
 



In the Name of God

Iranian Journal of Numerical Analysis and Optimization (IJNAO)

This journal is authorized under the registration No. 174/853 dated 1386/2/26,
by the Ministry of Culture and Islamic Guidance.

Volume 4, Number 2, Summer 2014

ISSN: 1735-7144

Publisher: Faculty of Mathematical Sciences, Ferdowsi University of Mash-
had

Published by: Ferdowsi University of Mashhad Press

Circulation: 100

Address: Iranian Journal of Numerical Analysis and Optimization

Faculty of Mathematical Sciences, Ferdowsi University of Mashhad

P.O. Box 1159, Mashhad 91775, Iran.

Tel. : +98-51-38806222 , Fax: +98-51-38828604

E-mail: mjms@um.ac.ir

Website: http://jm.um.ac.ir/index.php/math

This journal is indexed by:

• Mathematical Review

• Zentralblatt

• ISC

• SID
نشریه که رساند می محترم نویسندگان و تکمیلی تحصیلات دانشجویان ارجمند، اساتید پژوهشگران، محققان، کلیه اطلاع به
محترم کل مدیر ١٣٩٢/١٠/٢۵ مورخه /٣/١٨/۵۴٨٩١٣ شماره مجوز طبق - IJNAO - سازی بهینه و عددی آنالیز ایرانی

میباشد. پژوهشی – علمی فناوری، و تحقیقات علوم، وزارت پژوهشی امور ریزی برنامه و گذاری سیاست
علوم استنادی پایگاه وفناوری پژوهشی معاونت محترم سرپرست ١٣٩٢/١١/٢١ مورخه ٩٢/١۵٣۶/پ شماره نامه اساس بر

شود. می نمایه نیز ISC پایگاه در سازی بهینه و عددی آنالیز ایرانی نشریه اسلام، جهان



Iranian Journal of Numerical Analysis
and Optimization

Volume 4, Number 2, Summer 2014

Ferdowsi University of Mashhad - Iran

©2013 All rights reserved. Iranian Journal of Numerical Analysis and Opti-
mization



Iranian Journal of Numerical Analysis and
Optimization

Editor in Charge
H. R. Tareghian*
Editor in Chief
M. H. Farahi

Managing Editor
M. Gachpazan

EDITORIAL BOARD

Abbasbandi, S.*
(Numerical Analysis)
Department of Mathematics,
Imam Khomeini International University,
Ghazvin.
e-mail: abbasbandy@ikiu.ac.ir
Afsharnezhad, Z.*
(Differential Equations)
Department of Applied Mathematics,
Ferdowsi University of Mashhad, Mashhad.
e-mail: afsharnezhad@math.um.ac.ir
Alizadeh Afrouzi, G.*
(Nonlinear Analysis)
Department of Mathematics, University
of Mazandaran, Babolsar.
e-mail: afrouzi@umz.ac.ir
Babolian, E.*
(Numerical Analysis)
Kharazmi University, Karaj, Tehran.
e-mail: babolian@saba.tmu.ac.ir
Effati, S.**
(Optimal Control & Optimization)
Department of Applied Mathematics,

Ferdowsi University of Mashhad, Mashhad.
e-mail: s-effati@um.ac.ir
Fakharzadeh Jahromi, A.**
(Optimal Control & Optimization)
Department of Mathematics,
Shiraz University of Technology, Shiraz.
e-mail: a-fakharzadeh@sutech.ac.ir
Farahi, M. H.*
(Optimal Control & Optimization)
Department of Applied Mathematics,
Ferdowsi University of Mashhad, Mashhad.
e-mail: farahi@math.um.ac.ir
Gachpazan, M.**
(Numerical Analysis)
Department of Applied Mathematics,
Ferdowsi University of Mashhad, Mashhad.
e-mail: gachpazan@um.ac.ir
Khaki Seddigh, A.*
(Optimal Control)
Department of Electerical Engineering,
Khaje-Nassir-Toosi University, Tehran.
e-mail: sedigh@kntu.ac.ir



Mahdavi-Amiri, N.*
(Optimization)
Faculty of Mathematics, Sharif
University of Technology, Tehran.
e-mail: nezamm@sina.sharif.edu
Salehi Fathabadi, H.*
(Operations Research)
School of Mathematics, Statistics and
Computer Sciences,
University of Tehran, Tehran.
e-mail: hsalehi@ut.ac.ir

Soheili, A.*
(Numerical Analysis)
Department of Applied Mathematics,
Ferdowsi University of Mashhad, Mashhad.
e-mail: soheili@um.ac.ir
Toutounian, F.*
(Numerical Analysis)
Department of Applied Mathematics,
Ferdowsi University of Mashhad, Mashhad.
e-mail: toutouni@math.um.ac.ir

This journal is published under the auspices of Ferdowsi University of Mashhad

* Full Professor
** Associate Professor
We would like to acknowledge the help of Narjes khatoon Zohorian in the preparation
of this issue.



Letter from the Editor in Chief

I would like to welcome you to the Iranian Journal of Numerical Analysis
and Optimization (IJNAO). This journal is published biannually and sup-
ported by the Faculty of Mathematical Sciences at the Ferdowsi University
of Mashhad. Faculty of Mathematical Sciences with three centers of excel-
lence and three research centers is well-known in mathematical communities
in Iran.
The main aim of the journal is to facilitate discussions and collaborations be-
tween specialists in applied mathematics, especially in the fields of numerical
analysis and optimization, in the region and worldwide.
Our vision is that scholars from different applied mathematical research dis-
ciplines, pool their insight, knowledge and efforts by communicating via this
international journal.
In order to assure high quality of the journal, each article is reviewed by
subject-qualified referees.
Our expectations for IJNAO are as high as any well-known applied mathe-
matical journal in the world. We trust that by publishing quality research
and creative work, the possibility of more collaborations between researchers
would be provided. We invite all applied mathematicians especially in the
fields of numerical analysis and optimization to join us by submitting their
original work to the Iranian Journal of Numerical Analysis and Optimization.

Mohammad Hadi Farahi



Contents

Analysing panel flutter in supersonic flow by Hopf bifurcation 1
Z. Monfared and Z. Dadi

Hopf bifurcation in a general n-neuron ring network with n
time delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
E. Javidmanesh and M. Khorshidi

Population based algorithms for approximate optimal
distributed control of wave equations . . . . . . . . . . . . . . . 31
A. H. Borzabadi, S. Mirassadi and M. Heidari

Operational Tau Method for Nonlinear Multi-Order FDEs . . 43
P. Mokhtary

A new approach for solving nonlinear system of equations
using Newton method and HAM . . . . . . . . . . . . . . . . . . 57
J. Izadian, R. Abrishami and M. Jalili

Solving nonlinear Volterra integro-differential equation by
using Legendre polynomial approximations . . . . . . . . . . . . 73
M. Gachpazan, M. Erfanian and H. Beiglo



 



Iranian Journal of Numerical Analysis and Optimization

Vol 4, No. 2, (2014), pp 1-14

Analysing panel flutter in supersonic
flow by Hopf bifurcation

Z. Monfared∗ and Z. Dadi

Abstract

This paper is devoted to the study of a partial differential equation (PDE)
governing panel motion in supersonic flow. This PDE can be transformed to

an ODE by means of a Galerkin method. Here by using a criterion which is
closely related to the Routh-Hurwitz criterion, we investigate the mentioned
transformed ODE from Hopf bifurcation point of view. In fact we obtain a
region for existence of simple Hopf bifurcation for it. With the aid of Matlab

and Hopf bifurcation tool, flutter and limit cycle oscillations of panel are
verified. Moreover, Hopf bifurcation theory is used to analyse the flutter
speed of the system.

Keywords: Panel flutter; Limit cycle; Hopf bifurcation; Routh-Hurwitz cri-
terion; Vibrations.

1 Introduction

Aerodynamics is a branch of dynamics concerned with studying the motion
of air, particularly when it interacts with a solid object such as an Aircraft
structure.

On the other hand, flow-induced structural vibration is one of the most
technical problems affecting the reliability, cost and safety of aircraft struc-
tures. The vibration caused by a fluid flowing around a body is known as
flow-induced vibration. Flow-induced vibrations best describe the interac-
tion that occurs between the fluid’s dynamic forces and a structure’s inertial,
damping, and elastic forces. The study of flow-induced vibrations has rapidly
developed in aeronautical and nonaeronautical engineering. In aeronautics,
flow-induced vibration is often referred to as flutter. Flutter is the instability
of aeronautics structures under unsteady aerodynamic loadings. Panel flutter
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2 Z. Monfared and Z. Dadi

is a phenomenon of self-exciting vibrations of skin panels of flight vehicle at
high flight speeds resulting from the interaction between an elastic structure
and the flow around the structure. Such vibrations typically have high ampli-
tude and cause fatigue damage of skin panels. This flutter phenomenon was
first observed during World War II; however, formal studies did not appear
until the 1950s. Supersonic panel flutter is a key design consideration for
some high-speed aerospace vehicles like spacecrafts and missiles, [14, 17, 20].
Moreover, for nonlinear systems flutter is usually interpreted as a limit cycle
oscillation (LCO). If a limit cycle is created the system will oscillate forever.

Aeroelastic flutter is a catastrophic structural failure, which needs to be
avoided within the flight envelope of an aircraft structure. Hence, engineering
researchers have paid much attention to studying the flutter and limit cycle
motions of thin panels in recent years (see [2, 12, 14, 15, 16, 17, 19, 20] ).

Furthermore, Hopf bifurcation theory can be utilized as an important tool
for the determination of the flutter and limit cycle vibrations of panels. In
addition, Hopf bifurcation tool can be used to analyze the flutter speed of
the system. Hence, with the use of thin panels in shuttles and large space
stations, nonlinear dynamics, bifurcations, and the chaos of thin panels have
become more and more important. In the past decade, researchers have made
a number of studies into nonlinear oscillations, bifurcations, and the chaos of
thin panels. Holmes [5] studied flow-induced oscillations and bifurcations of
thin panels and gave a finite-dimensional analysis. Then based on the analysis
in [5], Holmes and Marsden [7] considered an infinite-dimensional analysis for
flow-induced oscillations and pitchfork and fold bifurcations of thin panels.
Holmes [6] then simplified this problem to a two-degrees-of-freedom nonlinear
system and used center manifolds and the theory of normal forms to study
the degenerate bifurcations. Yang and Sethna [18] used an averaging method
to study the local and global bifurcations in parametrically excited, nearly
square plates. From the von Karman equation, they simplified this system
to a parametrically excited two-degrees-of-freedom nonlinear oscillators and
analyzed the global behaviour of the averaged equations. Based on the stud-
ies in [18], Feng and Sethna [3] made use of the global perturbation method
developed by Kovacic and Wiggins [8] to study further the global bifurcations
and chaotic dynamics of a thin panel under parametric excitation, and ob-
tained the conditions in which Silnikov-type homoclinic orbits and chaos can
occur. Zhang et al. [19] investigated both the local and global bifurcations
of a simply supported at the fore-edge, rectangular thin plate subjected to
transversal and in-plane excitations simultaneously.

In this paper, a problem of flow-induced oscillations, that of panel flutter
is considered. In fact here we investigate a partial differential equation which
describes panel motion and obtain a region for the existence of a special type
of Hopf bifurcation for it. This type of Hopf bifurcation occurs where a pair
of complex conjugate eigenvalues of the Jacobian matrix passes through the
imaginary axis while all other eigenvalues have negative real parts. Further-
more, the existence of this type of Hopf bifurcation leads to flutter and limit
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cycle motions of the panel which can cause failure of the structure. To the
best of our knowledge, it is the first time that such a region for the existence
of periodic solutions and Hopf bifurcation is being investigated. Moreover,
by means of Matlab and the fourth and fifth-order Runge-Kutta (RK-45)
method we do some numerical simulations. These simulations present our
theoretical results and flutter and limit cycle oscillations of thin panel. More-
over, the flutter speed is obtained by using Hopf bifurcation tool.

2 Preliminaries

In this section, we state some mathematical concepts and basic results.

2.1 A criterion based on the Routh-Hurwitz criterion
for the existence of simple Hopf bifurcation

Important criterion that gives necessary and sufficient conditions for all of
the roots of the characteristic polynomial to lie in the left half of the complex
plane is known as the Routh-Hurwitz Criterion. This criterion is stated in
the next theorem, see [16].

Theorem 2.1. (Routh-Hurwitz Criterion).Consider a polynomial of the form

akz
k + ak−1z

k−1 + ak−2z
k−2 + ... + a0,

the roots of this polynomial lie in the open left half-plane if and only if all the
leading principal minors of the k × k matrix

Q =

 a1 a0 ··· 0
a3 a2 ··· 0

...
...

...
...

a2k−1 a2k−2 ··· ak

 ,

are positive and ak > 0; we assume that aj = 0 if j < 0 or j > k.

In dynamical systems, a bifurcation occurs when a small smooth change
made to the parameter values (the bifurcation parameters) of a system causes
a sudden qualitative or topological change in its behaviour. In general, at a
bifurcation point, the local stability properties of equilibria, periodic orbits or
other invariant sets change. Moreover, in many applications we are concerned
with a special type of Hopf bifurcations, where a pair of complex conjugate
eigenvalues of the Jacobian matrix passes through the imaginary axis while
all other eigenvalues have negative real parts. These are called simple Hopf
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bifurcations in [10], in order to distinguish them from the Hopf bifurcations
with some other eigenvalues on the right half plane. Now consider the system

Ẋ = f(X,µ), X ∈ Rn, µ ∈ R. (1)

We use the notation in [4, 13] and mention the following theorem which states
the sufficient conditions for existence of Hopf bifurcation.

Theorem 2.2. Suppose that system (1), has an equilibrium (x0, µ0) at which
the following properties are satisfied:

(SH1) Dxfµ0(x0) has a simple pair of pure imaginary eigenvalues and other
eigenvalues have negative real parts. Therefore, there exists a smooth
curve of equilibria (x(µ), µ) with x(µ0) = x0. The eigenvalues
λ(µ), λ̄(µ) of Dxfµ0(x(µ)) which are imaginary at µ = µ0 vary
smoothly with µ. Furthermore, if,

(SH2) d
dµ (Reλ(µ))

∣∣∣
µ=µ0

= d ̸= 0,

then Hopf bifurcation will occur.

Proof. See [4].

Even though numerical computation of eigenvalues is feasible, it is ideal
to have a criterion stated in terms of the coefficient of the characteristic poly-
nomials rather than the traditional Hopf bifurcation criterion which is based
on the property of eigenvalues. Specially for higher dimensional systems with
many parameters, this criterion will be more convenient. See [10].
We denote the characteristic polynomial of the Jacobian matrix J(µ) of (1)
as:

P (λ;µ) = det(λIn − J(µ)) = p0(µ) + p1(µ)λ+ ...+ pn(µ)λ
n,

where every pi(µ) is a smooth function of µ, and pn(µ) = 1. And we consider
the case p0(µ) > 0, because there is not any nonnegative real root. Let

Ln(µ) =

 p1(µ) p0(µ) ··· 0
p3(µ) p2(µ) ··· 0

...
...

. . .
...

p2n−1(µ) p2n−2(µ) ··· pn(µ)

 ,

where pi(µ) = 0 if i < 0 or i > n. Moreover, when p0(µ) > 0 by the R-H
criterion the polynomial P (λ;µ) of λ has all roots with negative real parts if
and only if the following n principal sub determinants of Ln(µ) are positive:

• D1(µ) = det(L1(µ)) = p1(µ) > 0

• D2(µ) = det(L2(µ)) = det
(

p1(µ) p0(µ)

p3(µ) p2(µ)

)
> 0

...
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• Dn(µ) = det(Ln(µ)) > 0. Since Dn(µ) = pn(µ)Dn−1(µ) and in our case
pn(µ) = 1 the R-H criterion conditions can be stated as

• p0(µ) > 0, D1 > 0, D2 > 0, ... , Dn−1 > 0.

