yj), i = 1, 2, . . . , s, (2)

yn+1 = yn +

s∑
j=1

z
(0)
j g0(Yj) +

s∑
j=1

z
(1)
j g1(Yj),

which can be represented in tableau form as

Z(0) Z(1)

z(0)
T

z(1)
T ,

where Z(k) = (Z
(k)
ij ) for i, j = 1, 2, . . . , s and z(k)

T
= (z

(k)
1 , . . . , z

(k)
s ) repre-

sents for k = 0, 1. Here Y1, . . . , Ys represent the internal stage of the method,
and yn+1 is the update of the numerical solution at the end of the current
step. Since (2) is a generalization of the class of Runge-Kutta methods in
deterministic case, for consistency the stepsize will be included in the param-
eter matrix associated with the deterministic components, so Z(0) = hA and

z(0)
T
= hαT , while Z(1) and z(1)

T
have elements that are arbitrary random

variables. In order to derive methods with strong global order one, the ex-
istence of stochastic Taylor series expansion of the SRK method in the Itô
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case and the Itô Taylor series expansion of the exact solution is necessary.
By comparing these two expansions, the local truncation error over one step
with an exact initial value can be written as (see [3]):

L(t0 + h) = y(t0 + h)− Y (t0 + h) =
∑
t∈T⋆

e(t) F (t)y0,

where e(t) and F (t)y0 are called the local truncation error coefficients and the
elementary differential for tree t, respectively and T ⋆ is the set of bi-coloured
rooted trees . Assuming certain conditions on the cofficients of the method
and satisfying Lipschitz condition for the drift and diffusion cofficients SDE, a
method will have strong global convergence of order one if it has strong local
order one and mean local order one (see [3]). In [9] the order one conditions
for a class of IRKs in the form

Z(0) = hA, z(0)
T
= hαT , Z(1) =

√
hB(1) + J1B

(2), (3)

z(1)
T
=
√
hγ(1)

T
+ J1γ

(2)T ,

are given, where A, B(1) and B(2) are s × s real matrices, and αT =

(α1, . . . , αs), γ
(1)T = (γ

(1)
1 , γ

(1)
2 , . . . , γ

(1)
s ) and γ(2)

T
= (γ

(2)
1 , γ

(2)
2 , . . . , γ

(2)
s )

are row s-dimensional vectors. In fact a SRK method of the form (3) will
have strong global order one if (see [9])

αT e = 1,

γ(1)
T
e = 0,

γ(2)
T
e = 1,

γ(1)
T
B(1)e = −1

2 ,

γ(1)
T
B(2)e+ γ(2)

T
B(1)e = 0,

γ(2)
T
B(2)e = 1

2 ,
αTB(1)e = 0,

γ(1)
T
Ae = 0,

γ(1)
T
(B(1)e)2 + γ(1)

T
(B(2)e)2 + 2γ(2)

T
(B(1)e)(B(2)e) = 0,

γ(1)
T
B(1)2e+ γ(1)

T
B(2)2e+ γ(2)

T
(B(1)B(2)e+B(2)B(1)e) = 0.

(4)

Here e = (1, . . . , 1)T ∈ Rs and multiplication of vectors are componentwise.
If the matrices A, B(1) and B(2) are strictly lower triangular, then the method
(3) is said to be explicit, while if A, B(1) and B(2) are lower triangular, then
the method (3) is said to be semi-implicit. A family of two-stage explicit
SRKs of the form (3) with minimum principal error terms can be presented
by the following tableau (see [9]):

0 0 0 0

0 0 − 1
2 (
√
h− J1) 0

h 0 −
√
h

√
h+ J1
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which is called ‘EM1’, and has the principal error constants

1

3
h3,

1

3
h3,

1

6
h3,

1

16
h3,

and the other family of two-stage explicit methods satisfying (4) with mini-
mum principal error constants can be presented by (see [9]):

0 0 0 0

0 0 1
2 (
√
h+ J1) 0

h 0
√
h −

√
h+ J1

which is called ‘EM2’, and has the principal error constants

1

3
h3,

1

3
h3,

1

6
h3,

1

16
h3.

Also the Itô method (see [2]) that is a derivative free version of the Mil-
stein method with strong global order one, can be presented by the following
tableau:

0 0 0 0

0 0
√
h 0

h 0 J1 −
√
h
2 (( J1√

h
)
2 − 1)

√
h
2 (( J1√

h
)
2 − 1)

This method is called ‘IRK’ and has the principal error constants

1

3
h3,

1

3
h3,

1

6
h3,

3

8
h3.

In [1] a class of semi-implicit and implicit Stratonovich Runge-Kutta meth-
ods of strong order one with minimum principal error constants for SDEs is
constructed. More precisely, this class of semi-implicit and implicit two-stage
Stratonovich Runge-Kutta methods with minimum principal error cofficients
can be presented, by the following tableau (see [1])

3+
√
3

6 h 0 3+
√
3

6 J1 0

−
√
3
3 h

3+
√
3

6 h −
√
3
3 J1

3+
√
3

6 J1
1
2h

1
2h

1
2J1

1
2J1

and

1
4h

3−2
√
3

12 h 1
4J1

3−2
√
3

12 J1
3−2

√
3

12 h 1
4h

3−2
√
3

12 J1
1
4J1

1
2h

1
2h

1
2J1

1
2J1

which are called ‘SIM1’ and ‘IM ’, respectively. In order to generalize the
above explicit IRKs to semi-implicit case, consider s = 2, hence the matrices
A, B(1) and B(2) will have the following forms:
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A =

(
a11 0
a21 a22

)
, B(1) =

(
b
(1)
11 0

b
(1)
21 b

(1)
22

)
, B(2) =

(
b
(2)
11 0

b
(2)
21 b

(2)
22

)
.

Now by system equations (4) and according to the structure of matrices A,
B(1) and B(2) of the above form and by MAPLE, we have the following
system equations of ten equations with fifteen unknowns:

α1 + α2 = 1,

γ
(1)
1 + γ

(1)
2 = 0,

γ
(2)
1 + γ

(2)
2 = 1,

γ
(1)
1 b

(1)
11 + γ

(1)
2 b

(1)
21 + γ

(1)
2 b

(1)
22 = − 1

2
,

γ
(1)
1 b

(2)
11 + γ

(1)
2 b

(2)
21 + γ

(1)
2 b

(2)
22 + γ

(2)
1 b

(1)
11 + γ

(2)
2 b

(1)
21 + γ

(2)
2 b

(1)
22 = 0,

γ
(2)
1 b

(2)
11 + γ

(2)
2 b

(2)
21 + γ

(2)
2 b

(2)
22 = 1

2
,

α1b
(1)
11 + α2b

(1)
21 + α2b

(1)
22 = 0,

γ
(1)
1 a11 + γ

(1)
2 a21 + γ

(1)
2 a22 = 0,

γ
(1)
1 b

(1)
11

2
+ γ

(1)
2

(
b
(1)
21 + b

(1)
22

)2
+ γ

(1)
1 b

(2)
11

2
+ γ

(1)
2

(
b
(2)
21 + b

(2)
22

)2
+ 2γ

(2)
1 b

(1)
11 b

(2)
11

+2γ
(2)
2

(
b
(2)
21 + b

(2)
22

)(
b
(1)
21 + b

(1)
22

)
= 0,

2γ
(2)
1 b

(1)
11 b

(2)
11 + γ

(2)
2

(
b
(1)
21 b

(2)
11 + b

(1)
22 b

(2)
21 + 2b

(1)
22 b

(2)
22 + b

(2)
21 b

(1)
11 + b

(2)
22 b

(1)
21

)
+γ

(1)
1 b

(1)
11

2
+ γ

(1)
2

(
b
(1)
21 b

(1)
11 + b

(1)
22 b

(1)
21

)
+ γ

(1)
2 b

(1)
22

2
+ γ

(1)
1 b

(2)
11

2

+γ
(1)
2

(
b
(2)
21 b

(2)
11 + b

(2)
22 b

(2)
21

)
+ γ

(1)
2 b

(2)
22

2
= 0.

(5)

Moreover, by system equations (4), since αTB(1)e = 0 and γ(1)
T
Ae = 0,

hence we can minimize the error constants corresponding to trees [τ1]0 and
[τ0]1, that are given by

E[I10 − z(0)
T
Z(1)e]

2
=
(

1
3 −

(
αTB(2)e

)
+
(
αTB(2)e

)2
+
(
αTB(1)e

)2)
h3

=
(

1
3 −

(
αTB(2)e

)
+
(
αTB(2)e

)2)
h3,

E[I01 − z(1)
T
Z(0)e]

2
=

(
1
3 −

(
γ(2)

T
Ae
)
+
(
γ(2)

T
Ae
)2

+
(
γ(1)

T
Ae
)2)

h3

=

(
1
3 −

(
γ(2)

T
Ae
)
+
(
γ(2)

T
Ae
)2)

h3.

These error constants are minimized with the minimum value 1
12 if

αTB(2)e =
1

2
, γ(2)

T
Ae =

1

2
,

or equivalently, if {
α1b

(2)
11 + α2b

(2)
21 + α2b

(2)
22 = 1

2 ,

γ
(2)
1 a11 + γ

(2)
2 a21 + γ

(2)
2 a22 = 1

2 .
(6)

By augmenting equations (6) to system (5) and solving the new system by
MAPLE it is observed that the new system has a three parameters solution
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that are given by
a11 = 1

2 , a21 = 1
2 − a22, α1 = α2 = 1

2 ,

b
(1)
11 = 1

4γ
(1)
2

, b
(1)
21 =

2b
(2)
22 −1

4γ
(1)
2

, b
(1)
22 = − b

(2)
22

2γ
(1)
2

, γ
(1)
1 = −γ(1)2 ,

b
(2)
11 = 1

2 , b
(2)
21 = 1

2 − b
(2)
22 , γ

(2)
1 = γ

(2)
2 = 1

2 , γ
(1)
2 ̸= 0.

(7)

In order to determine the free parameter of the deterministic part, i.e. a22,
we choose the deterministic part of SRK method (2) to be the Runge –Kutta
method given by

1
2

1
2 0

1
2

1
4

1
4

1
2

1
2

that is, it has order 2 (see [4]). This ensures that the semi-implicit method
works well in the case of small stochastic influence. From (7) we can assume

A = B(2), and consequently for γ
(1)
2 ̸= 0, a one-parameter solution can be

represented by the following tableau

1
2h 0

√
h

4γ
(1)
2

+ 1
2J1 0

1
4h

1
4h −

√
h

8γ
(1)
2

+ 1
4J1 −

√
h

8γ
(1)
2

+ 1
4J1

1
2h

1
2h −γ(1)2

√
h+ 1

2J1 γ
(1)
2

√
h+ 1

2J1

In order to choose γ
(1)
2 , one can use the minimum of the error constants

corresponding to trees [[τ1]1]1 and [τ1, τ1]1, that are given by
E[I111 − z(1)

T
Z(1)2e]

2
=

(
3+96γ

(1)
2

2
+560γ

(1)
2

4

3072γ
(1)
2

4

)
h3,

E[I111 +
1
2I01 −

1
2z

(1)T
(
Z(1)e

)2 − 1
2z

(1)TZ(0)e]
2
=

(
1+8γ

(1)
2

2
+48γ

(1)
2

4

1024γ
(1)
2

4

)
h3.

By introducing two functions f and g in the following form

f(λ) =
3 + 96λ2 + 560λ4

3072λ4
, g(λ) =

1 + 8λ2 + 48λ4

1024λ4

it can be shown that these are decreasing functions on the interval (0,+∞),
and moreover

lim
λ→+∞

f(λ) =
35

192
, lim

λ→+∞
g(λ) =

3

64
.

Now by choosing γ
(1)
2 = 3, this class of methods can be represented by the

following tableau
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1
2h 0

√
h

12 + 1
2J1 0

1
4h

1
4h −

√
h

24 + 1
4J1 −

√
h

24 + 1
4J1

1
2h

1
2h −3

√
h+ 1

2J1 3
√
h+ 1

2J1

which is named ‘SIM2’, and has principal error constants

1

12
h3,

1

12
h3,

15409

82944
h3,

3961

82944
h3.

Note that the principal error coefficients corresponding to trees [[τ1]1]1 and
[τ1, τ1]1, are very close to the limits of f and g as λ → +∞, respectively.
Since f and g are even functions, the above analysis shows that the choice

γ
(1)
2 = 3 is suitable. If we use the 1-norm to estimate the contribution of all

error terms to the principal error term, then, Table1 represents the following
values for methods ‘IRK’ , ‘EM1’ , ‘EM2’ and ‘SIM2’.

Table 1: 1-norm of principal error coefficients

IRK EM1 EM2 SIM2
∥principal error∥1 1.2083 0.89583 0.89583 0.40019

From Table1, it follows that the 1-norm principal error of the method ‘SIM2’
is less than the 1-norm principal error of ‘EM1’ and ‘EM2’ methods. In order
to improve the results of employing the ‘SIM2’ method at each step, we can
solve the system for stage-variables Y1 and Y2 by the fixed-point iteration
scheme with starting values for these variables coming from the ‘EM1’ or
‘EM2’ methods. In fact, for the stage-variable Y1 in the ‘SIM2’ method let

G1(Y1) ≡ yn +
1

2
h g0(Y1) +

1

12
(
√
h+ 6J1) g1(Y1),

and hence the fixed-point iteration for solving Y1 is given by

Y1
[s+1] = G1(Y1

[s]), s = 0, 1, 2, . . . , (8)

with stopping criteria

|Y [s+1]
1 − Y [s]

1 | < ϵ, (9)

where ϵ is a positive known tolerance value. In order to consider the conver-
gence property of fixed point iterations (8), it is sufficient to have

| G′
1(Y ) |=| 1

2
h g′0(Y ) +

1

12
(
√
h+ 6J1) g

′
1(Y ) |< 1.

Also for the stage-variable Y2, let
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G2(Y2) ≡ yn +
1

4
h (g0(Y1

[s+1]) + g0(Y2)) +
1

24
(−
√
h+ 6J1) (g1(Y1

[s+1]) + g1(Y2)),

such that Y
[s+1]
1 satisfy condition (9). Consequently the fixed-point iteration

for solving Y2 is given by

Y2
[t+1] = G2(Y2

[t]), t = 0, 1, 2, . . . , (10)

with stopping criteria

|Y [t+1]
2 − Y [t]

2 | < ϵ. (11)

Note that iterations (10) is convergent if

| G′
2(Y ) |=| 1

4
h g′0(Y ) +

1

24
(−
√
h+ 6J1)g

′
1(Y ) |< 1.

Finally yn+1 for the ‘SIM2’ method will be evaluated by

yn+1 = yn +
1

2
h
(
g0

(
Y

[s+1]
1

)
+ g0

(
Y

[t+1]
2

))
+

(
−3
√
h+

1

2
J1

)
g1

(
Y

[s+1]
1

)
+

(
3
√
h+

1

2
J1

)
g1

(
Y

[t+1]
2

)
,

where Y
[s+1]
1 and Y

[t+1]
2 satisfy conditions (9) and (11).

3 Numerical results and conclusion

In this section, the numerical results from the implementation of the above
seven methods are compared. These methods are ‘IRK’, ‘Milstein’, ‘EM1’,
‘EM2’, ‘SIM1’, ‘IM ’ and ‘SIM2’. They will be implemented with constant
stepsize on two problems taken from [5], for which the exact solution in terms
of a Wiener process is known. Since J1 ∼ N(0, h), hence for generating the
Wiener increments J1 in MATLAB environment of random numbers genera-
tor randn (#traj,#step) is used, such that each call to randn (#traj,#step)
creates a #traj×#step matrix of independent N(0, 1) samples. When these
methods are simulated, the same sequence of random numbers for the Wiener
increment J1 are used for the stepsize under consideration. The average error
for each stepsize at the end of the interval of integration is defined by

AE =
1

K

K∑
i=1

| y(i)N − y
(i)(tN ) |,
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where y
(i)
N is the numerical approximation and y(i)(tN ) is the exact solution of

SDE at tN in the i-th simulation over all K simulations. All of the numerical
results are based on 1000 simulated trajectories. The results appear in Tables
2-4.
Test problem 1. Consider

dy(t) = −a2y(t)(1− y2(t))dt+ a(1− y2(t))dW (t), y(0) = 0, t ∈ [0, 1]

with the exact solution

y(t) = tanh(aW (t) + arctanh(y0)).

This problem is solved numerically with the choice of parameter a = 1.

Table 2: Global errors for Test problem 1, with a = 1, K = 1000 and ϵ = 0.001

h 1
25

1
50

1
100

1
200

1
400

IRK 0.21400e-1 0.10299e-1 0.51948e-2 0.24299e-2 0.12254e-2
Milstein 0.16276e-1 0.82454e-2 0.42156e-2 0.19930e-2 0.10127e-2
EM1 0.12121e-1 0.59344e-2 0.30475e-2 0.14587e-2 0.70585e-3
EM2 0.12043e-1 0.57056e-2 0.29270e-2 0.13901e-2 0.71060e-3
SIM1 0.55857e-2 0.21190e-2 0.96207e-3 0.45136e-3 0.22157e-3
IM 0.13035e-3 0.64121e-4 0.34962e-4 0.17710e-4 0.81462e-5
SIM2 0.80715e-4 0.44013e-4 0.21736e-4 0.10551e-4 0.51995e-5

Test problem 2. Consider

dy(t) = −(α+β2y(t))(1−y2(t))dt+β(1−y2(t))dW (t), y(0) = 0.5, t ∈ [0, 1]

with the exact solution

y(t) =
(1 + y0) exp(−2αt+ 2βW (t)) + y0 − 1

(1 + y0) exp(−2αt+ 2βW (t)) + 1− y0
.

