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ciplines, pool their insight, knowledge and efforts by communicating via this
international journal.
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High order immersed interface method
for acoustic wave equation with

discontinuous coefficients

J. Farzi∗ and S. M. Hosseini

Abstract

This paper concerns the numerical solution of the acoustic wave equation
that contains interfaces in the solution domain. To solve the interface prob-
lems with high accuracy, more attention should be paid to the interfaces. In

fact, any direct application of a high order finite difference method to these
problems leads to inaccurate approximate solutions with high oscillations at
the interfaces. There is however, the possibility of deriving some high order

methods to resolve this phenomenon at the interfaces. In this paper, a sixth
order immersed interface method for acoustic wave equation is presented.
The order of accuracy is also maintained at the discontinuity using the jump
conditions. Some numerical experiments are included which confirm the or-

der of accuracy and numerical stability of the presented method.

Keywords: Interface methods; High order methods; Lax-Wendroff method;
Discontinuous coefficients; Jump conditions.

1 Introduction

In this paper we develop a class of high order numerical methods for wave
equations with discontinuous coefficients. The class of interface problems in-
volves many problems of real world applications in Science and Engineering,
such as Seismology, Ocean acoustics, and Electromagnetic. A nave imple-
mentation of high order methods fails to achieve high order accuracy and
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produces some spurious oscillations (Gibbs phenomenon) near the disconti-
nuity. There are several approaches to deal with such a problem of accuracy
loss. An efficient method for the simulation of these equations should be
able to reduce dispersion and dissipation errors in the propagation of the
solution [16]. Many researchers are interested in high order methods for hy-
perbolic problems. Long time behavior of the solution of these problems is
an important challenge to the numerical simulation of such problems.

A good deal of literature exists on the numerical solution of interface
problems. Two traditional methods are adding viscosity to the problem and
using flux limiters [5]. A recent approach is using essentially nonoscillatory
(ENO) or weighted ENO methods [6]. We distinguish the interface methods
in two sets with or without use of jump conditions. The first set consists
of those methods, such as the recent works of Gustafsson and his coworkers
[3, 4] and Leveque [8] that do not impose jump conditions in the formulation
of the numerical solution of these equations. These methods are based on
shock capturing methods and Riemman solvers for conservation laws. The
second set, whose history goes back to the pioneering work of Peskin [11] for
the simulation of blood flow in the heart, consists of those methods that use
some sort of jump condition in their formulation. In fact, to achieve high
order results, it is recommended to use a special high order method in the
vicinity of the discontinuity. Derivative matching methods is a related issue
and have been developed by Driscoll and Fornberg [1] for one and two di-
mensional Maxwell equations and followed by many others researcher such as
Zhao and Wei [19], which derived a derivative matching approach based on
the FDTD schemes for Maxwell equations. This scheme is based on fictitious
point method and in a vicinity of the interface they introduce original points
in one side and ghost or fictitious points (unknown values) in the other side
of the interface. Using the derivative matching conditions the values at the
ghost points are evaluated. The emphasis in this paper is on the second set of
methods that use physical jump conditions at the interface which are usually
easily accessible from the physical properties of the problem. Therefore, we
perform the numerical solutions to satisfy these jump conditions. The im-
mersed interface method (IIM) considers a standard method for the regular
points and imposes a new method for the irregular points to update the solu-
tion at the next time level with the same accuracy as the standard method.
The implementation of this new method requires the solution of several small
linear systems to obtain coefficients of the difference method on the irregular
points, without imposing any significant computational cost on the calcula-
tions. The explicit relations between two media (in heterogeneous media)
through jump conditions eliminate the role of the fictitious points and there-
for, this method attains the high order results without ghost points. There is
a related class of methods, known as simplified immersed interface methods,
that modify explicitly the numerical values at the irregular points [12, 17].

The immersed interface method has been discussed for various kinds of
partial differential equations and its implementation to many real world ap-
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plications has been successful. A full review of this method for interface
problems of parabolic and elliptic type is available in the recent book of Li
and Ito [10].

In this paper, a sixth order method for the acoustic wave equation with
discontinuous coefficients is presented. This higher order method in some
sense is an improvement on the works of Zhang and LeVeque [18] and Farzi
and Hosseini [2]. There are several methods for the simulation of the time
evolution for the wave equation. The Lax-Wendroff method is a simple time
discretization method for implementation. However, to reduce possible dis-
persion and dissipation errors one can invoke TVD and WENO methods to
avoid oscillations near the discontinuity [6, 9]. In this paper, we consider
a coupled application of Lax-Wendroff and the immersed interface method
on the interface. The contribution of this paper is given in the next sec-
tions. The extension of this method to any order is direct and is given in
Section 4. The stability analysis and implementation of the method for two
dimensional problems is presented in Section 5. Physical jump conditions are
demonstrated for the one dimensional acoustic wave equation.

The explicit and closed form discretization formula is obtained in Section
2. The theory and numerical results are also developed for piecewise smooth
coefficients (Sections 3, 4 and 5). The numerical results reported in Section 5
confirm the efficiency of the method to approximate the solution with a well
presented behavior of wave propagation and also a high order accuracy at the
interfaces. The long time behavior of the method is illustrated by Test prob-
lem 3 in numerical results. The order of the new immersed interface method
is justified in Test problem 4 with numerical order of accuracy. Numerical
stability of the method is addressed in Test problem 5.

2 Acoustic Wave Equation

Let u(x, t) and p(x, t) be the acoustic velocity and acoustic pressure, re-
spectively. Then the one-dimensional wave equation can be written as the
following model problem

Ut +AUx = 0, (1)

where,

U(x, t) =

(
u
p

)
, A(x) =

(
0 1
ρ

κ 0

)
, (2)

and A(x) is a function of position consisting of physical quantities such as
density ρ(x), sound speed c(x) and κ = ρc2. We first focus mainly on prob-
lems in which the density and sound speed are piecewise constant functions
and have a jump discontinuity at the point x = α, which we call the interface,
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(ρ, c) =

{
(ρ−, c−), x < α,
(ρ+, c+), x > α,

(3)

Then application of our formulation for problems with more general piecewise
smooth coefficients will be addressed. Typical applications in which this
assumption is appropriate include long range underwater acoustics, various
seismological problems as well as electromagnetic problems. Throughout the
paper we use the symbol A+ for A(x) with x > α and A− for A(x) with
x < α. The same meaning will apply to other matrices.

In this part, we derive a high order method for this equation and we
postpone the treatment of the nonsmooth solution at the interface to the
next sections, where we discuss and derive jump conditions and give an ap-
proximation that extends the high accuracy of the solution, obtained for the
smooth regions, to the interface. At the left or right of the point of dis-
continuity we can use any standard method. The Lax-Wendroff method is a
simple time evolution explicit method for implementation which uses the val-
ues at the current time level and does not need any knowledge of previously
calculated values. This method is based on Taylor series expansion in time
and substitution of the time derivatives with space derivatives using (1). We
consider

U(xj , tn+1) ≈ U(xj , tn) +
k

1!

∂U

∂t
(xj , tn) +

k2

2!

∂2U

∂t2
(xj , tn)

+
k3

3!

∂3U

∂t3
(xj , tn) +

k4

4!

∂4U

∂t4
(xj , tn) +

k5

5!

∂5U

∂t5
(xj , tn) (4)

+
k6

6!

∂6U

∂t6
(xj , tn)

where k is the length of the time steps. Replacing the time derivatives by
the space derivatives and discretizing the space derivatives we get

U(xj , tn+1) ≈ U(xj , tn)−
1

1!
kAjQ

(1)
6 U(xj , tn) +

1

2!
k2c2jQ

(2)
6 U(xj , tn)

− 1

3!
k3c2jAjQ

(3)
4 U(xj , tn) +

1

4!
k4c4jQ

(4)
4 U(xj , tn) (5)

− 1

5!
k5c4jAjQ

(5)
2 U(xj , tn) +

1

6!
k6c6jQ

(6)
2 U(xj , tn),

where Aj = A(xj) and cj = c(xj), Q
(q)
p is central difference formula of order

p for ∂q

∂xq [5] and we have used the relation A2 = c2I, in which I is the 2× 2
identity matrix.

Substitution of Q
(q)
p as explained in [2], which deals only with the advec-

tion equation, gives a fully discretized representation of the acoustic equation
by the following matrix-vector equation
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Un+1
j = Unj +

7∑
l=1

Γj,lU
n
j+l−4 (6)

where the Γj,l’s are two by two matrices (coefficient matrices) and can be
expressed as

Γj,l = wlA(λA+ (4− l)I), j, l = 1, 2, ..., 7, (7)

with

w1 = 1
6!λ((2− λ

2c2)2 − λ2c2),
w2 = − 1

5!λ((3− λ
2c2)2 − 4λ2c2),

w3 = −( 1
3!λ(7− λ

2c2))2,
w4 = 1

2×4!λ((6− λ
2c2)2 − λ2c2),

and w7 = w1, w6 = w2, w5 = w4. h is the spacial grid step length and λ = k
h .

In fact, the high order derivatives are not valid at the interface and con-
sequently the obtained results are of first order or even less. A detailed
discussion of this phenomenon of losing the accuracy has already been pre-
sented by Sei and Symes [14]. So, obviously, on each side of the discontinuity
of A(x) the method is of order six for the acoustic equation, while at the grid
points near to the discontinuity the method fails to maintain this order of
accuracy.

More precisely, suppose that the interface lies between two adjacent grid
points with indices J and J +1, i.e. xJ < α < xJ+1, then this method works
well at those grid points at which all the required points to update them
are located completely on the left or right of the interface, but it fails to be
accurate at the grid points (irregular points) J − 2, J − 1, . . . , J + 3. So, we
need a new scheme to maintain the same order of accuracy at these irregular
points.

For a general piecewise smooth coefficient problem we can derive the same
method, but in this case the derivatives of the coefficient A(x) will come into
the difference equation. It should be noted, however, that the coefficient ma-
trices are not as simple as those appearing in (7), but we can follow the same
procedure to provide a sixth order method for this case as well. Here with
an efficient derivation of these formulas we can save more in computations.
In the following, we present the time derivative approximations in (4) and
approximations of the corresponding space derivatives
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(Ut)
n
j ≈ −AQ

(1)
6 Unj ,

(Utt)
n
j ≈ B(1)Q

(1)
6 Unj +B(2)Q

(2)
6 Unj ,

(Uttt)
n
j ≈ C(1)Q

(1)
4 Unj + C(2)Q

(2)
4 Unj + C(3)Q

(3)
4 Unj ,

(Utttt)
n
j ≈ D(1)Q

(1)
4 Unj +D(2)Q

(2)
4 Unj +D(3)Q

(3)
4 Unj +D(4)Q

(4)
4 Unj ,

(Uttttt)
n
j ≈ E(1)Q

(1)
2 Unj + E(2)Q

(2)
2 Unj + E(3)Q

(3)
2 Unj + E(4)Q

(4)
2 Unj

+E(5)Q
(5)
2 Unj ,

(Utttttt)
n
j ≈ F (1)Q

(1)
2 Unj + F (2)Q

(2)
2 Unj + F (3)Q

(3)
2 Unj + F (4)Q

(4)
2 Unj

+F (5)Q
(5)
2 Unj + F (6)Q

(6)
2 Unj ,

(8)

where,

B(1) = AA′,
B(2) = A2,
C(1) = −B(1)A′ −B(2)A′′,
C(2) = −B(1)A− 2B(2)A′,
C(3) = −B(2)A,
D(1) = −C(1)A′ − C(2)A′′ − C(3)A′′′,
D(2) = −C(1)A− 2C(2)A′ − 3C(3)A′′,
D(3) = −C(2)A− 3C(3)A′,
D(4) = −C(3)A,
E(1) = −D(1)A′ −D(2)A′′ −D(3)A′′′ −D(4)A′′′′,
E(2) = −D(1)A− 2D(2)A′ − 3D(3)A′′ − 4D(4)A′′′,
E(3) = −D(2)A− 3D(3)A′ − 6D(4)A′′,
E(4) = −D(3)A− 4D(4)A′,
E(5) = −D(4)A,
F (1) = −E(1)A′ − E(2)A′′ − E(3)A′′′ − E(4)A′′′′ − E(5)A′′′′′,
F (2) = −E(1)A− 2E(2)A′ − 3E(3)A′′ − 4E(4)A′′′ − 5E(5)A′′′′,
F (3) = −E(2)A− 3E(3)A′ − 6E(4)A′′ − 10E(5)A′′′,
F (4) = −E(3)A− 4E(4)A′ − 10E(5)A′′,
F (5) = −E(4)A− 5E(5)A′,
F (6) = −E(5)A.

A similar standard method has been addressed by Qiu and Shu [13], in which
the finite difference WENO schemes with Lax-Wendroff time discretization
for solving nonlinear hyperbolic conservation law systems was developed. It

uses a WENO scheme instead Q
(1)
6 in (8) and proceeds to the final formula-

tions.
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3 Jump Conditions

We study the jump conditions for a piecewise coefficient problem and then
consider a general variable coefficient wave equation. A test problem for this
case is also given in the section on numerical results.

3.1 Piecewise constant coefficient

In this section we introduce some jump conditions to serve as a tool for
developing a new method for the irregular points. By irregular points, we
mean those grid points that in the process of updating to the next time level,
use grid points on both sides of the interface. If the interface x = α lies in
the interval (xJ , xJ+1) then the irregular points for the given method (6) are
the grid points J −2, J −1, . . . , J +3. So, there exist six irregular points and
the method (6) fails to be accurate at these points.

For the acoustic wave equation we impose the jump conditions [u] = 0
and [p] = 0 that can be denoted by a single statement

[U ] = 0. (9)

Using these conditions and the wave equation (1), we obtain the following
relations at the interface [12],

∂kU(α+, t)

∂xk
= Dk

∂kU(α−, t)

∂xk
, k = 0, 1, 2, .... (10)

where,

D2k = (
c−

c+
)2k
[
1 0
0 1

]
, D2k+1 = (

c−

c+
)2k

[
κ−

κ+ 0

0 ρ+

ρ−

]
.

3.2 A general piecewise smooth coefficient

For a general piecewise smooth coefficient, by using again the condition [U ] =
0 and imposing the relations [Ut] = 0,. . . , [Utttttt] = 0, we obtain
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U+
x = Q1U

−
x ,

U+
xx = Q2U

−
x +Q3U

−
xx,

U+
xxx = Q4U

−
x +Q5U

−
xx +Q6U

−
xxx,

U+
xxxx = Q7U

−
x +Q8U

−
xx +Q9U

−
xxx +Q10U

−
xxxx

U+
xxxxx = Q11U

−
x +Q12U

−
xx +Q13U

−
xxx +Q14U

−
xxxx +Q15U

−
xxxxx,

U+
xxxxxx = Q16U

−
x +Q17U

−
xx +Q18U

−
xxx +Q19U

−
xxxx +Q20U

−
xxxxx

+Q21U
−
xxxxxx

(11)

where

Q1 = −GA−,

Q2 = G2
(
−B(1)

+ GA− +B
(1)
−

)
,

Q3 = G2B
(2)
− ,

Q4 = G3(−C(1)
+ Q1 + C

(1)
− − C(2)

+ Q2),

Q5 = G3(−C(2)
+ Q3 + C

(2)
− ),

Q6 = G3C
(3)
− ,

Q7 = G4(−D(1)
+ Q1 +D

(1)
− −D

(3)
+ Q4 −D(2)

+ Q2),

Q8 = G4(−D(2)
+ Q3 −D(3)

+ Q5 +D
(2)
− ),

Q9 = G4(−D(3)
+ Q6 +D

(3)
− ),

Q10 = G4D
(4)
− ,

Q11 = G5(−E(1)
+ Q1 − E(2)

+ Q2 − E(3)
+ Q4 − E(4)

+ Q7 + E
(1)
− ),

Q12 = G5(−E(2)
+ Q3 − E(3)

+ Q5 − E(4)
+ Q8 + E

(2)
− ),

Q13 = G5(−E(3)
+ Q6 − E(4)

+ Q9 + E
(3)
− ),

Q14 = G5(−E(4)
+ Q10 + E

(4)
− ),

Q15 = G5E
(5)
− ,

Q16 = G6(−F (1)
+ Q1 − F (2)

+ Q2 − F (3)
+ Q4 − F (4)

+ Q7 − F (5)
+ Q11 + F

(1)
− )

Q17 = G6(−F (2)
+ Q3 − F (3)

+ Q5 − F (4)
+ Q8 − F (5)

+ Q12 + F
(2)
− )

Q18 = G6(−F (3)
+ Q6 − F (4)

+ Q9 − F (5)
+ Q13 + F

(3)
− )

Q19 = G6(−F (4)
+ Q10 − F (5)

+ Q14 + F
(4)
− )

Q20 = G6(−F (5)
+ Q15 + F

(5)
− )

Q21 = G6F
(6)
−

(12)

where G = (−A+)−1 and the other matrices have already been introduced in
previous sections.

4 Approximation at the interface for acoustic equation

We first investigate the approximation of the solution at the irregular points
for the case of piecewise constant coefficients. At these points we impose the
same method as (6) and let the coefficients to be determined appropriately.
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Then we obtain seven unknown 2 × 2 matrices to maintain the sixth order
accuracy of the method. The details are presented at xJ and a similar ar-
gument is also applied to the other irregular points. The symbol J indicates
a fixed number corresponding to the interval (xJ , xJ+1) that contains the
interface α.

Theorem 4.1. If the coefficients of (6) satisfy the following linear system of
equations

4∑
l=1

αilΓJ,l +
7∑
l=5

αilΓJ,lDi = F−
i , (i = 0, 1, . . . , 6) (13)

where,

αil = (
rl
h
)i, (i = 0, 1, . . . , 6, l = 1, 2, . . . , 7) (14)

F−
i = (α14 − λA−)i − αi14, i = 0, 1, . . . , 6. (15)

then, the method (6) is of order 6 at the irregular point xJ .