Theorem 2.3. Assume there is a smooth curve of equilibria (x(µ), µ) with
x(µ0) = x0 for (1). Then conditions (SH1) and (SH2) for a simple Hopf
bifurcation are equivalent to the following conditions on the coefficients of
the characteristic polynomial P (λ;µ):

(1) p0(µ0) > 0, D1(µ0) > 0, ... , Dn−2(µ0) > 0, Dn−1(µ0) = 0

(2) dDn−1(µ0)
dµ ̸= 0.

Proof. see [10].

2.2 Galërkin method

Suppose we wish to solve the following boundary value problem of partial
differential equations over the interval a ≤ z ≤ b,

L[y(z, t)] + f(z, t) = 0,

y(a, t) = za, y(b, t) = zb.

A Galërkin method is used to approximate the problem by a sequence of
finite dimensional problems. In other words, we consider the problem as a
flow defined on a space V and then choose the finite dimensional subspace
VN ⊂ V of dimensional N and project our problem onto VN . Reducing
the problem to a finite dimensional vector subspace allows us to numerically
compute uN (the solution of PDE) as a finite linear combination of the basis
vectors in VN .

Now, let {φj}Nj=1 be an orthonormal basis of the finite dimensional sub-
space VN that satisfy the boundary conditions of the problem. Therefore, we
can write

uN (z, t) =
N∑
j=1

aj(t)φj .

Through the use of orthogonal functions the error function EN , represent-
ing the difference between the exact and approximate solution, is minimized
such that ∫ b

a

EN (z, t).φj dz = 0, ∀j = 1, 2, ..., N,

where,
EN (z, t) = L[uN (z, t)] + f(z, t).
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Each term in above equation gives an ODE in time for the N coefficients
{aj(t)}Nj=1 and these must be solved numerically. For more information see
[5, 7].

2.3 Dynamic pressure

In fluid dynamics, dynamic pressure (indicated with q, or Q, and sometimes
called velocity pressure) is the quantity of air measured by most airspeed
instruments and defined by

q =
1

2
ρv2,

where ρ and v are density and velocity of the flow respectively. See [1],
Section 3.5.

3 Formulation of the problem

Consider a supersonic stream of fluid passes above a thin plate with the
length 1, fixed at the edges z = 0 and z = 1 .The panel is simultaneously
subjected to an in-plane tensile load Γ. The fluid velocity is characterized
in terms of the dynamic pressure q, see Figure 1. Using nondimensional
quantities, and assuming that the panel bends in a cylindrical mode (so
that w(z, y, t) = w(z, t) is independent of y), the following nonlinear partial-
differential equation, which is essentially a one dimensional version of the von
Karman equations is considered for a thin plate:

wtt + αwtzzzz +
√
qδwt − {Γ + k

∫ 1

0
w2

zdz + σ
∫ 1

0
wz.wtzdz}wzz

+wzzzz + qwz = 0,
(2)

see [4, 7]. Here w = w(z, t) is the transverse displacement of the panel,
α, σ ≥ 0 are (linear) viscoelastic damping parameters associated with the
panel, δ > 0 represents fluid damping and k > 0 is a measure of the nonlinear
axial (membrance) restoring forces generated in the panel due to transverse
displacement. Moreover, all these parameters are assumed to be fixed, except
q which can vary.
Now, consider equation (2) with the following simply supported boundary
conditions

w(0, t) = wzz(0, t) = w(1, t) = wzz(1, t) = 0. (3)

A plate subjected to a compressive in-plane load with fluid flow over its sur-
face may undergo complex motions resulting in dynamic instabilities (flutter)
and associated limit cycle motions.
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Figure 1: The panel flutter problem

4 Bifurcation analysis

It does not seem possible to solve the equation (2) explicitly. As it is men-
tioned in [7] by using a Galërkin method the partial differential equation (2)
together with the boundary conditions (3) can be transformed to a ordinary
differential equation. In fact in [7] because of the simply supported boundary
condition (3), the following family of orthogonal basis

{φj(z)}Nj=1 = {sin(jπz)}Nj=1

is chosen. Then by writing , w(z, t) =
∑N

j=1 aj(t)φj(z) and applying the
Galërkin procedure for N = 2 (two modes) to the governing Equation (2)
and using the orthonormality of the bases and the relationships∫ 1

0

w′′′′
j .ws dz =

∫ 1

0

w′′
j .w

′′
s dz,

∫ 1

0

w′′
j .ws dz = −

∫ 1

0

w′
j .w

′
s dz,

the following ODE in the time dependent amplitude coefficients aj(t) is ob-
tained.

ẋ = Aqx+ f(x), x ∈ R4, q ∈ R, (4)

where

x =


a1
a2
ȧ1
ȧ2

 ,
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Aq =


0 0 1 0
0 0 0 1

π2(Γ− π2) 8q/3 −(απ4 +
√
qδ) 0

−8q/3 4π2(Γ− 4π2) 0 −(16απ4 +
√
qδ)

 ,

and

f =


0
0

−f1
−f2

 ,

in which

f1 = π4

2 {k(a21 + 4a22) + σ(a1ȧ1 + 4a2ȧ2)}a1,

f2 = 2π4{k(a21 + 4a22) + σ(a1ȧ1 + 4a2ȧ2)}a2.

Moreover, ai = xi(i = 1, 2) are the amplitudes of normal two modes.

Now we investigate Hopf bifurcations of system (2) for the trivial equilib-
rium position x = 0 or w(z, t) ≡ 0 by using a criterion which is closely related
to the Routh-Hurwitz (R-H) criterion to obtain a region of simple Hopf bifur-
cation parameters. For this purpose, we mention the sufficient conditions for
existence of simple Hopf bifurcation of system (4) in the following theorem.

Theorem 4.1. Suppose that for q = q0 and the trivial equilibrium position
x = 0 of (4), the following relations satisfy:

1) p0(q0) > 0

2) p1(q0) > 0

3) det

p1(q0) p0(q0)
p3(q0) p2(q0)

 > 0

4) D3(q0) = det


p1(q0) p0(q0) 0

p3(q0) p2(q0) p1(q0)

0 1 p3(q0)

 = 0

5)
dD3(q0)

dq
̸= 0,

where
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p0(q0) = 4π2(Γ− π2)(Γ− 4π2) +
64q20
9

,

p1(q0) = −π2{(Γ− π2)(16απ4 +
√
q0δ) + 4(Γ− 4π2)(απ4 +

√
q0δ)},

p2(q0) = (απ4 +
√
q0δ)(16απ

4 +
√
πδ)− π2(5Γ− 17π2),

p3(q0) = 17απ4 + 2
√
q0δ.

Then q0 is a simple Hopf bifurcation value for system (4) at the trivial equi-
librium position x = 0.

Proof. By computing the characteristic polynomial of (4) and using theorem
2.3., the above assertion can be proved.

The panel transverse displacement and velocity for two modes (N = 2)
can be evaluated by the following equations

w(z, t) =

2∑
j=1

aj(t)sin(jπz), (5)

wt(z, t) =

2∑
j=1

ȧj(t)sin(jπz). (6)

Therefore, by the above theorem we can find a region for existence of simple
Hopf bifurcation for equation (4) and therefore for equation (2).

5 Numerical simulation

Here numerical simulations are carried out to support our theoretical results
and show panel flutter.

Example. Consider system (4), by the aid of software Auto for δ = 1,Γ =
2, α = 0 and q0 ≃ 323.24789021 we can show that this system undergoes
Hopf bifurcation at the equilibrium x = (x1, x2, x3, x4) = (0, 0, 0, 0). More-
over, these values of parameters by [4, 5, 7] are physically meaningful. In
addition, for the mentioned values of parameters the characteristic polyno-
mial of the Jacobian matrix of (4) at x for q0 is :

P (λ; q0) ≃ 857953.77463 + 27998.10001λ+ 1880.50639λ2 + 35.95819λ3 + λ4.

So
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(a)

(b)

(c)

Figure 2: The related trajectories in the phase space x1−x2 and time history for different

values of q. Initial condition is very close to the equilibrium x = 0: (a)q = 300; (b) q = 327;

(c) q = 1000
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(a)

(b)

(c)

Figure 3: Phase Portrait in the space w − wt and time History of the panel transverse

displacement for different values of q : (a)q = 300; (b) q = 327; (c) q = 1000
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p0(q0) ≃ 857953.774634701 > 0,

D1(q0) = p1(q0) ≃ 27998.1000129 > 0,

D2(q0) = det
(

p1(q0) p0(q0)

p3(q0) p2(q0)

)
≃ 21800139.664474831 > 0,

D3(q0) = det

(
p1(q0) p0(q0) 0

p3(q0) p2(q0) p1(q0)

0 1 p3(q0)

)
= 0,

and

dD3(q0)

dω
≃ −4937513.3537057098 ̸= 0.

Therefore, by Theorem 4.1., q0 ≃ 323.24789021876 is a simple Hopf bifur-
cation value for (4) at x. Furthermore, for q0 the Jacobian matrix Aq at x
has a pair of pure imaginary eigenvalues λ1, λ2 ≃ ±27.9039289667884189i,
and a couple of complex conjugate eigenvalues with negative real part
Reλ3 = Reλ4 ≃ −17.979095923287.

We solved the equation (4) by means of the fourth and fifth-order Runge-
Kutta (RK-45) method. Then by numerical simulations we showed the occur-
rence of Hopf bifurcation. The related trajectories in the phase space x1−x2
(the space of the amplitudes of two modes) and the time history responses
for different values of parameter q are presented in Figure 2.

Moreover, by equations (5) and (6), the panel transverse displacement
(w(z, t)) and velocity (wt(z, t)) for two modes can be determined. So, the
related trajectories in the phase space w−wt and the time history responses
of the panel transverse displacement for different values of parameter q are
illustrated in Figure 3.

As it is illustrated in Figures 2 and 3, the equilibrium point x = 0 or
w(z, t) ≡ 0 is a stable focus when the dynamic pressure of flow is less than
q0. In this case by passing the time the amplitude of panel vibrations will
vanish. While for q > q0 the equilibrium point x = 0 or w(z, t) ≡ 0 turns
out to be an unstable focus surrounded by a stable limit cycle. That means
that by passing the time, the amplitude of panel oscillations will increase and
finally panel will vibrate with a fixed period for ever. Furthermore, in this
case for large values of the dynamic pressure q, panel vibrations can have
high amplitude and cause catastrophic failure of the structure. This increase
of amplitude will be faster for larger values of q.

In addition, since the Hopf bifurcation occurs for the dynamic pressure
q0 ≃ 323.24789021876 Pa, due to Section 2.3., by knowing the density of flow
(air) the flutter speed can be obtained. For example at sea level and at 15
◦C, air has a density of approximately 1.225 kg

m3 . Hence, for this density of
air the flutter speed is approximately 22.97284609 in the absence of linear
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viscoelastic damping parameter α. In Figure 3 our simulations show flutter
and limit cycle oscillations (LCO) of the panel without considering the vis-
coelastic damping parameter α.

6 Conclusion

In this paper, we extended the previous results in [5, 6, 7, 8, 17, 18, 19] to
study the vibrations of a thin panel fixed at two edges. Indeed we found a re-
gion for existence of simple Hopf bifurcation for a partial differential equation
governing panel motion. Because, the existence of simple Hopf bifurcation
can lead to flutter and limit cycle oscillations of the panel. Numerical sim-
ulations were carried out by using the fourth and fifth-order Runge-Kutta
method, to support our analytical results. In fact by simulations and Hopf
bifurcation theory, we showed the occurrence of flutter and limit cycle mo-
tions of thin panel. Then Hopf bifurcation tool was used to calculate the
flutter speed of the system. Moreover, numerical simulations presented vi-
brations of thin panel can have high amplitude which cause damage of panel.
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Hopf bifurcation in a general n-neuron
ring network with n time delays

E. Javidmanesh and M. Khorshidi∗

Abstract

In this paper, we consider a general ring network consisting of n neurons

and n time delays. By analyzing the associated characteristic equation, a
classification according to n is presented. It is investigated that Hopf bifur-
cation occurs when the sum of the n delays passes through a critical value.
In fact, a family of periodic solutions bifurcate from the origin, while the

zero solution loses its asymptotically stability. To illustrate our theoretical
results, numerical simulation is given.

Keywords: Ring network; Stability; Periodic solution; Hopf bifurcation;
Time delay.

1 Introduction

Since Hopfield constructed a simplified neural network (NN) model [7, 15],
the dynamic behaviors (such as stability, periodic oscillatory, limit cycles, bi-
furcation and chaos) of continuous-time neural networks have received much
attention due to their applications in optimization, signal processing, image
processing, solving nonlinear algebraic equations, pattern recognition, asso-
ciative memories and so on (see, [3, 10, 11, 18] and references therein). It
is well known that time delays exist in the signal transmission, thus Marcus
and Westervelt proposed an NN model with delays, based on the Hopfield
NN model [12]. The time delays are regarded as parameters; consequently,
periodic solutions often appear as solutions of delay differential equations
(DDEs) through Hopf bifurcation. For example, existence of periodic solu-
tions, in a special type of DDEs, has been discussed in [9]. In [8, 16, 17], the
authors used Hopf bifurcation theory to study some kinds of neural networks.
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A ring network is a network topology in which each node connects to
exactly two other nodes, forming a single continuous pathway for signals
through each node a ring. Data travel from node to node, with each node
along the way handling every packet.

Ring networks have been found in a variety of neural structures such as
cerebellum [5], and even in chemistry and electrical engineering. In the field
of neural networks, rings are studied to gain insight into the mechanisms
underlying the behavior of recurrent networks. In [16], Wang and Han inves-
tigated the continuous-time bidirectional ring network model. Many results
have been reported in the literature on the dynamics of ring neural networks
(see [2, 18]). The local and global stability of ring networks with delays have
been discussed in [2, 18]. In [1], stability analysis of a delayed ring network
model has been discussed.

In this paper, we study Hopf bifurcation for a kind of DDE system. In
fact, we consider a general ring network with n neurons and n time delays,
which is described by the following DDE system:

ẋ1(t) = −r1x1(t) + g1(x1(t)) + f1(xn(t− τn)),

ẋ2(t) = −r2x2(t) + g2(x2(t)) + f2(x1(t− τ1)),

ẋ3(t) = −r3x3(t) + g3(x3(t)) + f3(x2(t− τ2)),
...

ẋn−1(t) = −rn−1xn−1(t) + gn−1(xn−1(t)) + fn−1(xn−2(t− τn−2)),

ẋn(t) = −rnxn(t) + gn(xn(t)) + fn(xn−1(t− τn−1)),

(1)

where ri ≥ 0 (i = 1, 2, ..., n) denotes the stability of internal neuron processes,
and xi(t) (i = 1, 2, ..., n) represents the state of the ith neuron at time t. fi
and gi (i = 1, 2, ..., n) are the activation function and nonlinear feedback
function, respectively. Also, τi ≥ 0 (i = 1, 2, ...n) describes the synaptic
transmission delay. Figure 1 shows system (1) schematically.

Figure 1: A general n-neuron ring with n delays
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The properties of periodic solutions are also important in many applica-
tions. In fact, various local periodic solutions can arise from the different
equilibrium points of ring networks by applying Hopf bifurcation technique,
therefore the study of Hopf bifurcation is very important. In [16], the sim-
plified three-neuron bidirectional ring network has been investigated. Four-
neuron and five-neuron networks with multiple delays have been studied in
[8, 17].