This problem is solved numerically with α = −1 and for β = 1 and 0.01.
Comparing the numerical results in Tables 2-4, it follows that the ‘SIM2’
method is more accurate than the ‘EM1’, ‘EM2’, ‘SIM1’ and ‘IM ’ methods.
Also for problems in which the deterministic term dominates (Test problem
2 with β = 0.01) the improvement of the ‘SIM2’ method becomes noticeable
as the stepsize is reduced. This is because the deterministic component of
the ‘SIM2’ method is the second order Runge-Kutta method. On the other
hand, for problems in which deterministic term dominates (Test problem 2
with β = 0.01) the global errors for two-stage explicit methods are the same.
This is because these methods the deterministic components are the same.
The future work should be based on the construction of implicit IRKs for
SDEs with two or more Wiener processes.
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Table 3: Global errors for test problem 2, with α = −1, β = 1, K = 1000 and ϵ = 0.001.

h 1
25

1
50

1
100

1
200

1
400

IRK 0.12763e-1 0.58682e-2 0.29961e-2 0.15034e-2 0.74495e-3
Milstein 0.11513e-1 0.51633e-2 0.27770e-2 0.13806e-2 0.68995e-3
EM1 0.96413e-2 0.41781e-2 0.21225e-2 0.10660e-2 0.54324e-3
EM2 0.93988e-2 0.42298e-2 0.20985e-2 0.10210e-2 0.52317e-3
SIM1 0.65238-3 0.32108e-3 0.15186-3 0.65537e-4 0.30367e-4
IM 0.79517e-4 0.42130e-4 0.21167e-4 0.10561e-4 0.51995e-5
SIM2 0.57845e-4 0.30499e-4 0.15806e-4 0.79504e-5 0.37761e-5

Table 4: Global errors for test problem 2, with α = −1, β = 0.01, K = 1000 and ϵ = 0.001

h 1
25

1
50

1
100

1
200

1
400

IRK 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
Milstein 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
EM1 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
EM2 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
SIM1 0.70238e-5 0.34182e-5 0.17423e-5 0.52895e-6 0.25624e-6
IM 0.55102e-5 0.26426e-5 0.13193e-5 0.58242e-6 0.29121e-6
SIM2 0.62103e-6 0.15741e-6 0.40441e-7 0.10595e-7 0.28838e-8
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A two-phase variable neighborhood
search for solving nonlinear optimal

control problems
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Abstract

In this paper, a two-phase algorithm, namely IVNS, is proposed for solving

nonlinear optimal control problems. In each phase of the algorithm, we use a
variable neighborhood search (VNS), which performs a uniform distribution
in the shaking step and the successive quadratic programming, as the local
search step. In the first phase, VNS starts with a completely random initial

solution of control input values. To increase the accuracy of the solution
obtained from the phase 1, some new time nodes are added and the values
of the new control inputs are estimated by spline interpolation. Next, in
the second phase, VNS restarts by the solution constructed by the phase

1. The proposed algorithm is implemented on more than 20 well-known
benchmarks and real world problems, then the results are compared with
some recently proposed algorithms. The numerical results show that IVNS
can find the best solution on 84% of test problems. Also, to compare the

IVNS with a common VNS (when the number of time nodes is same in both
phases), a computational study is done. This study shows that IVNS needs
less computational time with respect to common VNS, when the quality of
solutions are not different significantly.

Keywords: Nonlinear optimal control problem; Variable neighborhood search;
Successive quadratic programming.
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1 Introduction

Nonlinear optimal control problems (NOCP) are dynamic optimization prob-
lems with many applications in process systems engineering, including the
design of trajectories for the optimal operation of batch and semi-batch re-
actors, economic systems, plasma physics, etc. [7].

Providing high-quality solutions with minimum computational time is the
main issue for solving NOCPs. The numerical methods, direct [29] or indirect
[46], usually have two main deficiencies, including low accuracy and conver-
gence to a poor local solution. In direct methods, the quality of solutions
depend on discretization resolution. These methods use control parametriza-
tion to convert continuous problems to discrete problems, so they may have
less accuracy. However, the adaptive strategies [8, 43] can overcome these
defects, but they may be trapped by a local optimal, yet. In the indirect
approach, the problem using Pontryagins minimum principle (PMP) is con-
verted to two boundary value problems (TBVP) and then it can be solved by
numerical methods such as shooting method [29]. These methods need the
good initial guesses that lie within the domain of convergence. Therefore,
numerical methods are not usually suitable for solving NOCPs, especially for
large-scale and multimodal models.

Metaheuristics as the global optimization methods can overcome these
problems, but they usually need more computational time, though they don’t
really need good initial guesses and deterministic rules. Several researchers
have used metaheuristics to solve optimal control problems. For instance,
Michalewicz et al. [34] applied floating-point Genetic algorithms (GA) to
solve discrete time optimal control problems, Yamashita and Shima [52] used
the classical GAs to solve the free final time optimal control problems with
terminal constraints. Abo-Hammour et al. [1] used continuous GA for solv-
ing NOCPs. Recently, Sun et al. [47] proposed a hybrid improved GA, for
solving NOCPs and applied it for chemical processes. Moreover, the other
usages of GA for optimal control problems can be found in [44, 45]. Modares
and Naghibi-Sistani [37], proposed a hybrid algorithm by integrating an im-
proved Particle Swarm Optimization (PSO) with a successive quadratic pro-
gramming (SQP), for solving NOCPs. Lopez-Cruz et al. [14], applied Differ-
ential Evolution (DE) algorithms for solving the multimodal optimal control
problems. Recently, Ghosh et al. [22] developed an ecologically inspired op-
timization technique, called Invasive Weed Optimization (IWO), for solving
optimal control problems. The other well-known metaheuristic algorithms
which are used for solving NOCPs are Genetic Programming (GP) [30], PSO
[3, 4], Ant Colony Optimization (ACO) [48] and DE [31, 50].

Based on the success of the metaheuristics for solving NOCPs mentioned
above, we propose an algorithm that use a well-known metaheuristic namely
VNS (variable neighbourhood search) to solve NOCPs. Also, achieving a
global optimal solution for NOCPs is another motivation for us to use a
VNS [35]. VNS is an intelligent and metaheuristic method for solving a set
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of combinatorial optimization and global optimization problems which uses
neighborhood changes and uniform distributions in search procedure. Un-
like many other metaheuristics, it is simple and requires few parameters [32].
Mladenović et al. [36] proposed a general VNS for solving continuous opti-
mization. Moreover, VNS was used for solving several optimization problem
[25] such as mixed integer programming [26], vertex weighted k−cardinality
tree problem [10], and scheduling problem [13].

In this paper, VNS uses a uniform distribution in the shaking step and
the SQP [39], as the local search step (similar to [37]). SQP is an iterative
algorithm for solving NLP, which uses gradient information. Furthermore,
SQP is used for solving NOCPs alone [6, 18].

For performing VNS to solve an NOCP, the time interval is uniformly
divided by using a constant number of time nodes. Next, in each of these
time nodes, the control variable is approximated by a scalar matrix of control
input values. Thus, an infinite dimensional NOCP is changed to a finite
dimensional nonlinear programming (NLP). Now, we encounter two conflict
situations: the quality of the global solution and the needed computational
time. In other words, when the number of time nodes is increased then
we expect the quality of the global solution to increase but we know that
in this situation the computational time is increased dramatically. In other
situation, we consider less number of time nodes to reduce the computational
but we may find a poor local solution. To conquer these problems, IVNS,
performs VNS in two phases. In the first phase of IVNS (exploration phase),
to decrease the computational time and to find a promising solution in the
search space, VNS uses a less number of time nodes. Next to increase the
quality of the solution obtained from Phase 1, the number of time nodes is
increased. Using the obtained solution in Phase 1, the values of the new
control inputs are estimated by spline interpolation. Next, in the second
phase of IVNS (exploitation phase), VNS uses the solution constructed by
the above procedure, as an initial solution. A computational study in our
numerical experiments shows that there is a significant difference between the
computational time of IVNS and a common VNS, that uses all time nodes
from the beginning.

The rest of the paper is organized as follow: in Section 2, NOCPs are
briefly introduced. In Section 3, IVNS is described. In Section 4, we provide
more than 20 NOCPs to examine the numerical behaviour of the proposed
algorithm. Results are compared with some numerical and metaheuristic
methods. A computational study is carried out in Section 5 to show the
effect of the second phase. We conclude in Section 6.
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2 Problem formulation

NOCPs are formulated as optimization problems by the performance index
as the objective function and differentiate equations as constraints that called
dynamic optimizations. There are several types of these problems e.g. track-
ing problem, terminal control problem and time minimization problem [29].
We consider nonlinear bounded continuous-time control problems in which
a vector of control functions, u, is exerted over the planning horizon [t0, tf ].
The particular problem considered is that of finding the control input vector
u(t) ∈ Rm that minimizes the performance index:

min J = ϕ(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt (1)

subject to:

ẋ(t) = f(x(t), u(t), t), (2)

c(x(t), u(t), t) = 0, (3)

d(x(t), u(t), t) ≤ 0, (4)

ψ(x(tf ), tf ) = 0, (5)

x(t0) = x0, t ∈ [t0, tf ]. (6)

where x(t) ∈ Rn denotes the state vector for the system and x0 ∈ Rn is
the initial state. The functions f : Rn+m × R → Rn, g : Rn+m × R →
R, c : Rn+m × R → Rnc , d : Rn+m × R → Rnd , ψ : Rn × R → Rnψ and
ϕ : Rn × R → R are assumed to be sufficiently smooth on appropriate open
sets. The cost function (1) must be minimized subject to dynamic (2), control
and state equality constraints (3), control and state inequality constraints (4),
the initial condition (6) and the final state constraints (5).

3 Proposed algorithm

Here, we propose IVNS for solving NOCPs. Before providing a description
of IVNS, we introduce VNS.

3.1 VNS algorithm

VNS where introduced by Mladenović and Hansen in 1997 [35] is a meta-
heuristic algorithm which uses neighborhood changes systemically idea, both
in the descent to local minima and in the escape from valleys which contain
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local minima. It explores distant neighborhoods of the current incumbent
solution, and moves from there to a new one if and only if an improvement
is necessary. Local search method is applied repeatedly to get in the neigh-
borhood to local optima [36]. Here, the implemented VNS in each phase has
the following steps:
Initialization: The time interval is divided into Nt−1 subintervals using time
nodes t0, . . . , tNt−1 and then control input values are computed (or selected
randomly) as control points. This can be done by the following stages:

1. Let tk = t0 + kh, where h =
tf−t0
Nt−1 , k = 0, 1, . . . , Nt − 1, be time nodes,

where t0 and tf are the initial and final times, respectively.

2. The corresponding control input value at each time node, tk, k =

0, . . . , Nt − 1 is an m × 1 vector, uk = [u
(k)
1 , . . . , u

(k)
m ]T , having the

following components:

u
(k)
i = uleft,i + (uright,i − uleft,i).ri, i = 1, 2, . . . ,m (7)

where ri is a random number in [0, 1] with uniform distribution and
uleft, uright ∈ Rm are the lower and the upper bound vectors of control
input values, which can be given by the problem’s definition or the
user (e.g. see the NOCPs No. 7 and 8 in Appendix, respectively).
u = [uk]

Nt−1
k=0 is called control input matrix.

Evaluation: The corresponding state matrix with the control input matrix,
u, is an n×Nt matrix, x = [xk]

Nt−1
k=0 , where xk, k = 0, 1, . . . , Nt−1, is an n×1

vector as the (k + 1)-th column of state matrix, and can approximately be
computed by the forth Runge-Kutta method on dynamic system (2) with the
initial condition (6). Without loss of generality, assume m = 1 (for general
case it can be extended easily). So, the evaluation procedure is as follows:

xk = xk−1 +
1

6
(l1 + 2l2 + 2l3 + l4), k = 1, 2, . . . , Nt − 1 (8)

where

l1 = hf(xk, uk, tk), l2 = hf(xk +
l1
2
, uk +

h

2
, tk)

l3 = hf(xk +
l2
2
, uk +

h

2
, tk), l4 = hf(xk + l3, uk + h, tk)

where uk = u(tk) and xk = x(tk), with initial condition x(t0) = x0. To
approximate the performance index, the composite Simpson’s method [5], is
used. Then, the performance index in (1), J , is approximated by J̃ as follows:

J ≃ J̃ = ϕ(xNt−1, tNt−1) +
h

3
(f0 + 4

[
Nt
2 ]−1∑
i=1

f2i+1 + 2

[
Nt
2 ]−1∑
i=0

f2i + fNt−1) (9)
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where fk = f(xk, uk, tk), k = 0, 1, . . . Nt − 1. If NOCP includes equality
or inequality constraints e.g. (3) or (4), or has final state constraints, given
by (5), then we add some penalties to the corresponding fitness value of the
solution. Finally, we assign I(u) to u as the fitness value as follows:

I(u) = J̃ +

nd∑
l=1

Nt−1∑
j=0

M1lmax{0, dl(xj , uj , tj)}+
nc∑
h=1

Nt−1∑
j=0

M2hc
2
h(xj , uj , tj)

+

nψ∑
p=1

M3pψ
2
p(xNt−1, tNt−1) (10)

where M1 = [M11, . . . ,M1nd ]
T , M2 = [M21, . . . , M2nc ]

T and M3 =
[M31, . . . ,M3nψ ]

T are big numbers, as the penalty coefficients, for ch(., ., .), h =
1, 2, . . . , nc, dl(., ., .), l = 1, 2, . . . , nd, and ψp(., .), p = 1, 2, . . . , nψ defined in
(3), (4) and (5), respectively.
The fitness value in (10), can be viewed as a nonlinear objective function
with the decision variable as u = [u0, u1, . . . , uNt−1]. This cost function with
upper and lower bounds of input signals construct a finite dimensional NLP
problem as follows:

min I(u) = I(u0, u1, . . . , uNt−1)

s.t

uleft ≤ uj ≤ uright, j = 0, 1, . . . , Nt − 1 (11)

Neighborhood: VNS uses at most kmax neighborhoods, Vr1 , . . . , Vrkmax , in
which ri, i = 1, . . . , kmax is the radii of i-th neighborhood, Vi, of the control
input matrix u.
Shaking: In this stage, using a uniform distribution, a random direction
matrix d ∈ [−1, 1]m×Nt is firstly generated and then a random solution, ū, is
selected in the k-th neighborhood, Vk, by the following equation:

ū = u+ d.α.(r + k − 1) (12)

where r ∈ [0, 1] is a random number, k is the index of neighborhood and α
is the parameter of radii.
Local search: In this stage, SQP algorithm [9, 39] is performed on the NLP
(11), using ū0 = ū, constructed in (12), as the initial solution when the
maximum number of iteration is sqpmaxiter.

SQP, is an effective and iterative algorithm for the numerical solution of
the constrained NLP problem. This technique is based on finding a solution
to the system of nonlinear equations that arise from the first-order necessary
conditions for an extremum of the NLP problem. Using an initial solution
of NLP, ūk, k = 0, 1, . . ., a sequence of solutions as ūk+1 = ūk + dk is
constructed, which dk is the optimal solution of the constructed quadratic
programming (QP) that approximates NLP in the iteration k based on ūk,
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as the search direction in the line search procedure. For the NLP (11), the
principal idea is the formulation of a QP subproblem based on a quadratic
approximation of the Lagrangian function as L(u, λ) = I(u)+λTh(u), where
the vector λ is Lagrangian multiplier and h(u) return the vector of, inequality
constraints evaluated at u. The QP is obtained by linearizing the nonlinear
functions as follows:

min
1

2
dTH(ūk)d+∇I(ūk)T d

∇h(ūk)T d+ h(ūk) ≤ 0

Similar to [18], here a finite difference approximation is applied to compute
the gradient of the cost function and the constraints, with the following
components

∂I

∂uj
=
I(...uj + δ...)− I(uj)

δ
, j = 0, 1, . . . , Nt − 1 (13)

where δ is the double precision of machine. So, the gradient vector is
∇I = [ ∂I∂u0

, . . . , ∂I
∂uNt−1

]T . Also, at each major iteration a positive definite

quasi-Newton approximation of the Hessian of the Lagrangian function, H,
is calculated using the BFGS method [39], where λi, i = 1, ...,m, is an esti-
mated of the Lagrange multipliers. The general procedure of SQP, for NLP
(11), is as follows:

1. Given an initial solution ū0. Let k = 0.

2. Construct the QP subproblem (13), based on ū0, using the approxima-
tions of the gradient and the Hessian of the the Lagrangian function.

3. Compute the new point as ūk+1 = ūk + dk, where dk is the optimal
solution of the current QP.

4. Let k=k+1 and go to step 2.

Here, in IVNS, SQP is used as the local search step, and we use the maximum
number of iterations as the main criterion for stopping SQP. In other words,
we terminate SQP when it converges either to local solution or the maximum
number of SQP’s iterations is reached.
Terminal conditions: The algorithm is terminated when the number of neigh-
borhoods reached to kmax or the difference between cost functions in two
consecutive iterations is less than ε (a given number).
VNS algorithm is given in Algorithm 1.
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Algorithm 1 VNS algorithm

{Initialization} Input the number of time nodes Nt, the maximum num-
ber of iteration for SQP, sqpmaxiter, a maximum number of neighborhood,
kmax, the parameter of radii, α defined in (12), the lower and the upper
bound vectors of control input values uleft, uright, an initial solution, u∗,
and ε. Let k = 1.
{Evaluation} Evaluate the fitness of the initial solution, u∗ and let I∗ =
I(u∗), where I(.) is defined in (10).
repeat

{Shaking} Using (12), select u in k-th neighborhood of u∗.
{Local search} Perform SQP algorithm on the NLP (11), using u as

the initial solution when the maximum number of iteration is sqpmaxiter.
Let ū be the obtained solution, Ī = I(ū) and e = |Ī − I∗|.

if Ī < I∗ then
Let u∗ = ū, I∗ = Ī and k = 1.
else
Let k = k + 1
end if

until k > kmax or e < ε
Return u∗ as the approximate solution, x∗ as the corresponding state and
the corresponding fitness I∗.