Proof. To prove this result we consider the local truncation error at xJ up
to sixth order

L =
1

k

7∑
l=1

Γj,lUj+l−4 + (AUx −
1

2
kA2Uxx +

1

6
k2A3Uxxx −

1

24
k3A4Uxxxx

+
1

120
k4A5Uxxxxx −

1

720
k5A6Uxxxxxx)J +O(k6). (16)

Using the relation A2 = c2I we get

L =
1

k

7∑
l=1

Γj,lUj+l−4 + (AUx −
1

2
kc2Uxx +

1

6
k2c2AUxxx −

1

24
k3c4Uxxxx

+
1

120
k4c4AUxxxxx −

1

720
k5c6Uxxxxxx)J +O(k6). (17)

Now to proceed with the proof we need to expand each term of (17) up to
sixth order about x = α. To this end, we distinguish two sets of points in
first summation

Uj+l−4 = U− + rlU
−
x +

1

2
r2l U

−
xx +

1

6
r3l U

−
xxx +

1

24
r4l U

−
xxxx

+
1

120
r5l U

−
xxxxx +

1

720
r6l U

−
xxxxxx, 1 ≤ l ≤ 4, (18)
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Uj+l−4 = D0U
− + rlD1U

−
x +

1

2
r2lD2U

−
xx +

1

6
r3lD3U

−
xxx +

1

24
r4lD4U

−
xxxx

+
1

120
r5lD5U

−
xxxxx +

1

720
r6lD6U

−
xxxxxx) 5 ≤ l ≤ 7, (19)

where U− = limx→α− U(x, t), and

rl = xJ−4+l − α, (l = 1, 2, . . . 7).

Note that we have used the jump conditions (10) in (19). If we substitute
(18), (19) and similar expansions for other terms into (17) we obtain L as a
function of U−, U−

x , U−
xx, U

−
xxx, U

−
xxxx, U

−
xxxxx and U−

xxxxxx. Therefore, to
achieve sixth order accuracy we have to force the coefficients of these terms
to be zero. These systems of matrix equations are exactly the same as (13),
(14) and (15). □

In theorem 4.1, the unknown 2 × 2 matrices ΓJ,l, l = 1, 2, . . . , 7 will be
obtained by solving the linear system (13). These linear systems can be
easily converted to some lower order linear systems. As the matrices Dj ,
j = 1, . . . , 7, are diagonal it is possible to decouple these systems to four
7× 7 linear systems; e.g., the first 7× 7 linear system determines the scalar
unknowns (ΓJ,l)11, l = 1, 2, . . . , 7. In fact, because of this property, there
are only two different coefficient matrices in these four systems of linear
equations. These properties are valid at all irregular points. It should be
mentioned that in the tested numerical problems we did not get any ill-
conditioning warning due to the coefficient matrices. On the other irregular
points similar relations can be derived. So, at the grid point J−1 one obtains,

5∑
l=1

αilΓJ−1,l +
7∑
l=6

αilΓJ−1,lDi = F−
i , (i = 0, 1, . . . , 6)

where,

αil = (
rl
h
− 1)i, (i = 0, 1, . . . , 6, l = 1, 2, . . . , 7).

At the grid point J − 2 we have

6∑
l=1

αilΓJ−2,l + αi7ΓJ−2,lDi = F−
i , (i = 0, 1, . . . , 6)

where,

αil = (
rl
h
− 2)i, (i = 0, 1, . . . , 6, l = 1, 2, . . . , 7).

At the grid point J + 1 we have
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3∑
l=1

αilΓJ+1,lD
−1
i +

7∑
l=4

αilΓJ+1,l = F+
i , (i = 0, 1, . . . , 6)

where,

αil = (
rl
h

+ 1)i, (i = 0, 1, . . . , 6, l = 1, 2, . . . , 7).

At the grid point J + 2 we obtain

2∑
l=1

αilΓJ+2,lD
−1
i +

7∑
l=3

αilΓJ+2,l = F+
i , (i = 0, 1, . . . , 6)

where,

αil = (
rl
h

+ 2)i, (i = 0, 1, . . . , 6, l = 1, 2, . . . , 7).

At the grid point J + 3 we have

αi1ΓJ+3,1D
−1
i +

7∑
l=2

αilΓJ+3,l = F+
i , (i = 0, 1, . . . , 6)

where,

αil = (
rl
h

+ 3)i, (i = 0, 1, . . . , 6, l = 1, 2, . . . , 7).

The given formulation of the immersed interface method demonstrates the
possibility of the direct extension of these relations to higher orders. The
closed form formulas for right hand side matrices (15) are valid for lower
and higher order formulations. For higher order methods α14 should only be
replaced with a new one; for example, this element for fourth order method
is α13. The proof of the following theorem is similar to Theorem 4.1 and so
we omit it.

Theorem 4.2. If the coefficient matrices of (6) satisfy the following system
of matrix equations

m∑
l=1

αilΓj,lD
−1
i +

M+1∑
l=m+1

αilΓj,l = F ∗
i , (i = 0, 1, . . . ,M − 1)

where for j ≤ J , F ∗
i = F−

i D
−1 and for j ≥ J + 1, F ∗

i = F+
i . Then, the

method (6) gives aM th order approximation of the solution of (1) at irregular
grid xj.

Now we extend Theorem 4.1 to the case where the coefficients are piece-
wise smooth. The local truncation error for a general piecewise smooth co-
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efficient at xJ can be represented as follows

L =
1

k

7∑
l=1

Γj,lUj+l−4

−
(
T (1)Ux + kT (2)Uxx + k2T (3)Uxxx + k3T (4)Uxxxx

+k4T (5)Uxxxxx + k5T (6)Uxxxxxx

)
J
+O(k6).

where

T (1) = −A+
1

2
kB(1) +

1

6
k2C(1) +

1

24
k3D(1) +

1

120
k4E(1) +

1

720
k5F (1),

T (2) =
1

2
B(2) +

1

6
kC(2) +

1

24
k2D(2) +

1

120
k3E(2) +

1

720
k4F (2),

T (3) =
1

6
C(3) +

1

24
kD(3) +

1

120
k2E(3) +

1

720
k3F (3),

T (4) =
1

24
D(4) +

1

120
kE(4) +

1

720
k2F (4),

T (5) =
1

120
E(5) +

1

720
kF (5),

T (6) =
1

720
F (6).

To obtain a sixth order method it is required that the matrices ΓJ,l satisfy
the following linear matrix system

4∑
l=1

αi,lΓJ,l +
7∑
l=5

αi,lΓJ,lQ
(i,l) = Ri, i = 1, 2, . . . , 7. (20)

where

Q(1,l) = I,

Q(2,l) = Q1 +
1

2
rlQ2 +

1

6
r2lQ4 +

1

24
r3lQ7 +

1

120
r4lQ11 +

1

720
r5lQ16,

Q(3,l) = Q3 +
1

3
rlQ5 +

1

12
r2lQ8 +

1

60
r3lQ12 +

1

360
r4lQ17,

Q(4,l) = Q6 +
1

4
rlQ9 +

1

20
r2lQ13 +

1

120
r3lQ18,

Q(5,l) = Q10 +
1

5
rlQ14 +

1

30
r2lQ19,

Q(6,l) = Q15 +
1

6
rlQ20,

Q(7,l) = Q21.

and
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R1 = 0,

R2 = νT (1),

R3 = 2να1,4T
(1) + 2ν2T (2),

R4 = 3να2,4T
(1) + 6ν2α1,4T

(2) + 6ν3T (3),

R5 = 4να3,4T
(1) + 12ν2α2,4T

(2) + 24ν3α1,4T
(3) + 24ν4T (4),

R6 = 5να4,4T
(1) + 20ν2α4,3kT

(2) + 60ν3α4,2T
(3) + 120ν3α4,1T

(4) + 120ν4T (5),

R7 = 6να5,4T
(1) + 30ν2α4,4T

(2) + 120ν3α3,4T
(3) + 360ν4α2,4T

(4)

+720ν5α1,4T
(5) + 720ν6T (6).

We note that the matrices Q(i,l) are diagonal 2×2 matrices and it is possible
to solve the linear systems (20) in a similar way as discussed before.

At the irregular point xJ+1 we have

3∑
l=1

αi,lΓJ,lQ̂
(i,l) +

7∑
l=4

αi,lΓJ,l = Ri, i = 1, 2, . . . , 7.

where

Q̂(1,l) = I,

Q̂(2,l) = Q−1
1 +

1

2
rlQ

−1
2 +

1

6
r2lQ

−1
4 +

1

24
r3lQ

−1
7 +

1

120
r4lQ

−1
11 +

1

720
r5lQ

−1
16 ,

Q̂(3,l) = Q−1
3 +

1

3
rlQ

−1
5 +

1

12
r2lQ

−1
8 +

1

60
r3lQ

−1
12 +

1

360
r4lQ

−1
17 ,

Q̂(4,l) = Q−1
6 +

1

4
r4lQ

−1
9 +

1

20
r2lQ

−1
13 +

1

120
r3lQ

−1
18 ,

Q̂(5,l) = Q−1
10 +

1

5
rlQ

−1
14 +

1

30
r2lQ

−1
19 ,

Q̂(6,l) = Q−1
15 +

1

6
rlQ

−1
20 ,

Q̂(7,l) = Q−1
21 .

Similar formulae can be deduced for other irregular points.

5 Numerical Results

In this section, some test problems are given to show the efficiency of the
derived high order method. The simulation results are given for different
cases. The test problems Test 1 and Test 2 illustrate general behavior of the
solution of the acoustic wave equation at the interface. Also, the numerical
results of the test problem Test 4 ( in two cases 4-1, 4-2) are given for the
acoustic wave equation with piecewise smooth coefficients. The parameter
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values, the function f(x), and the CFL number are clearly specified in each
test problem. The numerical order of accuracy and L1 and L∞ errors are
reported for the test problem Test 3, see Table 1, which verifies numerically
the long time behavior of this approximation. The test problem Test 5 shows
the numerical stability of the method. The computational cost for the calcu-
lation of the coefficient matrices at irregular points is independent of N, the
number of spatial grid points in the discretization. The coefficient matrices
can be computed in a couple of milliseconds on a desktop computer.

The numerical results are given for the following acoustic wave equation
problem [3]:
If x < α :

u(x, t) =
1

ρlcl
(f(t− x− α

cl
) +

ρlcl − ρrcr
ρlcl + ρrcr

f(t+
x− α
cl

)),

p(x, t) = f(t− x− α
cl

)− ρlcl − ρrcr
ρlcl + ρrcr

f(t+
x− α
cl

), (21)

and if α ≤ x :

u(x, t) =
2

ρlcl + ρrcr
f(t− x− α

cr
),

p(x, t) =
2ρrcr

ρlcl + ρrcr
f(t− x− α

cr
), (22)

where, f(x) is a smooth function.

Test 1: In this test, we consider f(x) = e−200(x2−1/2)2 and the parameters
are chosen as α = 0, ρl = −1,ρr = −1.5, cl = 1, cr = 0.5. Figures 1 and
2 illustrate numerical and exact solutions for u and p with N = 320 and
cmaxλ = 0.8. There are two gaussian pulses going to the right and a
pulse hits the interface and then transmits with a generated reflecting
pulse. The CFL number in this case is about one and there is no
spurious oscillation.

Test 2: In this test, problem we consider a rather high frequency function
f(x) = sin(30x) with parameters α = 0, ρl = 0.5, ρr = 1.0, cl =
0.8, cr = 1.0. Figures 3 and 4 illustrate numerical and exact solutions
for u and p with N = 320 and cmaxλ = 0.8. After hitting the interface
the magnitudes of velocity and pressure are changed.

Test 3: To illustrate the long time behavior of this method, we consider
the jump f(x) = sin(πx), as initial data for acoustic equations with
α = π

2 , and the same parameters as in Test 2. The numerical results
are reported in Table 1 for several values of N at t = 50π. The nu-
merical order of accuracy and L1 and L∞ errors are presented in this
Table in which LaxW-IIM denotes the Lax-Wendroff immersed inter-
face method.
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Figure 1: Test 1: Numerical(.) and exact(-) solutions for u and p at t = 0.4

It is well known that a typical high order method provides first order
results for interface problems[14, 15]. In Table 2, we show the result
of eliminating of jump conditions and using the high order numerical
method (6) without interface treatment. We can clearly see that the
results are at most first order.

Table 1: (Test 3) The L1, L∞ errors and the numerical order of accuracy for LaxW-IIM
method over the whole interval and the same quantities at irregular points for f(x) =
sin(πx) at t = 50π are reported

N LaxW-IIM Irregular points

L1 error order L∞ error order L1 error order L∞ error order
15 8.37E-001 1.56E-001 2.44E-001 1.06E-001
30 4.03E-002 4.17 3.32E-003 4.89 6.92E-003 4.89 1.81E-003 5.58
60 1.11E-003 5.06 4.14E-005 5.46 1.43E-004 5.46 3.05E-005 5.75
120 3.05E-005 5.12 5.26E-007 5.85 2.37E-006 5.85 4.42E-007 6.04
240 8.90E-007 5.07 7.18E-009 5.98 3.67E-008 5.98 6.54E-009 6.04

Test 4: In this test, problem we consider two variable coefficient problems.
Let us define a general form of the variable coefficient,

(ρ(x), c(x)) =

{
(ρ− + f1(x), c

− + g1(x)), x < α,
(ρ+ + f2(x), c

+ + g2(x)), x > α.
(23)
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Figure 2: Test 1: Numerical(.) and exact(-) solutions for u and p at t = 0.8

Table 2: (Test 3) The L1, L∞ errors and the numerical order of accuracy for method

in equation (6) over the whole interval and the same quantities at irregular points for
f(x) = sin(πx) at t = 50π, without interface treatment, are reported

N LaxW-IIM Irregular points

L1 error order L∞ error order L1 error order L∞ error order
15 7.91E+000 2.35E+000 5.17E+000 2.35E+000
30 3.84E+000 0.99 8.60E-001 1.57 1.65E+000 1.57 8.16E-001 1.45
60 4.19E+000 0.12 3.56E-001 1.14 7.33E-001 1.14 3.56E-001 1.17
120 4.29E+000 0.03 1.84E-001 0.92 3.84E-001 0.92 1.84E-001 0.94
240 4.33E+000 0.01 9.24E-002 0.97 1.95E-001 0.97 9.24E-002 0.99

where f1, f2, g1 and g2 are arbitrary and smooth functions which vanish
at x = α and ρ−, ρ+, c− and c+ are constants.

To illustrate the behavior of the numerical solution near the interface,
we consider the following two sets of functions and we show the numer-
ical quality of solution for the first set through some figures and for the
second set of functions Table 4 is given in which the order of accuracy
is reported numerically.

1. The first coefficient set:
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Figure 3: Test 2: Numerical(.) and exact(-) solutions for u at t = 2.5
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Figure 4: Test 2: Numerical(.) and exact(-) solutions for p at t = 2.5

f1(x) = (x+ 1) sin(x− α), (24)

g1(x) = (x+ 1)(x− α),
f2(x) = (x− 1) sin(x− α),
g2(x) = (x− 1)(x− α).

2. The second coefficient set:

f1(x) = 0, (25)

g1(x) = 0,

f2(x) = 0,

g2(x) = −6(e
x

c+ − 1).
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Table 3: Jumps in the coefficients of Test 4-1

k f
(k)
1 (0−) f

(k)
2 (0+) g

(k)
1 (0−) g

(k)
2 (0+) ρ(k)(0−) ρ(k)(0+) c(k)(0−) c(k)(0+)

0 0 0 0 0 0.5 1 0.8 1
1 1 -1 1 -1 1 -1 1 -1
2 2 2 2 2 2 2 2 2
3 -1 1 0 0 -1 1 0 0
4 -4 -4 0 0 -4 -4 0 0
5 1 -1 0 0 1 -1 0 0

The parameters for the first set are the same as in Test 2 and for the

second one we consider c− = 1, c+ = 1+
√
5

2 , ρ− = 1, ρ+ = −6. The
details of the jump discontinuities of the first coefficient set (24) are
reported in Table 3. From Table 3 it is clearly seen that the first order
derivatives of ρ and c are discontinuous and since c is a polynomial, its
higher order derivatives become zero while the higher derivatives of ρ
are discontinuous.

Figures 5 and 6 for (24) illustrate the quality of the numerical solutions
for u and p with N = 320 and cmaxλ = 0.8. This behavior confirms
that the method has been able to successfully capture the solution near
the interface without any spurious oscillations.

The numerical order of accuracy and errors for (25), the second coeffi-
cient set, has been shown in Table 4 for the final time t = 0.5 with the
following initial data,

u(x, 0) =

{
2e−x − ex, x ≤ 0,
e0.8x, x > 0

, p(x, 0) =

{
2e−x + ex, x ≤ 0,
3e2x, x > 0.

(26)

It should be mentioned that the results of Table 4 have been obtained
by implementing our formulations with exact coefficients, confirming
that the true order of accuracy of the presented method for this type
of coefficients is also 6. Since the computation of jump conditions for
the case of piecewise constant coefficients is simple, in practice one
might prefer to use some approximation of the exact coefficients in the
implementation.