In this paper, we discuss Hopf bifurcation on system (1) generally, not for
a particular n. To the best of our knowledge, it has not been done before. We
would like to point out that in [1], although stability analysis of the system
has been presented, but the authors didn’t discuss Hopf bifurcation on the
system in all cases. First, we take the sum of the delays τ1+ τ2+ ...+ τn as a
parameter τ . By classifying based on n, we study the associated characteristic
equation. To calculate the critical value τ0 for Hopf bifurcation, we generalize
and modify the methods proposed in [8, 9]. Then we will show that the zero
solution loses its stability and Hopf bifurcation occurs when τ passes through
the critical value τ0. We would like to point out that it is the first time to
deal with Hopf bifurcation analysis of system (1). This paper is organized
in five sections. In Sect.2, we give the necessary preliminaries. In Sect.3,
we will study Hopf bifurcation on system (1). To illustrate the results, some
numerical simulations are presented in Sect.4. Finally, in Sect.5, some main
conclusions are stated.

2 Preliminaries

2.1 Delay Differential Equation

There is always a time delay in many natural phenomena, because a finite
time is required to sense information and then react to it. DDEs are dif-
ferential equations in which the derivatives of some unknown functions at
present time are dependent on the values of the functions at previous times.
A general delay differential equation for x(t) ∈ Rn takes the form

ẋ(t) = f(t, x(t), xt), (2)

where xt(θ) = x(t + θ) and −τ ≤ θ ≤ 0. Observe that xt(θ) with −τ ≤
θ ≤ 0 represents a portion of the solution trajectory in a recent past. In this
equation f is a functional operator from R×Rn ×C1(R,Rn) to Rn. Similar
to ODEs, many properties of linear DDEs can be characterized and analyzed
using the characteristic equation.

The linearization of system (2) at the equilibrium point x0 is

ẋ(t) = A0x(t) +A1x(t− τ1) + · · ·+Amx(t− τm), (3)
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where Aj = Dj+1f(x0, ..., x0), (j = 0, 1, ...,m) and Djf is the Jacobian of f
corresponding to its jth component.

Substitude x(t) = eλtv, v ∈ Rn into (3), we have

[λI −A0 −
m∑
j=1

Aje
−λτj ]eλtv = 0.

Therefore the characteristic equation associated with (2) is

det(λI −A0 −
m∑
j=1

Aje
−λτj ) = 0. (4)

For further details, see [4].

2.2 Hopf bifurcation

In this section, we study bifurcations that occur in C1 system

ẋ = f(x, µ), (5)

depending on a parameter µ ∈ R, at nonhyperbolic equilibrium points. In
the following, we will give definition of a structurally stable vector field or
dynamical system.

Definition 2.1. Let E be an open subset of Rn. A vector field f ∈ C1(E) is
said to be structurally stable if there is an ε > 0 such that for all g ∈ C1(E)
with ∥f − g∥ < ε, f and g are topologically equivalent on E; i.e., there is
a homeomorphism H : E → E which maps trajectories of ẋ = f(x) onto
trajectories of ẋ = g(x), and preserves their orientation by time. In this
case, we also say that the dynamical system ẋ = f(x) is structurally stable.
If a vector field f ∈ C1(E) is not structurally stable, then f is said to be
structurally unstable.

The qualitative behavior of the solution set of system (5) depending on
a parameter µ ∈ R, changes as the vector field f passes through a point in
the bifurcation set or as the parameter µ varies through a bifurcation value
µ0. A value µ0 of the parameter µ in equation (5) for which the C1 vector
field f(x, µ0) is not structurally stable is called a bifurcation value. For more
information see [13].

Theorem 2.2. Suppose that system (5), has an equilibrium (x0, µ0) at which
the following properties are satisfied:

a : Dxfµ0(x0) has a simple pair of pure imaginary eigenvalues and other
eigenvalues have negative real parts. Therefore, there exist a smooth
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curve of equilibria (x(µ), µ) with x(µ0) = x0. The eigenvalues λ(µ),
λ̄(µ) of Dxfµ0(x(µ)) which are imaginary at µ = µ0 vary smoothly
with µ.

Furthermore, if,

b :
d

dµ
(Reλ(µ))|µ=µ0 = d ̸= 0,

then Hopf bifurcation will occur.

Proof. see [6]. 2

When the parameter µ passes through the critical value µ0, according
theorem 2.2, Hopf bifurcation occurs. In fact, a family of periodic solutions
appear or disappear. If the equilibrium point is asymptotically stable for
µ < µ0, when µ passes through µ0, a family periodic solutions bifurcate from
the equilibrium point. In this case, we say that supercritical Hopf bifurcation
occurs. But, if a branch of periodic solutions exist for µ < µ0 and while µ
passes through µ0, these periodic solutions disappear, we say that subcritical
Hopf bifurcation happens. For more details, see [6].

3 Main results

To establish the main results for system (1), it is necessary to make the
following assumption

fi, gi ∈ C1, fi(0) = gi(0) = 0, for i = 1, 2, ..., n. (6)

It is easily seen that the origin (0,0,...,0) is an equilibrium point of (1). Under
the hypothesis (6), the linearization of (1) around the origin gives

ẋ1(t) = −k1x1(t) + f
′

1(0)xn(t− τn),

ẋ2(t) = −k2x2(t) + f
′

2(0)x1(t− τ1),
...

ẋn−1(t) = −kn−1xn−1(t) + f
′

n−1(0)xn−2(t− τn−2),

ẋn(t) = −knxn(t) + f
′

n(0)xn−1(t− τn−1),

(7)

where ki = ri − g
′

i(0), i = 1, 2, ..., n. The characteristic equation of (2) is

λn + a1λ
n−1 + ...+ an−1λ+ an + be−λτ = 0, (8)

where
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a1=
n∑

i=1

ki, a2=
∑

1⩽i<j⩽n

kikj , · · · ,

an−1=
∑

1⩽i < j < l < ... < m︸ ︷︷ ︸
n-1

⩽n

kikjkl...km,

an=

n∏
i=1

ki, b = −
n∏

i=1

f
′

i (0), τ =

n∑
i=1

τi. (9)

Denote
p(λ) = λn + a1λ

n−1 + ...+ an−1λ+ an,

then equation (8) becomes

p(λ) + be−λτ = 0. (10)

To study Hopf bifurcation, it is necessary to discuss the existence of pure
imaginary roots of (10). Letting λ = iω, and substituting this into (10), we
have

A+ iB + b(cosωτ − isinωτ) = 0, (11)

where
A = Re{p(iω)}, B = Im{p(iω)}. (12)

Separating the real and imaginary parts of (11), we get

A+ bcosωτ = 0, (13)

and
B − bsinωτ = 0. (14)

We rewrite the equations (13) and (14), as follows:

A = −bcosωτ, (15)

and
B = bsinωτ. (16)

Squaring both sides of (15) and (16), and adding them up gives

A2 +B2 = b2. (17)

Now, according to (12), it is easy to use computer to calculate the roots of
(17). Then we can get the time delay τ , by substituting ω in (15).

To find the solutions for equation (17), we consider the following cases:

Case (a) : n = 4k (k ∈ N),

Case (b) : n = 4k + 1 (k ∈ N),
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Case (c) : n = 4k + 2 (k ∈ N ∪ {0}),

Case (d) : n = 4k + 3 (k ∈ N ∪ {0}),

In case (a), from (12) and the definition of p(λ), we can get{
A = ωn − a2ω

n−2 + a4ω
n−4 − ...+ an,

B = −a1ωn−1 + a3ω
n−3 − a5ω

n−5 + ...+ an−1ω.
(18)

Using (17) and (18), we obtain

(ωn−a2ω
n−2+a4ω

n−4− ...+an)
2+(−a1ω

n−1+a3ω
n−3−a5ω

n−5+ ...+an−1ω)
2 = b2.

(19)

In case (b), the definition of p(λ) and (12) lead to{
A = a1ω

n−1 − a3ω
n−3 + a5ω

n−5 − ...+ an,

B = ωn − a2ω
n−2 + a4ω

n−4 − ...+ an−1ω.
(20)

Substituting (20) in (17) gives

(a1ω
n−1−a3ω

n−3+a5ω
n−5−...+an)

2+(ωn−a2ω
n−2+a4ω

n−4−...+an−1ω)
2 = b2. (21)

In case (c), A and B can be calculated as follows:{
A = −ωn + a2ω

n−2 − a4ω
n−4 + ...+ an,

B = a1ω
n−1 − a3ω

n−3 + a5ω
n−5 − ...+ an−1ω.

(22)

From the equations (17) and (22), we have

(−ωn+a2ω
n−2−a4ω

n−4+ ...+an)
2+(a1ω

n−1−a3ω
n−3+a5ω

n−5− ...+an−1ω)
2 = b2.

(23)

In case (d), from the definition of p(λ) and (12), we can compute{
A = −a1ωn−1 + a3ω

n−3 − a5ω
n−5 + ...+ an,

B = −ωn + a2ω
n−2 − a4ω

n−4 + ...+ an−1ω.
(24)

By using the equations (17) and (24), we can get

(−a1ω
n−1+a3ω

n−3−a5ω
n−5+ ...+an)

2+(−ωn+a2ω
n−2−a4ω

n−4+ ...+an−1ω)
2 = b2.

(25)

In all the above cases, after simplification, we can easily see that the equa-
tions (19), (21), (23) and (25) lead to

ω2n + e1ω
2n−2 + e2ω

2n−4 + ...+ en−1ω
2 + en = 0, (26)

where the coefficients ei (i = 1, 2, ..., n), can be calculated as follows:
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e1 = a21 − 2a2, e2 = a22 − 2a1a3, · · · , en−1 = a2n−1 − 2anan−2, en = a2n − b2.
(27)

Letting z = ω2, then equation (26) becomes

zn + e1z
n−1 + e2z

n−2 + ...+ en−1z + en = 0. (28)

Thus, the fact that equation (28) has positive roots is a necessary condi-
tion for the existence of the pure imaginary roots of equation (8).

Let
h(z) = zn + e1z

n−1 + e2z
n−2 + ...+ en−1z + en. (29)

In the following, we will give lemma to establish the distribution of posi-
tive real roots of equation (28).

Lemma 3.1. If en < 0, then equation (12) has at least one positive root.

Proof. Since h(0) = en < 0 and limz→∞h(z) = +∞. Hence, there exists a
z0 > 0 such that h(z0) = 0. 2

Now, from (15) we get

τ
(j)
k =

{
1
ωk

(cos−1(−A
b

) + 2jπ) if B
b

≥ 0
1
ωk

(2π − cos−1(−A
b

) + 2jπ) if B
b

< 0
(j = 0,±1,±2, ...; k = 1, 2, ..., n), (30)

where wk =
√
z∗k, and without loss of generality, z∗k (k = 1, ..., n) are the

positive roots of (28). Therefore, we can define

τ0 = τ
(0)
k0

= min
k∈{1,2,...,n}

{
τ
(0)
k

}
, ω0 = ωk0 . (31)

So, with the help of relations (17) and (31), ω0 and τ0 are obtained. Now,
we show that system (1) undergoes Hopf bifurcation at the origin when τ =∑n

i=1 τi passes through τ0. In all cases, the stability and Hopf bifurcation
can be analyzed analogously.

Let
λ(τ) = α(τ) + iω(τ), (32)

be the root of equation (8) near τ = τ
(j)
k satisfying α(τ

(j)
k ) = 0, ω(τ

(j)
k ) = ωk.

Then, the following lemma holds.

Lemma 3.2. Suppose h
′
(z∗k) ̸= 0, where h(z) is defined by (4) and z∗k = ω2

k.
Then ±iωk is a pair of simple purely imaginary roots of equation (3) when

τ = τ
(j)
k . Moreover,

dRe
(
λ(τ)

)
dτ

|
τ=τ

(j)
k

̸= 0.

Proof. From (17) and (12), equation (26) can be transformed into the follow-
ing form
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p(iω)p(iω)− b2 = 0. (33)

From (29), we have
h(ω2) = p(iω)p(iω)− b2. (34)

Differentiating both sides of equation (34) with respect to ω, we obtain

2ωh
′
(ω2) = i[p

′
(iω)p(iω)− p(iω)p′(iω)]. (35)

If iωk is not simple, then ωk must satisfy

d

dλ
[p(λ) + be−λτ

(j)
k ]
∣∣
λ=iωk

= 0,

that implies

p
′
(iωk) + b(−τ (j)k )e−iτ

(j)
k ωk = 0.

Together with equation (10), we have

τ
(j)
k = −p

′
(iωk)

p(iωk)
. (36)

Thus, by (33), (35) and (36), we obtain

Im(τ
(j)
k ) = Im

{
− p

′
(iωk)

p(iωk)

}
= Im

{
− p

′
(iωk)p(iωk)

p(iωk)p(iωk)

}

= i
p

′
(iωk)p(iωk)− p′(iωk)p(iωk)

2p(iωk)p(iωk)
=
ωkh

′
(ω2

k)

|p(iωk)|2
.

Since τ
(j)
k is real, i.e. Im(τ

(j)
k ) = 0, we have h

′
(z∗k) = h

′
(ω2

k) = 0. Therefore,

we get a contradiction to the condition h
′
(z∗k) ̸= 0. This proves the first

conclusion in the lemma. Differentiating both sides of equation (10) with
respect to τ , we obtain[

p
′
(λ)− bτe−λτ

]dλ
dτ

− bλe−λτ = 0,

which implies

dλ(τ)

dτ
=

bλ

p′(λ)eλτ − bτ
=
bλ
[
p′(λ)e−λτ − bτ

]
|p′(λ)eλτ − bτ |2

=
λ
[
− p′(λ)p(λ)− b2τ

]
|p′(λ)eλτ − bτ |2

.

It follows together with (35) that
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d(Reλ(τ))

dτ

∣∣
τ=τ

(j)
k

=
Re
{
λ
[
− p′(λ)p(λ)− b2τ

]}
|p′(λ)eλτ − bτ |2

∣∣∣
τ=τ

(j)
k

=
iωk

[
+ p

′
(iωk)p(iωk)− p′(iωk)p(iωk)

]
2|p′(iωk)eiωkτ

(j)
k − bτ

(j)
k |2

=
ω2
kh

′
(ω2

k)

|p′(iωk)eiωkτ
(j)
k − bτ

(j)
k |2

=
ω2
kh

′
(z∗k)

|p′(iωk)eiωkτ
(j)
k − bτ

(j)
k |2

̸= 0.

Thus,
dRe(λ(τ))

dτ
|
τ=τ

(j)
k

̸= 0. This completes the proof. 2

By the well-known Routh-Hurwitz criteria, we can find the following set
of conditions:

H1=det
(
a1
)
>0,H2=det

(
a1 1
a3 a2

)
>0, ...,Hn=det


a1 1 0 0 . . . 0
a3 a2 a1 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . an

>0.

(37)

To discuss the distribution of the roots of the exponential polynomial
equation (8), we need the following result from Ruan and Wei [14].

Theorem 3.3. Consider the exponential polynomial

p(λ, e−λτ1 , ..., e−λτm)=λn + p
(0)
1 λn−1+..+p

(0)
n−1λ+p

(0)
n

+[p
(1)
1 λn−1+...+p

(1)
n−1λ+p

(1)
n ]e−λτ1

+ ...+ [p
(m)
1 λn−1 + ...+ p

(m)
n−1λ+ p(m)

n ]e−λτm ,

where τi ≥ 0 (i = 1, 2, ...,m), and p
(i)
j (i = 0, 1, 2, ...,m; j = 1, 2, ..., n)

are constants. As (τ1, τ2, ..., τm) vary, the sum of the orders of the zeros
of p(λ, e−λτ1 , ..., e−λτm) on the open right half plane can change only if a zero
appears on or crosses the imaginary axis.