3.2 IVNS

We now give a new algorithm, IVNS, which is a two-phase direct metaheuris-
tic approach. The main idea of IVNS is to find promising solution of the
search space using the computational time as few as possible.

IVNS has two main phases (as discussed in Section 1). In the first phase,
we perform VNS (Algorithm 1) with a completely random initial solution
constructed by (7). Since the main goal in this phase is to find the promising
solution in the search space, we use a few number of time nodes.

Next, to maintain the property of the solution given in Phase 1 and to
increase the accurately of this solution, we add some additional time nodes.
Thus, we increase time nodes from Nt1 in the Phase 1 to Nt2 in the Phase
2. To use the information of the obtained solution from Phase 1 in the
construction of the initial solution for Phase 2, we use Spline interpolation to
estimate the values of the control inputs based on the curve obtained from
the Phase 1. In the second phase, VNS restarts with this solution. Finally,
IVNS is given in Algorithm 2.

Remark 3.1. As we know, there are no general theorems on convergence of
metaheuristics algorithm exist [28, 38]. Also, a specific theory on convergence
of VNS does not exist, but a simple framework for global convergence of VNS
based on attraction probabilities concept, can be found in [11]. However, we
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Algorithm 2 IVNS

Initialization Input uleft and uright.
{Phase 1} Perform VNS (Algorithm 1) with a random initial solution and
using the parameters Nt1 , sqpmaxiter, kmax, α and ε. (see Algorithm 1)
{Constructing an initial solution for Phase 2} Increase time nodes
uniformly to Nt2 and estimate the corresponding control input values by
using Spline interpolation on the obtained solution from Phase 1.
{Phase 2} Restart VNS (Algorithm 1) with the constructed initial solution
and using Nt2 , sqpmaxiter, kmax, α and ε. (see Algorithm 1)

mentioned that all metaheuristics are practical algorithms that are interesting
for their numerical behaviour, [16].

4 Numerical experiments

In this Section, to investigate the efficiency of IVNS, more than 20 well-
known and real world NOCPs, as benchmark problems, are considered. These
problems are selected with single control signal and multi control signals.

The numerical behaviour of the algorithms can be studied from two points
of view: the performance index and the final state constraints. Let J be
the value of the performance index and ψ = [ψ1, . . . , ψnψ ]

T , defined in (5),
and ϕf = ∥ψ∥2 be the vector of final state constraints and the error of ψ,
respectively. Now, the absolute errors for J and ϕf , are defined as follows:

EJ = |J − J∗|, Eψ = |ϕf − ϕ∗f | (14)

where J∗ and ϕ∗f = ∥ψ∗∥2 are the best obtained solutions among the methods,
or the exact solutions (when exist). To control the accuracy study, we now
define a new criterion, called factor, to compare the numerical behaviour of
the algorithms as follows:

Kψ = EJ + Eψ (15)

where EJ and Eψ are defined in (14). Note that Kψ shows the summation
of two important errors. Thus, based on Kψ we can study the behaviour of
algorithms on the quality and feasibility of given solutions, simultaneously.

To solve any NOCP described in the Appendix, we must know IVNS’s
parameters including Nt1 , Nt2 , kmax, α, ε and sqpmaxiter (see Algorithm
1), and the problem’s parameters including uleft, uright andMi, i = 1, 2, 3, in
(10). To estimate the best value of these parameters, for each problem, we run
the proposed algorithm with different values of the parameters and then select
the best. In all NOCPs, we consider the parameters sqpmaxiter = 30, α =
10−3 and kmax = 10. The other parameters are given in the associated
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subsection or in Table 2. Because of the stochastic nature of the proposed
algorithm, 12 different runs were done, for each NOCP, and the best result
are reported in Table 1. The best value of each column is highlighted in the
bold. The reported numerical results for each algorithm included the value
of performance index, J , the absolute error of J and EJ , are defined in (14).
The final state constraints, ψ = [ψ1, . . . , ψnψ ]

T , the two-norm or error of the
final state constraints, ϕf , the absolute error of ϕf and Eψ, are defined in
(14), and the factor Kψ is defined in (15).

The algorithm was implemented in Matlab R2011a environment on a
Notebook with Windows 7 Ultimate, CPU 2.53 GHz and 4.00 GB RAM.
Also, to implement SQP in the proposed algorithm, as the local search, we
used ‘fmincon’ in Matlab when the ‘Algorithm’ was set to ‘SQP’.

In Subsection 4.1, the numerical results of IVNS are compared with exact
solutions. Also, for comparing IVNS with metaheuristics and numerical algo-
rithms in two Subsections 4.2 and 4.3, we consider 22 NOCPs. Their models
are described in the Appendix, which are presented in terms of equations
(1)-(6). The numerical results are summarized in Table 1. Details of these
comparisons are given in the following subsection.

4.1 Comparison with the exact solution

Consider the nonlinear system state equations [24]

ẋ1 = x32,

ẋ2 = u

The cost functional to be minimized, starting from the initial states x1(0) = 0
and x2(0) = 1, is

J = 4x1(2) + x2(2) + 4

∫ 2

0

u2(t)dt

The exact trajectories of the problem, from PMP, are x∗1(t) = 2
5 −

64
5(t+2)5

and x∗2(t) = 4
(t+2)2 , with the exact control signal u∗(t) = −8

(t+2)3 . Also the

exact value of the performance index is J∗ = 3.35. For the proposed algo-
rithm, IVNS’s parameters are set as Nt1 = 15, Nt2 = 21, ε = 10−6 and the
problem’s parameters are set as uleft = −1 and uright = − 1

4 . The IVNS’s
solution for the problem is J = 3.3418, thus, EJ = Kψ = 0.0082.

Figure 1 shows the graphs of the exact and the obtained trajectories, for
x1 and x2, and Figure 2 shows the graphs of the exact and the obtained
control signals.
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Figure 1: The exact and the obtained trajectories of (a) x1 and (b) x2, for the NOCP in
subsection 4.1

Figure 2: The exact and the obtained control signals for the NOCP in subsection 4.1

4.2 Comparison with metaheuristic algorithms

Here, six NOCPs are considered, NOCPs No. 1-6 in Appendix. The numeri-
cal results for the first NOCP is compared with hybrid improved GA, HIGA,
proposed in [47]. The NOCPs No. 2-4, in the Appendix are compared with
a metaheuristic, continuous GA and CGA, proposed in [1], which gave bet-
ter solutions than shooting method and gradient algorithm (as the indirect
methods) [29, 12], and SUMT (as the direct methods) [18]. For NOCPs No.
5 and 6 the results are compared with another metaheuristic, called IPSO,
proposed in [37]. It has been shown that, for these NOCPs, IPSO was more
accurate than some metaheuristic algorithms such as GA [42], DE [14], PSO
[27] and some numerical methods [21, 23].
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TCCR problem [47]

The first NOCP in the Appendix is a chemical process of Temperature Con-
trol for Consecutive Reaction, TCCR, which is an unconstrained two-state
variable mathematical system. The objective is to obtain the optimal tem-
perature profile that maximizes the yield of the temperature product B at
the end of operation in a batch reactor, where the reaction A → B → C
is occurred. The state variables, x1 and x2 are the concentration of A and
B, respectively, and the control variable u is the temperature. The problem
solved by HIGA [47], which was more accurate than ACO [40] and iterative
ACO [53]. From Table 1, we can see that the numerical behaviour of IVNS
is better than HIGA.

VDP problem [1, 17]

The second NOCP in the Appendix is Van Der Pol, VDP, problem which has
two state variables and one control variable. VDP problem has a final state
constraint, which is ψ = x1(tf )−x2(tf )+1 = 0. The problem solved by CGA
[1] and IVNS. From [1], the norm of final state constraint for the CGA equals
ϕ∗f = 2.67 × 10−11, however, this value for IVNS equals ϕf = 3.04 × 10−9.
So, the factor Kψ for these methods can be seen in the sixth column of the
Table 1. Note that the Kψ of IVNS, 3.01 × 10−9, is less than CGA’s Kψ,
3.0 × 10−4. From Table 1, it is seem that IVNS can achieved more suitable
solution than CGA.

CRP problem [1, 29]

The third NOCP in the Appendix is a mathematical model of Chemical Re-
actor Problem, CRP, which has two state variables and one control variable.
The control variable is the flow of a coolant through a coil inserted in the
reactor that controls the first-order irreversible exothermic reaction taking
place in the reactor. The state variables, x1 and x2, are the deviations from
the steady-state temperature and concentration, respectively. The numerical
results of IVNS and CGA are shown in the third row of Table 1. CRP prob-
lem has two final state constraints, ψ = [x1, x2]

T . From [1], the norm of final
state constraints for CGA, equals ϕ∗f = 7.57 × 10−10, when IVNS’s norm of

final state constraints is ϕf = 2.50×10−8. But, the corresponding Kψ of two
methods shows that IVNS could achieve more accurate solutions than CGA.



A two-phase variable neighborhood search for solving ... 25

FFRP problem [1, 18]

The fourth NOCP in the Appendix is Free Floating Robot Problem, FFRP,
which has six state variables and four control variables. It was solved by
CGA [1]. FFRP problem has six final state constraints, ψ = [x1− 4, x2, x3−
4, x4, x5, x6]

T . The norm of final state constraints for IVNS is ϕ∗f = 4.61 ×
10−4, however, this value, from [1], for CGA is ϕf = 4.65×10−3. From Table
1, we can see the numerical behaviour of IVNS is better than CGA, also it
is clear that the obtained values of J, EJ , ϕf , Eψ and Kψ from IVNS are
better than CGA.

CSTCR problem [37]

The fifth NOCP in the Appendix is a model of a nonlinear Continuous Stirred-
tank Chemical Reactor, CSTCR. It has two state variables x1(t) and x2(t), as
the deviation from the steady-state temperature and concentration, and one
control variable u(t), which represents the effect of the flow rate of cooling
fluid on chemical reactor. The objective is to maintain the temperature and
concentration close to steady-state values without expending large amount
of control effort. Also, this is a benchmark problem in the handbook of
test problems in local and global optimization [20], which is a multimodal
optimal control problem [2]. It involves two different local minima. The
values of the performance indices, for these solutions, equal 0.244 and 0.133.
The numerical results of IVNS, with the parameters in Table 2, are compared
with IPSO [37], and numerical methods in [2, 14]. From the results of the
fifth row of Table 1, we can see that IVNS is the best.

MSNIC problem [37]

In the sixth NOCP in the Appendix, a Mathematical System with Nonlinear
Inequality Constraint, MSNIC, is considered. It includes an inequality con-
straint, d(x, t) = x2(t) + 0.5 − 8(t − 0.5)2 ≤ 0. From the sixth row of Table
1, we can see that the obtained value of the performance index, for IVNS
is J∗ = 0.1720, which is better than IPSO’s, 0.1727, and other numerical
methods given in [23, 33].

4.3 Comparison with numerical algorithms

In this subsection, for NOCPs no. 7-22, the results of IVNS are compared
with some numerical methods such that SQP [18], SUMT [18], Bézier [21],
HPM [15], DTM [41] and ADM [19]. Usually, for these methods the final
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state constraints are not reported. But these values are reported for IVNS
in Table 1.

Comparison with Bézier [21]

The NOCP No. 7, in the Appendix, has exact solution, i.e. the exact value of
performance index equals J∗ = −5.5285 [49]. This problem has an inequality
constraint as d(x, t) = −6 − x1(t) ≤ 0. It has been solved by a numerical
method, proposed in [21], called Bézier, and the proposed algorithm, IVNS,
with the parameters in Table 2. From seventh row of Table 1, the obtained
value of the performance index from IVNS is better and more accurate than
Bézier method.

Comparison with HPM [15], DTM [41] and ADM [19]

In this subsection, the results of IVNS with the parameters given in Table 2,
are compared with HPM [15], DTM [41] and ADM [19]. For NOCP No. 8 in
the Appendix, which is a constraint nonlinear model, the numerical results
are compared with HPM. This NOCP has a final state constraint as

ψ = x− 0.5 = 0.

From [15], the norm of final state constraint for HPM is ϕf = 4.2 × 10−6,
however, this value for IVNS equals ϕ∗f = 6.83 × 10−11. From Table 1, it is
clear that the obtained values of the performance index, the norm of final
state constraint and Kψ from IVNS are better than HPM’s.

The problem No. 9 in the Appendix is a linear quadratic optimal control
which has been solved by two numerical methods, DTM [41] and ADM [19].
Using the approximate values of k(t), which is used to achieve the optimal
control signal by linear feedback control as u(t) = −k(t)x(t), the performance
index could be calculated. The exact solution, from PMP, equals J∗ = 0.1929.
From Table 1, the values of EJ and Kψ, for IVNS, with the same number of
points, Nt2 = 15, equals 0.0052, which is less than DTM and ADM methods,
(0.0087).

Comparison with SQP and SUMT

For NOCPs No. 10-22 in the Appendix, the numerical results of IVNS (the
parameters are given in Table 2) are compared with SQP and SUMT meth-
ods. All these problems are described in [18]. For SQP and SUMT, the status
of the final state constraints were not reported, so, we replaced the values of
ϕf instead of Eψ, in Table 1. Also, in computation of the factor, Kψ, the
values of Eψ for SQP and SUMT methods are considered to be zero. The
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results (given in Table 1) show that IVNS could find more accurate results
for performance index J , and the factor Kψ, perspective.

Table 1: The best of numerical results for 12 different runs of NOCPs described in

Appendix

Problem Algorithm J EJ Eψ Kψ

TCCR HIGA[47] 0.61046 2.0 × 10−5 — 2.0 × 10−5

IVNS 0.61048 0 — 0

VDP CGA [1] 1.7404 3.0 × 10−4 0 3.0 × 10−4

IVNS 1.7401 0 3.01 × 10−9 3.01 × 10−9

CRP CGA[1] 0.0163 4.0 × 10−4 0 4.0 × 10−4

IVNS 0.0159 0 2.42 × 10−8 2.42 × 10−8

FFRP CGA[1] 83.63 17.72 0.0042 17.7242
IVNS 65.91 0 0 0

CSTCR IPSO [37] 0.1354 0.0024 — 0.0024
[2] J ∈ [0.135, 0.245] 0.0020 — 0.0020
[14] J ∈ [0.1358, 0.1449] 0.0028 — 0.0028

IVNS 0.1328 2.0 × 10−4 — 2.0 × 10−4

MSNIC IPSO [37] 0.1727 0.0007 — 0.0007
[23] 0.1816 0.0096 — 0.0096
[33] 0.1769 0.0049 — 0.0049
IVNS 0.1720 0 — 0

NOCP no. 7 Bézier [21] −5.3898 0.1387 — 0.1387
IVNS −5.5082 0.0203 — 0.0203

NOCP no. 8 HPM [15] 0.2353 0.0338 4.20 × 10−6 0.0338
IVNS 0.2015 0 0 0

NOCP no. 9 DTM [41] 0.2016 0.0087 — 0.0087
ADM [19] 0.2016 0.0087 — 0.0087
IVNS 0.1877 0.0052 — 0.0052

NOCP no. 10b SUMT [18] 5.15 × 10−6 5.14 × 10−6 — 5.14 × 10−6

SQP [18] 6.57 × 10−6 6.56 × 10−6 — 6.56 × 10−6

IVNS 6.57 × 10−11 0 — 0

NOCP no. 11b SUMT [18] 1.7980 0.0791 — 0.0791
SQP [18] 1.7950 0.0761 — 0.0761
IVNS 1.7189 0 — 0

NOCP no. 12b SUMT [18] 0.1703 0.0223 — 0.0223
SQP [18] 0.2163 0.0683 — 0.0683
IVNS 0.1480 0 — 0

NOCP no. 13b SUMT [18] 3.2500 0.3507 NRa 0.3507
SQP [18] 3.2500 0.3507 NR 0.3507

IVNS 2.8993 0 7.49 × 10−10 7.49 × 10−10

NOCP no. 14b SUMT [18] −0.2490 0.001 NR 0.001
SQP [18] −0.2490 0.001 NR 0.001

IVNS −0.2500 0 2.6 × 10−10 2.6 × 10−10

NOCP no. 15b SUMT [18] 0.0167 6.0 × 10−4 NR 6.0 × 10−4

SQP [18] 0.0168 7.0 × 10−4 NR 7.0 × 10−4

IVNS 0.0161 0 3.42 × 10−9 3.42 × 10−9

NOCP no. 16b SUMT [18] 3.7700 0.4648 NR 0.4648
SQP [18] 3.7220 0.4168 NR 0.4168

IVNS 3.3052 0 3.35 × 10−8 3.35 × 10−8

NOCP no. 17b SUMT [18] 9.29 × 10−4 3.0 × 10−6 NR 3.0 × 10−6

SQP [18] 1.01 × 10−3 8.4 × 10−5 NR 8.4 × 10−5

IVNS 9.26 × 10−4 0 6.66 × 10−10 6.66 × 10−10

NOCP no. 18b SUMT [18] 2.2080 0.2079 NR 0.2079
SQP [18] 2.2120 0.2119 NR 0.2119

IVNS 2.0001 0 5.01 × 10−11 5.01 × 10−11

NOCP no. 19b SUMT [18] −8.8690 0.0002 NR 0.0002
SQP [18] −8.8690 0.0002 NR 0.0002

IVNS −8.8692 0 6.89 × 10−9 6.89 × 10−9

NOCP no. 20b SUMT [18] 0.0368 0.0042 — 0.0042
SQP [18] 0.0368 0.0042 — 0.0042
IVNS 0.0326 0 — 0

NOCP no. 21b SUMT [18] 76.83 12.11 NR 12.11
SQP [18] 77.52 12.80 NR 12.80

IVNS 64.72 0 1.46 × 10−4 1.46 × 10−4

NOCP no. 22b SUMT [18] 0.3428 0.0670 NR 0.0670
SQP [18] 0.3439 0.0681 NR 0.0681
IVNS 0.2758 0 0.0021 0.0021

a Not Reported.
b We here consider, Eψ = ϕf for IVNS, and for SQP and SUMT methods, Eψ = 0

(since the values were not reported, we consider the best possible situation for SQP and SUMT).