Since the obtained approximation is close to the exact coefficient, the order of
accuracy of the numerical results obtained by the method of this paper should
be closer to the true 6th order. We have examined the presented method
using best uniform approximation of degree zero for the coefficients near the
interface and we obtained an order of accuracy of at least 2. We expect
to get a solution of higher order of accuracy if the best uniform polynomial
approximation of a higher degree is used.
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Figure 5: Test 4-1: Quality of the numerical solution for u at t = 2.5
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Figure 6: Test 4-1: Quality of the numerical solution for p at t = 2.5
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Table 4: (Test 4-2) The L1, L∞ errors and the numerical order of accuracy for LaxW-IIM
method
N u p

L1 error order L∞ error order L1 error order L∞ error order
16 2.45e-006 - 1.35e-006 - 2.66e-005 - 1.35e-005 -
32 2.52e-007 3.28 3.10e-008 5.45 9.21e-007 4.85 2.76e-007 5.61
64 9.69e-009 4.70 4.71e-010 6.04 2.80e-008 5.04 5.09e-009 5.76
128 3.26e-010 4.89 7.10e-012 6.05 8.94e-010 4.97 8.74e-011 5.86
256 1.15e-011 4.82 1.15e-013 5.94 3.09e-011 4.85 1.49e-012 5.87

5.1 Numerical stability

A general stability analysis has no direct answer for the given method. Von
Neumann stability analysis does not work in this situation, because the co-
efficients change in a nonsmooth way. So, we are left as an open problem
verifying stability using either the energy method or the GKS theory [3, 7].
But here we illustrate the numerical stability of the method through some
numerical experiments. The long time behavior of the method, which is very
important factor in real problems has been illustrated for Test 5. The results,
also, justify the order of accuracy of the method. In this experiment, we have
considered several examples of random initial conditions and reported their
results in Figure 7. In this figure the norm of the solutions u and p are given
versus k

h , showing that they do not increase proportional with k
h . So, our

method does not show instability, because a relative growth of the solution
with respect to this factor is a sign of instability [7].

A Von Neumann stability analysis with frozen coefficients provide a rea-
sonable results on the choice of the Courant number. The influence matrix
for stability analysis is the following block toeplitz matrix

G =



I + Γ4 Γ5 Γ6 Γ7

Γ3 I + Γ4 Γ5 Γ6 Γ7

Γ2 Γ3 I + Γ4 Γ5 Γ6 Γ7

Γ1 Γ2 Γ3 I + Γ4 Γ5 Γ6 Γ7

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . . Γ7

. . .
. . .

. . .
. . .

. . . Γ6

. . .
. . .

. . .
. . . Γ5

Γ1 Γ2 Γ3 I + Γ4


.

Note that with frozen coefficients, the coefficient matrix A(x) is independent
of α and therefor the coefficient matrices Γj,l are independent of j and we
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eliminate this index for simplicity. For linear stability the eigenvalues of G
should lie in the unit circle in the complex plane. We numerically locate the
eigenvalues of G. This matrix depends on A(x) and λ. Therefor we report
the stability results for several values of these parameters.

Table 5: The norm of eigenvalues of influence matrix for different values of parameters.
The letter p denotes the periodic boundary conditions

λ c ρ ρ(G) ρ(Gp)
1.000 1.000 −1.000 0.543 1.500
2.000 0.500 −1.500 0.554 0.658
1.250 0.800 0.500 0.837 1.187
1.000 1.000 1.000 0.558 1.500

We remark that the boundary conditions have important role in the sta-
bility of the problem. In the case of frozen coefficients, i.e. A(x) = A+ or
A(x) = A−, the results are shown in the Table 5. In this case we can choose
λ large enough for different values of A(x). While, a comparison between
different rows of this table shows that in general the eigenvalues are nonde-
creasing with variation of parameters. Therefor, for nonsmooth coefficients
that the situation is more complicated, the inequality maxx{|c(x)|, 1} kh < 1
is a reasonable criteria and numerical tests confirm that this criteria in our
test problems.

Test 5: In this test we consider an initial condition u(xj , 0) = Rje
−6(

xj−α

5h )2

and v(x, 0) = 2u(x, 0), where Rj are uniformly distributed random
numbers in the interval [0, 1]. This example is a variant of a similar one
dimensional case in [7]. The parameters are cl = 1.0, cr = 0.5, ρl =
2.5, ρr = 10.0, N = 1000 and cmaxλ = 0.99. The results are given
in Figure 7, which is a typical test among many other tests. There
are no noise generation visible near the interface and the norms of the
solutions do not grow with k

h .

5.2 Two dimensional problems

Implementation of high order interface method for two dimensional acous-
tic wave equations requires high order jump conditions on the interface. In
most applications the standard jump conditions are available in the litera-
ture. Such jump conditions are usually given in the normal and tangential
directions to the interface. Therefor, we need to define a local coordinate in
a typical point on the interface to obtain the required approximations at the
interface(see Figure 8). This is done after transformation of the equation to
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Figure 7: Test 5: The norm and the solution after a long time

the new local coordinate system in ξ− η plane. The same formulation in one
dimensional case will direct us to the set of equations to be solved for the 2D
and 3D cases.

6 Conclusions and discussions

In this paper, we have presented a sixth order immersed interface method for
acoustic wave equation with discontinuous coefficient. The effect of piecewise
constant and a more general piecewise smooth coefficients on the derived for-
mulations has been investigated. We have also provided different numerical
tests which confirm the efficiency of the method and justify their order of
accuracy and numerical stability. It should be mentioned that, using jump
conditions do not impose a considerable computational cost in the calcula-
tions and one should only solve some low order linear systems to obtain the
coefficients. In fact, the special treatment of the interface is a preprocessing
stage in the implementation of immersed interface method and without loss
of overall speed of computation it is also applicable in the parallel comput-
ers. In the numerical results, we applied the Lax-Wendroff method for time
discretization. However, the weighted essentially nonoscillatory(WENO) and
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ij

ξη

Figure 8: Local coordinates in a two dimensional grid with a curve interface

the total variation diminishing(TVD) methods[6, 9] reduce the possible os-
cillations in the solution. These methods recently have been added to the
CLAWPACK software [9] for numerical solution of conservation laws.
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Numerical solution of stiff systems of
differential equations arising from

chemical reactions

G. Hojjati∗, A. Abdi, F. Mirzaee and S. Bimesl

Abstract

Long time integration of large stiff systems of initial value problems, aris-

ing from chemical reactions, demands efficient methods with good accuracy
and extensive absolute stability region. In this paper, we apply second deriva-
tive general linear methods to solve some stiff chemical problems such as
chemical Akzo Nobel problem, HIRES problem and OREGO problem.

Keywords: General linear methods; Ordinary differential equation; Chem-
ical reactions; Stiff systems.

1 Introduction

Chemical reaction mechanisms often include individual steps with very dif-
ferent reaction rates. Mathematically, this means that the corresponding
ordinary differential equations (ODEs) are likely to be stiff, since the dif-
ferent components of the system have dramatically different time constants.
Moreover, these systems are often nonlinear [4].

In the last 40 years or so, numerous works have been focusing on the
development of more advanced and efficient methods for stiff problems. A
potentially good numerical method for the solution of stiff systems of ODEs
must have good accuracy and some reasonably wide region of absolute stabil-
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ity. A-stability requirement puts a severe limitation on the choice of suitable
methods for stiff problems.

Traditional numerical methods for solving an initial value problem gener-
ally fall into two main classes: linear multistep (multivalue) and Runge–Kutta
(multistage) methods. In 1966, Butcher [5] introduced general linear meth-
ods (GLMs) as a unifying framework for the traditional methods to study
the properties of consistency, stability and convergence, and to formulate new
methods with clear advantages over these classes.

On the other hand, one of the main directions to construct methods with
higher order and extensive stability region, is using higher derivatives of the
solutions, and some methods have been introduced that have good properties,
especially for stiff problems. See [7, 8, 9]. Although GLMs include linear
multistep methods, Runge–Kutta and many other standard methods, but
they were extended to second derivative general linear methods (SGLMs) to
cover second derivative methods, too. These methods were introduced by
Butcher and Hojjati in [6] and were studied more by Abdi and Hojjati in [1,
2, 3]. There are several interrelated aims in the use of such methods, such as
high orders and stage orders, high accuracy, low error constants, satisfactory
stability properties, such as A-stability or L-stability and low implementation
costs. In [3], the efficiency of SGLMs are shown by comparing the accuracy
versus stepsize and the number of function evaluations of SGLMs with those
of SDIRK methods. These advantages of SGLMs motivate us to apply them
for solving large stiff systems of initial value problems arising from chemical
reactions.

The rest of the paper is organized as follows. In Section 2, we recall the
basic concepts and theory of SGLMs. In Section 3, we introduce types of
SGLMs and give an SGLM of order 3. In Section 4, we apply the method
to solve some important initial value problems that arise from mathematical
modeling of chemical reaction and give numerical results, and the paper is
closed in Section 5 by concluding and giving ideas for future work.

2 A review on the SGLMs

In this section, we give a brief review of SGLMs for the numerical solution
of an autonomous system of ordinary differential equation

y′ = f(y(x)), y : R→ Rm, f : Rm → Rm. (1)

These methods are characterized by four integers: (p, q, r, s) where p and
q are respectively order and stage order of the method, r is the number of
input and output approximations, and s is the number of internal stages. Let

Y [n] = [Y
[n]
i ]si=1 be an approximation of stage order q to the vector y(xn−1+

ch) = [y(xn−1+cih)]
s
i=1 and the vectors f(Y [n]) = [f(Y

[n]
i )]si=1 and g(Y

[n]) =
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[g(Y
[n]
i )]si=1 denote the stage first and second derivative values, where g(·) =

f ′(·)f(·). The ci’s represent position of the internal stages within one step.
The vector c = [c1 c2 · · · cs]T is called the abscissa vector. Also, let denote

by y[n−1] = [y
[n−1]
i ]ri=1 and y[n] = [y

[n]
i ]ri=1 the input and output vectors at

step number n, respectively. An SGLM used for the numerical solution of
(2) is given by

Y
[n]
i = h

s∑
j=1

aijf(Y
[n]
j ) + h2

s∑
j=1

aijg(Y
[n]
j ) +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, · · · , s,

y
[n]
i = h

s∑
j=1

bijf(Y
[n]
j ) + h2

s∑
j=1

bijg(Y
[n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, · · · , r,

(2)

where n = 1, 2, · · · , N, Nh = x − x0 and h is the stepsize. We denote
A = [aij ], A = [aij ], U = [uij ], B = [bij ], B = [bij ] and V = [vij ].

We now state the fundamental theorem on SGLMs.

Theorem 2.1 [1] The necessary and sufficient conditions for an SGLM to
be convergent are that it be consistent and zero-stable.

The derivation of order and stage order conditions for general p and q
is quite complicated. However, this analysis is quite simple for methods of
stage order q = p. In this case, the order and stage order conditions can be
expressed conveniently using the theory of functions of a complex variable.
We have the following theorem on order conditions.

Theorem 2.2 [2] The SGLM (2) with

y
[n−t]
i =

p∑
k=0

hkαiky
(k)(xn−t) +O(hp+1), i = 1, 2, · · · , r, t = 0, 1,

has order p and stage order q = p if and only if

exp(cz) = zA exp(cz) + z2A exp(cz) + Uw +O(zp+1), (3)

exp(z)w = zB exp(cz) + z2B exp(cz) + V w +O(zp+1), (4)

where ecz = [ec1z, ec2z, · · · ecsz]T and w = w(z) = [
∑p
k=0 αikz

k]ri=1.

The stability behavior of SGLMs is defined using the standard test prob-
lem of Dahlquist y′(x) = ξy(x), where ξ is a (possibly complex) number. If
method (2) is applied to this problem, then the stability matrix is

M(z) = V +
(
zB + z2B

)(
I − zA− z2A

)−1
U, (5)
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where z = hξ. If M(z) has only a single non-zero eigenvalue, R(z), then the
method is said to possess Runge–Kutta stability (RKS).

3 Types of SGLMs and an example

It is convenient to write coefficients of the method, that is elements of A, A,
U , B, B and V as a partitioned (s+ r)× (2s+ r) matrix[

A A U

B B V

]
.

It is desirable to impose some restrictions on the matrices A and A to ensure
that the stages of the method can be evaluated independently and sequen-
tially [1]. Thus these two matrices will be chosen to be of lower triangular
form. Furthermore, to lower implementation costs we will assume that each
of A and A have constant diagonal elements. In [1] the authors by consid-
ering SGLMs in diagonally implicit multi-stage form, which the matrices A
and A have the lower triangular form

A =


λ
a21 λ
...

...
. . .

as1 as2 · · · λ

 , A =


µ
a21 µ
...

...
. . .

as1 as2 · · · µ

 ,
have divided SGLMs into four types, depending on the nature of the dif-
ferential system to be solved and the computer architecture that is used to
implement these methods. Types 1 and 2 are those with arbitrary aij and
aij where λ = µ = 0 and λ > 0, µ < 0, respectively. Such methods are ap-
propriate respectively for nonstiff and stiff differential systems in a sequential
computing environment. For type 3 or 4 methods, A = λI and A = µI, where
λ = µ = 0 or λ > 0, µ < 0, respectively. Such methods are appropriate for
nonstiff or stiff differential systems in a parallel computing environment.

Second derivative diagonally implicit multistage integration methods
(SDIMSIMs) as a subclass of SGLMs have been introduced in [2]. They
are characterized by the following properties:

• Coefficients matrices A and A are lower triangular with the same pa-
rameters λ and µ on the diagonal respectively.

• Coefficients matrix V is a rank 1 matrix with nonzero eigenvalue equal
to 1 to guarantee preconsistency.

• Order p, stage order q, number of external stages r, and the number of
internal stages s are all approximately equal.
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SDIMSIMs can be divided into four types according to the above classification
of SGLMs [1]. These four types, together with their intended applications
and architectures, are shown in Table 1.

Table 1: Types of SDIMSIMs with their intended applications and architectures
Type 1 A strictly lower triangular A strictly lower triangular nonstiff sequential
Type 2 A− λI strictly lower triangular A− µI strictly lower triangular stiff sequential
Type 3 A = 0 A = 0 nonstiff parallel
Type 4 A = λI A = µI stiff parallel

An SDIMSIM with p = q = 3 and r = s = 2

We consider an SDIMSIM with p = q = 3, r = s = 2, U = I and V = evT

for which veT = 1. This method which has been introduced in [2], is A- and
L-stable. The abscissa vector of the method is c = [0 1]T and its coefficients
are given by the partitioned matrix

2
5 0 − 1

12 0 1 0

55
27

2
5 − 7

27 − 1
12 0 1

2737
2700

9
100 − 7

270 0 9
10

1
10

217
2700 −

37
2700 −

293
540 −

31
540

9
10

1
10

 . (6)

We apply this method to solve some important initial value problems which
exhibit stiffness and arise from mathematical modeling of chemical reactions.
Other efficient methods in this class can be found in [1, 2, 3].

4 Numerical solution of stiff chemical problems

In this section, we apply the method (6) on some famous chemical problems
to show its efficiency.



30 G. Hojjati, A. Abdi, F. Mirzaee and S. Bimesl

4.1 Chemical Akzo Nobel problem

General information

This initial value problem is a stiff system of 6 non-linear differential equa-
tions. It has been taken from [10].

Mathematical description of the problem

The problem is of the form

dy

dt
= f(y), y(0) = y0, (7)

with
y ∈ R6, 0 ≤ t ≤ 180. (8)

The function f is defined by

f(y) =


−2r1 + r2 − r3 − r4
−1

2r1 − r4 −
1
2r5 + Fin

r1 − r2 + r3
−r2 + r3 − 2r4
r2 − r3 + r5
−r5

 ,

where the ri and Fin are auxiliary variables, given by

r1 = k1 · y41 · y
1
2
2 , k1 = 18.7,

r2 = k2 · y3 · y4, k2 = 0.58,

r3 =
k2
K
· y1 · y5, K = 34.4,

r4 = k3 · y1 · y24 , k3 = 0.09,

r5 = k4 · y26 · y
1
2
2 , k4 = 0.42,

Fin = klA ·
(p(O2)

H
− y2

)
, klA = 3.3, (9)

p(O2) = 0.9, H = 737.

Finally, the initial vector y0 is given by

y0 = (0.437, 0.00123, 0, 0, 0, 0.367)T .
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Origin of the problem

The problem originates from Akzo Nobel Central Research in Arnhem, The
Netherlands. It describes a chemical process, in which 2 species, MBT and
CHA, are mixed, while oxygen is continuously added. The resulting species
of importance is CBS. The reaction equations, as given by Akzo Nobel, are

2MBT + 1
2O2

k1
→MBTS +H2O

CBS +MBT
k2/K
⇄
k2

MBTS + CHA

MBT + 2CHA+O2

k3
→BT + sulfate

MBT + CHA+ 1
2O2

k4
→CBS +H2O

MBT + CHA⇄MBT.CHA.

The last equation describes an equilibrium

Ks1 =
[MBT.CHA]

[MBT ] · [CHA]
,

while the others describe reactions, whose velocities are given by

r1 = k1 · [MBT ]4 · [O2]
1
2 ,

r2 = k2 · [MBTS] · [CHA],

r3 =
k2
K
· [MBT ] · [CBS],

r4 = k3 · [MBT ] · [CHA]2,
r5 = k4 · [MBT.CHA]2 · [O2]

1
2 ,

respectively. Here the square brackets ‘[ ]’ denote concentrations. The inflow
of oxygen per volume unit is denoted by Fin, and satisfies

Fin = klA ·
(p(O2)

H
− [O2]

)
,

where klA is the mass transfer coefficient, H is the Henry constant and
p(O2) is the partial oxygen pressure. p(O2) is assumed to be independent
of [O2]. The parameters k1, k2, k3, k4, K, klA, H and p(O2) are given
constants. The process is started by mixing 0.437 mol/liter [MBT ] with
0.367 mol/liter [MBT.CHA]. The concentration of oxygen at the beginning
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Figure 1: Chemical Akzo Nobel problem: numerical solution obtained by SDIMSIM of
order p = q = 3 and r = s = 2

is 0.00123 mol/liter. Initially, no other species are present. The simulation
is performed on the time interval [0 180minutes].

Identifying the concentrations [MBT ], [O2], [MBTS], [CHA], [CBS],
[MBT.CHA] with y1, . . . , y6 respectively, one easily arrives at the mathe-
matical formulation of the preceding subsection. Solution of this problem at
t = 180 using method (6) is reported in Table 2. Behavior of the solution
components is shown in Figure 1.