Now, we can state the following main theorem:

Theorem 3.4. Suppose that conditions (1), (5) and h
′
(z∗k) ̸= 0 hold, where

h(z) is defined by (4) and z∗k = ω2
k. Then, system (1) undergoes Hopf bifur-

cation at the origin when τ =
∑n

i=1 τi passes through τ0, and it has a branch
of periodic solutions bifurcating from the zero solution near τ = τ0, where τ0
is defined by (31).

Proof. By the well-known Routh-Hurwitz criteria, we can conclude that when
(37) holds, all the roots of equation (8) at τ = 0, have negative real parts.
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Hence, by using theorem 3.3, we conclude that the zero solution of system
(1) is asymptotically stable when τ < τ0. By using lemma 3.2, we can see
that the conditions of Hopf bifurcation are satisfied at τ = τ0 in system (1),
and so Hopf bifurcation occurs at the origin. In addition, a family of periodic
solutions appear as τ passes through τ0. 2

4 Numerical simulations

In this section, numerical simulations are presented to support our theoretical
results. We will study system (1) for the case n = 7. Consider the following
system 

ẋ1(t) = −2x1(t) + tanh(x1(t)) + 2tanh(x7(t− τ7)),

ẋ2(t) = −2x2(t) + tanh(x2(t)) + tanh(x1(t− τ1)),

ẋ3(t) = −2x3(t) + tanh(x3(t)) + 1.2tanh(x2(t− τ2)),

ẋ4(t) = −2x4(t) + tanh(x4(t)) + tanh(x3(t− τ3)),

ẋ5(t) = −2x5(t) + tanh(x5(t))− 0.5tanh(x4(t− τ4)),

ẋ6(t) = −2x6(t) + tanh(x6(t)) + 0.5tanh(x5(t− τ5)),

ẋ7(t) = −2x7(t) + tanh(x7(t)) + 2tanh(x6(t− τ6)),

(38)

which has the origin as an equilibrium point. By equations (8) and (9), we
obtain the associated characteristic equation for n = 7:

λ7 + 7λ6 + 21λ5 + 35λ4 + 35λ3 + 21λ2 + 7λ+ 1 + 1.2e−λτ = 0. (39)

By the equations (30) and (31), we can compute τ0 = 6.7067. Choosing
τ1 = 0.8, τ2 = 1, τ3 = 0.6, τ4 = 1, τ5 = 1.1, τ6 = 0.7 and τ7 = 1, Figure
2 shows that the origin is asymptotically stable, and the phase portraits for
system (38) are shown in Figure 4. When τ =

∑7
i=1 τi passes through the

critical value τ0 = 6.7067, the origin loses its stability and Hopf bifurcation
occurs, i.e., a family of periodic solutions bifurcate from the origin. Choosing
τ1 = 0.9, τ2 = 1, τ3 = 0.8, τ4 = 1, τ5 = 1.3, τ6 = 0.7 and τ7 = 1.1, Hopf
bifurcation happens at the zero solution. In Figure 3, the bifurcating periodic
solutions are presented, and the phase portraits for system (38) are shown
in Figure 5. Hopf bifurcation is supercritical and the bifurcating periodic
solutions exist for τ > τ0.
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Figure 2: The origin is asymptotically stable while τ1 = 0.8, τ2 = 1, τ3 = 0.6,
τ4 = 1, τ5 = 1.1, τ6 = 0.7 and τ7 = 1

5 Conclutions

In this paper, we investigated the dynamics of a general class of ring networks
with n neurons and n time delays. We have chosen τ = τ1+τ2+...+τn as a bi-
furcation parameter and analyzed the corresponding characteristic equation.
Then we have proved that the zero solution (the equilibrium point of the
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Figure 3: A family of periodic solutions bifurcates from the origin when
τ1 = 0.9, τ2 = 1, τ3 = 0.8, τ4 = 1, τ5 = 1.3, τ6 = 0.7 and τ7 = 1.1

system) loses its stability and Hopf bifurcation occurs. Therefore, a family
of periodic solutions bifurcate from the zero solution when τ passes through
a critical value τ0. Finally, the results have been validated by numerical
simulations.

At the end, we would like to point out that it is so significant to study
the networks in general case, not for a special value of n. Although, in this
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Figure 4: The phase portraits while τ1 = 0.8, τ2 = 1, τ3 = 0.6, τ4 = 1,
τ5 = 1.1, τ6 = 0.7 and τ7 = 1
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Figure 5: The phase portraits when τ1 = 0.9, τ2 = 1, τ3 = 0.8, τ4 = 1,
τ5 = 1.3, τ6 = 0.7 and τ7 = 1.1

paper, we considered a general kind of ring networks, the methods, we have
proposed can be generalized to be applied for other kinds of neural networks.
We leave this as the future research.
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Population based algorithms for
approximate optimal distributed

control of wave equations

A. H. Borzabadi∗, S. Mirassadi and M. Heidari

Abstract

In this paper, a novel hybrid iterative scheme to find approximate optimal
distributed control governed by wave equations is considered. A partition of
the time-control space is considered and the discrete form of the problem

is converted to a quasi assignment problem. Then a population based al-
gorithm, with a finite difference method, is applied to extract approximate
optimal distributed control as a piecewise linear function. A convergence
analysis is proposed for discretized form of the original problem. Numerical

computations are given to show the proficiency of the proposed algorithm and
the obtained results applying two popular evolutionary algorithms, genetic
and particle swarm optimization algorithms.

Keywords: Optimal control problem; Evolutionary algorithm; Finite differ-
ence method; Wave equation

1 Introduction

In the past few decades, the science and engineering have witnessed a phe-
nomenal growth in the field of optimal control problems (OCPs) governed
by partial differential equations (PDEs), specially parabolic and hyperbolic
equations. A large part of these improvements is due to the efforts of pioneer
researchers such as J. L. Lions [15, 16, 17] and D. L. Russell [19, 20].

In particular, the controllability in wave equations are studied in [21, 22].
Kim and Erzberger [14] derived Riccati equation for optimum boundary con-
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trol of wave equation, with quadratic cost function. Applicability of Laplace
transform for determination of time optimal control for hyperbolic class of
problems has been shown in [10]. But solving optimal control problems gov-
erned by wave equations with analytical approaches, have some difficulties
such as computing gradient, integrals in hyperbolic and parabolic equations
and target functionals. For overcoming complexities due to the analytical ap-
proaches, the numerical approaches are created based on various techniques
as regularization [9, 8, 11], measure theoretical concepts [1, 5, 6] and penalty
method [12].

Recently, nature-inspired optimization methods have attracted more and
more attention and these powerful tools have been applied for solving a wide
range of OCPs [2, 3, 7].

In this paper, by combinating one of the population based algorithms
(Evolutionary Algorithms (EAs)) and a numerical method for solving wave
equations (finite difference method), an effective numerical scheme for finding
approximate optimal control and state functions has been procreated for
OCPs governed by wave equations with a distributed control and a non-
classical boundary condition as follows:

minimize J(ν(., .)) =

∫ T

0

∫ L

0

Φ(t, x, ν(x, t)) dx dt (1)

subject to utt(x, t) = uxx(x, t) + ν(x, t), (x, t) ∈ [0, L]× [0, T ] (2)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ [0, L] (3)

u(0, t) = µ(t), ux(L, t)− ux(0, t) = η(t), t ∈ [0, T ] (4)

where φ(x), ψ(x), µ(t), η(t) are given functions and ν(x, t) is a bounded dis-
tributed control and gets its values in the interval V ⊂ R. The purpose is to
find the approximate optimal control ν(x, t) and state u(x, t) that minimize
the functional (1) and satisfy the wave equation (2) with initial conditions
(3), boundary conditions (4) and terminal conditions

u(x, T ) = ω(x), ut(x, T ) = ζ(x). (5)

Here ω(x) and ζ(x) are target functions.

The paper is organized as follows. In Sec. 2, we describe the discretiza-
tion of optimal distributed control problem governed by wave equation. The
problem is considered as a quasi assignment problem. The convergence of
this modification is proved in the third section. In Sec. 4, we present the
algorithm for solving OCP (1)-(5). In Sec. 5, numerical results arising from
applying and comparing the given algorithm using two EAs, i.e. particle
swarm optimization(PSO) and genetic algorithm(GA), are presented.
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2 Description of the method

To find the optimal solution we must examine the performance index in the
set of all possibilities of control-state pairs. The set of admissible pairs con-
sisting of pairs like (u, ν) satisfying in (2)-(4) is denoted by P. In this section
we consider a control space discretization based method considering equidis-
tant partitions of [0, T ], [0, L] and V as △t = {0 = t0, t1, · · · , tn−1, tn = T}
△x = {0 = x0, x1, · · · , xm−1, xm = L} and △ν = {v0, v1, · · · , vl−1, vl}, re-
spectively. Now the main problem can be considered as a quasi assignment
problem, where a performance index can be assigned corresponding to each
chosen partition and choosing the best performance index can lead to deter-
mine the near optimal control of the problem. A trivial way to determine
the near optimal solution is to calculate all possible partitions and compare
the corresponding trade offs. This trivial method of total enumeration needs
((m + 1)(n + 1))(l+1) evaluation. A typical discretization is given in Figure
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x_0
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x_2
x_3
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x_6
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Figure 1: A typical control function in time-control space

1 with n = 4, m = 6 and l = 5. To avoid so many computations, we use
the EAs for evaluating special partitions that guides us to the optimal one.
For each partition of control we need its corresponding trajectory to evaluate
the performance index. Trivially, the corresponding trajectory should be in
discretized form.

For discretization of the wave equation (2)-(4), we use an approximate
method like finite difference method as central difference approximation for
the second partial derivative and forward difference approximation for the
first partial derivative. By this method,
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uj−1
i − 2uji + uj+1

i

k2
=
uji+1 − 2uji + uji−1

h2
+ ν̄ji ,

u0i = φi,

u1i − u0i
k

= ψi,

uj0 = µj ,

ujm+1 − ujm
h

− uj1 − uj0
h

= ηj ,

where uji = u(xi, tj), φi = φ(xi), ψi = ψ(xi), µ
j = µ(tj), η

j = η(tj) and

ν̄ji = ν̄(xi, tj). Then we have

u0i = φi, u
1
i = kψi + u0i , i = 0, 1, · · · ,m, (6)

uj0 = µj , u
j
m+1 = hηj + ujm + uj1 − uj0, j = 0, 1, · · · , n, (7)

and
uj+1
i = λ2uji+1 + (2− 2λ2)uji + λ2uji−1 − uj−1

i + k2ν̄ji , (8)

where j = 1, 2, · · · , n, i = 0, 1, · · · ,m and λ = k/h.

If (u, ν̄) be a pair of the trajectory and the control which satisfies in
(10)-(11) and

∥u(xi, tn)− ω(xi)∥ ≤ ϵ1 i = 0, 1, · · · ,m (9)

∥ut(xi, tn)− ζ(xi)∥ ≤ ϵ2 i = 0, 1, · · · ,m (10)

for given small numbers ϵ1 > 0 and ϵ2 > 0, then we can claim that, a good
approximate pair for minimizing functional J in (1) has been found. Here
∥ · ∥ is the infinity norm.

Also in (1), the integral term can be estimated by a numerical method
of integration, e.g. one of Newton-Cotes methods. After discretization of
the OCP governed by wave equation, the problem is converted to opti-
mization problem with two extra objective functions. We add the terms,∑m−1

i=1 ∥u(xi, tn) − ω(xi)∥ and
∑m−1

i=1 ∥ut(xi, tn) − ζ(xi)∥ to the original ob-
jective function and then, we apply EAs for this new criteria function. There-
fore, by applying the above method, the OCP governed by wave equation is
converted to constrained programming:

(CP)min
m∑
i=1

n∑
j=1

AiBjΦ(tj , xi, ν̄
j
i ) (11)

+M
m∑
i=1

∥uni − ω(xi)∥+W
m∑
i=1

∥ut(xi, tn)− ζ(xi)∥,
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subject to uj+1
i = λ2uji+1 + (2− 2λ2)uji + λ2uji−1 − uj−1

i + k2ν̄ji , (12)

u0i = φi, u
1
i = kψi + u0i , i = 0, 1, · · · ,m, (13)

uj0 = µj , u
j
m+1 = hηj + ujm + uj1 − uj0, j = 0, 1, · · · , n, (14)

where, Ai and Bj are the weights of a numerical method of integration, M
and W are large positive numbers (as the parameters in penalty function
approach).

3 Convergence

The solution of (CP) approximates the original problem by minimizing
J(u, ν) over the subset PN of P consists of all piecewise linear functions
u(., .) and ν(., .) with nodes at uji , ν̄

j
i , j = 0, 1, · · · , N, i = 0, 1, · · · , N which

satisfies (11) and the objective function (11) for this nodes called JN , here
without loss of generality, we assume that N = m = n. Our first aim is to
show that P1 ⊆ P2 ⊆ P3 · · · in an embedding fashion.

Lemma 1. There exists an embedding that maps PN to a subset of PN+1

for all N = 1, 2, · · · .

Proof. For simplicity, we prove the case when N = 1. The proof for N ≥ 2 is
obtained analogously.
Let consider an arbitrary pair (u, ν) in P1 represented by uji , ν̄

j
i , j = 0, 1, i =

0, 1. We have to find a corresponding pair (û, ν̂) in P2 with ûji , ˆ̄ν
j
i , j =

0, 1, 2, i = 0, 1, 2, as nodes that corresponds to (u, ν). We have from (11)

uj+1
i = λ2uji+1 + (2− 2λ2)uji + λ2uji−1 − uj−1

i + k2ν̄ji , j = 0, 1, i = 0, 1,

where uj+1
i = u(xi, tj+1). On the other hand, a typical element (û, ν̂) in P2

satisfies

ûj+1
i = λ2ûji+1 +(2− 2λ2)ûji +λ2ûji−1 − ûj−1

i + k2 ˆ̄νji , j = 0, 1, 2, i = 0, 1, 2,

where ûj+1
i = û(x̂i, t̂j+1).

It is clear that here we have x̂i = xi, i = 0, 1 and t̂j = tj , j = 0, 1. Therefore

we can choose ûji , ˆ̄ν
j
i , j = 0, 1, 2, i = 0, 1, 2 in such a way that

ûji = uji , j = 0, 1, i = 0, 1.

This shows that the constructed pair (û, ν̂) corresponds to (u, ν) and belongs
to P2.

The above lemma has an important result in decreasing behavior of the
optimal value of the objective function which leads to the following theorem.
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Theorem 1. If µN = infPN
JN for N = 1, 2, · · · , and µ∗ = infP J exists,

then limN→∞ µN = µ∗.

Proof. By Lemma 1, we have µ1 ≥ µ2 ≥ · · · ≥ µ∗. So, this decreasing and
bounded sequence converges to a limit µ0 ≥ µ∗. It is enough to show that
µ0 = µ∗. If µ0 > µ∗, then ϵ = µ0−µ∗ > 0 and by continuity of J(u, ν), we may
find a pair (ujn0

, νjn0
), such that |J(ujn0

, νjn0
)−µ∗| < ϵ, then J(ujn0

, νjn0
) < µ0,

and so µn0 < µ0 which is incorrect and therefore µ0 = µ∗.

4 Algorithm of the approach

In this section, an algorithm on the basis of the previous discussions is pre-
sented. This algorithm is designed in two stages, initialization step and main
steps, where the main steps contain the main structure of algorithm consid-
ering initialization step.
Initialization step:
Choose an equidistant partition for time interval [0, T ], with parameter dis-
cretization k = tj+1 − tj , j = 0, 1, · · · , n− 1 and an equidistant partition for
interval [0, L], with parameter h = xi+1 − xi, i = 0, 1, · · · ,m− 1.
Main steps:
Step 1. Choose a population randomly.
Step 2. Compute uji , j = 0, 1, · · · , n, i = 0, · · · ,m, using (10)-(11).
Step 3. Fitness scores are assigned to each population using objective func-
tion of (CP).
Step 4. Apply the rules of EA for current population.
Step 5. Consider the new population as the current population.
Step 6. If the termination conditions are satisfied, stop; otherwise jump to
Step 2.