Table 1 shows that IVNS was 100 percent successful in point of view the
performance index, numerically. The associated values of EJ for IVNS are
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zero for all test problems. It shows that IVNS provides robust results with
respect to the other methods.

To have a more careful comparison, we computed the Gap between the
performance index’s value of the algorithms and the best obtained perfor-
mance index’s value. In other words, let J be the obtained value of the
performance index of an algorithm. Now, similar to [51], we define the Gap
as follows:

Gap(J) = |J − J
∗

J∗ | (16)

From Table 1, the mean values of Gap for IVNS, SQP and SUMT, on NOCPs
No. 10-22, are 0, 7.69e + 3 and 6.02e + 3, respectively. Thus it is obvious
that, IVNS gave more better solution in comparison with SQP and SUMT.
We believe that this is due to the fact that IVNS tries to find the global
solution but SQP and SUMT didn’t escape from a local minimum.

To compare with the CGA (as a global search algorithm), from Table
1, we see that the mean values of the Gap for CGA is 0.0981. Thus, we
can see IVNS is 100 percent better than CGA from Gap perspective. This
result shows that IVNS’s estimations of global minimal is better than CGA’s
estimation. Therefore, based on these numerical study, we can conclude that
IVNS outperforms than CGA.

The mean values of violation of the norm of the final state constraints, ϕf ,
for IVNS is 1.16 × 10−4. Therefore, it is evident that IVNS is more robust.
Also, the mean value of ϕf for IVNS and CGA are 1.53×10−4 and 1.55×10−3,
respectively, on NOCPs no. 2-4. Thus, we can say that the feasibility of the
solutions given by IVNS and CGA are competitive. Therefore, it is seen that
IVNS could provide very suitable solutions with respect to the optimality
and feasibility criteria. Also, the mean of the factor, Kψ, for IVNS equals
1.28 × 10−3. For NOCPs No. 10-22 the mean of factor for IVNS, SQP
and SUMT equals 1.76 × 10−4, 1.0768 and 1.0272, respectively. Therefore,
we can say that IVNS outperform well-known numerical methods. Since,
the computational times of the most algorithms were not reported thus we
didn’t give the computational times of IVNS in Table 1. But, the details of
the computational time of IVNS is given in Table 3 that will be discussed in
Section 5.

5 Comparison with a common VNS

The main idea for proposing a two-phase algorithm is to decrease the required
computational time in solving NOCPs. So, we focus on investigating of the
influence of the second phase in IVNS. To compare the IVNS with a common
VNS, the number of time nodes are selected same in both phases. In common
VNS, only the first phase of IVNS, which the number of time node equal
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Table 2: The parameters of IVNS for NOCPs described in the Appendix

Problem uleft uright Nt1 Nt2 ε Mi

TCCR 298 398 11 15 10−6 —
VDP -0.5 2 31 151 10−6 7
CRP -1.5 2 21 51 10−8 [1, 1]T

FFRP -15 10 31 61 10−3 [70, . . . , 70]T6×1

CSTCR 0 5 31 51 10−9 —
MSNIC -20 20 21 51 10−3 1
no. 7 -2 2 21 131 10−9 1
no. 8 -2 2 31 91 10−6 1
no. 9 -2 3 11 15 10−6 —
no. 10 -3 3 21 51 10−6 —
no. 11 -2 2 31 91 10−5 1
no. 12 -20 20 31 51 10−8 1
no. 13 -4 3 31 75 10−6 [100, 100]T

no. 14 -1 1 31 71 10−6 1000
no. 15 -2 2 21 41 10−6 [100, 100]T

no. 16 −π π 31 51 10−9 [100, 100]T

no. 17 -1 1 21 35 10−6 [10, 10]T

no. 18 -5 5 31 151 10−6 [10, 10]T

no. 19 -30 30 31 171 10−6 [100, 100]T

no. 20 -1 1 31 171 10−6 —
no. 21 -15 10 31 71 10−6 [70, . . . , 70]T6×1

no. 22 -15 10 21 91 10−6 [10, . . . , 10]T6×1

Nt2 , is applied. For these methods, 35 different runs, for each NOCP in
the Appendix, were made with the same parameters. The influence of these
methods investigated for these NOCPs on the dependent outputs consist of
performance index, J , the factor, ϕf and required computational time, Time.
The results are given in Table 3.

From Table 3, we observe that the two-phase method has no significant
effect on J, ϕf . But the two-phase method, IVNS, needs less computational
time than the common VNS, significantly (except NOCP No. 16). Therefore,
based on this computational study, we can conclude that the usage of two-
phase VNS can decrease the computational time, significantly, without loss
of quality of solution.

6 Conclusion

In this paper, a two-phase algorithm, namely IVNS, was proposed for solving
NOCPs. In each phase of the algorithm, we used a VNS, which performed
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Table 3: The best numerical results for NOCPs in Appendix, using IVNS and common

VNS

IVNS VNS
Problem J ϕf Time J ϕf Time
TCCR 0.6105 — 4.1496 0.6107 — 4.2482
VDP 1.7401 3.04× 10−9 375.69 1.7513 1.42× 10−9 413.28
CRP 0.0159 2.50× 10−8 78.09 0.0164 3.12× 10−9 112.05
FFRP 65.91 4.61× 10−4 264.62 50.31 8.17× 10−3 285.13
CSTCR 0.1328 — 48.82 0.1116 — 52.83
MSNIC 0.1720 — 10.49 0.1725 — 29.82
no. 7 −5.5082 — 42.27 −5.5012 — 65.81
no. 8 0.2015 6.83× 10−11 11.18 0.2012 4.21× 10−10 12.24
no. 9 0.1877 — 3.1278 0.1899 — 5.6636
no. 10 6.57× 10−11 — 3.7440 2.88× 10−11 — 3.9624
no. 11 1.7189 — 119.94 1.7152 — 139.55
no. 12 0.1480 — 41.38 0.1486 — 54.35
no. 13 2.8993 7.49× 10−10 39.04 2.8935 3.41× 10−9 38.36
no. 14 −0.2500 2.60× 10−10 52.61 −0.2498 1.52× 10−8 93.10
no. 15 0.0161 3.42× 10−9 124.02 0.0162 4.03× 10−10 154.65
no. 16 3.3052 3.35× 10−8 137.85 3.3051 1.03× 10−10 111.07
no. 17 9.26× 10−4 6.66× 10−10 144.16 9.81× 10−4 8.35× 10−8 178.23
no. 18 2.0001 5.01× 10−11 35.10 2.0001 2.13× 10−12 120.07
no. 19 −8.8692 6.89× 10−9 114.30 −8.8692 7.13× 10−9 129.02
no. 20 0.0326 — 42.69 0.0326 — 64.23
no. 21 64.72 1.46× 10−4 145.68 56.54 4.74× 10−3 148.01
no. 22 0.2758 0.0021 135.25 0.2765 0.0038 217.65

a uniform distribution in the shaking step and the SQP, as the local search
step. In the first phase, VNS started with a completely random initial solu-
tion of control input values. To increase the accuracy of the solution obtained
from Phase 1, the some new time nodes were added and the values of the new
control inputs were estimated by Spline interpolation. Next, in the second
phase, VNS restarted by the solution constructed by Phase 1. Finally, we im-
plemented the proposed algorithm on more than 20 well-known benchmarks
and real world problems, then the results were compared with some recently
proposed algorithms. The numerical results showed that IVNS could found
mostly better solution than other proposed algorithms. Also, to compare of
IVNS with a common VNS a computational study was done that showed
that IVNS needed less computational time with respect to a common VNS.
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search for the vertex weighted k-cardinality tree problem, European Jour-
nal of Operational Research, 171(1) (2006) 74 – 84.

11. Brimberg, J., Hansen, P. and Mladenović, N. Attraction probabilities in
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Appendix

The following NOCPs are described using eqns (1)-(6).

1. [47, 53, 40] (TCCR) ϕ = x2, t0 = 0, tf = 1, f = [−4000exp(−2500/u)
x21, 4000exp(−2500/u)x21−620000exp(−5000/u)x2]T , d = [298−u, u−
398]T , x0 = [1, 0]T .

2. [1, 17] (VDP) g = 1
2 (x

2
1 + x22 + u2), t0 = 0, tf = 5, f = [x2,−x2 + (1 −

x21)x2 + u]T , x0 = [1, 0]T , ψ = x1 − x2 + 1.

3. [1, 29] (CRP) g = 1
2 (x

2
1+x

2
2+0.1u2), t0 = 0, tf = 0.78, f = [x1−2(x1+

0.25) + (x2 + 0.5)exp(25x1/(x1 + 2)) − (x1 + 0.25)u, 0.5 − x2 − (x2 +
0.5)exp(25x1/(x1 + 2))]T , x0 = [0.05, 0]T , ψ = [x1, x2]

T .

4. [1, 18] (FFRP) g = 1
2 (u

2
1 + u22 + u23 + u24), t0 = 0, tf = 5, f =

[x2, ((u1 + u2) cosx5 − (u2 + u4) sinx5)/M, x4, ((u1 + u3) sinx5 + (u2 +
u4) cosx5)/M, x6, (D(u1+u3)−Le(u2+u4))/I]T , x0 = [0, 0, 0, 0, 0, 0]T ,
ψ = [x1 − 4, x2, x3 − 4, x4, x5, x6]

T ,M = 10, D = 5, I = 12, Le = 5.

5. [37] (CSTCR) g = x21+x
2
2+0.1u2, t0 = 0, tf = 0.78, f = [−(2+u)(x1+

0.25)+(x2+0.5)exp(25x1/(x1+2)), 0.5−x2−(x2+0.5)exp(25x1/(x1+
2))]T , x0 = [0.09, 0.09]T .

6. [37] (MSNIC) ϕ = x3, t0 = 0, tf = 1, f = [x2,−x2 + u, x21 + x22 +
0.005u2]T , d = [−(20−u)(20+u), x2+0.5−8(t−0.5)2]T , x0 = [0,−1, 0]T .

7. [21] g = 2x1, t0 = 0, tf = 3, f = [x2, u]
T , d = [−(2 − u)(2 + u),−6 −

x1]
T , x0 = [2, 0]T .
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8. [15] g = u2, t0 = 0, tf = 1, f = 1
2x

2 sinx+ u, x0 = 0, ψ = x− 0.5.

9. [41, 19] g = 1
2 (x

2 + u2), t0 = 0, tf = 1, f = −x+ u, x0 = 1.

10. [18] g = x2 cos2 u, t0 = 0, tf = π, f = sin u
2 , x0 = π

2 .

11. [18] g = 1
2 (x

2
1 + x22 + u2), t0 = 0, tf = 5, f = [x2,−x1 + (1 − x21)x2 +

u]T , d = −(x2 + 0.25), x0 = [1, 0]T .

12. [18] g = x21 + x22 + 0.005u2, t0 = 0, tf = 1, f = [x2,−x2 + u]T , d =
[−(20− u)(20 + u), 0.5 + x2 − 8(t− 0.5)2]T , x0 = [0,−1]T .

13. [18] g = 1
2u

2, t0 = 0, tf = 2, f = [x2, u]
T , x0 = [1, 1]T , ψ = [x1, x2]

T .

14. [18] g = −x2, t0 = 0, tf = 1, f = [x2, u]
T , d = −(1 − u)(1 + u), x0 =

[0, 0]T , ψ = x2.

15. [18] g = 1
2 (x

2
1+x

2
2+0.1u2), t0 = 0, tf = 0.78, f = [−2(x1+0.25)+(x2+

0.5)exp(25x1/(x1+2))−(x1+0.25)u, 0.5−x2−(x2+0.5)exp(25x1/(x1+
2))]T , x0 = [0.05, 0]T , ψ = [x1, x2]

T .

16. [18] g = 1
2u

2, t0 = 0, tf = 10, f = [cosu− x2, sinu]T , d = −(π − u)(π +
u), x0 = [3.66,−1.86]T , ψ = [x1, x2]

T .

17. [18] g = 1
2 (x

2
1 + x22), t0 = 0, tf = 0.78, f = [−2(x1 + 0.25) + (x2 +

0.5)exp(25x1/(x1+2))−(x1+0.25)u, 0.5−x2−(x2+0.5)exp(25x1/(x1+
2))]T , d = −(1− u)(1 + u), x0 = [0.05, 0]T , ψ = [x1, x2]

T .

18. [18] ϕ = x3, t0 = 0, tf = 1, f = [x2, u,
1
2u

2]T , d = x1 − 1.9, x0 =
[0, 0, 0]T , ψ = [x1, x2 + 1]T .

19. [18] ϕ = −x3, t0 = 0, tf = 5, f = [x2,−2 + u
x3
,−0.01u]T , d = −(30 −

u)(30 + u), x0 = [10,−2, 10]T , ψ = [x1, x2]
T .

20. [18] ϕ = (x1 − 1)2 + x22 + x23, g = 1
2u

2, t0 = 0, tf = 5, f = [x3 cosu, x3
sinu, sinu]T , x0 = [0, 0, 0]T .

21. [18] g = 1
2 (u

2
1+u

2
2+u

2
3+u

2
4), t0 = 0, tf = 5, f = [x2, ((u1+u3) cosx5−

(u2+u4) sinx5)/M, x4, ((u1+u3) sinx5+(u2+u4) cosx5)/M, x6, (D(u1+
u3) − Le(u2 + u4))/I]

T , x0 = [0, 0, 0, 0, 0, 0]T , ψ = [x1 − 4, x2, x3 −
4, x4, x5 − π

4 , x6]
T ,M = 10, D = 5, I = 12, Le = 5.

22. [18] g = 4.5(x23+x
2
6)+0.5(u21+u

2
2), t0 = 0, tf = 1, f = [9x4, 9x5, 9x6, 9(u1

+17.25x3), 9u2,−9(u1−27.0756x3+2x5x6)/x2]
T , x0 = [0, 22, 0, 0,−1, 0]T

, ψ = [x1 − 10, x2 − 14, x3, x4 − 2.5, x5, x6]
T .
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Numerical solution of multi-order
fractional differential equations via the

sinc collocation method

E. Hesameddini∗ and E. Asadollahifard

Abstract

In this paper, the sinc collocation method is proposed for solving linear
and nonlinear multi-order fractional differential equations based on the new

definition of fractional derivative which is recently presented by Khalil, R.,
Al Horani, M., Yousef, A. and Sababeh, M. in A new definition of fractional
derivative, J. Comput. Appl. Math. 264 (2014), 65–70. The properties
of sinc functions are used to reduce the fractional differential equation to a

system of algebraic equations. Several numerical examples are provided to
illustrate the accuracy and effectiveness of the presented method.

Keywords: Sinc function; Fractional differential equations; Multi-order
FDEs; Collocation method.

1 Introduction

One of the old fields of mathematics is fractional calculus which dates back
to the time of Leibniz [1] and from then many studies were done in this field
[14]–[12]. Fractional differential equations (FDEs) have attracted the interest
of researchers in many areas such as Physics, Chemistry, Engineering and
Social Sciences [22, 15]. The analytic results on the existence and uniqueness
of solutions to the FDEs have been investigated by many authors [11, 22, 16].
Generally, most of the FDEs do not have analytic solutions, so one has to
resort to approximation and numerical methods.

One class of FDEs is multi-order fractional differential equations. They
have been used to model various types of visco-elastic damping [22] and are
expressed as follows
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D(α)y(x) = F (x, y(x), D(β1)y(x), ..., D(βk)y(x)), x ∈ I = [0, l], (1)

with initial conditions

D(i)(0) = di, i = 0, 1, ...,m− 1, m ∈ N (2)

where m − 1 < α ≤ m, 0 < β1 < β2 < ... < βk < α and the values of
di (i = 0, 1, ...,m − 1) describe the initial state of y(x). D(α)y indicates the
fractional derivative of order α of y. Up to now, whenever this equation
was under study, in most cases the fractional derivative was in the sense of
Caputo definition. In this paper, we imply the new definition of conformable
fractional derivative [18] which will be defined later. Depending on F , this
equation classifies into linear and nonlinear.

In [14], it has been proved that equation (1) subject to the initial condi-
tions (2) and under natural Lipschitz conditions imposed on F has a unique
continuous solution.

Since the last decade, extensive research has been conducted on the devel-
opment of numerical methods for equation (1). Doha et al.[25] proposed an
efficient spectral tau and collocation method based on the Chebyshev poly-
nomials for solving this equation. Extension of the tau method based on the
shifted Legendre Gauss-Lobbato quadrature is used for solving equation (1)
in [9]. In [12], this equation is converted into a system of FDEs and the
shifted Chebyshev operational matrix method is used to solve the resultant
system. Some other works on this problem are: piecewise polynomial col-
location [17], Haar wavelet method [20], Lagrange wavelet method [23] and
second kind Chebyshev wavelet method [30].