Table 2: Results of the Chemical Akzo Nobel problem at t = 180

yi Solution at t = 180
y1 0.116160227121356
y2 0.001119418167053
y3 0.162126172160781
y4 0.003396981306527
y5 0.164618511821187
y6 0.198953326600100
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4.2 Problem HIRES

General information

This initial value problem is a stiff system of 8 non-linear differential
equations. It was proposed by Schäfar in 1975. The name HIRES was given
by Hairer and Wanner [13]. It refers to “High Irradiance Response”, which
is described by this IVP ODE.

Mathematical description of the problem

The problem is of the form

dy

dt
= f(y), y(0) = y0,

with
y ∈ R8, 0 ≤ t ≤ 321.8122.

The function f is defined by

f(y) =



−1.71y1 + 0.43y2 + 8.32y3 + 0.0007
1.71y1 − 8.75y2
−10.03y3 + 0.43y4 + 0.035y5
8.32y2 + 1.71y3 − 1.12y4
−1.745y5 + 0.43y6 + 0.43y7
−280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7
280y6y8 − 1.81y7
−280y6y8 + 1.81y7


. (10)

The initial vector y0 is given by

y0 = (1, 0, 0, 0, 0, 0, 0, 0.0057)T .

Origin of the problem

The problem originates from plant physiology and is described in [14]. It ex-
plains the ‘High Irradiance Response’ (HIRES) of Photomorphogenesis on the
basis of Phytochrome, by means of a chemical reaction involving 8 reactants.
The reaction scheme is given below.
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oks−−→ Pr
k1−−→
k2←−

Pfr,

k6 ↑ ↓ k3
PrX

k1−−→
k2←−

PfrX,

k5 ↑ ↓ k4
PrX

′ k1−−→
k2←−

PfrX
′
,

E + PrX
′ k2←− PfrX

′
E

k−−−−→
k+←−−

PfrX
′
+ E,

↓ k∗
Pfr +X

′
+ E.

The values of the parameters were taken from [13].

k1 = 1.71, k2 = 0.43, k3 = 8.32, k4 = 0.69, k5 = 0.035,
k6 = 8.32, k+ = 280, k− = 0.69, k∗ = 0.69, oks = 0.0007.

Identifying Pr, Pfr, PrX,PfrX,PrX
′
, PfrX

′
, PfrX

′
E and E with yi, i =

1, 2, · · · 8, respectively, the differential equations mentioned in (10) easily fol-
low. The obtained solution of this problem at the end of time interval is
reported in Table 3. Plots in the Figure 2 show the behavior of Pr, Pfr,

PrX, PfrX, PrX
′
, and PfrX

′
, computed using the method (6).

Table 3: Results of the problem HIRES at t = 321.8122

yi Solution at t = 321.8122
y1 0.73714105836× 10−3

y2 0.14425050468× 10−3

y3 0.58889121959× 10−4

y4 0.11756696043× 10−2

y5 0.23866504368× 10−2

y6 0.62398915376× 10−2

y7 0.28502050925× 10−2

y8 0.28497949075× 10−2
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Figure 2: Problem HIRES: numerical solution obtained by SDIMSIM of order
p = q = 3 and r = s = 2

4.3 Problem OREGO

General information

The problem consists of a stiff system of 3 non-linear ordinary differential
equations. The name Orego was given by Hairer and Wanner [13] and refers
to the Oregonator model which is described by this ODE. The Oregonator
model takes its name from the University of Oregon where in the 1972 Field,
Körös and Noyes [11] proposed this model for the Belousov–Zhabotinskii
reaction.

Mathematical description of the problem

The problem is of the form
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dy

dt
= f(y), y(0) = y0,

with
y ∈ R3, 0 ≤ t ≤ 360.

The function f is defined by

f(y) =


s(y2 − y1y2 + y1 − qy21)
1

s
(−y2 − y1y2 + y3)

w(y1 − y3)

 .

The values of the parameters s, q and w are

s = 77.27, w = 0.161, q = 8.375× 10−6.

The initial vector y0 is given by (1, 2, 3)T .

Origin of the problem

The OREGO problem originates from the celebrated Belousov–Zhabotinskii
(BZ) reaction. When certain reactions, like bromous acid, bromide ion and
cerium ion, are combined, they exhibit a chemical reaction which, after an
induction period of inactivity, oscillates with change in structure and in color,
from red to blue and viceversa.

The color changes are caused by alternating oxidation–reductions in which
the cerium switches its oxidation state from Ce(III) to Ce(IV ).

Field, Körös and Noyes formulated the following model for the most im-
portant parts of the kinetic mechanism that gives rice to oscillation in the BZ
reaction. This mechanism can be summarized as three concurrent processes
[12]:

• the reduction of Bromate (BrO−
3 ) to Bromine (Br) via the reducing

agent bromide (Br−). Bromomalonic acid (BrMA) is produced;

• the increase of hypobromous acid (HBrO2) at an accelerating rate and
the production of Ce(IV ). Here we have a sudden change in color from
red to blue;

• the reduction of Cerium catalyst Ce(IV ) to Ce(III). Here we have a
gradual change in color from blue to red.

Then, from this mechanism the following Oregonator scheme is obtained
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A+ Y → X + P r = k3AY
X + Y → 2P r = k2XY
A+X → 2X + 2Z r = k5AX
2X → A+ P r = k4X

2

B + Z → 1
2fY r = kcBZ

Here, using the conventional notation the assignments and the effective con-
centration are

hypobromous acid [HBrO2] = X 5.025× 10−11

Bromide [Br−] = Y 3.0× 10−7

Cerium − 4 [CE(IV )] = Z 2.412× 10−8

Bromate [BrO−
3 ] = A

all oxidizable organic species [Org] = B

[HOBr] = P

The reaction rate equations for the intermediate species X, Y , and Z are

dX

dt
= s(Y −XY +X − qX2),

dY

dt
=

1

s
(−Y −XY + fZ),

dZ

dt
= w(X − Z),

with f = 1, and s, w, and q as in the previous subsection.
Solution of this problem at t = 360 using method (6) is reported in Table

4. Behavior of the solution components is shown in Figure 3.

Table 4: Results of the OREGO problem at t = 360

yi Solution at t = 360
y1 0.1000814868842× 101

y2 0.1228180744895× 104

y3 0.1320568339839× 103

5 Conclusion

For stiff systems, because of the stability condition, the time step restriction
becomes severe, specially when they have to be integrated over long periods of
time. High order accuracy, good stability properties and low implementation
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Figure 3: Chemical OREGO problem: numerical solution obtained by SDIMSIM of
order p = q = 3 and r = s = 2

cost of the SGLMs make them to be successful in applying on large stiff
systems of initial value problems arising from chemical reactions. Although
the SGLMs are capable in giving accurate and stable results, as reported in
the numerical experiments, but in can be equipped by a strategy for adjusting
stepsize when the integration proceeds. It is the subject of our future works.
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A numerical technique based on
operational matrices for solving

nonlinear integro-differential equations

A. Golbabai

Abstract

This paper presents a computational method for solving two types of
integro-differential equations, system of nonlinear high order Volterra-Fredholm
integro-differential equation(VFIDEs) and nonlinear fractional order integro-
differential equations. Our tools for this aims is operational matrices of inte-

gration and fractional integration. By this method the given problems reduce
to solve a system of algebraic equations. Illustrative examples are included
to demonstrate the efficiency and high accuracy of the method.

Keywords: Operational matrix of integration; Volterra-Fredholm; Non-
linear system of integro-differential equations; Fractional order; Legendre
wavelet.

1 Introduction

Integro-differential equations frequently appear in all fields of sciences such
as physics, chemistry and engineering problems [11, 20, 23, 24]. In last few
decades fractional calculus and fractional differential equations have found
application in several different disciplines, many important phenomena in
electromagnetic, acoustics, viscolasticity, electrochemistry and material sci-
ence are well described by differentiable and integro differentiable equation
of fractional order[3, 22]. There are various numerical and analytical meth-
ods to solve such problems, for example, the homotopy perturbation method
[4, 7, 8, 9], the Adomian decomposition method [5], fractional differential
transform method [21] and Gronwald–Letnikov discretization method [6].

In recent years the approximation of orthogonal functions has been play-
ing role in the solution of different kinds of mathematical and engineering
problems such as identification, analysis and optimal control[15, 16, 18]. The
main feature of this technique is to reduce the integro-differential equations
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to a nonlinear algebraic equation by introducing integration matrix of basis
functions. In present article, we are concerned with the application of Leg-
endre wavelet to the numerical solution of:
(I). Nonlinear fractional order integro-differential equations

Dα
∗tu(t) = f(t) +

∫ x

0

K(t, u(t), Dα
∗tu(t))dt, 0 ≤ α < 1. (1)

(II). Nonlinear system of high order (VFIDe) of the form

n∑
j=0

pij(x)ul
(j)

(x) = fi(x) + λi1
∫ x
0
Ki1(x, t, u(t), u

′(t), . . . , u(n)(t))dt

+λi2
∫ 1

0
Ki2(x, t, u(t), u

′(t), . . . , u(n)(t))dt, i = 1, . . . , s,
(2)

where u(j)(x) =
(
u
(j)
1 , . . . , u

(j)
s

)
for j = 0, . . . , n and initial conditions are

u
(j)
i (0) = aj , j = 0, 1 . . . , n− 1, (3)

where f(x),K, Ki1 and Ki2 are known functions assumed to be in L2(R)
on the interval 0 ≤ x, t ≤ 1, u(t) is unknown, Ki1 and Ki2 are nonlinear in
x, t, u(t), . . . , u(n)(t). This type of equations whose integrand contain high
order derivatives arise in many fields such as theory of elasticity .

The article is organized as follows: in Section 2 we define the Legendre
wavelets and operational matrix of integration. Section 3 is devoted to the
solution of Eq. (1). In Section 4, we obtain an error bound for our method.
Section 5, include our numerical findings and demonstrate the accuracy of
the proposed scheme.

2 Preliminaries and notation

This section gives some necessary definition and mathematical preliminaries
of the fractional calculus theory which are used further in this paper. The
Riemann-Lioville fractional integration of order α > 0 is defined as [14]

Iαt f(t) =
1

Γ(α)

∫ t
0

f(τ)
(t−τ)(1−α)dτ,

I0t f(t) = f(τ),
(4)

and its fractional derivative of order α > 0 is normally used:

Dα
t f(t) = (

d

dt
)nIn−αt f(t) (n− 1 < α ≤ n), (5)

where n is an integer. For Riemann-Lioville definition, one has
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Iαt t
υ =

Γ(υ + 1)

Γ(α+ υ + 1)
tυ+α. (6)

The modified fractional differential operator Dα
∗t proposed by Caputo is

Dα
∗tf(t) =


1

Γ(n−α)
∫ t
0
(t− τ)n−α−1

f (n)(τ) (n− 1 < α ≤ n),

dn

dtn f(t) α = n ∈ N,
(7)

where n is an integer. Caputos integral operator has an useful property:

Iαt D
α
∗tf(t) = f(t)−

n−1∑
k=0

f (k)(0+)
tk

k!
, (n− 1 < α ≤ n), (8)

where n is an integer.

3 Properties of Legendre wavelet

3.1 Wavelets and Legendre wavelet

Wavelet constitute a family of functions constructed by a single function
called the mother wavelet. When the dilation parameter a and translation
parameter b vary continuously, we have the following family of continuous
wavelet as [10]

ψ(a,b) = |a|
−1/2

ψ(
t− b
a

), a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as a = a−m0 , b =
kb0a

−m
0 , a0 > 1, b0 > 0 and m, k ∈ Z.We have the following family of discrete

wavelets
ψm.k(t) = |a0|m/2ψ(am0 t− kb0),

where ψm.k(t) forms a wavelet basis for L2(R). In particular, when a0 = 2,
b0 = 1, ψm.k(t) forms an orthonormal basis.

The Legendre wavelets are defined on interval [0,1) see [16, 17].

ψnm=


√
m+ 1

22
k/2Lm(2kt− n̂), for n̂−1

2k
≤ t < n̂+1

2k
,

0 otherwise,

where m = 0, 1, . . .M − 1 and n = 1, 2, 3, . . . , 2k−1. The coefficient
√
m+ 1

2

is for orthogonality. Here, Lm(t) are the well-known Legendre polynomials
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of order m which are defined on the interval [- 1,1] and can be determined
with the aid of the following recurrence formulae:

L0(t) = 1, L1(t) = t,

Lm+1(t) = (
2m+ 1

m+ 1
)tLm(t)− (

m

m+ 1
)Lm−1(t), m = 1, 2, 3, . . .

3.2 Function approximation

Theorem. A function f(t) defined on [0,1) can be expanded as infinite sum
of Legendre wavelets, and the series converges uniformly to the function f(x),
that is

f(t) =
∞∑
n=1

∞∑
m=0

cnmψnm(t), (9)

where, cnm = (f(t), ψnm(t)), in which (., .) denote the inner product.
Proof. see[13].

If the infinite series in Eq. (9) is truncated, then it can be written as

f(t) ≃
2k−1∑
n=1

M−1∑
m=1

cnmψnm(t) = CTΨ(t), (10)

where C and Ψ(t) are 2M × 1 matrices given by

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M ]
T
, (11)

Ψ(t) = [ψ10, ψ11, . . . , ψ1M−1, ψ20, . . . , ψ2M−1, . . . , ψ2k−10, . . . , ψ2k−1M ]T .
(12)

Now we want to find an upper bound to the estimate error . Suppose that
f(x) is a (m + 1)−times differentiable function on Ω = [0, 1). An error
function between f(x) and its Legendre-wavelet approximation fnm(x) is
defined on every subinterval Ωn = [ n̂−1

2k
≤ t < n̂+1

2k
] as

enm(x) = f(x)− fnm(x) = f(x)− cnmψnm(x). (13)

Then we can write

∥enm(x)∥ 2 =

∫ n̂+1

2k

n̂−1

2k

|f(x)− cnmψnm(x)|2. (14)

Since ψnm(x) is a polynomial of degree m,we can use the error bound for
interpolation of degree m on Ωn that is
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|f(x)− pn(x)| ≤
h(m+1)

4(m+ 1)
max

ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣∣f (m+1)(ξ)
∣∣∣ , (15)

where h = 1
2km

.By Eq. (14)and Eq. (15)

∥enm(x)∥ 2 ≤
∫ n̂+1

2k

n̂−1

2k

∣∣∣∣∣ h(m+1)

4(m+1) max
ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣f (m+1)(ξ)
∣∣∣∣∣∣∣
2

≤ 1
2k

∣∣∣∣∣ h(m+1)

4(m+1) max
ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣f (m+1)(ξ)
∣∣∣∣∣∣∣
2 . (16)

According to above equation we find an error bound for each subinterval as

∥enm(x)∥ ≤ 1

2k/2
h(m+1)

4(m+ 1)
max

ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣∣f (m+1)(ξ)
∣∣∣. (17)

Then for error on Ω we get

∥e(x)∥ ≤ 1

2k/2
h(m+1)

4(m+ 1)
max
ξ∈[0,1]

∣∣∣f (m+1)(ξ)
∣∣∣. (18)

3.3 The Legendre wavelets operational matrix of
integration

The integration of the Vector defined in Eq.(12) can be obtained as∫ t

0

Ψ(t′)dt′ = PΨ(t), (19)

where P is the 2k−1M × 2k−1M operational matrix for integration [18]

P =
1

2k



L H H H · · · H
0 L H H · · · H
0 0 L H · · · H
...

...
...

. . .
. . . · · ·

0 0 0 · · · L H
0 0 0 0 · · · L


.

H and L are M ×M matrices given by :
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H =


2 0 · · · 0
0 0 · · · 0

· · · · · ·
. . .

...
0 0 · · · 0

 ,
and

L =



1 1
31/2

0 0 · · · 0 0 0

−31/2

3 0 31/2

3×51/2
0 · · · 0 0 0

0 − 51/2

5×31/2
0 51/2

5×71/2
0 0 0

0 0 − 71/2

7×51/2
0

. . . 0 0 0
...

...
...

...
. . .

. . .
. . .

...

0 0 0 0 · · · − (2M−3)1/2

(2M−3)(2M−5)1/2
0 (2M−3)1/2

(2M−3)(2M−1)1/2

0 0 0 0 · · · 0 − (2M−1)1/2

(2M−1)(2M−3)1/2
0


.

3.4 Operational matrix of fractional integration

We defined a m-set of Block Pulse function (BPF)as:

bi(t) =

{
1, i/m ≤ t < (i+ 1)/m
0, otherwise,

(20)

where i = 0, 1, 2, . . . (m− 1).

The function bi(t) are disjoint and orthogonal. That is

bi(t)bj(t) =

{
0, i ̸= j
bi(t), i = l.

(21)

The Legendre wavelet may be expanded into m-terms of block pulse function
(BPF) as

Ψm(t) = Φm×mBm(t), (22)

where
Bm(t)

∆
= [ b0(t) b1(t) . . . bi(t) . . . b(m−1)(t) ]

T . (23)

The Block Pulse operational matrix of the fractional integration give in [12]
Fα as following:

(Iαt Bm)(t) ≈ FαBm(t), (24)

where
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Fα =
1

mα

1

Γ(α+ 2)


1 ξ1 ξ2 · · · ξ(m−1)

0 1 ξ1 · · · ξ(m−2)

0 0 1 · · · ξ(m−3)

0 0 0
. . .

...
0 0 0 0 1

 .
with ξk = (k+1)α+1−2kα+1+(k−1)α+1. The Legendre wavelet operational
matrix of of fractional integration is defined in [19] as

Pαm×m = Φm×mF
αΦ−1

m×m, (25)

so the fractional integration of vector in Eq. (12) is defined as

(Iαt Ψ)(t) ≈ PαΨm(t). (26)

4 Application to nonlinear system of VFIDEs

Here, before presenting our method, we prove the next lemma. By this
lemma we can approximate the high order derivative of a function by Legen-
dre wavelet.