5 Numerical results

In this section the proposed algorithm in the previous section is examined by
one numerical example. We have applied PSO and GA as two of the most
popular EAs.
Consider the following OCP:
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min J =

∫ 1

0

∫ 1

0

ν2(x, t) dt dx

subject to utt(x, t) = uxx(x, t) + ν(x, t), (x, t) ∈ (0, 1)× (0, 1)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ (0, 1)

u(0, t) = 0, ux(1, t) = ux(0, t), t ∈ (0, 1)

u(x, T ) = sin(2πx), ut(x, T ) = sin(4πx), t ∈ (0, 1)

For analytical solution of this example, see [13].

Our solutions by PSO and GA algorithms are shown in the following
tables:

• where wave parameters, λ, be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
and the population sizes, (m), be 200 and the number of iterations,(kmax),
be 500, results are shown in Table 1. 1.

• where the population size,(m), be 50, 100, 150, 200, 250, 300, 350 and the
number of iterations,(kmax), be 500 and parameter wave equation,λ, be
0.2, results are shown in Table 2. 2.

• where the number of iterations,(kmax), be 100, 200, 300, 400, 500, 600, 700
and the population size,(m), be 200 and parameter wave equation,λ,
be 0.2, results are shown in Table 3. 3.

Also comparison between ω(x) and ζ(x) with u(x, T ) and ut(x, T ) are shown
in Figures 2 and 3 ,respectively, when m = 200, kmax = 500, λ = 0.2.

Table 1: Comparison of the errors due to applying PSO and GA with increasing λ

parameter ∥ut(x, T )− ζ(x)∥
λ PSO GA

0.1 1.1662e− 005 1.2375e− 005

0.2 2.4418e− 005 6.5369e− 005

0.3 5.3563e− 005 1.1038e− 004

0.4 2.2052e− 004 8.0804e− 005

0.5 1.3987e− 004 8.9201e− 005

0.6 9.6621e− 005 7.8682e− 005

0.7 1.5991e− 004 8.3949e− 005

0.8 1.3152e− 004 1.1785e− 004

0.9 1.6093e− 004 1.1817e− 004

1.0 2.4100e− 004 2.5027e− 004
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Table 2: Comparison of the errors due to applying PSO and GA with increasing the

number of population

number of ∥ut(x, T )− ζ(x)∥
population PSO GA

50 1.8470e− 004 2.16684e− 004

100 1.1513e− 004 9.4944e− 005

150 1.5074e− 004 1.0690e− 004

200 9.4195e− 005 8.5366e− 005

250 1.6513e− 004 1.2451e− 004

300 1.6264e− 004 1.0645e− 004

350 5.0556e− 005 8.6299e− 005

Table 3: Comparison of the errors due to applying PSO and GA with increasing the

number of iterations

number of ∥ut(x, T )− ζ(x)∥
iterations PSO GA

100 2.3324e− 004 4.0122e− 004

200 9.4547e− 005 1.1504e− 004

300 1.8058e− 004 1.0747e− 004

400 1.2749e− 004 1.0134e− 004

500 2.1751e− 004 9.1401e− 005

600 1.0138e− 004 7.7138e− 005

700 9.9944e− 005 9.2749e− 005

6 Conclusion

In this paper, a hybrid approach for the resolution of OCPs governed by
wave equations is presented. This approach is based on partitioning of the
time-control space, finite difference method, penalty method and EAs. The
derived results show the superiority of the approach.
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Operational Tau method for nonlinear
multi-order FDEs

P. Mokhtary

Abstract

This paper presents an operational formulation of the Tau method based
upon orthogonal polynomials by using a reduced set of matrix operations for
the numerical solution of nonlinear multi-order fractional differential equa-
tions(FDEs). The main characteristic behind the approach using this tech-

nique is that it reduces such problems to those of solving a system of nonlinear
algebraic equations. Some numerical examples are provided to demonstrate
the validity and applicability of the method.

Keywords: Fractional differential equations(FDEs); Caputo derivative; Op-
erational Tau method.

1 Introduction

The mathematical modelling and simulation of systems and processes based
upon the description of their properties in terms of fractional derivatives,
naturally leads to differential equations of fractional order and to the necessity
to solve such equations. However, effective general methods for solving them
can not be found even in the most useful works on fractional derivatives and
integrals.

There are several approaches to the generalization of the notation of dif-
ferentiation to fractional orders e.g., Riemann-Liouville, Grunwald-Letnikov
and Caputo. We focus on one particular form so-called Caputo derivative.

Recently, linear FDEs based upon the fractional derivatives(such as
Riemann-Liouville and Caputo schemes) with general variable coefficients
have been solved by adapting various analytical and numerical methods[2, 5,
7, 20]. Nowadays, applications have included some classes of nonlinear FDEs,
and this motivates us to consider their effective numerical methods for solu-
tion of these type of equations. Among the most recent works concerned with
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nonlinear initial value problems of fractional order, we can consider papers
[4, 8, 12, 13, 18, 19, 21, 22, 31, 32].

Spectral methods have been studied intensively in the last two decades
because of their good approximation properties. The formulation of spectral
methods was first presented in the monograph of Gottlieb and Orszag [11].
The text book of Canuto, et al [3] focuses on practical and theoretical aspects
of global spectral methods.

Global spectral methods use a representation of function u(t) throughout
the domain via a truncated series expansion with suitable basis functions.
This series is then substituted into functional equation and upon the mini-
mization of the residual function the unknown coefficients are computed.

Spectral methods can be broadly classified into three categories, Pseu-
dospectral or Collocation, Galerkin and Tau methods. The Tau method,
through which the spectral methods, as shown in [6, 23-29] has found exten-
sive application for the numerical solution of many operator equations in the
recent years.

The Tau method, firstly introduced by Lanczos[15-17], involves the pro-
jection of the residual function on the span of some appropriate set of basis
functions, typically arising as the eigenfunctions of a singular Sturm-Liouville
problem. The auxiliary conditions imposed as constraints on the expansion
coefficients. It is well known that eigenfunctions of certain singular Sturm-
Liouville problems allow the approximation of functions belong to the space
C∞[a, b] whose truncation error approaches zero faster than any negative
power of the number of basis functions used in approximation, as that num-
ber(order of truncation N)tends to ∞. This phenomenon is usually referred
to as ”Spectral accuracy” (Gottlieb and Orszag [11]). A convergence analy-
sis and error bounds for the Tau method was considered by Ortiz and Pham
in the papers [24, 25]. The recursive form of the Tau method, formulated
by Ortiz in [26] was extended to the case of systems of ordinary differen-
tial equations in [6]. The basic philosophy of the method was extended to
the numerical solutions of the linear and nonlinear initial value, boundary
value, and mixed problems for ordinary differential equations [23, 25, 27], to
the eigenvalue problems [27, 28], to the ”Stiff” problems [23], to the partial
differential equation[29], among others.

The main objective of the present paper is to provide Ortiz and Samara[27]
operational approach to the Tau method for the numerical solution of non-
linear FDEs of the general form

LD(u(t)) = f(t), (1)

on t ∈ Λ = [0, 1] with initial conditions

u(i)(0) = di, i = 0, 1, . . . , ν − 1, (2)

where
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LD(u(t)) =

Nd∑
r=0

pr(t)

lr∏
k=0

(D
θrk
C u(t))

γrk
, θrk ∈ Q+, Nd, γrk, lr ∈ N

∪
{0}, (3)

where N,Q+ are the collections of the all natural and positive rational num-
bers, respectively. di are constants and ν = max

0≤r≤Nd

{⌈θrk⌉}lrk=0. The symbol

⌈q⌉ is the smallest integer greater than or equal to q. u(t) is unknown func-
tion, pr(t) and f(t) are algebraic polynomials or their suitable polynomial
approximations. Finally, the fractional derivative is considered in the Ca-
puto sense that is given by

Dθrk
C u(t) =

1

Γ(⌈θrk⌉ − θrk)

t∫
0

(t− τ)
⌈θrk⌉−θrk−1

u(⌈θrk⌉)(τ)dτ, t ∈ Λ. (4)

The properties of Caputo derivative can be found in [30].

In this paper we proceed as follows: In the next section, the spectral
Tau method for nonlinear FDEs is described. We reduce the problem to a
set of nonlinear algebraic equations using some useful operational matrices.
Numerical experiments are carried out in Section 3, to illustrate the efficiency
of the proposed method.

2 Numerical approach

Consider the operational Tau solution for nonlinear FDE (2- 3) as a polyno-
mial of degree N

uN (t) =

∞∑
i=0

uiJ
α,β
i (t) = uN J = uNJXt, (5)

where uN = [u0, u1, . . . , uN , 0, . . .]. J is non-singular lower triangular coeffi-

cient matrix given by the shifted Jacobi polynomials in Λ, where {Jα,β
i (t)}∞i=0 =

J = JXt with a standard basis vector Xt = [1, t, t2, . . .]T [3]. The effect of

u
(k)
N (t), tsuN (t) and (uN (t))p on the coefficients vector of polynomial (5) are

u
(k)
N (t) = uNJηkXt, t

suN (t) = uNJµsXt, (uN (t))p = uNJEp−1(uN ,J)Xt,
(6)

where matrices η and µ have the following simple structures ([27])
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η =



0 0 0 . . .
1 0 0

0 2 0
...

0
...

0 3
· · · . . .

 , µ =



0 1 0 0 · · ·
0 0 1 0

...
0 0 0 1
0
...

0 0
· · ·

0
. . .

 ,

and E(uN ,J) is an infinite upper triangular Toeplitz matrix with the following
structure

E(uN ,J) =


uNJ0 uNJ1 uNJ2 . . .
0 uNJ0 uNJ1 . . .
0 0 uNJ0 . . .
...

...
...

. . .

 ,
where Ji is the i-th column of the matrix J. Details for formulation of the
matrix E(uN ,J) can be found in [10].

Now, we intend to explain details of the structure of the operational ap-
proach to the Tau method with Jacobi polynomial bases for the numerical
solution of the nonlinear multi-order FDEs. Firstly, in the Lemma 2.1, we
will show that the effect of Caputo fractional derivative Dθrk

C (uN (t)), will
be represented as the product of a matrix and a vector. Secondly, in the
Lemma 2.2, we will prove that the product of polynomials can be written as
the product of a matrix and a vector. Finally, in the Theorem 2.3, we will
give the matrix representation of LD(uN (t)) by using the Lemmas 2.1 and 2.2.

Lemma 2.1 Let Jα,β
j (t) be the shifted Jacobi polynomials with respect to

the weight function χα,β(t) = (2 − 2t)α(2t)β on Λ. Assume that the ap-
proximated solution uN (t) and the fractional derivative Dθrk

C are given by the
relations (5) and (4) respectively, then

Dθrk
C (uN (t)) = uNJΥθrkJ,

where

Υθrk =



0 ··· 0 ···
...

...
...

...
0 ... 0

Θ(⌈θrk⌉)ξmrk,0 ... Θ(⌈θrk⌉)ξ⌈θrk⌉,N ···

Θ(⌈θrk⌉+1)ξ⌈θrk⌉+1,0 ... Θ(⌈θrk⌉+1)ξ⌈θrk⌉+1,N

...
...

...
...

...
Θ(N)ξN,0 ... Θ(N)ξN,N ···

...
...

...
...


,

with Θ(ζ) = ζ!
Γ(ζ−θrk+1) and

ξk,j =
1

∥ Jα,β
j (t) ∥2

χα,β

(tk−q, Jα,β
j (t))χα,β ,

k ≥ θrk,
j = 0, 1, . . . .
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Proof. See [9]. 2

Lemma 2.2 (a) For two given polynomials h(t) =
∞∑
i=0

hivi(t) = HVXt

and s(t) =
∞∑
i=0

sivi(t) = SV Xt with H = [h0, h1, h2, . . .], S = [s0, s1, s2, . . .],

we have
s(t)h(t) = SV E(H,V )Xt.

(b) For given polynomials hi(t) =
∞∑
j=0

ajTij(t) = aNTiXt, i = 0, 1, ...,

where Ti are nonsingular coefficients matrices given by {Tij}∞j=0 = TiXt, we
have

l∏
i=0

hi(t) = aN T0

l∏
i=1

E(aN , Ti)Xt. (7)

Proof. For proof of part(a) see [10]. By using part (a) and mathematical
induction we can prove part (b). 2

Theorem 2.3 (Matrix representation for nonlinear part)
Assume that the approximated solution uN (t) and the nonlinear fractional
operator LD are given by the relations (5) and (2), respectively, then

LD(uN (t)) = uN Π̂ J,

where

Π̂ = J
( Nd∑

r=0

ΨdE
γrd−1(uN ,JΨd)

lr∏
k=d+1

E(uN , Frk) pr(µ)
)
J−1,

Ψk =

{
ηθrk , θrk ∈ N,
ΥθrkJ, , θrk ∈ Q+ − N, Frk = JΨkE

γrk−1(uN ,JΨk),

and d is the smallest index that γrd ̸= 0.

Proof. From Lemma 2.1 and the third relation in (6) for k ̸= {p |γrp = 0} we
have

lr∏
k=0

(Dθrk
C (uN (t)))

γrk
=

lr∏
k=0

(uNJΨkXt)
γrk =

lr∏
k=0

(uNJΨkE
γrk−1(uN ,JΨk)Xt).

Let d be the smallest index that γrd ̸= 0, then from (6) we can write
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lr∏
k=0

(uNJΨkE
γrk−1(uN ,JΨk)Xt) = uNJΨdE

γrd−1(uN ,JΨd)

∗
lr∏

k=d+1

E(uN,JΨkE
γrk−1(uN,JΨk))Xt

= uNΠrJ,

where

Πr = JΨdE
γrd−1(uN ,JΨd)

lr∏
k=d+1

E(uN , Frk)J
−1andFrk = JΨkE

γrk−1(uN ,JΨk).

By substituting the above relation in (3) and using the second relation in
(6) we obtain

LD(uN (t)) = uN

( Nd∑
r=0

Πrpr(µ)
)
J,

that is the statement of the Theorem. 2

Also for obtaining the matrix form of the initial conditions (3), we intro-
duce vector d = [d0, d1, . . . , dν−1, 0, . . .] where ν = max

0≤r≤Nd

{θrk}lrk=0. On the

other hand we can write

u
(j)
N (0) = uNJηjXt

∣∣
t=0

= uNJηje1 = uNbj , j = 0, 1, 2, . . . , ν − 1,

where e1 = [1, 0, 0, . . .]T and

B = (bj)
ν−1
j=0 = (Jηje1)

ν−1
j=0 . (8)

Now, we are ready to obtain the nonlinear algebraic system of implement-
ing the operational Tau method to the nonlinear multi-order FDE (2-3).

Following Theorem 2.3 and the relation (7) we obtainuN Π̂J = fJ,

uNB = d,

(9)

where f(t) = fJ with f = [f0, f1, ...]. Because of orthogonality of {Jα,β
i (t)}∞i=0,

projecting (9) on the {Jα,β
k (t)}Nk=0 yields

uN Π̂k = fk, k = 0, 1, 2, . . . , N.

By setting

MN = [b0, b1, . . . , bν−1, Π̂0, Π̂1, . . . , Π̂N ], rN = [d0, d1, . . . , dν−1, f0, f1, . . . , fN ],
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we obtain uNMN = rN . We restrict this system to its first N + 1 columns.
The square system uNMN−ν = rN−ν , gives us unknown vector uN .