In this work, we apply the sinc collocation method for solving equation
(1). The sinc method is an efficient method developed by Stenger [24]. It was
widely used for the numerical solution of initial and boundary value problems
[13, 19, 8], not only because of its exponential convergence rate but also due
to its ability in handling problems with singularities. To the best of our
knowledge, the sinc collocation method has not been used for solving FDEs
directly. In this work, based on the new definition of fractional derivative
[18], we compute the fractional derivative of the sinc function and apply it
for solving equation (1).

The remainder of this paper is organized as follows: in Section 2, some
definitions and theorems are presented that will be used in later sections. The
proposed method is discussed in Section 3. Section 4 is devoted to numerical
experiments. Finally some remarks are concluded.
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2 Preliminaries

In this section, we recall some necessary definitions and mathematical pre-
liminaries of the fractional theory and sinc method which will be used further
in this paper.

2.1. The fractional derivative
The fractional calculus involves different definitions of fractional derivative
operators such as Caputo and Riemmann-Lioville fractional derivative[22, 1].
One of the most recent works on the theory of derivatives of fractional order
is done by Khalil et al. [18] which is the simplest definition. Up to now, some
works were done based on this new definition [1, 2, 22]. In what follows, at
first the conformable fractional derivative is defined and then some fantastic
properties of this definition are presented.

Definition 1. [18] Let α ∈ (n, n+ 1], and f be an n−differentiable function
at t, where t > 0. Then the conformable fractional derivative of f of order α
is defined as

Tα(f)(t) = lim
ε→0

f (⌈α⌉−1)(t+ εt(⌈α⌉−α))− f (⌈α⌉−1)(t)

ε
, (3)

where ⌈α⌉ is the smallest integer greater than or equal to α.
When the conformable fractional derivative of f of order α exists, we say

f is α−differentiable and we write f (α)(t) for Tα(f)(t).

Remark 1. [18] As a consequence of Definition 1, one can easily show
that

Tα(f)(t) = t1+(⌈α⌉−α)f (⌈α⌉)(t), (4)

where α ∈ (n, n+ 1], and f is (n+ 1)−differentiable at t > 0.

Theorem 1. [18] Let α ∈ (0, 1], and f, g be α−differentiable at a point
t > 0. Then
1. Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R,
2. Tα(fg) = fTα(g) + gTα(f).

In [1], Abdeljawad was defined the left and right conformable fractional
derivative. Since the left fractional derivative on [0,∞) is the conformable
fractional derivative, we can have the following theorems according to [1].

Theorem 2. (Chain Rule) Assume f, g : (0,∞) −→ R be α−differentiable
functions, where 0 < α ≤ 1. Let h(t) = f(g(t)). Then h(t) is α−differentiable
and for all t with t ̸= 0 and g(t) ̸= 0 we have
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(Tαh)(t) = (Tαf)(g(t))(Tαg)(t)g(t)
α−1.

If t = 0, then

(Tαh)(0) = lim
t→0+

(Tαf)(g(t))(Tαg)(t)g(t)
α−1.

Theorem 3. Let f : (0,∞) −→ R be twice differentiable on (0,∞) and
0 < α, β ≤ 1 such that 1 < α+ β ≤ 2. Then

(TαTβf)(t) = Tα+βf(t) + (1− β)tTαf(t).

2.2. Sinc function
The sinc function is defined on the whole real line, −∞ < x <∞, by

sinc(x) =

{
sinπx
πx x ̸= 0,
1 x = 0.

For each integer k and the mesh size h, the translated sinc basis function is
defined as

s(k, h)(x) = sinc(
x− kh
h

).

If a function f(x) is defined on the real axis, then for any h > 0, the Whittaker
cardinal expansion of f(x) is as follows

c(f, h)(x) =
∞∑

k=−∞

f(kh)sinc(
x− kh
h

),

whenever this series converges. The properties of Whittaker cardinal expan-
sion are derived in the infinite strip Ds of the complex w-planes where for
d > 0

Ds = {w = t+ is : |s| < d ≤ π

2
}.

These properties have been studied thoroughly in [24]. In order to approxi-
mate on the finite interval (a, b), which is used in this paper, we consider the
one-to-one conformal map w = ϕ(z) = ln( z−ab−z ), which maps the eye-shaped
domain

DE = {z = x+ iy : |arg z − a
b− z

| < d ≤ π

2
},

onto the infinite strip Ds. The basis functions on (a, b) are taken to be the
composite translated sinc functions
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sk(x) = s(k, h)oϕ(x) = sinc(
ϕ(x)− kh

h
), k ∈ Z (5)

where s(k, h)oϕ(x)is defined by s(k, h)(ϕ(x)).
Let ψ = ϕ−1. We define the range of ψ on the real line as

Γ = {ψ(w) ∈ DE : −∞ < w <∞}.

For the uniform grid {kh}∞k=−∞ on the real line, the image which corresponds
to these nodes is denoted by

xk = ψ(kh) =
a+ bekh

1 + ekh
, k = 0,±1,±2, .... (6)

For discretizing the problem we need the following definition and theorems.

Definition 2. [24] Let Lβ(DE) be the set of all analytic functions, for
which there exist a constant, C, such that

|y(z)| ≤ C |ρ(z)|β

[1 + |ρ(z)|]2β
, z ∈ DE , 0 < β ≤ 1,

where ρ(z) = eϕ(z) .
Theorem 4. [21] Let y ∈ Lβ(DE), N be a positive integer and h be selected
by the formula

h = (
πd

βN
)

1
2 , (7)

then there exists a positive constant c1, independent of N, such that

supz∈Γ|y(z)−
N∑

j=−N

y(zj)s(j, h)oϕ(z)| ≤ c1e−(πdβN)
1
2 .

Theorem 5. [21] Let ϕ be a conformal one-to-one map of the simply con-
nected domain DE onto DS .Then

δ
(0)
kj = sk(x)|x=xj =

{
1 k = j,
0 k ̸= j.

δ
(1)
kj =

d

dϕ
[sk(x)]|x=xj =

1

h

{
0 k = j,

(−1)(j−k)

j−k k ̸= j.
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δ
(2)
kj =

d2

dϕ2
[sk(x)]|x=xj =

1

h2

{
−π2

3 k = j,
−2(−1)(j−k)

(j−k)2 k ̸= j.

3 Method of Solution

Consider equation (1) in I = [0, 1] where Dαy denotes the fractional deriva-
tive which is defined in (3) i.e. D(α)y = y(α).
The approximate solution of equation (1) based on the sinc basis functions
(5), should satisfy the initial conditions (2). But this basis functions do not
have a derivative when x tends to 0 or 1 so we modify them as

w(x)sk(x), (8)

where w(x) = (x(1− x))(m−1) [6].
In order to approximate the solution, we construct a polynomial p(x) that
satisfies initial conditions [6]. So the approximate solution is represented by

yN (x) = uN (x) + p(x), (9)

where

uN (x) =
N∑

k=−N

ckw(x)sk(x), (10)

and

p(x) = a0 + a1x+ ...+ amx
m, m− 1 < v ≤ m. (11)

The unknown coefficients a0, a1, ..., am and {ck}Nk=−N are determined by sub-
stituting yN (x) into equation (1) and evaluating the result at the sinc points

xj =
ejh

1 + ejh
, j = −N − 1, ..., N. (12)

Notice that according to Theorem 1 and Remark 1, we have

(w(x)sk(x))
(α) = x1+[α]−α(w(x)sk(x))

(1+[α]), n < α ≤ n+ 1, (13)

so

u
(α)
N (x) = ΣNk=−Nck(w(x)sk(x))

(α). (14)

Also it should be noted that when x tends to 1 or 0, we have
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uN (x) = u′N (x) = ... = u
(m−1)
N (x) = 0.

Using equations (13) and (14), one can obtain

y
(α)
N (xj) = u

(α)
N (xj) + p(α)(xj), j = −N − 1, ..., N. (15)

Now by substituting this equation into equation (1), we obtain the following
system of algebraic equations which can be solved for unknowns

y
(v)
N (xj) = F (xj , yN (xj), y

(β1)
N (xj), ..., y

(βk)
N (xj)), −N − 1 ≤ j ≤ N,

y
(i)
N (0) = di, i = 0, 1, ...,m− 1.

4 Applications and results

In this section, we solve some examples by the presented method and com-
pare the numerical results with the exact solutions and some earlier works.

Example 1. As the first example, we consider the following nonlinear frac-
tional initial value problem [5] on [0, 1]

y′′′(x) + y(2.5)(x) + y2(x) = x4, y(0) = y′(0) = 0, y′′(0) = 2, (16)

whose exact solution is y(x) = x2. Following the procedure of the presented
method, we consider the following approximate solution

yN (x) =
N∑

k=−N

ckw(x)sk(x) + a0 + a1x+ a2x
2 + a3x

3,

where w(x) = x2(1 − x)2. By substituting this approximate solution into
equation (16) and evaluating at sinc points (12), we arrive at the following
nonlinear system of algebraic equations which can be solved for unknown
coefficients

6a3 +ΣNk=−Nck{w′′
j δ

(0)
kj + δ

(1)
kj (3w

′′
j ϕ

′
j + 3w′

jϕ
′′
j + wjϕ

′′′
j ) + δ

(2)
kj (3w

′
j(ϕ

′
j)

2+

3wjϕ
′′
j ϕ

′
j) + δ

(3)
kj wj(ϕ

′
j)

3}+ 6x0.5j a3 +ΣNk=−Nck{x0.5j w′′′jδ
(0)
kj + wjx

0.5
j (ϕ′′′j δ

(1)
kj +

3ϕ′′j ϕ
′
jδ

(2)
kj + (ϕ′j)

3δ
(3)
kj )}+ (a0 + a1xj + a2x

2
j + a3x

3
j +ΣNk=−Nckwjδ

(0)
kj )

2 = x4j

j = −N − 1, ..., N,

y(0) = 0⇒ a0 = 0, y′(0) = 0⇒ a1 = 0, y′′(0) = 2⇒ a2 = 1.
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According to relation (7), by taking d = π
2 and β = 2, we have h = π

2
√
N
.

Then by applying the well known Newton method with starting points ck =
0, k = −N, ..., N, a0 = a1 = a3 = 0, a2 = 1 , we obtain ck = 0, k = −N, ..., N
and a0 = a1 = a3 = 0, a2 = 1. So the approximate solution is yN (x) = x2,
which is the exact solution.

Example 2. Consider the fractional Ricatti equation on [0, 1]

y(α)(x) = 2y(x)− y2(x) + 1, 0 < α ≤ 1, y(0) = 0.

For α = 1, the exact solution of this equation is y(t) = 1 +
√
2tanh(

√
2t +

1
2 ln(

√
2−1√
2+1

)). Consider the following approximate solution based on the sinc

collocation method

yN (x) = ΣNk=−Ncksk(x) + a0 + a1x.

Odibat and Momani [20], solve this equation by using the modified homotopy
perturbation method. Also in [4], this equation is solved by the Chebyshev
wavelet operational matrices of fractional integration. For comparison, the
results of this method are presented in Tables 1 and 2 with 192–set of Block
Pulse Functions ( Chebyshev wavelets was expanded into an 192-term block
pulse functions).
In Table 1, the results of the presented method with N = 1 for α = 0.5 and

Table 1: Numerical results with comparison to [4, 20] for α = 0.5 and α = 0.75 in

Example 2

α = 0.5 α = 0.75
x Ours[N=1] [4] [20] Ours[N=1] [4] [20]
0.1 0.3956920 0.592756 0.321730 0.2321153 0.310732 0.216866
0.2 0.9184524 0.9331796 0.629666 0.4961556 0.584307 0.428892
0.3 1.2973611 1.1739836 0.940941 0.7523005 0.822173 0.654614
0.4 1.5802323 1.3466546 1.250737 0.9998683 1.024974 0.891404
0.5 1.7987123 1.4738876 1.549439 1.2372036 1.198621 1.132764
0.6 1.9690794 1.5705716 1.825456 1.4604023 1.349150 1.370240
0.7 2.0982657 1.646199 2.066523 1.6619744 1.481449 1.594278
0.8 2.1867519 1.706880 2.260633 1.8278045 1.599235 1.794879
0.9 2.2352250 1.756644 2.396839 1.9347648 1.705303 1.962239
1.0 2.3926026 1.798220 2.466004 2.0825668 1.801763 2.087384

α = 0.75 are compared with earlier works [4, 20]. We see that our results are
in a good agreement with them. For α = 1, the results are presented in Table
2. It is clear that by increasing N , the approximate solution becomes more
and more accurate and for N = 85 the exact solution is obtained whereas
Refs [4, 20] can not reach the exact solution. In Figure 1. the approximate
solution for different values of α is shown. Numerical results show that as
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Table 2: Numerical results with comparison to [4, 20] for α = 1 in Example 2

x Ours[N=10] Ours[N=50] Ours[N=80] [4] [20] Exact
0.1 0.1134865 0.1103047 0.110295 0.1103111 0.110294 0.110295
0.2 0.2458331 0.2419881 0.241977 0.241995 0.241965 0.241977
0.3 0.3993884 0.3951178 0.395105 0.395123 0.395106 0.395105
0.4 0.5726929 0.5678265 0.567812 0.567829 0.568115 0.567812
0.5 0.7610790 0.7560297 0.756014 0.756029 0.757564 0.756014
0.6 0.9589295 0.9535820 0.953566 0.953576 0.958259 0.953566
0.7 1.1581332 1.1529646 1.152949 1.152955 1.163459 1.152949
0.8 1.3514117 1.3463785 1.366364 1.346365 1.365240 1.366364
0.9 1.5314497 1.5269249 1.526911 1.526909 1.554960 1.526911
1 1.6949935 1.6895135 1.689498 1.689494 1.723810 1.689498

α approaches to its integer value, the solution of fractional order differential
equation approaches to the solution of integer order differential equation.

Figure 1: Approximate solution of Example 2 for different values of α

Example 3. [3] As the last example, consider the following inhomogeneous
Bagley-Torvik equation

y′′(x) + y(1.5)(x) + y(x) = 1 + x,

subject to initial conditions

y(0) = y′(0) = 1.

The exact solution of this equation is y(x) = 1 + x.
In a same manner of last examples, by considering the approximate solution
as

yN (x) = ΣNk=−Nckw(x)sk(x) + a0 + a1x+ a2x
2,
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where w(x) = x(1 − x), one can obtain yN (x) = 1 + x which is the exact
solution.

5 Conclusion

In this work the sinc-collocation method is used to approximate the solution
of multi-order fractional differential equations with initial conditions. This
method converts the FDEs into a system of algebraic equations which can be
solved more easier. In this work, the fractional derivatives are described in
the sense of new definition which makes us able to solve fractional differential
equation directly by the sinc method for the first time. Also this method can
be applied to other types of FDEs easily. Several examples are included to
demonstrate the reliability and efficiency of our method.
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on adaptive nodes for Burgers’

equations
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Abstract

We introduce a RBFs mesheless method of lines that decomposes the

interior and boundary centers to obtain the numerical solution of the time
dependent PDEs. Then, the method is applied with an adaptive algorithm
to obtain the numerical solution of one dimensional problems. We show that
in the problems in which the solutions contain region with rapid variation,

the adaptive RBFs methods are successful so that the PDE solution can be
approximated well with a small number of basis functions. The method is
described in detail, and computational experiments are performed for one-
dimensional Burgers’ equations.

Keywords: Method of Lines; Radial basis functions; Adaptive Method;
Burgers’ Equations.

1 Introduction

The radial basis functions (RBFs) methods are one of the most attractive
meshless methods. These methods are easy to implement, very suitable for
problems in irregular geometries and the formulation for different dimensional
problems are similar. Also, this method can be spectrally accurate [11]. A set
of points called centers are needed to define the RBFs. Therefore, a RBF can
be defined anywhere in a given domain, independently to the other RBFs.
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Both the approximation quality and the stability of the RBFs interpolation
depend on the positions of the centers set [9].

The condition number of RBFs collocation methods becomes large when
the number of centers increases, while reducing the number of centers im-
proves the conditioning [9, 13]. In order to obtain numerical solution with
the minimal numbers of centers, we can use a set of adaptive nodes rather
than uniform ones. Especially in problems whose solutions contain regions of
rapid variation, adaptive methods are preferred over fixed grid methods, [17].
The goal of an adaptive method is to obtain a numerical solution such that
the error is less than a prescribed accuracy but with the minimal number
of grid points. By using adaptive methods, the computational grid should
reflect the profile of the solution. Clearly, grids with finer spacing should be
concentrated in regions, where high variations occur, and much coarser grids
can be used in other regions.

Some methods have been constructed to select centers of RBFs. In [6, 26],
the power function is used to iteratively obtain an optimal set of nodes. In
[25], an adaptive algorithm so-called residual sub-sampling is introduced such
that nodes can be added or removed based on residuals evaluated at a finer
set of nodes. Our goal is to move a fixed numbers of nodes in such a way that
nodes move with time and concentrate in region of domain that the solution
has rapid variations. To this goal in this paper, we use a simple adaptive
nodes generation method that is used for finite difference computations [24]
and RBFs method [23]. Also we introduce a RBFs meshless method of lines
to solve time dependent PDE with adaptive centers. In this method, we
divide centers to interior and boundary data centers and obtain the expansion
coefficients of boundary centers as a function of interior ones. This gives an
ODEs system that is only related to the expansion coefficients of the interior
data centers instead of all data centers. Actually after approximation spatial
derivatives of equation and boundary condition with RBFs, we have a system
of differential algebraic equations (DAEs) [5]. By decomposing centers and
replacing boundary coefficients as a function of interior ones we obtain a
smaller system of ODEs. The resultant system of ODEs can be solved with
a proper ODE solver. We use the function ode15s in Matlab for solving the
resulting system of ordinary differential equations.