Lemma. Suppose that u(x) = CTΨ(x) where C and Ψ(x) are defined
in Eq. (11) and Eq. (12), then

u(k)(x) = (CTP−k −
k−1∑
i=0

u
(i)
0 ETP i−k)Ψ(x), (27)

where P is operational matrix of integration, u(i)(0) = u
(i)
0 and E is defined

as ETΨ(t) = 1.

Proof. suppose that f(x) = uk(x) and we approximate u(x) and f(x) by
Legender wavelet as {

u(x) = CTΨ(x),
f(x) = FTΨ(x),

(28)

by integrating f(t) on [0, t]∫ t
0

∫ t
0
. . .
∫ t
0
f(t′) dt′ . . . dt′︸ ︷︷ ︸

k−times

=
∫ t
0

∫ t
0
. . .
∫ t
0
FTPΨ(t′) dt′ . . . dt′︸ ︷︷ ︸

(k−1)times

=
∫ t
0

∫ t
0
. . .
∫ t
0
FTP 2Ψ(t′) dt′ . . . dt′︸ ︷︷ ︸

(k−2)times

...
= FTP kΨ(t),

(29)
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Since f(x) = uk(x), then∫ t
0

∫ t
0
· · ·
∫ t
0
f(t′) dt′ · · · dt′︸ ︷︷ ︸

k−times

=
∫ t
0

∫ t
0
· · ·
∫ t
0
(u(k−1)(t)−u(k−1)(0)) d(t′) · · · dt′︸ ︷︷ ︸

(k−1)−times

=
∫ t
0

∫ t
0
· · ·
∫ t
0
u(k−1)(t) dt′ · · · dt′︸ ︷︷ ︸

(k−1)−times

u(k−1)(0)
∫ t
0

∫ t
0
· · ·
∫ t
0
dt′ · · · dt′︸ ︷︷ ︸

(k−1)−times
...

= u(t)− u(0)(0)− u(1)(0)− · · · − u(k−1)(0)
∫ t
0

∫ t
0
· · ·
∫ t
0
dt′ · · · dt′︸ ︷︷ ︸

(k−1)−times

,

(30)

by u(i)(0) = u
(i)
0 we get

u
(i)
0

∫ t

0

∫ t

0

· · ·
∫ t

0

dt′ · · · dt′︸ ︷︷ ︸
k−times

= u
(i)
0 ETP iΨ(t), (31)

Eq. (29)-(31) result

FTP kΨ(t) = CΨ(t)− u(0)0 ETΨ(t)− u(1)0 ETPΨ(t)− · · · − u(k−1)
0 ETP k−1Ψ(t)

= CTΨ(t)−
k−1∑
i=0

u
(i)
0 ETP iΨ(t),

(32)
Since the basis functions are linear independent, we omit Ψ(t) from both
sides of Eq. (32), then this equation can be written as

FTP k = CT −
k−1∑
i=0

u
(i)
0 ETP i, (33)

and then

FT = CTP−k −
k−1∑
i=0

u
(i)
0 ETP i−k, (34)

according to Eq. (28)

u(k)(x) = (CTP−k −
k−1∑
i=0

u
(i)
0 ETP i−k)Ψ(x). (35)

This ends the proof of lemma. □

To solve Eq. (2) by Legendre wavelets, we assume that each uℓ(x) has the
expansion as

uℓ(x) = CTℓ Ψ(x), ℓ = 1, . . . , s, (36)

by Eq. (35) the derivative expansion is given by
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y
(k)
ℓ (x) = (CTℓ P

−k −
k−1∑
i=0

y
(i)
ℓ0 E

TP i−k)Ψ(x), ℓ = 1, . . . , s, (37)

substituting Eq. (36) and Eq. (37) in Eq. (2) results for ℓ = 1, . . . , s

pℓ0C
T
ℓ Ψ(x) +

n∑
i=1

pℓi(x)(C
T
ℓ P

−i −
i−1∑
m=0

u
(m)
ℓ0 ETPm−i)Ψ(x) = fℓ(x)

+λℓ1
∫ 1

0
Kℓ1(x, t, C

T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

u
(i)
0 ETP i−n)Ψ(x))dt

+λℓ2
∫ x
0
Kℓ2(x, t, C

T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

u
(i)
0 ETP i−n)Ψ(x))dt.

(38)
by suitable collocation points, the zeros of Chebyshve polynomials [16]

xi = cos(
(2i− 1)π

2kM
), i = 1, . . . , 2k−1M, (39)

we collocate the Eq. (38). In order to use the Gaussian integration formula
for Eq. (38), we transfer the t-intervals [0, xi] and [0,1] into ζ1 and ζ2 intervals
[-1,1] by

ζ1 =
2

xi
t− 1, ζ2 = 2t− 1. (40)

Let
Hℓ1(xj , t) = Kℓ1(xj , t, C

T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

y
(i)
0 ETP i−n)Ψ(x)),

Hℓ2(xj , t) = Kℓ2(xj , t, C
T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

u
(i)
0 ETP i−n)Ψ(x)),

ℓ = 1, . . . , s.

(41)
We rewrite Eq. (38) as

pℓ0C
T
ℓ Ψ(xj) +

n∑
i=1

pℓi(xj)(C
T
ℓ P

−i −
i−1∑
m=0

u
(m)
ℓ0 ETPm−i)Ψ(xj) = fℓ(xj)

+λl1
xj

2

∫ 1

−1
Hℓ1(xj ,

xj

2 (ζ1 + 1))dζ1

+λℓ2

2

∫ 1

−1
Hℓ2(xj ,

1
2 (ζ2 + 1))dζ2, ℓ = 1, . . . , s,

(42)
and with the Gaussian integration

pℓ0C
T
ℓ Ψ(xj) +

n∑
i=1

pℓi(xj)(C
T
ℓ P

−i −
i−1∑
m=0

u
(m)
ℓ0 ETPm−i)Ψ(xj) ≈ fℓ(xj)

+λℓ1
xj

2

s1∑
h=1

ω1hHℓ1(xj ,
xj

2 (ζ1h + 1))

+λℓ2

2

s2∑
h=1

ω2hHℓ2(xj ,
1
2 (ζ2h + 1)), ℓ = 1, . . . , s,

(43)
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where ζ1h and ζ2h are s1 and s2 zeros of Legendre polynomials Ls1+1 and
Ls2+1 respectively, and ω1h, ω2l are the corresponding weights. If we assume
that

Aℓ(x) = pℓ0C
T
ℓ Ψ(xj) +

n∑
i=1

pℓi(xj)(C
T
ℓ P

−i −
i−1∑
m=0

)u
(m)
ℓ0 ETPm−i)Ψ(xj)

−λℓ1 xj

2

s1∑
h=1

ω1hHℓ1(xj ,
xj

2 (ζ1h + 1))− λℓ2

2

s2∑
h=1

ω2hHℓ2(xj ,
1
2 (ζ2h + 1)),

Bℓ(x) = fℓ(x), ℓ = 1, . . . , s,
(44)

Then our problem has the next matrix representation form

A1(x1)
...

A1(x2k−1M )
−−−−−

...
−−−−−
As(x1)

...
As(x2k−1M )


=



B1(x1)
...

B1(x2k−1M )
−−−−−

...
−−−−−
Bs(x1)

...
Bs(x2k−1M )


This 2k−1Ms×2k−1Ms nonlinear system of equations which can be solved

using Newton iterative method for the elements of C.

5 Application to nonlinear fractional order
integro-differential equations

In this section we want to apply the operational matrix of fractional in-
tegration to fractional order integro-differential equation. Assume that we
approximate Dα

∗tu(x) by Legndre wavelet as

Dα
∗tu(x) = KTΨ(x), (45)

then Eq. (8)and Eq. (26) result

u(x) = KTPαm×mΨ(x) + u(0). (46)

By Eq. (45)and Eq. (46) we rewrite Eq. (1) as

KTΨ(x) = f(x) +

∫ x

0

k(t,KTPαm×mΨ(t) + u(0),KTΨ(t))dt (47)
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Assume that

H(t) = k(t,KTPαm×mΨ(t) + u(0),KTΨ(t)), (48)

and like the last chapter, we collocated this equation by Eq. (39)in 2k−1M
points and then use the Gaussian integration. Finally, we can write Eq. (39)
as

KTΨ(xi) = f(xi) +

s1∑
h=1

xi
2
ω1hH(

xi
2
(ζh + 1)) i = 1, . . . , 2k−1M (49)

which is the 2k−1M × 2k−1M nonlinear of system equation which can be
solved using Newton iterative method for the elements of C.

6 Numerical examples

In this section we consider some examples which show that operational ma-
trices are powerful and demonstrate the accuracy of our method.

Example 5.1. Consider the nonlinear system of integro-differential equa-
tion

3xu1(x) + u′′1(x) = 5x3 + 2u′2(x)−
∫ x
0
(u′2(t) + u1(t)u

′′
3(t))dt,+

∫ 1

0
xu′1(t)u

′
2(t)dt,

2u′2(x) + u′′2(x) = −4x2 − xu1(x) +
∫ x
0
(txu′2(t)u

′′
1(t) + u′3(t))dt+

∫ 1

0
x2u3(t) + u′2(t)u

′′
1(t)dt

x/3y3(x) + u′′3(x) = 2− 4
3x

3 + u′′21 (x)− 2u21(x) +
∫ x
0
(x2u2(t) + u′2(t) + t3u′′3(t))dt+

∫ 1

0
x2u′1(t)dt

u1(0) = u′1(0) = 0, u2(0) = 0, u′2(0) = 1, u3(0) = u3(0) = 0,

(50)
which has the exact solution u1(x) = x2, u2(x) = x and u3(x) = 3x2. Fig-
ure.1 show the absolute error when we apply our method for M = 3 and
k = 1.
It is clear form figures that our approximate solution is in good agreement
with exact one.

Example 5.2. As a second example, consider the nonlinear system given
in [2, 1] u′1(x) = 1− 1

2u
′
2(x) +

∫ x
0
((x− t)u2(t) + u1(t)u2(t))dt,

u′2(x) = 2x+
∫ x
0
((x− t)u1(t)− u22(t) + u21(t))dt,

u1(0) = 0, u2(0) = 1,
(51)

which has the exact solution u1(x) = sinh(x) and u2(x) = cosh(x) forM = 6
and k = 1.
Results for Example 5.2 are reported in Table 1 for u1(xi) and u2(xi).
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(c). Error For u3(x)

Figure 1: Absolute error for Example 5.1 for M=3 And k=1

Example 5.3. Consider the nonlinear fractional order integro differential
equation given in[7]

Dα
∗tu(t) = 1 +

∫ x

0

u(t)Dα
∗tu(t)dt 0 ≤ x < 10 ≤ α < 1 (52)

The exact solution of this problem for α = 1 is
√
2Tan(

√
2
2 t) we solve this

equation for m = 20 and different α numerical results are shown in Figure 2.

Example 5.4. Finally Consider the nonlinear fractional order integro dif-
ferential equations in[7]

Dα
∗tu(t) = −1 +

∫ x

0

u2(t)dt0 ≤ x < 1 0 ≤ α < 1 (53)

subject to the initial conditions y(0) = 0. Table 2 shows the numerical
results for α = 0.8, 0.9, 1 when m = 20. From Table 2 we can see that
the approximate solutions obtained by our method are in good agreement
with the exact solution for α = 1, and with the approximate solutions for
α = 0.8, 0.9 in [7].
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Table 1: Numerical result of Example 5.2

Error for Error for Method of [2] Error for Method of [1]

M = 6, k = 1 N = 5 N = 6
xi u2(x) u1(x) u2(x) u1(x) u2(x) u1(x)

0 1.70× 10−6 7.66× 10−7 0 0 0 0
0.1 6.82× 10−7 3.42× 10−7 1.3× 10−8 1× 10−8 1.41× 10−9 1.41× 10−9

0.2 2.85× 10−7 8.94× 10−8 7.98× 10−7 1.33× 10−7 9.15× 10−8 9.15× 10−8

0.3 5.17× 10−7 2.50× 10−7 9.06× 10−6 2.17× 10−6 1.06× 10−6 1.06× 10−6

0.4 1.17× 10−7 1.22× 10−8 5.06× 10−5 1.53× 10−5 6.03× 10−6 6.03× 10−6

0.5 5.43× 10−7 2.40× 10−7 1.90× 10−4 6.64× 10−5 2.34× 10−5 2.34× 10−5

0.6 1.75× 10−7 1.08× 10−7 5.05× 10−4 2.12× 10−4 7.08× 10−5 7.08× 10−5

0.7 4.65× 10−7 2.43× 10−7 1.36× 10−3 5.27× 10−4 1.81× 10−5 1.81× 10−5

0.8 2.68× 10−7 4.02× 10−7 2.87× 10−3 1.05× 10−3 4.10× 10−4 4.10× 10−4

0.9 7.65× 10−7 5.10× 10−7 5.34× 10−3 1.66× 10−3 8.45× 10−4 8.45× 10−4

1 2.85× 10−6 1.44× 10−6 8.71× 10−3 1.17× 10−3 1.62× 10−3 1.62× 10−3

Α=0.5

Exact

Α=1

Α=0.9

Α=0.75

Α=0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Figure 2: Numerical result for Example 5.3 for different α and m=20

7 Conclusion

Most nonlinear integro-differential equation with nonlinear differential part
are usually difficult to solve analytically. In many cases it is required to
obtain the approximate solution. We have shown that the properties of op-
erational of matrix of integration and operational matrix of fractional inte-
gration together with Legendre wavelet can reduce the system of nonlinear
integro-differential equation and nonlinear fractional order integro differential
equation to a system of algebraic equations. The advantage of this method
is that it can solve high and fractional order integro-differential equation eas-
ier and more time efficient. Also we found an error bound. Although we
solved our problem by Legender wavelet, other orthogonal basis also can be
used. Illustrative examples show the high accuracy of the method in compar-
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Table 2: Numerical result of Example 5.4
xi Exact solution α = 1 Our method Method of [7]

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8
0 0 0 -0.00013 -0.00046 0 0 0

0.0625 -0.06250 -0.06249 -0.08574 -0.11683 -0.06250 -0.08574 -0.11682
0.125 -0.12498 -0.124977 -0.15995 -0.20327 -0.12498 -0.15997 -0.20328
0.1875 -0.18740 -0.18749 -0.23023 -0.28080 -0.18740 -0.23024 -0.28082
0.2500 -0.24968 -0.24966 -0.29788 -0.35269 -0.24968 -0.29790 -0.35272
0.3125 -0.31171 -0.31172 -0.36339 -0.42026 -0.31171 -0.36342 -0.42039
0.3750 -0.37336 -0.37333 -0.42695 -0.48409 -0.37336 -0.42689 -0.48413
0.4375 -0.43446 -0.43443 -0.48858 -0.54446 -0.43446 -0.48861 -0.54451
0.5000 -0.49482 -0.49478 -0.54818 -0.60140 -0.49482 -0.54824 -0.60150
0.5625 -0.55423 -0.55418 -0.60565 -0.65501 -0.55423 -0.60571 -0.65510
0.6250 -0.61243 -0.61237 -0.66078 -0.70511 -0.61243 -0.66086 -0.70521
0.6875 -0.66917 -0.66910 -0.71337 -0.75162 -0.66917 -0.71345 -0.75172
0.7500 -0.72415 -0.72418 -0.76318 -0.79440 -0.72415 -0.76327 -0.79451
0.8125 -0.77710 -0.77710 -0.80997 -0.83330 -0.77710 -0.81006 -0.83341
0.8750 -0.82767 -0.82771 -0.85348 -0.86820 -0.82767 -0.85395 -0.86831
0.9375 -0.87557 -0.87564 -0.89349 -0.89896 -0.87557 -0.89361 -0.89908

ison with other methods. This procedure can also be used for solving other
functional equations such as ordinary and partial differential equations.
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Solving an inverse problem for a
parabolic equation with a nonlocal

boundary condition in the reproducing
kernel space

M. Mohammadi, R. Mokhtari∗ and F. T. Isfahani

Abstract

On the basis of a reproducing kernel space, an iterative algorithm for
solving the inverse problem for heat equation with a nonlocal boundary con-
dition is presented. The analytical solution in the reproducing kernel space

is shown in a series form and the approximate solution vn is constructed by
truncating the series to n terms. The convergence of vn to the analytical
solution is also proved. Results obtained by the proposed method imply that
it can be considered as a simple and accurate method for solving such inverse

problems.

Keywords: Inverse problem; Parabolic equation; Nonlocal boundary condi-
tions; Reproducing kernel space.

1 Introduction

The problem of finding the solution of partial differential equations with
source control parameter has appeared increasingly in physical phenomena
such as heat transfer, thermoelasticity, control theory, population dynamics,
nuclear reactor dynamics, medical sciences, biochemistry, etc. [1, 2, 3]. The
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parameter determination in a parabolic partial differential equation from the
over-specified data plays a crucial role in applied mathematics and physics.
This technique has been widely used to determine the unknown properties
of a region by measuring a specified location in the domain. These unknown
properties such as the conductivity medium are important to the physical
process but usually can not be measured directly, or very expensive to be
measured [2, 3]. In general, these problems are ill-posed. Therefore a variety
of numerical techniques based on regularization, finite differences, finite ele-
ment and finite volume methods are given to approximate solutions of such
problems [2, 3, 4].

In recent years all kinds of boundary conditions and over-specified condi-
tions arise in the inverse problems which make them more and more difficult
to solve. The integral over-specified condition arises from many important
applications in heat transfer, termoelasticity, control theory, life sciences, etc.
Some different partial differential equations with nonlocal boundary and over
specified conditions can be found in [5, 6, 7, 8, 9, 10].