3 Numerical results

In this section we have considered three test problems. All of these test prob-
lems have been solved by the operational Tau method based on the Chebyshev
and Legendre bases. In all cases any non-polynomial functions were replaced
by a suitable polynomial approximation. All calculations were performed on
a PC running Mathematica software. To report some information about the
number of operations, we use function \LeafCount in the Mathematica soft-
ware, that gives us total number of indivisible subexpressions. All of achieved
nonlinear algebraic systems were solved by the well known iterative Newton
method.

Example 1 : [18] Consider the nonlinear FDE with α = 1.5

Dα
Cu(t) + u2(t) = f(t), u(i)(0) = 0, i = 0, 1,

where

f(t) =
Γ(6)

Γ(6− α)
t5−α − 3Γ(5)

Γ(5− α)
t4−α +

2Γ(4)

Γ(4− α)
t3−α + (t5 − 3t4 + 2t3)2.

the exact solution is u(t) = t5 − 3t4 + 2t3.

We apply the proposed operational Tau method to obtain the approx-
imated solution of the problem. The maximal error, with the Chebyshev
and Legendre bases have been given in Table 1. A comparison of the Tau
method with fractional high order method proposed by R. Lin and F. Liu
in [18] shows that our method produces powerful superiority with respect to
the proposed method in [18].

Table 1: Numerical results of Example 1, using operational Tau method with different

bases
Maximal Error

N Chebyshev Tau Legendre Tau

5 4.58× 10−16 7.28× 10−17

7 1.50× 10−16 7.67× 10−17

10 8.75× 10−17 5.52× 10−16

Lin and Liu scheme Max. error is 1.544 × 10−5 in t = 1
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Example 2 : Consider the nonlinear FDE

D
1
4

Cu(t)D
1
2

Cu(t) + u(t) = et + e2terf(
√
t)
(
1−

Γ( 34 , t)

Γ(34 )

)
, u(0) = 1,

where erf(z) gives the error function and Γ(a, z) is the incomplete Gamma
function.

the exact solution of this problem is u(t) = et. We apply the proposed
operational Tau method to obtain the approximate solution of this example.
We have reported the obtained numerical results in Table 2 and Fig. 1 with
the Chebyshev and Legendre bases. In Fig. 1, obtained numerical errors
are plotted for several values of approximation degree N in the L∞ norm.
From Table 2 and Fig. 1, we can conclude that desired spectral accuracy
is obtained for this nonlinear problem and the approximate solutions are in
high agreement with the exact solution. In addition, by using the function
\LeafCount in the Mathematica software, for N = 4, 8, 12 and N = 16, we
need 213, 812, 1261 and 2153 operations, respectively, to obtain the opera-
tional Tau solution with the reported errors in the Table 2 and Fig. 1 based
on the Chebyshev polynomial bases.

Table 2: Numerical results of Example 2, using operational Tau method with different

bases
Maximal Error

N Chebyshev Tau Legendre Tau

4 6.79× 10−5 5.13× 10−5

8 7.19× 10−11 5.85× 10−11

12 7.31× 10−16 7.06× 10−16

16 2.85× 10−16 2.81× 10−16

Example 3 : [14] Consider the following equation of fractional order θ = 0.5:

Dθ
Cu(t) = λtβ(u(t))2, (0 < θ < 1), (10)

with λ, β ∈ R(λ ̸= 0). If θ + β < 1, this equation has the exact solution

u(t) =
Γ(1− θ − β)

λΓ(1− 2θ − β)
t−(θ+β). (11)

If β ≤ −2θ, then the equation (10), has unique solution u(t) ∈ C[a, b]
given by (11) and if β = −(k+ θ), k ∈ N, then the equation (10) , has unique
solution u(t) ∈ C∞[a, b]. (See [14, Chapter 3]).
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Figure 1: An illustration of the rate of convergence for the Tau method with various

N . We observe the errors of Example 2 using Chebyshev bases (left) and Legendre bases

(right)

The numerical results for example 3 with the Chebyshev and Legendre
bases are presented in Fig. 2 and Table 3. Fig. 2, shows the rate of conver-
gence for various β. Each part of the figure contains numerical errors for sev-
eral values of N , which are plotted for a special value of β in L∞ norm. As we
can see from Table 3., and Fig. 2, the performance of the spectral Tau method
with the Chebyshev and Legendre bases for β ∈ [−1.5,−2.5] almost same,
but when β tends to the β = −2.5(smooth solution) the rate of convergence
increases and we have accurate numerical solutions. For β = −1.5,−2.5, nu-
merical results have not been presented, since the exact solution is obtained.
In addition, by using the function \LeafCount in the Mathematica software,
for N = 15 we need 917 operations to obtain the operational Tau solution
based on the Legendre polynomial bases.

Table 3: The numerical results of Example 3 with different β, λ = 1 and N = 15

Maximal Error for Chebyshev Tau Maximal Error for Legendre Tau
x β = −2 β = −2.2 β = −2.4 β = −2 β = −2.2 β = −2.4

0.2 9.92× 10−6 3.38× 10−6 5.74× 10−7 1.29× 10−5 4.27× 10−6 7.01× 10−7

0.4 7.45× 10−6 2.57× 10−6 4.41× 10−7 1.02× 10−5 3.46× 10−6 5.80× 10−7

0.6 4.39× 106 1.44× 10−6 2.38e× 10−7 7.77× 10−6 2.61× 10−6 4.31× 10−7

0.8 3.47× 10−6 1.12× 10−6 1.82× 10−7 5.41× 10−6 1.70× 10−6 2.63× 10−7

1 2.00× 10−6 5.10× 10−7 9.23× 10−8 5.20× 10−6 1.67× 10−6 2.64× 10−7
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Figure 2: An illustration of the rate of convergence for the Tau method with various

β. We observe the errors of Example 3 using Chebyshev bases (left) and Legendre bases

(right)

4 Conclusion

In this paper, we presented a numerical scheme for solving nonlinear multi-
order fractional differential equations. The operational Tau method was em-
ployed. Also, several test problems were used to show the applicability and
efficiency of the method. The obtained results indicate that the new approach
can solve the problem effectively.
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A new approach for solving nonlinear
system of equations using Newton

method and HAM

J. Izadian∗, R. Abrishami and M. Jalili

Abstract

A new approach utilizing Newton Method and Homotopy Analysis Method
(HAM) is proposed for solving nonlinear system of equations. Accelerating
the rate of convergence of HAM, and obtaining a global quadratic rate of

convergence are the main purposes of this approach. The numerical results
demonstrate the efficiency and the performance of proposed approach. The
comparison with conventional homotopy method, Newton Method and HAM
shows the great freedom of selecting the initial guess, in this approach.

Keywords: Homotopy Analysis Method; Zero order deformation equations;
Control convergence parameter; Newton’s method; Iterative method; Multi-
step iterative method; Order of convergence.

1 Introduction

Solving algebraic and transcendental equations is an interesting mathemat-
ical problem that has been occupied an important place in mathematical
history. This problem arises in different applications of mathematics in sci-
ences and engineering. Analytical solution of this problem is reserved to
a small category of equations. For this reason and the exigencies of those
increasing applications, from the beginning of era of electronic computing
numerical methods of these problems have been progressed.
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Actually there is a vast group of conventional methods to solve algebraic
and transcendental equations, but yet there exist enormous difficulty due to
local convergence of these methods that make the new research inevitable.
Particular numerical solution of system of nonlinear equations is realized by
different methods. A traditional method is Newton method that can have
quadratic order of convergence, but the convergence is local [16]. There
is a variety of modified Newton methods which make a global convergence
possible [16]. Many new one-step and multi-step methods are used to solve
these system of equations (for more details one can refer to [4, 7, 8]). There
is also acceleration methods and multi-step methods but these methods are
also very dependent to initial guess and have local convergence in the most of
the cases [16]. Recently the homotopy method using the notion of homotopy
and functional series are applied to solve the system of nonlinear equations
[1, 3, 6, 15, 11, 17]. Some methods are very suitable, but in practice they
need to solve a system of differential equations with initial conditions [14].
One of the most important of Homotopy methods which is principally used
for solving the nonlinear differential equations is Homotopy Analysis Method
(HAM), that can be applied for solving nonlinear equations, but it is normally
slow with local convergence [14]. In this paper a combination of Newton
Method and HAM is considered to solve the algebraic and transcendental
system of equations with the aim of improving the both mentioned methods,
in view of local convergence and the rate of convergence. The results of
proposed method will be compared with other methods.

The organization of the paper is as follows. In Section 2 a concise descrip-
tion of the Newton Method, the Homotopy Method are presented. In Section
3 the fundamental of HAM and proposed approach is discussed. In Section 4
the numerical results for 3 methods are given and compared. Finally Section
5 ends the paper with conclusion and discussion.

2 Description of problem and the methods

Consider the following nonlinear algebraic or transcendental system of equa-
tions

F (x) = 0 , F = (f1, f2, · · · , fn) , (1)

where F : D ⊂ Rn → Rn, that D is an open region in Rn and F ∈ C1(D)
such that F (x̂) = 0. The vector x̂ is called the zero of F or the solution of the
equation (1). Recalling that the Newton Method for solving (1) is formulated
as follows

x(k+1) = x(k) − [DF (x(k))]−1F (x(k)), k = 0, 1, 2, · · · , (2)

where DF is the Jacobian matrix of F and x(0) is an initial guess of x̂.
For more details see [16]. The Newton method is a suitable technique for
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differentiable functions. In general, the rate of convergence is quadratic in a
neighborhood of the solution x̂, with local convergence property. As a second
choice for solving (1), the homotopy method for the system of nonlinear
equation is recalled [6]. The Homotopy function

H : [0, 1]× Rn → Rn ,

is defined by

H(q,x) = qF (x) + (1− q)(F (x)− F (x(0))) (3)

= F (x) + (q − 1)F (x(0)) , (4)

here x(0) is an initial guess of x̂ and q is called Homotopy parameter or
embedding parameter. Obviously, at q = 0 and q = 1,

H(0,x) = F (x)− F (x(0)) , H(1,x) = F (x).

If q increases from 0 to 1 then the function H(q,x) varies continuously from
F (x) − F (x(0)) to F (x). In topology, such a kind of continuous variation
is called deformation. The function H respect to parameter q, provides us
a family of functions that can lead from the known value x(0), to solution
x̂. The function H is a Homotopy between H(0,x) = F (x) − F (x(0)) and
H(1,x) = F (x). Accepting that ϕ : [0, 1] → Rn, x = ϕ(q) is a unique solution
of the equation

H(q,x) = 0 , q ∈ [0, 1] , (5)

or
H(q, ϕ(q)) = 0 , q ∈ [0, 1] . (6)

The set {ϕ(q)|0 ≤ q ≤ 1} can be viewed as a family of parameterized curves
respect to q in Rn from ϕ(0) to ϕ(1) = x̂. The solution x̂ of F (x) = 0 can be
obtained by solving the following system of equations

ϕ′(q) = −[J(ϕ(q))]−1F (ϕ(0)), 0 ≤ q ≤ 1,

with the initial condition ϕ(0) = x(0), where J(ϕ(q)) is jacobian matrix of H
respect to x [6]. This method will be reffered as HM.

3 HAM combined with Newton method

The Homotopy Analysis Method (HAM) is proposed by Liao [2]. In this
method one introduces a homotopy function for solving (1). To be more
precise, the following homotopy function is considered:

H[q, ϕ(q)] = (1− q)L[ϕ(q)− x(0)] + qN [ϕ(q)] , (7)
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where q ∈ [0, 1] is an embedding parameter and ϕ(q) is a function of q, and
x(0) ∈ Rn is an initial estimation of x̂, the solution of (1). Also, N is a
nonlinear operator and L is a linear operator and

N (x) ≡ F (x) . (8)

If q = 0 and q = 1, then considering ϕ(0) = x(0), yields

H[q, ϕ(q)]
∣∣
q=0

= L[ϕ(0)− x(0)] = 0 , (9)

and
H[q, ϕ(q)]

∣∣
q=1

= N [ϕ(1)] , ϕ(1) = x̂ .

By using (9), the vector
ϕ(1) = x̂ ,

is obviously the solution of the equation

H[q, ϕ(q)]
∣∣
q=1

= 0 .

As the embedding parameter q increases from 0 to 1, the solution ϕ(q) of
equation

H[q, ϕ(q)] = 0 ,

depends upon the embedding parameter q and varies from initial approxima-
tion x(0) to the solution x̂ of equation (9). Now by using homotopy function
(7) we construct a family of equations

(1− q)L[ϕ(q)− x(0)] = qN (ϕ(q)) , q ∈ [0, 1] , (10)

subject to the initial condition

ϕ(0) = x(0) . (11)

Consider equation (1) and let A be a non-singular matrix which will be
determined later. We construct following deformation equation that is called
zeroth-order deformation equation:

(1− q)A(ϕ(q)− x(0)) = qF (ϕ(q)) . (12)

Suppose x̂ is solution of F (x) = 0 and the sequence

{
x(i)

}
i∈N

exist with the

following property

x̂ =
∞∑

m=0

x(m) ,

and
x(i) = (x

(i)
1 , · · · , x(i)n ) ∈ Rn , i = 0, 1, 2, ... .
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Next a function ϕ : [0, 1] → Rn is defined as follows

x = ϕ(q) =
∞∑

m=0

x(m)qn , q ∈ [0, 1],

Subject to

ϕ(0) = x(0) , (13)

ϕ(1) = x̂ . (14)

By differentiating (12) with respect to q, the following equation is obtained:

−A(ϕ(q)− x(0)) + (1− q)(A
d

dq
ϕ(q)) = F (ϕ(q)) + q

d

dq
F (ϕ(q)) . (15)

Putting q = 0 in (15) yields

A
d

dq
ϕ(q)

∣∣∣∣
q=0

= F (ϕ(0)) . (16)

Matrix A being non-singular, it deduces

d

dq
ϕ(q)

∣∣∣∣
q=0

= A−1F (ϕ(0)) . (17)

On the other hand,

d

dq
ϕ(q) =

∞∑
m=1

mx(m)qm−1.

Then
d

dq
ϕ(q)

∣∣∣∣
q=0

= x(1) = A−1F (x(0)) . (18)

The equation of (15) is called first-order deformation equation. By differen-
tiating equation (15) with respect to q, the following equation is obtained

− 2A
d

dq
ϕ(q) + (1− q)A

d2

dq2
ϕ(q)

= 2
d

dq
F (ϕ(q)) + q

d2

dq2
F (ϕ(q)) . (19)

Putting q = 0, the second-order deformation equation is obtained as follows

−2Ax(1) + 2Ax(2) = 2DxF (x
(0))x(1) , (20)

or
x(2) = (A−1DxF (x

(0)) + I)x(1) .
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By repeating the same procedure the m-th order deformation equation can
be obtained. Indeed, the following proposition can be proved.

Proposition 3.1. If F : Rn → Rn, and F ∈ Cm(Rn), A ∈ Rn×n a given
matrix, and

x = ϕ(q) =

∞∑
m=0

x(m)qm, ϕ : [0, 1] → Rn ,

(1− q)A(ϕ(q)− x(0)) = qF (ϕ(q)).

where ϕ is an analytic function, then

A(x(m) − χmx(m−1)) =
1

(m− 1)!

dm−1

dqm−1
F (ϕ(q))

∣∣∣∣
q=0

, (21)

where

χm =

{
0 m ≤ 1
1 o.w.

.

If m ≥ 2 and A be a nonsingular matrix then

x(m) = x(m−1) +
1

(m− 1)!
A−1 d

m−1

dqm−1
F (ϕ(q,x))

∣∣∣∣
q=0

. (22)

The equation (22) is called m-th order deformation equation.