In this paper, in order to combine the adaptive method and the RBFs
method of lines, we start with a set of uniform centers, then the adaptive
method is used to obtain new centers for initial condition. After obtaining
the adaptive centers, the PDE is advanced for a small time step. The ode15s
in Matlab is used for solving the resultant ODEs system. Then, the numer-
ical solution of the PDE is used to obtain adaptive centers for next time.
The procedure is repeated until the final time. We perform computational
experiment for unsteady Burgers’ equations and demonstrate the benefits of
adaptation in the numerical experiments.

The rest of the paper is organized as follows. In Section 2 at first the
RBFs method of lines is introduced, then adaptive method is extended for
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time dependent PDEs. Numerical experiment are given in Section 3. Finally,
the conclusion is given in Section 4.

2 Meshless method of lines with adaptive RBFs

In this section, we introduce a RBFs mesheless method of lines that decom-
poses the interior and boundary centers to obtain the numerical solution of
the time dependent PDEs. Then, apply the method with an adaptive algo-
rithm to obtain the numerical solution of one dimensional Burgers’ equations.

2.1 RBFs meshless method of lines

There are two classes of RBFs, known as globally supported and locally
supported [22, 16]. Globally supported RBFs are infinitely smoothed and
contain a free parameter ϵ, called shape parameter. This parameter affects
both accuracy of the solutions and conditioning of the collocation matrix. As
ϵ decreases, numerical solution of PDEs gets more accurate and the condition
number of the resulting matrix gets larger. If the shape parameter becomes
too small, the ill-conditioned matrix leads to numerical instabilities and loss
of precision. Thus it is important to select a good values for ϵ. There are
some paper related to select an optimal value for RBFs shape parameter
[21, 1, 14].

Generally a radial basis function is a function ϕi(x, ϵ) = ϕ (ϵ∥x− xi∥2),
which depends solely on the distance between x ∈ R and a fixed center xi ∈ Ω.
ϕi : R+ → R is a continuous function and ∥·∥2 represents the Euclidean norm.
The multiquadrics (MQ) RBF proposed by Hardy [3], is one of the most
used globally supported RBFs because of its spectral convergence property.
In [4], Franke showed that the MQ RBF is one of the best methods among
29 scattered data interpolation schemes. We here use MQ RBF defined as
ϕ(r, ϵ) =

√
1 + (ϵr)2.

Let a set of N distinct centers {xi}Ni=1 is given in Ω
∪
∂Ω, where Ω is a

bounded domain in R. We assume that the arrangement of the centers is in
such a way that the first NI centers and the last NB centers lie in Ω and ∂Ω,
respectively, N = NI +NB . Consider the following time dependent PDE of
the general form

∂u(x, t)

∂t
− Lu(x, t) = f(x, t), x ∈ Ω, Bu(x, t) = g(x, t), x ∈ ∂Ω,

(1)
with the initial condition

u(x, 0) = u0(x). (2)
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L and B are differential and boundary operators respectively. We approxi-
mate the solution of equation (1) by

uN (x) =

NI∑
i=1

ci(t)ϕ (∥x− xi∥) +
N∑

i=NI+1

ci(t)ϕ (∥x− xi∥) . (3)

Using collocation method to ensure that the approximation uN (x) satisfies in
equations (1), one obtains the following system of equations for the expansion
coefficients

A1,1Ċ1 +A1,2Ċ2 = F + Lϕ(C1, C2), (4)

0 Ċ1 + 0 Ċ2 = G(t)− (A2,1C1 +A2,2C2) , (5)

where

A1,1(i, j) = ϕ(∥xi − xj∥), i = 1, . . . , NI , j = 1, . . . , NI ,

A1,2(i, j) = ϕ(∥xi − xj∥), i = 1, . . . , NI , j = NI+1, . . . , N,

A2,1(i, j) = Bϕ(∥xi − xj∥), i = NI+1, . . . , N, j = 1, . . . , NI ,

A2,2(i, j) = Bϕ(∥xi − xj∥), i = NI+1, . . . , N, j = NI+1, . . . , N,

Lϕ(C1, C2)
T = [L1ϕ(C1, C2), . . . ,LNIϕ(C1, C2)],

Liϕ(C1, C2) =

NI∑
j=1

cj(t)Lϕ (∥xi − xj∥) +
N∑

j=NI+1

cj(t)Lϕ (∥xi − xj∥) ,

FT = [f(x1, t), . . . , f(xNI , t)],

and

G(t)T = [g(xNI+1 , t), . . . , g(xN , t)].

Equations (4) and (5) are distinct from ODEs because the coefficient matrix
of the ĊT = [Ċ1, Ċ2] is singular and are referred to as differential-algebraic
equations (DAEs). DAEs differ in many ways from ordinary differential
equations and there are some problems to be expected in solving these sys-
tems. More information about differential-algebraic equations can be found
in [10, 12]. In order to reach a system of ODEs, we obtain C2 and Ċ2 from
equation (5) as follows:

C2 = A−1
2,2 (G(t)−A2,1C1) , (6)

Ċ2 = A−1
2,2

(
Ġ(t)−A2,1Ċ1

)
. (7)

Note that unlike the interpolation problem the invertibility of A2,2 may failed
for some special centers arrangements. However, numerical experiments show
that the cases of singularity for Kansa method is rare [19]. We substitute C2
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and Ċ2 into equation (4) to obtain a NI ×NI nonlinear system of ordinary
differential equation for CI as follows:(

A1,1 −A1,2A
−1
2,2A2,1

)
Ċ1 = F + Lϕ(C1)−A1,2A

−1
2,2Ġ(t), (8)

where

Lϕ(C1)
T = [L1ϕ(C1), . . . ,LNIϕ(C1)],

Liϕ(C1) =

NI∑
j=1

cj(t)Lϕ (∥xi − xj∥) +
N∑

j=NI+1

dj(t)Lϕ (∥xi − xj∥) ,

and dj(t) is jth component of the vector C2 = A−1
2,2 (G(t)−A2,1C1).

After solving the reduced system using a proper ODE solver, its solu-
tion vector C1 is applied to obtain C2 and C, using the relations C2 =
A−1

2,2 (G(t)−A2,1C1) and C = [C1, C2]. This method can be used for high
dimensional problems. In case of one dimensional problem, we have only two
boundary nodes x1 and xN .

2.2 Adaptive method

In this section, the proposed mesheless method of lines that decomposes
the interior and boundary centers to reach a smaller system of equations is
combined with an adaptive algorithm that is used for finite difference and
RBFs computations [24, 23]. In this method, at first the arclength of the
numerical solution is computed. Then, the total length is divided into (N−1)
equal part and the projection of each part onto x-axis determines the position
of adaptive centers. The selected nodes on x-axis are such that the variation
of the solution is equi-distributed on each section.

Suppose that the approximate solution and the centers are given at the
time step tn. The adaptive method is generalized for RBFs and introduced
in the following algorithm:

1) S1 = 0, Sj = Sj−1 +
√
(hnj )

2 + (unj − unj−1)
2, j = 2...N,(

unj = u(xnj , t
n), hnj = xnj − xnj−1

)
.

This step compute the arclength of solution u at time step tn.

2) δ = SN
N−1 , k = 2, x̄n1 = xn1 , x̄

n
N = xnN .

In this step the total length is divided into (N − 1) equal part.
3) For j = 2, · · · , N − 1,∆ = (j − 1)δ.

- while ∆ > Sk put k = k + 1,

- x̄nj = xnk−1 +
(∆−Sk−1)h

n
k

Sk−Sk−1
, Next j.

These steps project each part on solution onto x-axis.
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The set x̄j , j = 2, · · · , (N − 1) are adaptive interior nodes and x̄1, x̄N are
the boundary nodes which are fixed. In using adaptive centers in region with
rapid variations, nodes are close to each other and hence a larger value of
shape parameter is needed. In order to obtain results with a smaller shape
parameter, the final set of centers are selected as .9x̄j + .1xj .

In solving PDE problems, at first we apply the above adaptive algorithm
for the initial condition to obtain the adaptive centers at t = 0. Then,
adaptive centers are used for the RBFs method of lines to advance the PDE
for a small time step. Next, the approximate solution at this time is used
to obtain the adaptive centers again. Note that in each step we need to
interpolate u at the adaptive centers to obtain initial condition for next time.
The procedure is repeated until approximate solution is obtained at the final
time.

3 Numerical experiments

In this section, the proposed method is applied to obtain numerical solution
of Burgers’ equation as follows:

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, x ∈ (0, 1), (9)

where Re is the Reynolds number. Equation (9) has shock wave behavior
when the coefficient of kinematic viscosity ν = 1/Re is small. Also, it is
a useful model for many interesting physical problems such as modeling of
fluid dynamics, turbulence, boundary layer behavior, shock wave formation,
traffic flow and is an interesting test problem for establishing the efficiency
of different methods [8, 20].
Example 1. We consider Equation (9) with the following exact solution [15]

u(x, t) =
α+ µ+ (µ− α)exp(η)

1 + exp(η)
, (10)

where η = α.Re.(x− µt− β), α, µ and β are arbitrary constant.

In this example α, µ and β are .4, .6 and .125 respectively. The boundary
conditions are

u(0, t) = 1, u(1, t) = .2 t > 0. (11)

Initial condition is taken from the exact solution. In order to measure the
error, root mean square error (rms) is computed at M evaluation nodes zi
as:
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rms error =

√√√√√√
M∑
i=1

(
uN (zi)− u(zi)

)2
M

.

Table 1 shows the rms error at t = .2, .4, .6, .8 and t = 1 for Re = 100 and
Re = 500. The results are computed for N = 50 adaptive centers. When Re
increases, the gradient of solution become sharper and consequently a larger
values of shape parameter is needed. In this example, the values of shape
parameters for Re = 100 and Re = 500 are 50 and 150, respectively.

The numerical solution in Example 1 at t = .1, t = .5 and t = 1 for
Re = 100 and Re = 500 are shown in Figures 1.a and 2.a respectively.
Figures 1.b and 2.b show the corresponding nodes trajectories. Figures show
that the nodes move with time and are concentrated in region with rapid
variations. When Re increases, the gradient become sharper and the nodes
are more concentrated in region with rapid variations.

The numerical and exact solutions of Example 1 at t = 1 are plotted in
Figure 3. In order to obtain numerical solution with a set of uniform centers a
larger number of nodes is needed [23]. Figure 4 shows the numerical solutions
and absolute errors for N = 50 uniform and adaptive centers. In the case
of using uniform centers, the numerical solution with some oscillations is
obtained for Re = 500 and ϵ = 50 at t = .1. As Figure 5 shows in order
to obtain an acceptebale solution at this time, we need to use more uniform
nodes or a set of adaptive centers.

Table 1: rms error values corresponding to Example 1

Re rms error (t=.2) rms error (t=.4) rms error (t=.6) rms error (t=.8) rms error (t=1)
100 2.121018e-003 3.149610e-003 4.023452e-003 4.826538e-003 5.599954e-003

500 1.485532e-003 1.840686e-003 2.517397e-003 4.152420e-003 6.497818e-003

Example 2. We consider Burgers’ equation (9) with the initial condition

u(x, 0) = sin(πx),

and the boundary conditions

u(0, t) = u(1, t) = 0, t > 0.

The exact solution for this example is given by [15]

u(x, t) =
2πν

∑∞
i=1 iAi sin(iπx)exp(−i2π2νt)

A0 +
∑∞
i=1Ai cos(iπx)exp(−i2π2νt)

, (12)

with the Fourier coefficients
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Figure 1: The numerical solution and corresponding nodes trajectories for N = 50 and

Re = 100
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Figure 2: The numerical solution and corresponding nodes trajectories for N = 50 and
Re = 500

A0 =

∫ 1

0

exp
{
−(2πν)−1(1− cos(πx)

}
dx, (13)

Ai = 2

∫ 1

0

exp
{
−(2πν)−1(1− cos(πx))

}
cos(iπx)dx, i ⩾ 1. (14)

In this example, N = 50 nodes are used. The computation are performed
for a final time t = 3. The numerical solution at t = .01, t = .1, t = 1, t = 2
and t = 3 for Re = 100 and Re = 500 are shown in Figures 6.a and 7.a
respectively. Initial condition in Example 2 does not have rapid variation,
but the variation of the solution increases with time. The variation increases
until a time t0 less than t = .75. After this time, the variation of the solution
decreases. Nodes trajectories also have such behavior. The nodes trajectories
are shown in Figures 6.b and 7.b. Nodes are moved with time and concen-
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Figure 3: The numerical and exact solutions at t = 1 for (a) Re = 100, (b) Re = 500
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Figure 4: The numerical solutions (a) and absolute errors (b) in the case of using uniform
and adaptive centers at t = .1 for Re = 500

trated in region with rapid variations. For t < t0, the variation increases and
nodes are concentrated in region with rapid variation. For t ⩾ t0, the varia-
tion of the solution decreases with the time and hence the nodes trajectories
diverge.

Figure 8 shows the numerical solution, exact solution and the absolute
error at t = 3 when Re = 100, ϵ = 50 and N = 50. We can see that, the
error of the proposed method method is as small as 10−4.

The numerical solution for Re = 500 are obtained for ϵ = 110. In this
case, obtaining numerical results with N = 50 and Re = 500 uniform centers
is not possible as well.
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Figure 5: The numerical and exact solution and absolute error at t = .1 when Re = 500

for N = 100 uniform centers (top) and N = 50 adaptive centers (down)

4 Conclusion

The adaptive MQ RBF method of lines has been proposed for obtaining the
numerical solution of Burgers’ equations. In the method of lines, centers
in the domain were portioned into the interior and the boundary centers.
By portioning centers and obtaining the expansion coefficients for boundary
centers as a function of interior ones, the DAEs system was converted to a
smaller ODEs system. The resulting ODE system was solved with ode15s
in Matlab. Also, we have used a simple adaptive nodes generation method
to enable the method for obtaining numerical solution of the problem with
high gradient. In the adaptive method, the nodes moved with time and
concentrated in region with rapid variation. When the gradient of solution
increases the nodes become more closer in region with rapid variation. In
this case numerical solution can be obtained with less number of centers in
comparison with using uniform centers.

Numerical experiments have been performed for one-dimensional Burgers’
equations. Numerical results show that the proposed adaptive method are
preferred over fixed grid methods. For example, the adaptive method is able
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Figure 6: (a) The numerical solutions at different times for Re = 100 and (b) correspond-

ing nodes trajectories in Example 2
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Figure 7: (a) The numerical solutions at different times for Re = 500 and (b) correspond-
ing nodes trajectories in Example 2

to solve Burgers’ equation for Re = 500 and N = 50 whereas the numerical
solution could not be obtained for N = 50 uniform centers.
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Numerical study of the nonlinear
Cauchy diffusion problem and

Newell-Whitehead equation via cubic
B-spline quasi-interpolation

H. Aminikhah∗ and J. Alavi

Abstract

In this article, a numerical approximation to the solution of the Newell-

Whitehead equation (NWE) and Cauchy problem of ill-posed non-linear dif-
fusion equation have been studied. The presented scheme is obtained by
using the derivative of the cubic B-spline quasi-interpolation (BSQI) to ap-
proximate the spatial derivative of the dependent variable and first order

forward difference to approximate the time derivative of the dependent vari-
able. Some numerical experiments are provided to illustrate the method.
The results of numerical experiments are compared with analytical solutions.
The main advantage of the scheme is that the algorithm is very simple and

very easy to implement.

Keywords: B-spline quasi-interpolation; convection-diffusion equation; dif-
ference schemes.

1 Introduction

The use of spline function and its approximation plays an important role for
the formation of stable numerical methods. Usually, a spline is a piecewise
polynomial function defined in region, such that there exists a decomposition
of D into subregions in each of which the function is a polynomial of some
degree d. Also, the function, as a rule, is continuous in D, together with
its derivatives of order up to (d − 1). As the piecewise polynomial, spline,
especially B-spline, have become a fundamental tool for numerical methods to
get the solution of the differential equations [9, 13, 15, 16, 26]. The numerical
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solutions of partial differential equations by B-spline quasi-interpolation are
introduced in [2, 5, 17, 20, 25].

Nonlinear equations play an important role in various filed of sciences.
The world around us is nonlinear, so these kinds of equations arise natu-
rally in a variety of models from theoretical physics, chemistry, and biology.
The diffusion equation, one of these nonlinear equations, describes density
dynamics in a material undergoing diffusion. It is also used to describe pro-
cesses exhibiting diffusive-like behaviour, for instance the diffusion of alleles
in a population in population genetics. It has also a great deal of application
in different branches of sciences which have found a considerable amount of
interest in recent years [1, 3, 4, 11, 14, 18, 23, 24].

Consider the nonlinear Cauchy diffusion equation as the following

Au = ϕ(x, t), x ∈ (a, b), t > 0 (1)

with initial condition

u(x, 0) = f(x), x ∈ [a, b] (2)

and boundary conditions of the form

u(a, t) = g0(t), u(b, t) = g1(t), t ≥ 0 (3)

A(u(x, t)) =
∂u

∂t
− ∂

∂x

(
(κ(t)u(x, t) + ω(t))

∂u

∂x

)
(4)

such that κ(t)u(x, t) + ω(t) is positive [3, 11, 14, 23], a, b are constants,
g0(t), g1(t), κ(t), ω(t), f(x) and ϕ(x, t) are known functions and ϕ(x, t) be a
smooth function.