The theory of reproducing kernels [11], was used for the first time at
the beginning of the 20th century by S. Zaremba in his work on bound-
ary value problems for harmonic and biharmonic functions. This theory
has been successfully applied for solving a bunch of problems, see e.g.
[12, 13, 14, 15, 16, 17, 18] and references cited therein. The book [19] provides
excellent overviews of the existing reproducing kernel methods.
In this paper, a new algorithm for determining unknown solution and un-
known control parameter of the parabolic inverse problem with nonlocal
boundary and integral over-specified conditions based on the reproducing
kernel space, is presented. The advantages of the approach must lie in the
following facts. The approximate solution converges uniformly to the analyt-
ical solution. The method is mesh free, easily implemented and it needs no
time discretization. Also we can evaluate the approximate solution vn(x, t)
for fixed n once, and use it over and over.

The rest of the paper is organized as follows. In section 2 we describe the
governing equation. Several reproducing kernel spaces are defined in Section
3. The method implementation and convergence analysis are prepared in
Section 4. Numerical results are presented in section 5. The last section is a
brief conclusion.

2 Governing equation

Consider the inverse problem of determination a pair of functions {v, p} in
the following parabolic equation

∂v

∂t
− ∂2v

∂x2
= p(t)v + f(x, t) (x, t) ∈ Ω = (0, 1)× (0, T ] (1)
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with the initial condition

v(x, 0) = φ(x), x ∈ [0, 1] (2)

nonlocal boundary conditions

v(0, t) = v(1, t), vx(1, t) = 0, 0 ≤ t ≤ T (3)

and the integral over-specified condition∫ 1

0

v(x, t)dx = E(t), t ∈ [0, T ] (4)

where f(x, t), φ(x), and E(t) are known functions.

The existence, uniqueness, and continuous dependence of the solution
upon the data for this problem are demonstrated in [20].

After taking integration from both sides of the equation (1) and using
integral over-specified condition, we obtain

p(t) =
E′(t) + vx(0, t)−

∫ 1

0
f(x, t)dx

E(t)
. (5)

Then we have the following model problem
∂v
∂t −

∂2v
∂x2 =

E′(t)+vx(0,t)−
∫ 1
0
f(x,t)dx

E(t) v + f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ]

v(x, 0) = φ(x), v(0, t) = v(1, t), vx(1, t) = 0.

After homogenizing the initial condition, we have
∂u
∂t −

∂2u
∂x2 +

∫ 1
0
f(x,t)dx−E′(t)

E(t) u = F (x, t, u, ux) (x, t) ∈ Ω = (0, 1)× (0, T ]

u(x, 0) = 0, u(0, t) = u(1, t), ux(1, t) = 0,

(6)

where

F (x, t, u, ux) =
(u(x, t) + φ(x)) (ux (0, t) + φ′ (0))

E(t)

+
E′(t)−

∫ 1

0
f(x, t)dx

E(t)
φ(x) + φ′′(x) + f(x, t).
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3 Reproducing kernel spaces

Definition 1. Let H be a real Hilbert space of functions f : Ω→ R. Denote
by ⟨ · , ·⟩ the inner product and let ∥ · ∥ =

√
⟨ · , ·⟩ be the induced norm in H.

A real valued function K(x, y) : Ω× Ω→ R is called a reproducing kernel of
H if the followings are satisfied:

(i) Ky(x) = K(x, y) ∈ H for all y ∈ Ω,

(ii) f(y) = ⟨f(x),Ky(x)⟩ for all f ∈ H and for all y ∈ Ω.

Definition 2. A Hilbert space H of functions on a set Ω is called a repro-
ducing kernel Hilbert space if there exists a reproducing kernel K of H.

Remark 1. The existence of the reproducing kernel of a Hilbert space H is
due to the Riesz Representation Theorem. It is known that the reproducing
kernel is unique.

Now, we define some useful reproducing kernel spaces. The corresponding
reproducing kernels can be found by the usual technique in many articles in
literature (see [13]).

Definition 3. W0[0, 1] = {u(x)|u(x), u′(x), u′′(x) are absolutely continuous
in [0, 1], u(3)(x) ∈ L2[0, 1], u(0) = u(1), u′(1) = 0}. The inner product and
the norm in W0[0, 1] are defined respectively by

⟨u, v⟩
W0

=
2∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0

u(3)(x)v(3)(x)dx, u, v ∈W0[0, 1], (7)

and

∥u∥W0
=
√
⟨u, u⟩W0

, u ∈W0[0, 1].

The space W0[0, 1] is a reproducing kernel space and its reproducing kernel
function is called Ry(x).

Definition 4. W1[0, T ] = {u(t)|u(t), u′(t) are absolutely continuous in
[0, T ], u′′(t) ∈ L2[0, T ], u(0) = 0}. The inner product and the norm in
W1[0, T ] are defined respectively by

⟨u, v⟩W1
=

1∑
i=0

u(i)(0)v(i)(0) +

∫ T

0

u′′(t)v′′(t)dt, u, v ∈W1[0, T ],

and

∥u∥
W1

=
√
⟨u, u⟩

W1
, u ∈W1[0, T ].

The space W1[0, T ] is a reproducing kernel space and its reproducing
kernel function rs(t) is given by
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rs(t) =

{
st+ s

2 t
2 − 1

6 t
3 t ≤ s,

st+ s2

2 t−
1
6s

3 t > s.

Definition 5. W2[0, 1] = {u(x)|u(x), u′(x) are absolutely continuous in
[0, 1], u′′(x) ∈ L2[0, 1]}. The inner product and the norm in W2[0, 1] are
defined respectively by

⟨u, v⟩W2
=

1∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0

u′′(x)v′′(x)dx, u, v ∈W2[0, 1],

and

∥u∥
W2

=
√
⟨u, u⟩

W2
, u ∈W2[0, 1].

The spaceW2[0, 1] is a reproducing kernel space and its reproducing kernel
function Qy(x) is given by

Qy(x) =

{
1 + yx+ y

2x
2 − 1

6x
3 x ≤ y,

1 + yx+ y2

2 x−
1
6y

3 x > y.

Definition 6. W3[0, T ] = {u(t)|u(t) is absolutely continuous in [0, T ], u′(t) ∈
L2[0, T ]}. The inner product and the norm inW3[0, T ] are defined respectively
by

⟨u, v⟩
W3

= u(0)v(0) +

∫ T

0

u′(t)v′(t)dt, u, v ∈W3[0, T ],

and

∥u∥
W3

=
√
⟨u, u⟩

W3
, u ∈W3[0, T ].

The space W3[0, T ] is a reproducing kernel space and its reproducing
kernel function qs(t) is given by

qs(t) =

{
1 + t t ≤ s,
1 + s t > s.

Definition 7. W (Ω) = {u(x, t)| ∂
3u

∂x2∂t is completely continuous in Ω, ∂5u
∂x3∂t2 ∈

L2(Ω), u(x, 0) = 0, u(0, t) = u(1, t), ux(1, t) = 0}. The inner product and the
norm in W (Ω) are defined respectively by
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⟨u, v⟩
W

=
2∑
i=0

∫ T

0

[
∂2

∂t2
∂i

∂xi
u(0, t)

∂2

∂t2
∂i

∂xi
v(0, t)

]
dt

+
1∑
j=0

⟨ ∂
j

∂tj
u(x, 0),

∂j

∂tj
v(x, 0)⟩

W0

+

∫ T

0

∫ 1

0

[
∂3

∂x3
∂2

∂t2
u(x, t)

∂3

∂x3
∂2

∂t2
v(x, t)

]
dxdt, u, v ∈W (Ω),

and
∥u∥W =

√
⟨u, u⟩W , u ∈W (Ω).

Theorem 1. W (Ω) is a reproducing kernel space and its reproducing kernel
function is

K(y,s)(x, t) = Ry(x)rs(t),

such that for any u(x, t) ∈W (Ω),

u(y, s) = ⟨u(x, t),K(y,s)(x, t)⟩W ,

where Ry(x), rs(t) are the reproducing kernel functions of W0[0, 1] and
W1[0, T ], respectively.

Proof. see [19].

Definition 8. W̃ (Ω) = {u(x, t)|∂u∂x is completely continuous in Ω, ∂3u
∂x2∂t ∈

L2(Ω)}. The inner product and the norm in W̃ (Ω) are defined respectively
by

⟨u(x, t), v(x, t)⟩
W̃

=
1∑
i=0

∫ T

0

[
∂

∂t

∂i

∂xi
u(0, t)

∂

∂t

∂i

∂xi
v(0, t)

]
dt

+⟨u(x, 0), v(x, 0)⟩
W2

+

∫ T

0

∫ 1

0

[
∂2

∂x2
∂

∂t
u(x, t)

∂2

∂x2
∂

∂t
v(x, t)

]
dxdt, u, v ∈ W̃ (Ω),

and

∥u∥
W̃

=
√
⟨u, u⟩

W̃
, u ∈ W̃ (Ω).

W̃ (Ω) is a reproducing kernel space and its reproducing kernel function is

G(y,s)(x, t) = Qy(x)qs(t).



Solving an inverse problem for a parabolic equation... 63

4 The method implementation

By defining the linear operator L :W (Ω)→ W̃ (Ω) as

Lu =
∂u

∂t
− ∂2u

∂x2
+

∫ 1

0
f(x, t)dx− E′(t)

E(t)
u,

model problem (6) changes to the following problemLu(x, t) = F (x, t, u, ux), (x, t) ∈ Ω,

u(x, 0) = 0, u(0, t) = u(1, t), ux(1, t) = 0.
(8)

Lemma 1. L is a bounded linear operator.

Proof. see [13].

Now, we choose a countable dense subset {(x1, t1), (x2, t2), . . . , } in Ω, and
define

ϕi(x, t) = G(xi,ti)(x, t), ψi(x, t) = L∗ϕi(x, t),

where L∗ is the adjoint operator of L. The orthonormal system {ψ̄i(x, t)}∞i=1

of W (Ω) can be derived from Gram-Schmidt orthogonalization process of
{ψi(x, t)}∞i=1 as

ψ̄i(x, t) =
i∑

k=1

βikψk(x, t),

where the orthogonal coefficients βik are given by

βik =



1
∥ψ1∥ , i = k = 1,

1√√√√√√∥ψi∥2−

i−1∑
j=1

c2ij

, i = k ̸= 1,

−

i−1∑
j=k

cijβjk

√√√√√√∥ψi∥2−

i−1∑
j=1

c2ij

, i ̸= k,

where
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cij = ⟨ψi(x, t), ψ̄j(x, t)⟩W
= ⟨L∗ϕi(x, t), ψ̄j(x, t)⟩W
= ⟨ϕi(x, t), L(x,t)ψ̄j(x, t)⟩W
=
(
L(x,t)ψ̄j(x, t)

)
(x,t)=(xi,ti)

=

(
j∑

m=1

βjmL(x,t)ψm(x, t)

)
(x,t)=(xi,ti)

.

Like in [13], we get the following theorems.

Theorem 2. Suppose that {(xi, ti)}∞i=1 is dense in Ω, then {ψi(x, t)}∞i=1 is
a complete system in W (Ω) and ψi(x, t) = L(y,s)K(y,s)(x, t)|(y,s)=(xi,ti).

Theorem 3. If {(xi, ti)}∞i=1 is dense in Ω, then the analytical solution of (8)
is

u(x, t) =

∞∑
i=1

i∑
k=1

βik [F (xk, tk, u(xk, tk), ∂xu(0, tk))] ψ̄i(x, t). (9)

By truncating the series in (9), we can obtain the approximate solution of
(8). But, since the the series terms are not known, we need to construct an
iterative method for obtaining the approximate solution. For this purpose,
we choose nonnegative integer n and put the initial function u0(x, t) = 0.
Then the approximate solution is defined by

un(x, t) =

n∑
i=1

Biψ̄i(x, t), (10)

where

Bi =

i∑
k=1

βikF (xk, tk, uk−1(xk, tk), ∂xuk−1(0, tk)). (11)

On account of (26), the approximate solution pn(t) can also be obtained by

pn(t) =
E′(t) + ∂xun(0, t) + φ′(0)−

∫ 1

0
f(x, t)dx

E(t)
. (12)

4.1 Convergence analysis

The convergence of un(x, t) can lead to that of pn(t), due to (26). So we
only need to show that the approximate solution un(x, t) converges to the
analytical solution u(x, t). At first, the following lemma is given.
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Lemma 2. Assume that un is a bounded sequence in W (Ω), un
∥.∥−→ ū,

(xn, tn) → (y, s), as n → ∞. If F (x, t, u(x, t), ux(0, t)) is continuous, then
F (xn, tn, un−1(xn, tn), ∂xun−1(0, tn))→ F (y, s, ū(y, s), ∂xū(0, s)).

Proof. Similar to proof of Lemma 2 in [13], we have

|un−1(xn, tn)− ū(y, s)| → 0, as n→∞.

Since

|tn − s| ≤
√
|xn − y|2 + |tn − s|2,

if follows that

(0, tn) −→ (0, s).

Thus in a same manner

|∂xun−1(0, tn)− ∂xū(0, s)| → 0, as n→∞.

The continuation of F (x, t, u(x), v(x)) implies that

F (xn, tn, un−1(xn, tn), ∂xun−1(0, tn)) → F (y, s, ū(y, s), ∂xū(0, s)), as n → ∞.

Theorem 4. Suppose that un is a bounded sequence in W (Ω) and (8) has a
unique solution. If {(xi, ti)}∞i=1 is dense in Ω, then the n-term approximate
solution un(x, t) derived from the above method converges to the analytical
solution u(x, t) of (8) in W (Ω), such that

u(x, t) =
∞∑
i=1

Biψ̄i(x, t),

where Bi is given by (11).

Proof. Similar to proof of Theorem 4 in [13], un(x, t) converges to ū(x, t) of
the form

ū(x, t) =
∞∑
i=1

Biψ̄i(x, t),

such that
Lū(xl, tl) = F (xl, tl, ul−1(xl, tl), ∂xul−1(0, tl)).

Since {(xi, ti)}∞i=1 is dense in Ω, for each (y, s) ∈ Ω, there exist a subsequence
{xnj , tnj}∞j=1 such that

(xnj , tnj )→ (y, s) (j →∞).
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We know that Lū(xnj , tnj ) = F (xnj , tnj , unj−1(xnj , tnj ), ∂xunj−1(0, tnj )).
Let j →∞, by Lemma (2) and the continuity of F , we have

(Lū)(y, s) = F (y, s, ū(y, s), ∂xū(0, s),

which indicates that ū(x, t) satisfies (8).

Theorem 5. Under the conditions of Theorem 4, the approximate solution
un(x, t) and its derivatives ∂i+jxt un(x, t), i = 0, 1, 2, j = 0, 1, converge uni-
formly to exact solution u(x, t) and its derivatives ∂i+jxt u(x, t), i = 0, 1, 2,
j = 0, 1, respectively.

Proof.

|∂i+jxt un(x, t)− ∂
i+j
xt u(x, t)| = |∂i+jxt ⟨un(y, s)− u(y, s),K(x,t)(y, s)⟩W |

= |⟨un(y, s)− u(y, s), ∂i+jxt K(x,t)(y, s)⟩W |
≤ ∥∂i+jxt K(x,t)(y, s)∥W ∥un(y, s)− u(y, s)∥W
≤ Ci+j∥un − u∥W , n→∞.

5 Numerical experiments

To test the accuracy of the proposed method, two examples are treated in
this section. The results are compared with the exact solutions.

Example 1. Consider problem (25)-(4) with

φ(x) = 2 + cos(2πx),

E(t) = 1 + e−t,

f(x, t) = 1 + 4π2e−t cos(2πx).

It is easy to check that the exact solution is

{v(x, t), p(t)} = {e−t(1 + cos(2πx)),−1}.

Using our method, we choose 81 points in the region Ω, and obtain the
approximate solution v81(x, t). We have listed approximate versus exact so-
lutions, along with the relative errors at some nodal points at time T = 1

4 in
Tables 1-2 and at time T = 1

2 in Tables 3-4. Numerical results are in good
agreement with the exact solutions. In Figs. 1-2, we display the exact and
approximate solutions of v at times T = 1

4 , and T = 1
2 , respectively. In order

to verify the convergence of the exact solution and its partial derivatives to
the approximate solution and its partial derivatives, we depicted the relative
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errors graphs of v, vxt and vxxt at time T = 1
4 for different values of n in

Figs. 3-5, respectively. The results show that the errors becomes smaller as
n increases.

Example 2. Consider problem (25)-(4) with

φ(x) = 1 + cos2(2πx),

E(t) =
1

2
et + 1,

f(x, t) = −8π2et + 16π2et cos2(2πx)− t− tet cos2(2πx)− 1.

The exact solution is

{v(x, t), p(t)} = {1 + et cos2(2πx), 1 + t}.

Taking T = 1
4 and choosing 81 and 144 points in the region Ω, we have listed

approximate versus exact solutions, along with the relative errors at some
nodal points in Tables 5-6 and 7-8, respectively. Numerical results are in
good agreement with the exact solutions and the accuracy of approximate
solution is getting better as n increases. In Fig. 6, we display the exact and
approximate solutions of v at time T = 1

4 . Relative error distribution of v
at time T = 1

2 is also given in Fig. 7a. It is clear that the numerical results
are in good agreement with the exact solutions. Artificial errors 10−2 were
introduced into the right end and conditional condition. It can be seen from
Fig. 7b that the error never affects the results of the method.

Example 3. Consider problem (25)-(4) with

φ(x) = 1 + cos(2πx),

E(t) = exp(−(2π)2t),
f(x, t) = (2π)2 cos(2πx) exp(−(2π)2t) + 2t(1 + cos(2πx) exp(−(2π)2t+ 10t2).

The exact solution is given by

{v(x, t), p(t)} = {(1 + cos(2πx) exp(−(2π)2t), (2π)2 + 2t exp(10t2)}.