For solving system of algebraic equations in general one can use the above
equations to determine the vectorial terms x(i) of x̂ =

∑∞
i=0 x

(i), i.e. the
following equations.

x(m) =



x(0) m = 0

A−1F (x(0)) m = 1

x(m−1) + 1
(m−1)!A

−1 dm−1

dqm−1F (ϕ(q))

∣∣∣∣
q=0

m ≥ 2

. (23)

In practice, one can obtain a finite number of x(i). Then by considering
partial sum of above series one can determine ϕ(1) approximately by a Kth

order partial sum as follows:

x̂ = ϕ(1) ≈ x(0) + x(1) + · · ·+ x(K) ,

Unfortunately, the homotopy series
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ϕ(q) =
∞∑

m=0

x(m)qm ,

may be divergent at q = 1. To overcome this restriction, Liao [14] introduced
an auxiliary parameter h ̸= 0 to construct a kind of deformation equations
based on

(1− q)A(ϕ(q, h)− x(0)) = qhF (ϕ(q, h)) ,

where

ϕ(q, h) =
∞∑

m=0

x(m)(h)qm,

the vectors x(m) are dependent on h. In particular if series is convergent for
at least one ĥ, it is deduced [9],

x̂ =

∞∑
m=0

x(m)(ĥ), ϕ(0, h) = x(0), ϕ(1, h) = x̂ .

Therefore, the equation (23) is transformed to

x(m) =



x(0) m = 0

hA−1F (x(0)) m = 1

x(m−1) + h
(m−1)!A

−1 dm−1

dqm−1F (ϕ(q,x))

∣∣∣∣
q=0

m ≥ 2

. (24)

The parameter h is called convergence control parameter. The convergence
rate and region of series solution depend on the convergent control parameter.
This parameter provides a convenient way to adjust and control convergence
region and rate of convergence of series solution given by the HAM. For find-
ing a suitable h, some approaches are proposed in [2, 5]. The traditional
approach gives the possibility of estimation a suitable value of h, by plot-
ting the h-curves (for more details see [14]). Following [9], we use a more
systematic approach in this work. Consider

ϕ(q, h) ≈
∼
ϕ(q, h) =

K∑
m=0

x(m)qm = x(0) + x(1)q + x(2)q2 + · · ·+ x(K)qK .

The value
∼
ϕ(1, h) is only a function of h, which is denoted by

ψk(h) =
∼
ϕ(1, h) .

As proved by Liao in general [14], if the series solution converges, then there
exists at least an h0 such that
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lim
k→∞

∥ F (ψk(h0)) ∥= 0 ,

where denote ||.|| is Euclidian norm in Rn. Accordingly, we let

||F (ψk(h0))|| = min
h∈Rh

||F (ψk(h))|| , (25)

where Rh is a valid region that lie on a horizontal segment of the h-curves.
The ψk(h0) is a vector in Rn that can be regarded as an approximation of
x̂. So, we can apply ψk(h0) as initial point for Newton method, if Newton
method converges, the desired approximate solution is found, otherwise, after
some iterations, the result of Newton method is considered as an initial point
for a new HAM procedure and so on.

The proof of convergence is an open problem [14] . The numerical exam-
ples show that proposed method is more efficient than Newton method.

The proposed HAM is convergent for many examples but this method
spends a lot of time during each iteration. For accelerating the convergence
this method, we suggest the combination of HAM and Newton method. At
the beginning, a new initial point can be obtained by utilizing the proposed
method, then the process continues by Newton method with this new initial
point. If Newton method does not converge to solution after some itera-
tions, the HAM method can be applied again by using this new initial point.
If DF (x(0)) is non-singular, this matrix is practically profitable as a good
selection of A, so

A = DF (x(0)).

Using the above choice it is observed when h = −1 the first step of the
homotopy consists of the first iteration of Newton method, in fact, one has

x̂ = ϕ(1) ≈
∼
ϕ(1) =

[
1∑

m=0

x(m)qm

]
q=1

= x(0) + x(1) ,

where by using (24)

x(1) = −DF (x(0))−1F (x(0)) .

This result demonstrate the validity of choosing A = DF (x(0)). Application
and implementation of this hybrid method allow us improving local conver-
gence of newton method , and choosing x(0) arbitrary.

4 Numerical experiments

In this section, several examples are considered and the numerical results
for mentioned methods: Homotopy Method(HM), HAM, Newton method
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Table 1: Numerical results for Example 4.1 with x(0) = 1

Method NI ||F (x(m))|| CPU time result
NHAM 4 4.335133e− 008 3.333667e+ 000 Convergent
Newton 4 1.691234e− 008 7.639678e− 002 Convergent
HAM 3 5.775537e− 008 2.129251e− 001 Convergent
HM − 7.457211e− 005 4.041735e− 001 Convergent
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Figure 1: The graph of ln(||F (X)||) for Example 4.1 with x(0) = 1

and Newton-HAM (NHAM) are reported. We utilize MATLAB 8. In Tables
and Figures, the number of iterations (NI), the Euclidean norm of residual
of government equation and CPU time, are presented.

Example 4.1. Consider the following equation:

f(x) = xex − 1 = 0, (26)

The function f has at least one zero between 0 and 1. For x(0) = 1, the
numerical results are shown in Table 1. For this initial point all methods are
convergent, but the Newton method is apparently faster than other methods.
For x(0) = 10, the numerical results are shown in Table 2.

In this case, HM method is divergent, Newton method is faster than
NHAM and HAM and results are more accurate than others. The number of
iterations for NHAM is less than the others. For x(0) = −400, the numerical
results are shown in the Table 3. In this example NHAM method is conver-
gent and other methods are divergent.
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Table 2: Numerical results for Example 4.1 with x(0) = 10
Method NI ||F (x(m))|| CPU time result
NHAM 6 2.160101e− 010 3.148814e+ 000 Convergent
Newton 16 5.107026e− 014 2.622956e− 001 Convergent
HAM 31 3.594237e− 008 2.876829e+ 000 Convergent
HM − 5.790573e+ 003 4.081270e− 001 Divergent
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Figure 2: The graph of ln(||F (X)||) for Example 4.1 with x(0) = 10

Table 3: Numerical results for Example 4.1 with x(0) = −400

Method NI ||F (x(m))|| CPU time result
NHAM 212 2.403109e− 007 6.452634e+ 000 Convergent
Newton 3 Nan − Divergent
HAM 100 Infinity − Divergent
HM − Nan − Divergent



A new approach for solving nonlinear system of equations ... 67

0 50 100 150 200 250
−100

−50

0

50

100

150

200

250

Number of Iteration

lo
g|

|F
(X

N
)|

|

 

 
NHAM
NEWTON
HM

Figure 3: The graph of ln(||F (X)||) for Example 4.1 with x(0) = −400

Table 4: Numerical results for Example 4.2

Method NI ||F (x(m))|| CPU time result
NHAM 6 2.085579e− 008 2.116125e+ 000 Convergent
Newton 1 NaN − Divergent
HAM 8 2.247981e− 010 3.105904e+ 000 Convergent
HM − 1.967763e+ 009 7.584255e− 001 Divergent

Example 4.2. Consider following equations:
f1(x, y, z, d) = xyz + d− 31 = 0,
f2(x, y, z, d) = x+ y + z + d− 11 = 0,
f3(x, y, z, d) = 2x+ 3y + 4z + d− 35 = 0,
f4(x, y, z, d) = x+ z − y + d− 1 = 0,

(27)

where F =
[
f1 f2 f3 f4

]T
.

We know X̂1 = (2, 3, 5, 1) and X̂2 = ( 295 ,
11
10 , 5,

−9
10 ) are two solutions of

F (X) = 0. For X(0) = (1, 1, 1, 1) , numerical results are shown in Table 4.

Newton Method is divergent because det(DF (X(0))) = 0. But HAM and
NHAM methods converge, and NHAM is faster than HAM.

Example 4.3. Consider the following equations:
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Figure 4: The graph of ln(||F (X)||) for Example 4.2

Table 5: Numerical results for Example 4.3

Method NI ||F (x(m))|| CPU time result
NHAM 8 6.567317e− 010 8.196840e+ 001 Convergent
Newton 101 5.030214e+ 003 6.042236e+ 000 Divergent
HAM 18 5.830347e− 008 3.106638e+ 003 Convergent
HM − 5.242329e+ 002 2.483993e+ 000 Divergent


f1(x1, x2, · · · , xn) = (3− 1

2x1)x1 − 2x2 + 1 = 0 ,

fi(x1, x2, · · · , xn) = (3− 1
2xi)xi − xi−1 − 2xi+1 + 1 = 0 , 1 < i < n ,

fn(x1, x2, · · · , xn) = (3− 1
2xn)xn − 2xn−1 + 1 = 0,

(28)

that F =
[
f1 f2 · · · fn

]T
.

For n = 50 and X(0) = (100, 100, · · · , 100), numerical results are shown
in Table 5.

In this example HAM and NHAM are convergent to the exact solution
X̂ = (1, ..., 1), but Newton method is divergent. Also NHAM is faster than
HAM. Results are shown in Figure 5.

Example 4.4. Consider the following equations: fk(x1, x2, · · · , xn) = 10000xkxk+1 − 1 = 0, mod(k, 2) = 1,

fk(x1, x2, · · · , xn) = exp(−xk−1) + exp(−xk)− 1.0001 = 0, mod(k, 2) = 0,
(29)
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Figure 5: The graph of ln(||F (X)||) for Example 4.3

Table 6: Numerical results for Example 4.4

Method NI ||F (x(m))|| CPU time result
NHAM 13 1.059758e− 009 5.152483e+ 001 Convergent
Newton 12 1.112530e− 010 1.972995e+ 001 Convergent
HAM 23 2.728830e+ 056 1.128194e+ 002 Divergent
HM − 4.211734e− 001 1.092275e+ 002 Convergent

that F =
[
f1 f2 · · · fn

]T
.

For n = 100 and X(0) = (1, 0, 1, 0, 1, 0, 1, · · · , 0), numerical results are
shown in Table 6. In this example Newton method, NHAM and HM are
convergent, but HAM is divergent. Results are shown in Figure 6.

Example 4.5. Consider the following equations: f1(x1, x2) = exp(x1) + x1x2 − 1 = 0,

f2(x1, x2) = sin(x1x2) + x1 + x2 − 1 = 0,
(30)

that F =
[
f1 f2 · · · fn

]T
.

For n = 100 and X(0) = (1, 0, 1, 0, 1, 0, 1, · · · , 0), numerical results are
shown in Table 7. In this example all the methods are convergent. Results
are shown in Figure 7.
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Figure 6: The graph of ln(||F (X)||) for Example 4.4

Table 7: Numerical results for Example 4.5

Method NI ||F (x(m))|| CPU time result
NHAM 4 1.993082e− 010 1.848117e+ 000 Convergent
Newton 4 1.405720e− 012 2.472726e− 001 Convergent
HAM 4 1.187309e− 008 1.719704e+ 000 Convergent
HM − 5.368713e− 006 1.380355e+ 000 Convergent
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Figure 7: The graph of ln(||F (X)||) for Example 4.5
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5 Conclusion

In this paper, Newton-HAM (NHAM) applying control parameter h are pro-
posed for solving systems of nonlinear equations. The results for all examples
are convergent and also NHAM is faster than Homotopy method. The re-
sults demonstrate that by choosing a suitable h, HAM and NHAM methods
are convergent. The numerical results show in general that the proposed
method is effective and efficient and provides highly accurate results in a less
number of iterations as compared by other methods. The main advantage
of NHAM is the relative freedom of choosing initial guess. The appropriate
proof convergence of NHAM can be continuation of the present work.

Acknowledgments

The authors would like to thank the anonymous referees for valuable com-
ments and also express appreciation for their constructive suggestions.

References

1. Abbasbandy, S. Improving Newton-Raphson method for nonlinear equa-
tions bymodifiedAdomian decompositionmethod, Applied Mathematics and
Computation, 145 (2-3) (2003) 887-893.

2. Abbasbandy, S. and Jalili, M. Determination of optimal convergence-
control parameter value in homotopy analysis method, Numerical Algo-
rithms 64 (4) (2013) 593-605.

3. Abbasbandy, S., Tan, Y. and Liao, S.J. Newton-homotopy analysis method
for nonlinear equations, Appl. Math. Comput. 188 (2007) 1794-1800.

4. Awawdeh, F. On new iterative method for solving systems of nonlinear
equations, Numerical Algorithms, 54 (3) (2010) 395-409.

5. Babolian, E. and Jalili, M. Application of the Homotopy− Padé technique
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Solving nonlinear Volterra
integro-differential equation by using
Legendre polynomial approximations

M. Gachpazan∗, M. Erfanian and H. Beiglo

Abstract

In this paper, we construct a new iterative method for solving nonlinear

Volterra Integral Equation of the second kind, by approximating the Legendre
polynomial basis. Error analysis is worked using property of interpolation.
Finally, some examples are given to compare the results with some of the

existing methods.

Keywords: Nonlinear Volterra integro-differential equation; Legendre poly-
nomial; Error analysis.

1 Introduction

The area of orthogonal polynomials is an active research area in mathe-
matics as well as with applications in mathematical physics, engineering,
and computer science [6, 16]. Several numerical methods were used to
solve integro-differential equations such as successive approximation method,
Adomian decomposition method, Chebyshev and Taylor collocation meth-
ods, Haar Wavelet method, Wavelet Galerkin method, monotone iterative
technique, Tau method, Walsh series method and Bezier curves method
[2, 3, 4, 6, 13, 22]. One of the most common set of orthogonal polynomi-
als is the set of the Legendre polynomials L0(x), L1(x), ..., LM (x), which are
orthogonal on [−1, 1] with respect to the weight function w(x) = 1. The
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Legendre polynomials Ln(x), for −1 ≤ x ≤ 1 and n ≥ 0, are given by the
forms [6, 7, 11, 12, 21]

Ln(x) =
1

2n

[n/2]∑
k=0

(−1)k
(
n
k

)(
2n− 2k

n

)
xn−2k, n = 0, 1, . . . , (1)

where [n/2] = n/2 if n is even, otherwise n−1
2 . To use the Legendre poly-

nomials for our purposes, it is preferable to map this to [0, 1]. Then we can
also define them by the following recursive formula [11, 12]: L0(x) = 1; and
L1(x) = 2x− 1 and for n = 1, 2, ...

(n+ 1)Ln+1(x) = (2n+ 1)(2x− 1)Ln(x)− nLn−1(x). (2)

On the other hand, the methods based on Legendre polynomials may be
more appropriate for solving linear and nonlinear differential and Fredholm-
Volterra integral and integro-differential-difference equations [5, 6, 7, 15, 18,
21]. Legendre polynomials are examples of eigen functions of singular Strum
Liouville problems and have been used extensively in the solution of the
boundary value problems and in computational fluid dynamics [5, 20] . Sev-
eral ways for solving nonlinear integro differential equations are exist, for
example Ghasemi et al. [8] with homotopy perturbation method and in [9]
with wavelet Galerkin method and in [10] with sine−cosine wavelet method,
Zhao and Corless in [23] adopted finite difference method, Lepik and Tamme
in [19] with Haar wavelet method. In this paper, by means of the matrix
relations between the Legendre polynomials and their derivatives, the men-
tioned methods above are modified and developed for solving the following
nonlinear Volterra Integro-differential equation with variable coefficients

f1(x)u(x) + f2(x)u
′(x) = g(x) +

∫ x

0

K(x, t, u(t))dt, (3)

where u ∈ X := C([0, 1],R), f : [0, 1] → R, K : [0, 1]2 × R → R, also
is assumed K is a continuous function, and u : [0, 1] → R is an unknown
function. We have obtained a solution expressed in the form

u(x) ≈
M∑
n=0

anLn(x). (4)

Next sections of this paper are organized as follows. In Section 2, expansion
of Legendre basis properties and matrix relations, and its discretization of a
integro-differential equation are given. In Section 3, the convergence of the
method is described. In Section 4, the efficiency of the method by solving
some examples and comparison of the numerical solutions with some other
existing methods, is shown. A short conclusion is given in Section 5.
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2 Expansion of Legendre basis and method of solution

If we define L(x) = [L0(x) L1(x) ... LM (x)] and A = [a0 a1 ... aM ]T then

u(x) ≈
M∑
n=0

anLn(x) = L(x)A. (5)

Simillary if we define L′(x) = [L′
0(x) L

′
1(x) ... L

′
M (x)] we have

u′(x) ≈
M∑
n=0

anL
′
n(x) = L′(x)A, (6)

where ′ denotes the derivative with respect to x. By using Legendre recursive
formula (1) for n = 0, 1, 2, ...,M , we can also obtain the matrix form of the
equation as follows

L′(x) = L(x)ΩT, (7)

where Ω has two forms different for odd and even values of M , that is,
for odd values of M we have

Ω =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 3 0 7 · · · 2M − 3 0 0
1 0 5 0 · · · 0 2M − 1 0


,

and for even values of M

Ω =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
1 0 5 0 · · · 2M − 3 0 0
0 3 0 7 · · · 0 2M − 1 0


.