The Newell-Whitehead equation models the interaction of the effect of the
diffusion term with the nonlinear effect of the reaction term. For instance an
equation to describe nearly 1D traveling-wave patterns is put forward in the
form of a dispersive generalization of the Newell-Whitehead equation. The
Newell-Whitehead equation is written as:

υt = υxx + αυ + βυn, x ∈ [a, b], t ≥ 0 (5)

where α, β are arbitrary constants, n is a positive integer and subscripts x
and t denote differentiation.

Initial and boundary conditions are

υ(x, 0) = f1(x), x ∈ [a, b] (6)

υ(a, t) = g2(t), υ(b, t) = g3(t), t ≥ 0 (7)

where f1(x), g2(t), g3(t) are known functions. The rest of this paper is orga-
nized as follows. In Section 2, we obtain the numerical schemes using cubic
B-spline interpolation to solve the nonlinear Cauchy diffusion equation and
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Newell-Whitehead equation. Some numerical examples are solved to assess
the accuracy of the technique and the maximum absolute errors will be pre-
sented in Section 3.The conclusion appears in Section 4.

2 B-spline quasi-interpolant applied to the Cauchy
problem and Newell-Whitehead equation

Assume that an interval I = [a, b] is given, denoted by Sd(Xn) the space
of splines of degree d and class Cd−1 on the uniform partition Xn =
{xi = a+ ih, i = 0, 1, ..., n} with meshlength h = (b − a)/n. Let a basis of
Sd(Xn) be {Bj,d,r, j = 1, 2, ..., n+ d} where Bj,d,r is the jth B-spline of de-
gree d for the knot sequence r := (ri)

n+d
i=−d where r−d = r−d+1 = ... = r−1 = a,

rn = rn+1 = ... = rn+d = b and ri = xi 0 ≤ i ≤ n. Since the cubic spline
has become the most commonly used spline and we need the second order
derivatives we use cubic B-spline quasi-interpolation in this paper.

From nonlinear differential equation (1) we have

ut = ϕ(x, t) + κ(t)
(
u2x + uuxx

)
+ ω(t)uxx (8)

and from discretizing this equation in time, we get

uk+1
i = τ

(
ϕ(xi, tk) + κ(tk)

((
(ux)

k
i

)2
+ uki (uxx)

k
i

)
+ ω(tk) (uxx)

k
i

)
+ uki

(9)

where uki , (ux)
k
i , (uxx)

k
i are the approximation of the values u(x, t), ux(x, t),

uxx(x, t) at (xi, tk), tk = kτ, and τ is the time step. For fixed k, we can get
the cubic quasi-interpolation as follows [19]:

Q3u
k =

n+3∑
j=1

µj(u
k)Bj,3,r(x) (10)

where uk = u(x, tk) and the coefficient functionals are respectively:

µ1(u
k) = uk0 ,

µ2(u
k) = 1

18

(
7uk0 + 18uk1 − 9uk2 + 2uk3

)
µj(u

k) = 1
6

(
−ukj−3 + 8ukj−2 − ukj−1

)
, 3 ≤ j ≤ n + 1

µn+2(u
k) = 1

18

(
2ukn−3 − 9ukn−2 + 18ukn−1 + 7ukn

)
,

µn+3(u
k) = ukn.

(11)
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Using the de Boor-Cox formula [12, 21], the cubic B-spline basis Bj,3,r(x),
and his derivatives can be computed.

For uk ∈ C4(I) we have the error estimate [19] as∥∥uk −Q3u
k
∥∥
∞ = O

(
h4
)

(12)

For approximate (ux)
k
i , (uxx)

k
i by derivatives of the cubic B-spline quasi-

interpolant (10) up to the order h3 we can evaluate the value of uk at xi
by:

(Q3u
k
i )

′
=
n+3∑
j=1

µj(u
k)B

′

j(xi), (Q3u
k
i )

′′
=
n+3∑
j=1

µj(u
k)B

′′

j (xi). (13)

We set

Uk = (uk0 , u
k
1 , . . . , u

k
n)
T , Ukx = ((uk0)

′
, (uk1)

′
, . . . , (ukn)

′
),

Ukxx = ((uk0)
′′
, (uk1)

′′
, . . . , (ukn)

′′
),

(14)

where
(uki )

′
= (Q3u

k
i )

′
, (uki )

′′
= (Q3u

k
i )

′′
, i = 0, 1, . . . , n. (15)

By (15) we obtain

Ukx =
1

h
D1U

k, Ukxx =
1

h2
D2U

k (16)

where D1, D2 ∈ R(n+1)×(n+1) are obtain as follows:

D1 =



−11/6 3 −3/2 1/3 0 0 . . . 0 0
−1/3 −1/2 1 −1/6 0 0 . . . 0 0
1/12 −2/3 0 2/3 −1/12 0 . . . 0 0
0 1/12 −2/3 0 2/3 −1/12 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . 1/12 −2/3 0 2/3 −1/12 0
0 0 . . . 0 1/12 −2/3 0 2/3 −1/12
0 0 . . . 0 0 1/6 −1 1/2 1/3
0 0 . . . 0 0 −1/3 3/2 −3 11/6


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D2 =



2 −5 4 −1 0 0 . . . 0 0
1 −2 1 0 0 0 . . . 0 0
−1/6 5/3 −3 5/3 −1/6 0 . . . 0 0
0 −1/6 5/3 −3 5/3 −1/6 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . −1/6 5/3 −3 5/3 −1/6 0
0 0 . . . 0 −1/6 5/3 −3 5/3 −1/6
0 0 . . . 0 0 0 1 −2 1
0 0 . . . 0 0 −1 4 −5 2



From the initial conditions (2) and boundary conditions (3), we can com-
pute the numerical solution of (1) step by step using the scheme (9) and
formulas (16). For implementation of this method from (2) we have U0 =
(f(x0), f(x1), ..., f(xn))

T and from (16), (9) and (3) the following algorithm
is obtained

U0 ← (f(x0), f(x1), ..., f(xn))
T
;

for k = 0, 1, ...,m do

Ux
k ← 1

hD1U
k;

Uxx
k ← 1

h2D2U
k;

uk+1
0 ← g0(tk+1);

for i = 1, 2, ..., n− 1 do

uk+1
i ← τ

(
f(xi, tk) + k(tk)

(((
Ux

k
)
i

)2
+ uki

(
Uxx

k
)
i

))
+ τw(tk)

(
Uxx

k
)
i
+ uki ;

end
uk+1
n ← g1(tk+1);

Uk+1 ←
(
uk+1
0 , uk+1

1 , uk+1
2 , ..., uk+1

n−1, u
k+1
n

)
;

end.

Considering a maximum time like T that 0 ≤ t ≤ T we have m = T/τ .

Similarly from discretizing the Newell-Whitehead equation (5), we get

υk+1
i = τ

(
(υxx)

k
i + αυki + β

(
υki
)n)

+ υki (17)

where υki , (υxx)
k
i are the approximation of the values υ(x, t), υxx(x, t) at

(xi, tk), tk = kτ, and τ is the time step. For approximation of (υxx)
k
i ,

in relations (10), (11) and (13)-(16) we set υk = υ(x, tk) and replacing
υki , V, V

k
xx, i = 0, 1, ..., n respectively. Then from the initial conditions (6)

and boundary conditions (7), we can compute the numerical solution of (5)
step by step.
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3 Numerical examples

In this section, two examples of the nonlinear Cauchy diffusion equation
and Newell-Whitehead equation are considered and will be solved by B-spline
quasi-interpolation method. To show the accuracy of the present method for
our examples in comparison with the exact solutions, the amounts of errors
is given in some mesh points and we report error norm which is defined by

|e|1 =
1

n

n−1∑
i=1

∣∣uexacti − unumerical
i

∣∣
|uexacti |

(18)

For the computational work we select the following examples from [7, 8, 10,
22].

Example 1. Let us consider the following nonlinear differential equation

∂u

∂t
− ∂

∂x

((
1

6
e−tu+ (t+ 5) e−t

)
∂u

∂x

)
= −7

3
t−9, (x, t) ∈ [0, 1]×[0, 1] (19)

which has the exact solution u(x, t) = x2et + t. In (19) ϕ(x, t) = −7
3 t −

9, κ(t) = 1
6e

−t, ω(t) = (t + 5)e−t. In Table1, relative errors at different time
levels are compared with the relative errors obtained by Zakeri et al. in [10].
In Figures 1 and 2 exact and numerical solutions are depicted.

Example 2. Relative errors at different time levels are compared with
the relative errors obtained by Nourazar et al. [8]. for Eq. (5) with
α = 3, β = −4, n = 3, a = 0, b = 1 and t = 1 in Table 2. The exact so-

lution of this example is υ(x, t) =
√

3
4

e
√

6x

e
√

6x+e

(√
6

2
x− 9

2
t

) . The graph of the

exact and numerical solution, are shown in Figures 3 and 4.

Table 1: Comparison of relative errors obtained from proposed method and method in

[10].

x Relative errors of proposed method Relative errors obtained in [10]

——————————————– ——————————————
t = 0.25 t = 0.50 t = 0.75 t = 0.25 t = 0.50 t = 0.75

0.2 8.0999e-08 6.6631e-08 6.9815e-08 2.7500e-08 4.7700e-09 3.4500e-08

0.4 1.0121e-07 9.3251e-08 1.0112e-07 4.8100e-07 4.3300e-07 2.8500e-07

0.6 8.1254e-08 8.1761e-08 9.1375e-08 2.2800e-06 2.2700e-06 1.9100e-06

0.8 4.4684e-08 4.7547e-08 5.4249e-08 6.7100e-06 6.7700e-06 5.8700e-06

|e|1 6.4079e-08 5.9977e-08 6.5621e-08 – – –

From the test examples, we can say that the BSQI scheme is feasible and
the accuracy is better than the multi-quadric quasi-interpolation (MQQI)
method [6]. Moreover, MQQI method has very close relation to the shape
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Table 2: Comparison of errors of Example 2 with the errors obtained in [8].(h = 0.02, τ =

0.0001)

x Relative errors of proposed method Relative errors obtained in [8]

——————————————————– ——————————————–
t = 0.1 t = 0.15 t = 0.2 t = 1 t = 0.1 t = 0.15 t = 0.2

0.2 4.7533e-06 6.0414e-06 6.6041e-06 5.2440e-07 4.9987e-06 5.6384e-05 3.1193e-04

0.4 6.8110e-06 8.4592e-06 9.1422e-06 7.1097e-07 6.3997e-06 6.8760e-05 3.6460e-04

0.8 4.7680e-06 5.4354e-06 5.6195e-06 4.0217e-07 3.6819e-06 3.7324e-05 1.8700e-04

|e|1 4.8486e-06 5.8747e-06 6.2722e-06 4.7741e-07 – – –

Figure 1: The exact solution of Example 1 for h = 0.02, τ = 0.00001

parameter c in MQ. In fact, the choice of the shape parameter is still a pen-
dent question. Furthermore, the MQQI is required to calculate derivatives
of MQ quasi interpolant once for all, which is not easy to compute when h is
small. Although the accuracy of BSQI is not better than that of other meth-
ods, we know that, at each time step, the complexity of BSQI is lower than
theirs. The proposed method is an acceptable and valid scheme. Moreover,
it can be implemented very easily.

4 Conclusions

In this article, we have applied the cubic B-spline quasi-interpolation
method for solving the nonlinear Cauchy diffusion problem and Newell-
Whitehead equation. The results have been compared with the exact solu-
tions and demonstrated the good performance of the schemes. This method
offers several advantages in reducing computational costs. On the other hand,
this method is very simple to apply and to make an algorithm. Thus, this
method may be reckoned as a simple and accurate solver for PDEs and it is
worthy to note that this method can be utilized as an accurate algorithm to
solve linear and nonlinear functional equations arising in physics and other
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Figure 2: The numerical results of Example 1 for h = 0.02, τ = 0.00001

Figure 3: The exact solution of Example 2 for h = 0.02, τ = 0.0001

fields of applied mathematics. The computations associated with the exam-
ples in this article were performed using MATLAB R2013a.
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Numerical solution of damped forced
oscillator problem using Haar wavelets

I. Singh and S. Kumar∗

Abstract

We present here the numerical solution of damped forced oscillator prob-

lem using Haar wavelet and compare the numerical results obtained with
some well-known numerical methods such as Runge-Kutta fourth order clas-
sical and Taylor Series methods. Numerical results show that the present
Haar wavelet method gives more accurate approximations than above said

numerical methods.

Keywords: Haar wavelet method; Differential equation; Operational ma-
trix; Damped forced oscillator.

1 Introduction

During the last few decades considerable efforts have been made using
wavelet, towards the development of computational methods to solve numer-
ically linear differential equations encountered in various fields of science and
engineering. Wavelet analysis is a new branch of applied science. Wavelet
methods are applied to find the numerical solution of problems related to
science and engineering. In the last recent years, wavelet methods have been
attracted the great interest of researchers of physical and mathematical sci-
ences and many research papers were published in these fields. Recently,
many researchers have used Haar and Daubechies wavelets to find the nu-
merical solution of differential and integral equations. Before, the discovery
of Haar wavelet, Daubechies wavelets were used in many published research
papers for numerical solution of differential and integral equations.

In 1910, Alfred Haar [4] discovered a new wavelet known as Haar wavelet.
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Among all wavelet families, Haar wavelet is most simple, accurate and effi-
cient. It attracted, the interest of many researcher in the field of engineering
and science. Haar wavelet has been used in wide variety of numerical meth-
ods developed for numerical solutions of differential and integral equations.
Here, we present a survey of such methods for differential and integral equa-
tions. Chen and Hsiao [3] applied Haar wavelet method for solving lumped
and distributed-parameter systems. Hsiao [6] used wavelet approach to time-
varying functional differential equations. Razzaghi and Ordokhani [15] used
Haar functions for variational problems. Ohkita and Kobayashi [13] applied
rationalized Haar functions to solve linear differential equations. Cattani [2]
suggested use of Haar wavelet splines for numerical solution of differential
equations. Lepik [8, 9, 10, 11, 12] used Haar wavelets for solving differ-
ential and integral equations. Sunmonu [18] presented wavelet solution for
second order differential equations with maple. Hariharan and Kannan [5]
presented an overview of Haar wavelet method for solving differential and
integral equations. Kouchi et al. [7] presented numerical solution of homoge-
neous and inhomogeneous harmonic differential equation with Haar wavelet.
In [16], Quasilinearization technique and Haar wavelet operational matrix
method both are applied to find the numerical solution of fractional order
nonlinear oscillation equations. Also, Solutions of fractional order force-free
and forced Duffing-Van der Pol oscillator and higher order fractional Duffing
equation on large intervals are presented in [16].

In Section 2, we discussed damped forced oscillator. Haar wavelet method
is presented in Section 3. Function approximation is presented in Section 4.
In Section 5, we present convergence analysis of Haar wavelet method. In
Section 6, the solution by Haar wavelet method is presented. In Section
7, Runge-Kutta method for second order differential equation is presented.
Taylor-Series method is presented in Section 8. Comparison of numerical
solutions is presented in Section 9 and in Section 10, conclusion is given.

2 Damped forced oscillation

Oscillation means repeated motion of a particle or a body, when displaced
from its equilibrium position. The classifications of oscillating systems are
presented in Thomsen [19] and in Bhat Rama and Dukkipati [14]. The mech-
anism that results in dissipation of the energy of an oscillator is called damp-
ing. In mechanical oscillator, the damping may be due to (1) Viscous drag
(2) Friction and (3) Structure. An oscillator to which a continuous excitation
is provided by some external agency is called forced oscillator.

Suppose a mass M attached to the end of a spring of stiffness constant
S. One end of the spring is attached to a rigid support. Let the driven force
acting on the system be F (t). At any instant, the system will operate under
the influence of the following forces:
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(a) Restoring force, F1 = −Sx where x is the displacement of the mass from
the equilibrium position,
(b) Damping force, F2 = −rdx/dt, where r is damping constant,
(c) Driven force, F3 = F (t).
The negative sign in the first two expression implies that both the restoring
as well as damping forces opposes the displacement. By Newton second law
of motion, we have

M
d2x

dt2
= −Sx− r dx

dt
+ F (t). (1)

In this paper, we take special choice F (t) = 2(1−sint),M = 2kg, S = 1N/m,
r = 0.3Ns/m and x(0) = x′(0) = 0 as initial conditions, see Simmons [17].
The exact solution of equation (1) by using classical method is:

x(t) = e−0.075t(C1cos(0.703118t) + C2sin(0.703118t)) + 2 +
200

109
sin(t) +

60

109
cos(t). (2)

applying initial conditions, we have C1 = −278
109 and C2 = −110425000

38319931 .

3 Haar wavelet method

The Haar functions are an orthogonal family of switched rectangular wave-
forms where amplitudes can differ from one function to another. They are
defined in the interval [0, 1].

hi(t) =


1, α ≤ t < β,

−1, β ≤ t < γ,

0, otherwise.

(3)

where α = k
m , β = k+0.5

m and γ = k+1
m .