Relative error distribution of v at time T = 1
2 is given in Fig. 8a. It can be

noted from Fig. 8a that our results are in better accuracy than the results
in [20]. In order to demonstrate the stability of our algorithm, we shall give
a perturbation ϵ = 10−2 to the right side function f(x, t) and over-specified
condition E(t). The relative error distribution of v at time T = 1

2 depicted
in Fig. 8b shows that the method is stable and gives excellent approximation
to the solution.
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6 Conclusion

In this paper, the reproducing kernel Hilbert space method was applied suc-
cessfully for solving an inverse problem for a parabolic equation with nonlocal
boundary condition. Proposed method is shown to be of good convergence,
simple in principle, easy to program and easy to treat the boundary condi-
tions. It seems that the method can also be applied to higher dimensional
inverse problems. We leave this to our further works.
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Table 1: Relative errors of v(x, t) for Example 1; n = 81, T = 1
4

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.998001 2.998100 3.315676E-05 ( 78 ,

1
6 ) 2.445035 2.443523 6.182374E-04

( 12 ,
12

1000 ) 1 1.000715 7.151300E-04 (1, 16 ) 2.692963 2.691261 6.321103E-04

(1, 1
100 ) 2.980099 2.980922 2.758099E-04 ( 34 ,

1
5 ) 1.818731 1.8169752 9.652627E-04

( 1
10 ,

1
10 ) 2.636866 2.637919 3.995758E-03 ( 1

10 ,
1
5 ) 2.481098 2.479660 5.795225E-04

( 14 ,
1
10 ) 1.904837 1.909188 2.283755E-03 ( 23 ,

1
5 ) 1.409365 1.408556 5.742847E-04

(1, 1
10 ) 2.809675 2.810196 1.853823E-04 ( 12 ,

2
9 ) 1 1.002348 2.347800E-03

( 12 ,
1
9 ) 1 1.002317 2.317300E-03 ( 35 ,

2
9 ) 1.152927 1.152638 2.505188E-04

( 23 ,
1
9 ) 1.447420 1.448317 6.202361E-04 ( 13 ,

2
9 ) 1.400369 1.399123 8.895521E-04

(1, 18 ) 2.764994 2.764715 1.009424E-04 ( 35 ,
1
4 ) 1.148738 1.148205 4.639945E-04

( 23 ,
1
8 ) 1.441248 1.441835 4.073198E-04 ( 12 ,

1
4 ) 1 1.002458 2.458400E-03

( 34 ,
1
6 ) 1.846482 1.845673 4.378733E-04 (1, 14 ) 2.557601 2.552739 1.901260E-03

Table 2: Relative errors of p(t) for Example 1; n = 81, T = 1
4

t pexact papp Relative errors t pexact papp Relative errors

1
1000 -1 -1.000064 6.453900E-05 1

8 -1 -1.000684 6.838260E-04

12
1000 -1 -1.000669 6.689750E-04 1

6 -1 -0.999358 6.414128E-04

1
100 -1 -1.000585 5.854630E-04 1

5 -1 -0.9984953 1.504941E-03

1
10 -1 -1.000343 3.435430E-04 2

9 -1 -0.997999 2.000439E-03

1
9 -1 -1.000717 7.166060E-04 1

4 -1 -0.997132 2.868264E-03

Table 3: Relative errors of v(x, t) for Example 1; n = 81, T = 1
2

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.998001 2.998135 4.480185E-05 ( 78 ,

1
6 ) 2.445035 2.445058 9.422361E-06

( 12 ,
12

1000 ) 1 1.000089 8.926900E-05 (1, 16 ) 2.692963 2.693930 3.587980E-04

(1, 1
100 ) 2.980099 2.981268 3.922174E-04 ( 34 ,

1
5 ) 1.818731 1.816356 1.305423E-03

( 1
10 ,

1
10 ) 2.636866 2.640780 1.484401E-03 ( 1

10 ,
1
5 ) 2.481098 2.485261 1.677789E-03

( 14 ,
1
10 ) 1.904837 1.912180 3.854839E-03 ( 23 ,

1
5 ) 1.409365 1.407343 1.434693E-03

(1, 1
10 ) 2.809675 2.809855 6.428644E-05 ( 12 ,

2
9 ) 1 1.002219 2.219280E-03

( 12 ,
1
9 ) 1 1.004321 4.321410E-03 ( 35 ,

2
9 ) 1.152927 1.151739 1.030525E-03

( 23 ,
1
9 ) 1.447420 1.447886 3.219329E-04 ( 13 ,

2
9 ) 1.400369 1.407778 5.291163E-03

(1, 18 ) 2.764994 2.765560 2.047726E-04 ( 35 ,
1
4 ) 1.148738 1.146675 1.795169E-03

( 23 ,
1
8 ) 1.441248 1.441568 2.220845E-04 ( 12 ,

1
4 ) 1 1.001966 1.966360E-03

( 34 ,
1
6 ) 1.846482 1.845236 6.746695E-04 (1, 14 ) 2.557601 2.556291 5.124707E-04
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Table 4: Relative errors of p(t) for Example 1; n = 81, T = 1
2

t pexact papp Relative errors t pexact papp Relative errors

1
1000 -1 -0.999794 2.063958E-04 1

8 -1 -0.977383 2.261733E-02

12
1000 -1 -0.997471 2.528598E-03 1

6 -1 -0.979758 2.024151E-02

1
100 -1 -0.997903 2.096714E-03 1

5 -1 -0.975690 2.430969E-02

1
10 -1 -0.976715 2.328518E-02 2

9 -1 -0.971106 2.889415E-02

1
9 -1 -0.976639 2.336095E-02 1

4 -1 -0.964804 3.519553E-02

Table 5: Relative errors of v(x, t) for Example 2; n = 81, T = 1
4

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.001000 2.000890 5.523337E-05 ( 78 ,

1
6 ) 1.590680 1.591406 4.562790E-04

( 12 ,
12

1000 ) 2.012072 2.001377 5.315484E-03 (1, 16 ) 2.181360 2.164421 7.765664E-03

(1, 1
100 ) 2.010050 2.008924 5.601139E-04 ( 34 ,

1
5 ) 1 1.002636 2.636500E-03

( 1
10 ,

1
10 ) 1.723344 1.715849 4.348790E-03 ( 1

10 ,
1
5 ) 1.799418 1.801355 1.076466E-03

( 14 ,
1
10 ) 1 0.996456 3.544300E-03 ( 23 ,

1
5 ) 1.305351 1.276493 2.210723E-02

(1, 1
10 ) 2.105171 2.089205 7.583953E-03 ( 12 ,

2
9 ) 2.248849 2.171894 3.421967E-02

( 12 ,
1
9 ) 2.117519 2.073065 2.099328E-02 ( 35 ,

2
9 ) 1.817382 1.751413 3.629875E-02

( 23 ,
1
9 ) 1.279380 1.256824 1.762984E-02 ( 13 ,

2
9 ) 1.312212 1.303871 6.356607E-03

(1, 18 ) 2.133148 2.116888 7.622889E-03 ( 35 ,
1
4 ) 1.840405 1.768371 3.914031E-02

( 23 ,
1
8 ) 1.283287 1.260171 1.801297E-02 ( 12 ,

1
4 ) 2.284025 2.199602 3.696255E-02

( 34 ,
1
6 ) 1 0.999525 4.751000E-04 (1, 14 ) 2.284025 2.266547 7.652462E-03

Table 6: Relative errors of p(t) for Example 2; n = 81, T = 1
4

t pexact papp Relative errors t pexact papp Relative errors

1
1000 1.001000 1.000778 2.216753E-04 1

8 1.125000 1.177465 4.663580E-02

12
1000 1.012000 1.009609 2.363016E-03 1

6 1.166667 1.138380330 2.424571E-02

1
100 1.010000 1.007937 2.042468E-03 1

5 1.200000 1.157718084 3.523493E-02

1
10 1.100000 1.141458 3.768888E-02 2

9 1.222222 1.170887564 4.200091E-02

1
9 1.111111 1.156422 4.077993E-02 1

4 1.250000 1.211209275 3.103258E-02
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Table 7: Relative errors of v(x, t) for Example 2; n = 144, T = 1
4

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.001000 2.000941 2.983507E-05 ( 78 ,

1
6 ) 1.590680 1.595549 3.060781E-03

( 12 ,
12

1000 ) 2.012072 2.008807 1.622859E-03 (1, 16 ) 2.181360 2.180958 1.846293E-04

(1, 1
100 ) 2.010050 2.009449 2.992512E-04 ( 34 ,

1
5 ) 1 1.013353 1.335274E-02

( 1
10 ,

1
10 ) 1.723344 1.722972 2.159116E-04 ( 1

10 ,
1
5 ) 1.799418 1.810589 6.207763E-03

( 14 ,
1
10 ) 1 1.001805 1.805350E-03 ( 23 ,

1
5 ) 1.305351 1.309086 2.861377E-03

(1, 1
10 ) 2.105171 2.101083 1.941670E-03 ( 12 ,

2
9 ) 2.248849 2.230536 8.143059E-03

( 12 ,
1
9 ) 2.117519 2.102535 7.076129E-03 ( 35 ,

2
9 ) 1.817382 1.808653 4.803084E-03

( 23 ,
1
9 ) 1.279380 1.276005 2.637737E-03 ( 13 ,

2
9 ) 1.312212 1.325054 9.786674E-03

(1, 18 ) 2.133148 2.129999 1.476139E-03 ( 35 ,
1
4 ) 1.840405 1.833820 3.578477E-03

( 23 ,
1
8 ) 1.283287 1.280545 2.136414E-03 ( 12 ,

1
4 ) 2.284025 2.266462 7.689720E-03

( 34 ,
1
6 ) 1 1.008052 8.052170E-03 (1, 14 ) 2.284025 2.293042 3.947540E-03

Table 8: Relative errors of p(t) for Example 2; n = 144, T = 1
4

t pexact papp Relative errors t pexact papp Relative errors

1
1000 1.001000 1.000929 7.116752E-05 1

8 1.125000 1.148678 2.104750E-02

12
1000 1.012000 1.010731951 1.253013E-03 1

6 1.166667 1.145867427 1.782820E-02

1
100 1.010000 1.008977553 1.012324E-03 1

5 1.200000 1.196111194 3.240672E-03

1
10 1.100000 1.118037 1.639767E-02 2

9 1.222222 1.264996 3.499686E-02

1
9 1.111111 1.131717 1.854514E-02 1

4 1.250000 1.245162209 3.870233E-03

Figure 1: Exact and approximate solution of v for Example 1 at T = 1
4
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Figure 2: Exact and approximate solution of v for Example 1 at T = 1
2

a b

c d

Figure 3: Relative errors graphs of v for Example 1 at time T = 1
4
; a(n = 36), b(n = 64),

c(n = 81), d(n = 100)
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a b

c d

Figure 4: Relative errors graphs of vxt for Example 1 at time T = 1
4
; a(n = 36),

b(n = 64), c(n = 81), d(n = 100)
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a b

c d

Figure 5: Relative errors graphs of vxxt for Example 1 at time T = 1
4
; a(n = 36),

b(n = 64), c(n = 81), d(n = 100)

Figure 6: Exact and approximate solution of v for Example 2 at T = 1
4
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Figure 7: Relative error graphs of v for Example 2 at time T = 1
2
; a(without noise),

b(with noise)
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Figure 8: Relative error graphs of v for Example 3 at time T = 1
2
; a(without noise),

b(with noise)
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multi-dimensional feedback delay
fractional optimal control problems by

Bernstein polynomials

E. Safaie∗ and M. H. Farahi

Abstract

In this paper, we present a new method for solving fractional optimal
control problems with delays in state and control. This method is based

upon Bernstein polynomials basis and feedback control. The main advantage
of feedback or closed-loop control is that one can monitor the effect of such
control on the system and modify the output accordingly. In this work, we
use Bernstein polynomials to transform the fractional time-varying multi-

dimensional optimal control system with both state and control delays, into
an algabric system in terms of the Bernstein coefficients approximating state
and control functions. We use Caputo derivative of degree 0 < α ≤ 1 as the
fractional derivative in our work. Finally, some numerical examples are given

to illustrate the effectiveness of this method.

Keywords: Delay fractional optimal control problem; Caputo fractional
derivative; Bernstein polynomial.

1 Introduction

The general definition of an optimal control problem requires the minimiza-
tion of a functional over an admissible set of control and state functions sub-

∗Corresponding authour
Received 25 November 2013; revised 29 January 2014; accepted 5 March 2014

E. Safaie
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi univer-
sity of Mashhad, Mashhad, Iran. e-mail: elahe.safaie@stu.um.ac.ir

M. H. Farahi

Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi univer-
sity of Mashhad, Mashhad, Iran,
and

The center of Excellence on Modelling and Control Systems (CEMCS), Mashhad, Iran.
e-mail: farahi@math.um.ac.ir

77



78 E. Safaie and M. H. Farahi

ject to dynamic constraints on the states and controls. A Fractional Optimal
Control Problem (FOCP) is an optimal control problem in which either the
performance index or the differential equations governing the dynamic of the
system or both contain at least one fractional order derivative term [1, 2, 17].

Fractional Differential Equations ( FDEs ) have been the focus of many
studies due to their appearance in various applications in real-world physical
systems. For example, it has been illustrated that materials with memory
and hereditary effects and dynamical processes including gas diffusion and
heat conduction can be more adequately modeled by FDEs than integer-
order differential equations [13, 18, 20]. Some other applications of FDEs
are in behaviors of viscoelastic materials, biomechanics and electrochemical
processes ( see [3, 5] for more details ).

Most FOCPs do not have exact solutions, so in these cases approximation
methods and numerical techniques must be used. Recently, several approxi-
mation methods to solve FOCPs have been introduced [4, 14, 18].

Real life phenomena have been described more precisely by Delay Differ-
ential Equations, so Delay Fractional Optimal Control Problem ( DFOCP )
has become the focus of many researchers in the last decade. Baleanu in [6]
and Jarad in [11] analyzed the fractional variational principles for some kinds
of DFOCPs within Riemann-Liouville and Caputo fractional derivatives re-
spectively and made their corresponding Euler-Lagrange equations. In this
paper, we present a novel strategy based on Bernstein polynomials (BPs) to
solve DFOCPs. Consider the following DFOCP

Min J = 1
2

∫ 1

0
[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]dt, (1)

s.t
c
0D

α
t xi(t) = Σrj=1ai,j(t)xj(t) + Σsk=1bi,k(t)uk(t)

+Σrj=1(ad)i,j(t)xj(t− η1) + Σsk=1(bd)i,k(t)uk(t− η2), 1 ≤ i ≤ r,
(2)

xj(t) = xj,0, t ∈ [−η1, 0], 1 ≤ j ≤ r,
uk(t) = uk,0, t ∈ [−η2, 0], 1 ≤ k ≤ s, (3)

where x(t) = [x1(t) · · ·xr(t)]T and u(t) = [u1(t) · · ·us(t)]T are respectively
the state and control functions. Also, Q(t) and R(t) are respectively, r × r
and s × s semi-positive and positive definite time-varying matrices of the
state and control’s coefficients in the cost function with continuous functions
as their entries. Furthermore, ai,j(t), (ad)i,j(t), bi,k(t) and (bd)i,k(t) are
continuous functions which are respectively the coefficients of xj(t), xj(t −
η1) for (1 ≤ j ≤ r) and uk(t), uk(t − η2) for (1 ≤ k ≤ s) in the i-th
fractional differential equation (2) and η1, η2 > 0 are given constant delays.
The fractional derivative is defined in Caputo sense, i.e.

c
0D

α
t xi(t) =

{
1

Γ(1−α)
∫ t
0
(t− τ)−α d

dτ xi(τ)dτ, 0 < α < 1,

ẋi, α = 1.
(4)
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In the numerical solution of dynamical systems, polynomials or piecewise
polynomial functions are often used to present the approximate solutions [9,
10, 21]. The effectiveness of using Bernstein polynomials for solving FOCPs
have been demonstrated before [4, 14]. In the present paper, we seek an
optimal feedback control function to find the approximate solution of DFOCP
(1) - (3) by using Bernstein polynomials.

This paper is organized as follows. In Section 2 we give some preliminiaries
in fractional calculus. In Section 3 Bernstein polynomials are introduced and
their properties are shown in several lemmas. In Section 4, a FOCP with time
delay will be solved using BPs. Section 5 contains some numerical examples.
Finally Section 6 consists of a brief conclusion.

2 Some preliminaries in fractional calculus

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cµ,
µ ∈ R, if there exists a real number p > µ such that f(t) = tpf1(t), where
f1(t) ∈ C[0,+∞) and it is said to be in the space Cmµ iff f (m) ∈ Cµ for
m ∈ N.
Definition 2.2. The Riemann-Liouville fractional integral operator of order
α > 0 of a function f ∈ Cµ, µ > 1, is defined as:

0I
α
t f(t) =

1
Γ(α)

∫ t
0
(t− τ)α−1

f(τ)dτ,

0I
0
t f(t) = f(t).

(5)

Definition 2.3. The fractional derivative of f(t) in the Caputo sense is
defined as follows:

c
0D

α
t f(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α dn

dτn
f(τ), n−1 < α < n, n ∈ N, f ∈ Cm−1.

(6)
In [15], the following properties for f ∈ Cµ and µ ≥ −1 have been proved

1. 0I
α
t t
k = Γ(k+1)

Γ(k+1+α) t
α+k, k ∈ N ∪ {0}, t > 0,

2. c0D
α
t 0I

α
t f(t) = f(t),

3. 0I
α
t
c
0D

α
t f(t) = f(t)−

∑n−1
k=0 f(0

+) t
k

k! , t > 0,

4. c0D
β
t f(t) = 0I

α−β
t

c
0D

α
t f(t), α, β > 0.
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3 Properties of Bernstein polynomials

The Bernstein polynomial of degree n over the interval [a, b] is defined as
follows:

Bi,n

(
t− a
b− a

)
=

(
n

i

)(
t− a
b− a

)i(
b− t
b− a

)n−i
,

so, within the interval [0, 1] we have

Bi,n(t) =

(
n

i

)
ti(1− t)n−i.