From (6) and (7) we get

u′(x) ≈ L(x)ΩTA.

We use this method to approximate left hand side of Volterra integro-
differential equation (3) as follows



76 M. Gachpazan, M. Erfanian and H. Beiglo

f1(x)u(x) + f2(x)u
′(x) ≈ f1(x)L(x)A+ f2(x)L(x)Ω

TA
= (f1(x)L(x) + f2(x)L(x)Ω

T)A.
(8)

Thus
f1(x)u(x) + f2(x)u

′(x) ≈ S(x)A, (9)

where S(x) = [s0(x) s1(x) ... sM (x)], and for i = 0, 1, ...,M , we define

si(x) = f1(x)Li(x) + f2(x)L(x)(Ω
T)i.

To obtain a solution of the problem (3), for each x, t ∈ [0, 1] we define

K(x, t, u(t)) ≈ L(x)K∗LT(t)

where K∗ = [knm], and

knm =
< Ln(x), < K(x, t, u(t)), Lm(t) >>

∥Ln∥2∥Lm∥2
.

We use this method to approximate the right hand side of Volterra integro-
differential equation (3) as follows

g(x) +

∫ x

0

L(x)K∗LT(t)dt = g(x) + L(x)K∗
∫ x

0

LT(t)dt.

By using Legendre formulas∫ x

0

L(t)dt = (L(x)− L(0))(ΩT)−1,

we have

g(x) +

∫ x

0

K(x, t, u(t))dt = g(x) + L(x)K∗(Ω)−1(L(x)T − L(0)T). (10)

Let
h(x) = g(x) + L(x)K∗(Ω)−1(L(x)T − L(0)T), (11)

then from (9) and (11) we have

S(x)A = h(x). (12)

We can use a matrix method based on Legendre collocation points defined
by

xi =
i

M
i = 0, 1, . . . ,M. (13)

Now, by substituting the collocation points into Eq. (12) we have the follow-
ing system

S(xi)A = h(xi) i = 0, 1, . . . ,M. (14)
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Thus, we use this numerical method to approximate the solutions of nonlinear
Volterra integro-differential equation, which correspond to a system of (M+1)
algebraic equations for (M +1) unknown Legendre coefficients a0, a1, ..., aM .
Briefly, Eq. (14) in the matrix form is as follows

SA = H, (15)

where for i = 0, 1, ...,M

S = [S(x0) S(x1) ... S(xM )]T ,

and
H = [h(x1) h(x2) ... h(xM )].

3 Error analysis

We assume that u(x) is a sufficiently smooth function and PM (x) is the
polynomial that interpolates u at points xi, i = 0, 1, ...,M that are the roots
of M + 1 degree shifted Chebyshev polynomial in [0, 1]. Then we have

u(x)− PM (x) =
dM+1u

dxM+1
(ξ)

∏M
i=0(x− xi)

(M + 1)!
, (16)

where ξ ∈ [0, 1], therefore

|u(x)− PM (x)| ≤ max|d
M+1u(x)

dxM+1
|
∏M

i=0(x− xi)

(M + 1)!
. (17)

If we assume that c is an upper bound for maxdM+1u(x)
dxM+1 , then

|u(x)− PM (x)| ≤ c
1

(M + 1)!22M+1
. (18)

Theorem 3.1. Let uM (x) = UT
ML(x) where UM = [u0 u1 ... uM ]T and

um = (2m+ 1)

∫ 1

0

u(x)Lm(x)dx,

then, there exists a real number c′ such that

∥u(x)− uM (x)∥2 ≤ c′
1

(M + 1)!22M+1
. (19)

Proof. Suppose f : [0, 1] → R be an arbitrary continuous function. We define
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||f ||2 =

∫ 1

0

|f(x)|2dx. (20)

Let XM be the space of all polynomials that their degrees are equal or less
than M and f(x) be an arbitary function. Since XM is a finite dimensional
vector space, f has an uniqe best approximation uM , such that

∥u(x)− uM∥2 ≤ ∥u− g∥2 ∀g ∈ XM . (21)

In particular, we have

∥u(x)− uM (x)∥22 =

∫ 1

0

|u(x)− uM (x)|2dx ≤
∫ 1

0

|u(x)− PM (x)|2dx, (22)

where PM interpolates f . Thus

∥u(x)− uM (x)∥22 =

∫ 1

0

(c
1

(M + 1)!22M+1
)2dx, (23)

so

∥u(x)− uM (x)∥2 ≤ c
1

(M + 1)!22M+1
. (24)

4 Numerical examples

In this section, several numerical examples are given to show the efficiency
of our proposed method for approximating the solution of Volterra integro-
differential equation by comparing with other methods. In all examples N
denotes the number of itereations

Example 4.1. Consider the following nonlinear Volterra integro-differential
equation of the second kind with the exact solution u(x) = x3

(x−1)u′(x)+xu(x) = 3(x−1)x2− 1

3
x+

1

3
xcos(x3)+

∫ x

0

xt2sin(u(t))dt. (25)

Comparison of the absolute errors between Block-Pulse functions method
[1] and the proposed method for N = 7 is shown in Table 2 . Also, Figure
2 shows the comparison between exact and approximate solutions for N = 2
and N = 7.

Example 4.2. Consider the following nonlinear Volterra integro-differential
equation of the second kind with the exact solution u(x) = x− x2

3(x− 1)u(x) + x2u′(x) = f(x) +

∫ x

0

(x− t)u(t)dt, (26)
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Table 1: Absolute errors for Example 4.1

t BPFs method [1] proposed method
for N=7 for N=7

0.0100 4.654× 10−4 3.585× 10−6

0.3537 8.098× 10−5 1.726× 10−7

0.6101 6.675× 10−5 6.052× 10−7

0.9500 3.581× 10−5 2.138× 10−7

Figure 1: Comparison between exact and approximate solutions for Example 4.1

where
f(x) = 3(x− 1)(x− x2) + x2(1− 2x)− 1

4x
4 + 1

3 (x+ 1))x3 − 1
2 (1/2)x

3.

Comparison of absolute errors between CAS wavelet method [3] and the
proposed method for N = 7 is shown in Table 2 . Also, Figure 2 shows the
comparison between exact and approximate solutions for N = 2 and N = 7.

Example 4.3. Consider the following nonlinear Volterra integral equation
of the second kind with the exact solution u(x) = ln(x+ 1)

u′(x) = f(x) +

∫ x

0

xt2(u(t))2dt, (27)

where

f(x) =
1

x+ 1
+(

11

9
+
2

3
x−

1

3
x2+

2

9
x3)x ln(x+1)−

1

3
(1+x3)x(ln(x+1))2−

1

9
x2(11−

5

2
x+

2

3
x2).

(28)
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Table 2: Absolute errors for Example 4.2

t CAS wavelet method [3] proposed method
for N=7 for N=7

0.0100 3.37× 10−3 4.8× 10−4

0.3446 4.72× 10−3 5.7× 10−5

0.7075 5.87× 10−3 3.4× 10−4

0.9178 3.42× 10−2 2.13× 10−6

1.0000 6.20× 10−2 5.8× 10−5

Figure 2: Comparison between exact and approximate solutions for Example 4.2

Comparison of absolute errors between DT wavelet method [4] and pro-
posed method for N = 7 is shown in Table 3 . Also, Figure 3 shows the
comparison between exact and approximate solutions for N = 2 and N = 7.

5 Conclusion

In this paper, we have solved nonlinear Volterra integro-differential equation
of the second kind by using Legendre polynomial. A considerable advantage
of this method is to find the approximation of analytical solution that is a
polynomial of degree up to N . An other advantage of the method is that Leg-
endre coefficients of the solution can be found very easily by using computer
programs. The convergence of this method has been presented by Theorem
3.1.
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Table 3: Absolute errors for Example 4.3

t DT wavelet method [4] proposed method
for N=7 for N=7

0.054 3.29× 10−2 3.90× 10−6

0.600 1.49× 10−2 1.83× 10−6

0.851 1.82× 10−1 2.88× 10−5

1.000 4.71× 10−1 7.52× 10−6

Figure 3: Comparison between exact and approximate solutions for Example 4.3
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هاف انشعاب بوسیله صوت فرا جریان در پانل فلاتر تحلیل

دادی۲ زهره و منفرد۱ زهرا

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی ۱دانشگاه

ریاضی گروه پایه، علوم دانشکده بجنورد، ۲دانشگاه

فراصوت جریان در پانل حرکت بر حاکم جزئی مشتقات دیفرانسیل معادله یک مطالعه به مقاله این : چکیده
یک به گالرکین روش یک بوسیله تواند می جزئی مشتقات دیفرانسیل معادله این است. شده داده اختصاص
روت-هورویتز معیار به وابسته که معیاری از استفاده با اینجا در شود. تبدیل معمولی دیفرانسیل معادله
دهیم. می قرار بررسی مورد هاف انشعاب نظر نقطه از را شده ذکر معمولی دیفرانسیل معادله باشد، می
و مطلب افزار نرم کمک به یابیم. می را آن برای ساده هاف انشعاب وجود برای ای ناحیه ما حقیقت در
برای هاف انشعاب نظریه همچنین اند. شده بررسی پانل حدی چرخه ونوسانات فلاتر هاف، انشعاب ابزار

است. گرفته قرار استفاده مورد سیستم فلاتر سرعت تحلیل
نوسانات. روت-هورویتز؛ معیار هاف؛ انشعاب حدی؛ چرخه پانل؛ فلاتر : کلیدی کلمات



زمانی تاخیر n با نرونی n ای حلقه شبکه در هاف انشعاب بررسی

خورشیدی محسن و جاویدمنش الهام

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه

ی مطالعه به و گیریم می نظر در را زمانی تاخیر n با نرونی n ای حلقه شبکه یک مقاله، این در : چکیده
بر n تقسیم های باقیمانده حسب بر بندی طبقه با پردازیم. می شبکه این از حاصل سیستم هاف انشعاب
پارامتر عنوان به را تاخیرها مجموع پردازیم. می بندی دسته این از حاصل مشخصه معادله ی مطالعه به ،۴
هاف انشعاب گذرد می بحرانی مقدار یک از تاخیر پارامتر وقتی دهیم می نشان گیریم. می نظر در سیستم
می دست از را اش مجانبی پایداری صفر) (جواب سیستم تعادل نقطه که زمانی واقع، در دهد. می رخ

شوند. می منشعب مبدا از ای دوره های جواب از خانواده یک دهد،
زمانی. تاخیر هاف؛ انشعاب ای؛ دوره های جواب پایداری؛ ای؛ حلقه شبکه : کلیدی کلمات



موج معادلات تحت توزیعی بهینه کنترل تقریب برای جمعیت پایه بر الگوریتمی

حیدری محمد و میراسدی، بیگم سکینه برزآبادی، هاشمی اکبر

کامپیوتر و ریاضی علوم دانشکده دامغان، دانشگاه

معادله تحت توزیعی تقریبی بهینه کنترل یافتن برای نوین تکراری تلفیقی روش یک مقاله، این در : چکیده
می گسسته را مساله که شده گرفته نظر در زمان-کنترل فضای از افرازی است. گرفته قرار بررسی مورد موج
بر الگوریتم یک آنگاه است. شده تبدیل تخصیص شبه مساله یک به شده گسسته شکل این سپس و کند
یک صورت به توزیعی تقریبی بهینه کنترل استخراج برای متناهی تفاضل روش یک با همراه جمعیت پایه
ارائه ابتدایی مساله گسسته شکل برای همگرایی تحلیل یک است. شده گرفته کار به خطی ای قطعه تابع
از حاصل نتایج با شده ارائه عددی نتایج شده، داده الگوریتم توانایی دادن نشان برای همچنین است. شده

اند. شده مقایسه ذرات ازدحام الگوریتم و ژنتیک الگوریتم جمعیت، پایه بر الگوریتم دو بکارگیری
موج. معادله متناهی؛ تفاضلات روش ارزیابی؛ الگوریتم بهینه؛ کنترل مسال : کلیدی کلمات



ای مرتبه چند کسری دیفرانسیل معادلات برای عملیاتی تاو روش

مختاری پیام

ریاضی گروه سهند، صنعتی دانشگاه

معادلات عددی حل برای را متعامد ایهای چندجمله بر مبتنی عملیاتی تاو روش مقاله این : چکیده
است این روش این اصلی مشخصه دهد. می ارائه خطی غیر ای مرتبه چند کسری مشتقات با دیفرانسیل
از برخی آورد. می بدست جبری خطی غیر دستگاه حل از استفاده با را نظر مورد معادله عددی جواب که

است. شده ارائه روش بودن کاربردی و کارایی نمایش منظور به عددی های مثال
عملیاتی. تاو روش کاپاتو؛ مشتق کسری؛ مشتقات با دیفرانسیل معادلات : کلیدی کلمات



HAM و نیوتن روش از استفاده با خطی غیر معادلات دستگاه حل برای جدید روش یک

جلیلی۲ مریم و ابریشمی۱، غلامرضا ایزدیان۱، جلال

ریاضی گروه علوم، دانشکده مشهد، واحد سلامی، آزاد ۱دانشگاه

ریاضی گروه علوم، دانشکده نیشابور، واحد سلامی، آزاد ۲دانشگاه

: چکیده
هموتوپی آنالیز روش و نیوتن روش از استفاده با خطی غیر معادلات دستگاه حل برای جدید روش یک
همگرایی دوم درجه سرعت آوردن بدست و HAM همگرایی نرخ سرعت افزایش شود. می ارائه (HAM)
روش با مقایسه در را پیشنهادی روش عملکرد و کارایی عددی نتایج است. روش این اصلی اهداف کلی
حدس انتخاب در بسیاری آزادی روش این در که دهد، می نشان HAM و نیوتن روش معمولی، هموتوپی

داریم. اولیه
روش همگرایی؛ کنترل پارامتر صفر؛ مرتبه دگردیسی معادلات هموتوپی؛ آنالیز روش : کلیدی کلمات

همگرایی. مرتبه گام؛ چند تکراری روش تکراری؛ روش نیوتن؛



لژاندر های ای چندجمله از استفاده با خطی غیر انتگرال دیفرانسیل معادلات تقریبی حل

بیگلو حسین و عرفانیان، مجید پزان، گچ مرتضی

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه

ولترای انتگرالی دیفرانسیل معادلات جوابهای آوردن بدست برای تکراری روش یک مقاله، این در : چکیده
انجام درونیابی از استفاده با خطا تحلیل است. شده ساخته لژاندر های ای چندجمله اساس بر دوم نوع
مقایسه موجود های روش برخی با و حل پیشنهادی روش از استفاده با مثال چند سرانجام است. گرفته

است. شده
خطا. تحلیل لژاندر؛ های ای چندجمله خطی؛ غیر ولترای انتگرال دیفرانسیل معادله : کلیدی کلمات
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