Integer m = 2j , (j = 0, 1, 2, 3, 4, .......J) indicates the level of the wavelet.
k = 0, 1, 2, 3, .....,m− 1 is the translation parameter.Maximal level of resolu-
tion is J. The index i is calculated according the formula i = m+k+1.In the
case of minimal values, m = 1, k = 0 we have i = 2. The maximal value of i
is i = 2M . where M = 2J . It is assumed that the value i = 1, corresponding
to the scaling function in [0, 1].

h1(t) =

{
1, 0 ≤ t ≤ 1,

0, otherwise.
(4)

Let us define the collocation points tl =
(l−0.5)
2M , where l = 1, 2, 3, ..., 2M

and discredits the Haar function hi(t).
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In the collocation points, the fist four Haar functions can be expressed as
follows:
h1(t) = [1, 1, 1, 1], h2(t) = [1, 1,−1,−1], h3(t) = [1,−1, 0, 0], h4(t) = [0, 0, 1,−1].

We introduce the notation:

H4(t) = [h1(t), h2(t), h3(t), h4(t)]
T =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

. (5)

Here H4(t) is called Haar coefficient matrix. It is a square matrix of order 4.
The operational matrix of integration P , which is a 2M square matrix, is
defined by the relations:

Pi,1(t) =

∫ tl

0

hi(t)dt. (6)

Pi,n+1(t) =

∫ tl

0

Pi,n(t)dt, (7)

where n = 1, 2, 3, 4....

These integrals can be evaluated using equation (3) and first four of them
are given below:-

Pi,1(t) =


t− α, tϵ[α, β),

γ − t, tϵ[β, γ),

0, elsewhere,

(8)

Pi,2(t) =


1
2 (t− α)

2, tϵ[α, β),
1

4m2 − 1
2 (γ − t)

2, tϵ[β, γ),
1

4m2 , tϵ[γ, 1),

0, elsewhere,

(9)

Pi,3(t) =


1
6 (t− α)

3, tϵ[α, β),
1

4m2 (t− β)− 1
6 (γ − t)

3, tϵ[β, γ),
1

4m2 (t− β), tϵ[γ, 1),

0, elsewhere,

(10)

Pi,4(t) =


1
24 (t− α)

4, tϵ[α, β),
1

8m2 (t− β)2 − 1
24 (γ − t)

4 + 1
192m4 , tϵ[β, γ),

1
8m2 (t− β)2 + 1

192m4 , tϵ[γ, 1),

0, elsewhere.

(11)
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4 Function approximation

Any square integrable function x(t) in the interval [0, 1] can be expanded by
a Haar series of infinite terms:

x(t) =
∞∑
i=1

aihi(t), iϵ{0} ∪N (12)

where the Haar coefficients ai are determined as:

a0 =

∫ 1

0

x(t)h0(t)dt (13)

an = 2j
∫ 1

0

x(t)hi(t)dt (14)

where i = 2j + k, j≥0 and 0≤k < 2j , xϵ[0, 1] such that the following integral
square error ε is minimized:

ε =

∫ 1

0

[x(t)−
m−1∑
i=0

aihi(t)]
2dt (15)

where m = 2j and jϵ{0}∪N .
Usually the series expansion of (12) contains infinite terms for smooth

x(t). if x(t) is piecewise constant by itself or may be approximated as piece-
wise constant during each subinterval, then x(t) will be terminated at finite
m terms. This means

x(t) =
m−1∑
i=0

aihi(t) = am
Thm(t) (16)

where the coefficients am
T and the Haar function vector hm(t) are defined

as:

am
T = [a0, a1, a2, ..........., am−1]

and

hm(t) = [h0(t), h1(t), h2(t), ..........., hm−1(t)]
T .

5 Convergence analysis of Haar wavelet method

Consider a differentiable function x(t) with

|x(t)| ⩽ K0, (17)
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such that
|x′(t)| ⩽ K0, (18)

for all tε(0, 1). Where K0 > 0 is a positive constant. Haar wavelet approxi-
mation for the function x(t) is given by:

xM (t) =
2M∑
i=1

aihi(t) (19)

The square of error norm for wavelet approximation in [1] is given by:

∥x(t)− xM (t)∥ ≤ K0
2

3
.

1

(2M)2
(20)

Therefore,

∥x(t)− xM (t)∥ ≤ O(
1

M
) (21)

This means that error bound depends on level of resolution of Haar wavelets
that is, error bound is inversely proportional to level of resolution of Haar
wavelets. Therefore, when we increase the value of M , it yields the sure
convergence of Haar wavelet approximation.

6 Method of solution

Consider the damped forced oscillatory equation (1). Assume that

x′′(t) =
2M∑
i=1

aihi(t). (22)

Integrating twice with respect to t from 0 to t, we get

x′(t) = x′(0) +
2M∑
i=1

aiP1,i(t), (23)

x(t) = x(0) +
2M∑
i=1

aiP2,i(t). (24)

Apply initial conditions and substitute the values of x′′(t), x′(t) and x(t) in
(1), we get,

2M∑
i=1

ai[Mhi(t) + rP1,i(t) + SP2,i(t)] = F (t) (25)
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where r, S, F and M are same as defined in Section 2. From here, wavelet
coefficients ai are calculated and solution x(t) of equation (1) is obtained.

7 Runge-Kutta method of fourth order

Runge-Kutta method is famous numerical method for solving ordinary dif-
ferential equations. Consider the second order ordinary differential equation

d2y

dx2
= ϕ(x, y,

dy

dx
) (26)

By substituting dy
dx = z, it can reduced to two first order simultaneous differ-

ential equations

dy

dx
= z = f(x, y, z) (27)

and
dz

dx
= ϕ(x, y, z) (28)

with initial conditions y(x0) = y0 and z(x0) = z0. Starting at (x0, y0, z0)
and taking the step-sizes for x, y, z to be h, k, l respectively, the Runge-Kutta
method gives,

k1 = hf(x0, y0, z0), (29)

l1 = hϕ(x0, y0, z0), (30)

k2 = hf(x0 +
1

2
h, y0 +

1

2
k1, z0 +

1

2
l1), (31)

l2 = hϕ(x0 +
1

2
h, y0 +

1

2
k1, z0 +

1

2
l1), (32)

k3 = hf(x0 +
1

2
h, y0 +

1

2
k2, z0 +

1

2
l2), (33)

l3 = hϕ(x0 +
1

2
h, y0 +

1

2
k2, z0 +

1

2
l2), (34)

k4 = hf(x0 + h, y0 + k3, z0 + l3), (35)

l4 = hϕ(x0 + h, y0 + k3, z0 + l3). (36)

Using above relations, we have

y1 = y0 +
1

6
(k1 + 2k2 + 2k3 + k4), (37)

and
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z1 = z0 +
1

6
(l1 + 2l2 + 2l3 + l4), (38)

To compute y2 and z2, we simply replace x0, y0, z0 by x1, y1, z1 in the
above relations. Similarly by using above relations we compute x2, y2, z2,
x3, y3, z3,...........so on.

8 Taylor-series method

Consider equations (26), (27) and (28). If h be the step-size, y1 = y(x0 + h)
and z1 = z(x0 + h). Then, Taylor’s algorithm for (26) and (27) gives

y1 = y0 + hy0
′ +

h2

2!
y0

′′ +
h3

3!
y0

′′′ + ........ (39)

z1 = z0 + hz0
′ +

h2

2!
z0

′′ +
h3

3!
z0

′′′ + ........ (40)

Differentiating (26) and (27) successively, we get y′′, z′′, etc. So the values
y0

′, y0
′′, y0

′′′, ..... and z0
′, z0

′′, z0
′′′, ..... are known. Substituting these values

in above equations, we get y1, z1. Similarly, we have the algorithms

y2 = y1 + hy1
′ +

h2

2!
y1

′′ +
h3

3!
y1

′′′ + ........ (41)

z2 = z1 + hz1
′ +

h2

2!
z1

′′ +
h3

3!
z1

′′′ + ........ (42)

Since y1, z1 are known. we can calculate y1
′, y1

′′, y1
′′′, ..... and z1

′, z1
′′, z1

′′′, ......
Substituting these values in above equations, we get y2, z2. Proceeding in this
way, we can calculate the other values of y and z step by step.

9 Comparison of numerical solutions

In this section, we compare the results of the present Haar wavelet method
with two other numerical methods for the damped forced oscillatory problem.
In order to verify the efficiency of Haar wavelet method in comparison to
exact solution, Runge-kutta fourth order classical method and Taylor series
method have been selected. For the Runge-kutta method, the step-size is
1/32. For Taylor’s series method, step size is 1/32 and 7 terms are involved.
Table-1 shows the numerical results from different numerical methods. Table-
2 shows the errors arising from different numerical methods mentioned above.
Further, graph in Figure 1 shows the comparison of graphical solution with
the exact solution, obtained for J = 3 by (i) Haar wavelet method (ii) Runge-
Kutta fourth order classical method and (iii) Taylor series method.
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Table 1: Results from different numerical methods

x(l)/32 Exact solution Haar wavelet Runge-Kutta Taylor series
1 0.0004824193 0.0004707036 0.0004630874 0.0004671912
3 0.0042356457 0.0042007228 0.0040510208 0.0040991982
5 0.0114690029 0.0114111581 0.0109524412 0.0110920238
7 0.0218950125 0.0218146369 0.0208783000 0.0211608344
9 0.0352250351 0.0351226225 0.0335339697 0.0340203049
11 0.0511707741 0.0510469174 0.0486211919 0.0493861034
13 0.0694457517 0.0693011385 0.0658400073 0.0669763459
15 0.0897667509 0.0896021596 0.0848906621 0.0865130140
17 0.1118552180 0.1116715126 0.1054754806 0.1077233303
19 0.1354386196 0.1352367450 0.1273006949 0.1303410858
21 0.1602517482 0.1600327242 0.1500782254 0.1541079134
23 0.1860379714 0.1858028875 0.1732274013 0.1787745029
25 0.2125504200 0.2123004292 0.1973766160 0.2041017526
27 0.2395531092 0.2392894218 0.2213649076 0.2298618522
29 0.2668219898 0.2665458670 0.2452434581 0.2558392936
31 0.2941459241 0.2938586718 0.2687770046 0.2818318053

10 Conclusion

Here, we used three numerical methods to approximate the solutions of
damped forced oscillatory differential equation, and compared the results
with exact solution. From above results, it is concluded that Haar wavelet
method is simple, accurate and more efficient than other well known numer-
ical methods for damped forced oscillatory differential equation.
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ایتو تصادفی دیفرانسیل معادلات برای قوی تقریب

نامجو مهران

ریاضی گروه ریاضی، علوم دانشکده رفسنجان، عصر ولی دانشگاه

قوی مرتبه از ضمنی نیمه ی ا مرحله دو تصادفی رانگ–کوتا روشهای از ای خانواده مقاله این در : چکیده
رود، می بکار وینر فرایند یک با ایتو تصادفی دیفرانسیل معادلات حل برای که خطا ثابتهای مینیمم با یک
ایتو، روش صریح، ای مرحله دو ایتو رانگ–کوتا روشهای به نسبت روش این کارایی است. شده معرفی
نتایج از استفاده با ضمنی و ضمنی نیمه ای مرحله دو استراتنویچ رانگ–کوتا روشهای و مایلشتن روش

است. شده داده نشان عددی

رانگ–کوتا. روشهای قوی؛ تقریب تصادفی؛ دیفرانسیل معادلات : کلیدی کلمات



غیرخطی بهینه کنترل مسائل حل برای متغیر همسایگی جستجوی دوفازی الگوریتم یک

حسین۳ نژاد سعید و حیدری۲ عقیله قنبری۱، رضا

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه ۱

کاربردی ریاضی گروه مشهد، نور، پیام دانشگاه ۲

کاربردی ریاضی گروه تهران، نور، پیام دانشگاه ۳

پیشنهاد غیرخطی بهینه کنترل مسائل حل برای IVNS نام به دوفازی الگوریتم یک مقاله این در : چکیده
که می�کنیم استفاده (VNS) متغیر همسایگی جستجوی روش از پیشنهادی الگوریتم فاز هر در است. شده
استفاده محلی جستجوی گام در دنباله�ای دو درجه ریزی برنامه� روش از لغزشو گام در یکنواخت توزیع از آن در
اجرا کنترل ورودی متغیرهای از تصادفی کاملا اولیه جواب یک با VNS الگوریتم اول، فاز در است. شده
و می�شوند اضافه جدیدی زمانی نقاطگره�ای اول، فاز از آمده بدست جواب دقت افزایش منظور به می�شود.
جواب با VNS دوم فاز در سپس می�شوند. زده تقریب اسپلاین درون�یابی با آنها در کنترل ورودی مقادیر
بهینه کنترل مساله ٢٠ روی پیشنهادی الگوریتم می�شود. اندازی راه مجددا اول فاز از شده ساخته جدید
اخیر پیشنهادی الگوریتم�های از برخی با عددی نتایج است. شده سازی پیاده آزمون، مسائل عنوان به واقعی،
در روش�ها سایر به نسبت بهتری عددی جواب�های پیشنهادی روش می�دهد نشان نتایج است. شده مقایسه
گره�ای نقاط تعداد (که فاز تک VNS با IVNSمقایسه برای همچنین می�دهد. ارائه کمتر محاسباتی زمان
محاسباتی زمان IVNS داد نشان مطالعه این است. شده انجام عددی آزمایش یک است) مشابه فاز دردو
نمی�کند. تغییر داری معنی صورت به آمده بدست جواب�های کیفیت که حالی در دارد، VNS به نسبت کمتری

ای. دنباله دو درجه ریزی برنامه متغیر؛ همسایگی جستجوی غیرخطی؛ بهینه کنترل مساله : کلیدی کلمات



چندگانه مرتبه با کسری دیفرانسیل معادلات عددی حل سینکبرای محلی هم روش

فرد اسدالهی الهام و الدینی حسام اسماعیل

ریاضی گروه شیراز، صنعتی دانشگاه

چندگانه مرتبه با کسری دیفرانسیل معادلات عددی حل برای را سینک محلی هم روش مقاله این در : چکیده
بریم. می کار به است، شده ارائه همکارانش و خلیل توسط اخیرأ که کسری مشتق جدید تعریف ی پایه بر
تبدیل جبری معادلات از سیستم یک به را کسری دیفرانسیل معادله و کرده استفاده سینک تابع خواص از

است. گردیده ارائه نیز باشد می روش این کارایی و دقت مؤید که عددی مثال چند کنیم. می

چندگانه؛ مرتبه با کسری دیفرانسیل معادلات کسری؛ دیفرانسیل معادلات سینک؛ تابع : کلیدی کلمات
محلی. هم روش



برگرز معادلات حل براي شده تعديل نقاط برمبناي شعاعي پايه توابع شبکه بدون خطوط روش

برفه�اي۲ مهديار و ۲ عامري عرب مريم ،۱ سهيلي عليرضا

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه ۱

خطی غیر و خطی های سیستم محاسبات و مدلسازی علمی قطب مشهد، فردوسی دانشگاه ۱

ریاضی دانشکده بلوچستان، و سیستان دانشگاه ۲

مي�شود معرفي جزيي مشتقات با معادلات حل براي شعاعي پايه توابع مبناي بر خطوط روش يک : چکیده
تعديل الگوريتم يک با همراه روش اين مي�کند. جدا را دروني و مرزي نقاط جواب، آوردن بدست براي که
تعديل نقاط هستند، مواجه جواب در شديد تغييرات با که مسايلي براي مي�دهيم نشان مي�رود. بکار نقاط
با را جواب مي�توان کمتر نقاط تعداد با که گونه�اي به دارند بهتري عملکرد يکنواخت نقاط به نسبت شده

است. رفته بکار برگرز معادله حل براي روش آورد. بدست نظر مورد دقت

برگرز. معادلات تعديل؛ روش�هاي شعاعي؛ پايه توابع خطوط؛ روش : کلیدی کلمات



بي-اسپلاين درونياب شبه روش با نيويل-وايتهد معادله و کوشي خطي غير مسأله عددي مطالعه
مکعبي

علوي جواد و خواه اميني حسين

کاربردي رياضي گروه رياضي، علوم دانشکده گيلان، دانشگاه

کوشي انتشار بدوضع معادله و نيويل-وايتهد معادله از عددي تقريب يک مطالعه به مقاله اين : چکیده
و وابسته متغيرهاي مشتق تقريب براي درونياب شبه بي-اسپلاين مشتق از شده ارائه طرح در مي�پردازد.
بيان روش تشريح براي مثال�هايي مي�شود. استفاده زمان مشتق تقريب براي اول مرتبه پيشرو تفاضل از
پپاده و الگوريتم در روش اين اصلي مزيت شده�اند. مقاسيه دقيق جواب�هاي با مثال�ها عددي نتايج و شده�

است. آن ساده سازي

تفاضلي. طرح انتقال؛ انتشار- معادله مکعبي؛ اسپلاين بي- درونياب شبه : کلیدی کلمات



هار موجکهای از استفاده با نوسانی میرای نیروی مساله عددی حل

شیوکومار و سینک ایندریپ

هندوستان پنجاب، آمبدکار، دکتر فناوری ملی موسسه

می ارائه هار، موجکهای از استفاده با را نوسانی میرای نیروی مساله عددی حل مقاله، این در : چکیده
رانگ-کوتای مانند مشهور، روشهای از بعضی بردن کار به از حاصل نتایج با را حاصل عددی نتایج کنیم.

کنیم. می مقایسه تیلور سری روشهای و کلاسیک چهارم مرتبه

است، گردیده ارائه مقاله این در که هار، های موجک از استفاده روش که دهند می نشان عددی نتایج
دهند. می بدست بالا، در شده ذکر های روش با مقایسه در را تری دقیق تقریبی جوابهای

نوسانی. میرای نیروی عملیاتی؛ ماتریس دیفرانسیل؛ معادلات هار؛ های موجک روش : کلیدی کلمات
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