Define Φm(t) = [B0,m(t) B1,m(t) · · · Bm,m(t)]
T
. To consider the vector

Φm(t − η) ( η is the given delay ) in terms of Φm(t), we state the follow-
ing lemmas.

Lemma 3.1. We can write Φm(t) = ΛTm(t), where Λ = (Υi,j)
m+1
i,j=1 is

an upper triangular (m+ 1)× (m+ 1) matrix with entry

Υi+1,j+1 =

{
(−1)j−i

(
m
i

)(
m−i
j−i
)
, i ≤ j,

0, i > j,
i, j = 0, 1, · · · ,m,

and Tm(t) = [1 t · · · tm]
T
.

Proof. [4].

Lemma 3.2. For each given constant delay η > 0, Φm(t − η) = ΩΦm(t),
where Ω is an (m+ 1)× (m+ 1) matrix in terms of η.

Proof. According to Lemma 3.1 we have

Φm(t− η) = ΛTm(t− η).

But, the right hand side of the above equation can be written as

ΛTm(t− η) = Λ


1

t− η
(t− η)2

...
(t− η)m

 = ΛΨ


1
t
t2

...
tm

 = ΛΨTm(t),

where
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Ψ =


1 0 0 · · · 0
−η 1 0 · · · 0
η2 −2η 1 · · · 0
...

...
. . .

...

(−η)m
(
m
m−1

)
(−η)m−1 · · · 1

 .

By Lemma 3.1, Tm(t) = Λ−1Φm(t), thus

Φ(t− η) = ΛΨΛ−1Φm(t) = ΩΦm(t). □ (7)

Lemma 3.3. Let L2[0, 1] be a Hilbert space with inner product ⟨f, g⟩ =∫ 1

0
f(t)g(t)dt and y ∈ L2[0, 1]. Then one can find the unique vector C =

[c0 c1 · · · cm]
T
such that

y(t) ≈
m∑
i=0

ciBi,m(t) = CTΦm(t). (8)

Proof. [12].

In Lemma 3.3 we have CT = Q−1⟨y,Φm⟩ such that

⟨y,Φm⟩ =
∫ 1

0

y(t)Φm(t)dx = [⟨y,B0,m⟩ ⟨y,B1,m⟩ · · · ⟨y,Bm,m⟩]T ,

and each entry of the matrix Q = (Qi+1,j+1)
m
i,j=0 is defined as follows:

Qi+1,j+1 =

∫ 1

0

Bi,m(t)Bj,m(t)dx =

(
m
i

)(
m
j

)
(2m+ 1)

(
2m
i+j

) .
Since the set {B0,m(t), B1,m(t), · · · , Bm,m(t)} forms a basis for the vector
space of polynomials of real coefficients and degree no more than m [7, 16],
a polynomial of degree m can be expanded in terms of a linear combination
of Bi,m(t), (i = 0, 1, · · · ,m) as follows

P (t) =
m∑
i=0

ciBi,m(t),

moreover we have

tk =
m−1∑
i=k−1

(
i
k

)(
m
k

)Bi,m(t).

Lemma 3.4.Derivatives of Pn(f) =
∑n
j=0 f(

j
n )Bj,n(t) of any order converge
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to corresponding derivatives of f . So if f ∈ Ck[0, 1] then

limn→∞(Pn(f))
(k) = f (k),

uniformly on [0, 1].

Proof. [8].

4 Fractional optimal control problem with delays in
control and state

Consider fractional delay control system (2). For each 0 ≤ i ≤ r, one can
apply the Riemann-Liouville fractional integral 0I

α
t to both sides of that

equation

xi(t)− xi(0) = Σrj=10I
α
t {ai,j(t)xj(t)}+Σsk=10I

α
t {bi,k(t)uk(t)}+

Σrj=10I
α
t {(ad)i,j(t)xj(t− η1)}+Σsk=10I

α
t {(bd)i,k(t)uk(t− η2)}.

(9)

Assume that xi(t) ≈ XT
i Φm(t) (1 ≤ i ≤ r) and uk(t) ≈ UTk Φm(t) (1 ≤ k ≤ s)

where the entries Xi = [Xi(0) · · ·Xi(m)]T and Uk = [Uk(0) · · ·Uk(m)]T are
respectively the coeffitients of xi(t) and uk(t) in approximating them by Bern-
stein polynomials of degree m just like (8). Moreover, the Bernstein approxi-
mated coefficients vectors of functions ai,j(t), bi,k(t), (ad)i,j(t) and (bd)i,k(t)
can be achieved by using equation (8). We denote the approximated vector
coefficients of these functions respectively by (Ai,j)(m+1)×1, (B

i,k)(m+1)×1,

(Ai,jd )(m+1)×1 and (Bi,kd )(m+1)×1.
By substituting the so called approximated vectors and matrices in (1), one
can find the following equations:

XT
i Φm(t)− xi,0 = Σrj=10I

α
t {((Ai,j)TΦm(t))(XT

j Φm(t))T }
+Σsk=10I

α
t {((Bi,k)TΦm(t))(UTk Φm(t))T }

+Σrj=10I
α
t {((A

i,j
d )TΦm(t))(XT

j Φm(t− η1))T }
+Σsk=10I

α
t {((B

i,k
d )TΦm(t))(UTk Φm(t− η2))T }.

(10)

Moreover, from Lemma 3.2 there exist (m + 1) × (m + 1) matrices Ω1,Ω2

where Φm(t− η1) = Ω1Φm(t) and Φm(t− η2) = Ω2Φm(t), while

Ω1 = ΛΨΛ−1,

Ω2 = ΛΨ
′
Λ−1,

and Ψ,Ψ
′
are obtained respectively in terms of η1 and η2.

As it was shown in [4], for each 1 ≤ i, j ≤ r and 1 ≤ k ≤ s, the (m+1)×(m+1)
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matrices Ãi,j , ˜Bi,k,
˜
Ai,jd and

˜
Bi,kd can be calculated such that:

(Ai,j)TΦm(t)ΦTm(t) = ΦTm(t)Ãi,j ,

(Bi,k)TΦm(t)ΦTm(t) = ΦTm(t) ˜Bi,k,

(Ai,jd )TΦm(t)ΦTm(t) = ΦTm(t)
˜
Ai,jd ,

(Bi,kd )TΦm(t)ΦTm(t) = ΦTm(t)
˜

Bi,kd .

Therefore, by replacing the above equalities, (2) can be rewritten as follows:

XT
i Φm(t)− xi,0 = Σrj=1(0I

α
t Φ

T
m(t))(Ãi,jXj) + Σsk=1(0I

α
t Φ

T
m(t))( ˜Bi,kUk)+

Σrj=1(0I
α
t Φ

T
m(t))(

˜
Ai,jd ΩT1Xj) + Σsk=1(0I

α
t Φ

T
m(t))(

˜
Bi,jd ΩT2 Uk),

or

XT
i Φm(t)− xi,0 = Σrj=1(Ã

i,jXj)
T (0I

α
t Φm(t)) + Σsk=1(

˜Bi,kUk)
T (0I

α
t Φm(t))+

Σrj=1(
˜
Ai,jd ΩT1Xj)

T (0I
α
t Φm(t)) + Σsk=1(

˜
Bi,jd ΩT2 Uk)

T (0I
α
t Φm(t)).

(11)
where i = 1, · · · , r.

One can approximate 0I
α
t Φm(t) by Iα ×Φm(t), where Iα is an (m+ 1)×

(m+1) matrix called the operational matrix of Riemann-Liouville fractional
integral.
Infact, from Lemma 3.1, Φm(t) = ΛTm(t), so

0I
α
t Φm(t) = Λ 0I

α
t Tm(t) = Λ [0I

α
t 1 0I

α
t t · · · 0I

α
t t
m]T ,

where 0I
α
t t
j = Γ(j+1)

Γ(j+1+α) t
j+α. Therefore,

0I
α
t Tm(t) = Σ̃T̃ , (12)

where Σ̃ = (Σ̃i+1,j+1) and T̃ = (T̃i+1) are respectively (m+1)× (m+1) and
(m+ 1)× 1 matrices, which are defined as follows:

Σ̃i+1,j+1 =

{
Γ(j+1)

Γ(j+1+α) , i = j,

0, o.w,
i, j = 0, · · · ,m

and
(T̃ )i+1 = ti+α, i = 0, · · · ,m.

Also, from Lemma 3.3, since ti+α ∈ L2([0, 1]) for each integer i (0 ≤ i ≤ m),
one can find the (m+ 1)× 1 vector Pi such that

ti+α ≈ PTi Φm(t), (13)
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where Pi = Q−1⟨ti+α,Φm(t)⟩ and the entries of P̄i = ⟨ti+α,Φm(t)⟩ =
[P̄i,0 P̄i,1 · · · P̄i,m]T can be attained as

P̄i,j =

∫ 1

0

ti+αBj,m(t)dt =
m!Γ(i+ j + α+ 1)

j!Γ(i+m+ α+ 2)
, i, j = 0, · · · ,m.

Now if P is an (m+1)× (m+1) matrix of the form [P0 P1 · · ·Pm], then from
(12) and (13) we have

0I
α
t Φm(t) ≈ ΛΣ̃PTΦm(t), (14)

therefore, Iα = ΛΣ̃PT is the aforementioned operational matrix of Riemann-
Liouville fractional integral 0I

α
t .

Hence, by replacing 0I
α
t Φm(t) from (14) into (4) and writing xi,0 in terms

of BPs of degree m, equation (4) can be written as the following

XT
i Φm(t)−XT

i,0Φm(t) = Σrj=1(Ã
i,jXj)

T IαΦm(t) + Σsk=1(
˜Bi,kUk)

T IαΦm(t)

+Σrj=1(
˜
Ai,jd ΩT1Xj)

T IαΦm(t) + Σsk=1(
˜
Bi,jd ΩT2 Uk)

T IαΦm(t),
(15)

where
XT
i,0 = [Xi,0(0), · · · , Xi,0(m)]T

is the known Bernstein approximated coefficents vector of xi,0 that can be
computed using (8). By equalling the coefficents of Φm(t) from both sides of
(5), we found that

XT
i = XT

i,0 +Σrj=1X
T
j (Ã

i,j)T Iα +Σsk=1U
T
k (

˜Bi,k)T Iα

+Σrj=1X
T
j Ω1(

˜
Ai,jd )T Iα +Σsk=1U

T
k Ω2(

˜
Bi,jd )T Iα,

(16)
for i = 1, · · · , r. Equations (8) can be written in compact form as follows:

XT = Π+ UTΓ, (17)

where Π and Γ are respectively 1× (m+ 1) and (m+ 1)× (m+ 1) matrices
that can be obtained by the following

Π = XT
0 (Im+1 − (Ã+ Ãd)Iα)

−1,

and
Γ = (B̃ + B̃d)Iα(Im+1 − (Ã+ Ãd)Iα)

−1,

and Im+1 is the (m+ 1)× (m+ 1) identity matrix.

Moreover, by applying the approximations x(t) ≈ (XT )1×r(m+1)Φm(t)
and u(t) ≈ (UT )1×s(m+1)Φm(t) where XT = [XT

1 , · · · , XT
r ] and UT =

[UT1 , · · · , UTs ], the cost functional (1) can be approximated as bellow
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J = 1
2

∫ 1

0
{xT (t)Q(t)x(t) + uT (t)R(t)u(t)}dt

≈ 1
2

∫ 1

0
{XTΦm(t)(QTΦm(t)ΦTm(t)X)T + UTΦm(t)(RTΦm(t)ΦTm(t)U)T }dt,

(18)
where Q = [Qi,j ] and R = [Ri,j ] that Qi,j , Ri,j are the (m + 1) × 1 vec-
tors of Bernstein coefficents in approximating Qi,j(t) and Ri,j(t) respectively.
Therefore,

J ≈ 1

2

∫ 1

0

{XTΦm(t)(ΦTm(t)Q̃X)T + UTΦm(t)(ΦTm(t)R̃U)T }dt,

or

J ≈ 1

2

∫ 1

0

{(XTΦm(t))(XT Q̃TΦm(t)) + (UTΦm(t))(UT R̃TΦm(t))}dt, (19)

where Q̃ = [Q̃i,j ] and R̃ = [R̃i,j ]. Also Q̃i,j and R̃i,j are (m + 1) × (m + 1)
matrices that can be calculated from

(Qi,j)TΦm(t)ΦTm(t) = ΦTm(t)Q̃i,j ,

(Ri,j)TΦm(t)ΦTm(t) = ΦTm(t)R̃i,j .

Let Zi,j = H
⊗
Q̃i,j and Wi,j = H

⊗
R̃i,j , where

⊗
is the Kronecker

product and H = [Hi,j ](m+1)×(m+1) and each entry Hi,j is defined by

Hi,j =

∫ 1

0

Bi,m(t)Bj,m(t)dt,

then (19) can be rewritten in compact form as:

J ≈ 1

2
{(XTZX) + (UTWU)}, (20)

where Z = [zi,j ] and W = [wi,j ].
From (17) we know that XT = Π+ UTΓ, so the necessary condition that U
minimizes (20) and satisfy (17) is that

∂J

∂U
= XTZΓT + UTW = 0,

so
U∗T = XTZΓTW−1. (21)

The above equation gives the optimal feedback control and by replacing (21)
in (17), we can easily find the optimal state as well.

We need to mention that, since the Bernstein coefficients of positive func-
tions in L2[0, 1] are positive [7] and it was assumed that R(t) is positive def-
inite, then Ri,j is a positive vector. Also because Bi,m(t) > 0 for t ∈ (0, 1),
it’s clear that
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ΦTm(t)R̃i,j = RTi,jΦm(t)ΦTm(t) > 0, t ∈ [0, 1],

therefore R̃i,j and as the result Wi,j = H
⊗
R̃i,j are positive definite and

consequently invertible matrices.

5 Convergence of the method

In this section, we show the convergence of the presented method discussed
in this article. First we prove the following lemma.

Lemma 5.1. Let XTΦm(t) =
∑m
j=0XjBj,m(t) be the Bernstein poly-

nomial of order m that approximates the function x(t) ∈ L2[0, 1]. Then

0I
α
t (X

TΦm(t)), tends to 0I
α
t x(t) as m tends to infinity.

Proof. By Lemma 3.3 we have

limm→∞

m∑
j=0

XjBj,m(t) = x(t). (22)

Since Bj,m(t) is a continuous function, we have

limm→∞

∫ t

0

∑m
j=0XjBj,m(τ)

(t− τ)1−α
dτ = limm→∞

m∑
j=0

Xj

∫ t

0

Bj,m(τ)

(t− τ)1−α
dτ.

By (22) and from Definition 2.2, we obtain∫ t

0

x(τ)

(t− τ)1−α
dτ = Γ(α) limm→∞

m∑
j=0

Xj 0I
α
t Bj,m(t),

or

0I
α
t x(t) = limm→∞

m∑
j=0

Xj 0I
α
t Bj,m(t) = limm→∞X

T
0It

αΦm(t). (23)

In (14), Iα = ΛΣ̃PT where the i-th column of PT is the Bernstein approx-
imated coefficients of ti+α for i = 0, · · · ,m. Now, regarding the convergence
of the Bernstein approximation of every functions in L2([0, 1]), one can write
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limn→∞P
TΦn(t) = limn→∞


∑n
j=0 Pj,0Bj,n(t)∑n
j=0 Pj,1Bj,n(t)

...∑n
j=0 Pj,mBj,n(t)

 = T̃ =


tα

t1+α

t2+α

...
tm+α

 ,

therefore, limn→∞ΛΣ̃PTΦn(t) = ΛΣ̃ limn→∞P
TΦn(t) = ΛΣ̃T̃ , or as ex-

plained in (12) and (13)

limn→∞IαΦn(t) = 0It
αΦm(t). (24)

From (23) and (24) we reach

0I
α
t x(t) = limm→∞X

T limn→∞IαΦn(t).

Given n ≥ m will complete the proof. □

Theorem 5.1. The approximated solutions x̄(t) = X̄TΦm(t) and ū(t) =
ŪTΦm(t) in which (X̄, Ū) is achieved from (17) and (21), converge to the
optimal solutions x∗(t) and u∗(t) as the degree of the Bernstein polynomials
tend to infinity.

Proof. Suppose Wm is the set of all (UT , XT )Φm(·) where X,U ∈ Rm+1

and satisfy (17), also W is the set of all (u(·), x(·)) satisfy (2) and (3).
Let Ū be the optimal solution of (20) where obtained from (21) and X̄ be
the solution of (17) obtained by replacing Ū in eqation (17). Therefore
(ŪT , X̄T )Φm(·) ∈ Wm. By the convergence property of Bernstein polyno-
mials, for (ŪT , X̄T )Φm(·), there exists a unique pair of functions (ū(·), x̄(·))
such that

(ŪT , X̄T )Φm(·) −→ (ū(·), x̄(·)) as m→∞.

Now according to Lemma 5.1 it is clear that (ū(·), x̄(·)) ∈ W . Moreover as
m→∞, then J(ŪTΦm, X̄

TΦm) −→ J̄ where J̄ is the value of cost function
(1) corresponding to the feasible solution (ū(·), x̄(·)). Now, since

W1 ⊆ · · · ⊆Wm ⊆Wm+1 ⊆ · · · ⊆W,

consequently

InfW1J1 ≥ · · · ≥ InfWmJm ≥ InfWm+1Jm+1 ≥ · · · ≥ InfWJ.

Let J∗
m = InfWmJm, so J∗

m = J(ŪTΦm, X̄
TΦm). Furthermore, the sequence

{J∗
m} is nonincreasing and bounded bellow which converges to a number

J̄ ≥ InfWJ . We want to show that J̄ = limm→∞J
∗
m = InfWJ . Given

ε > 0, let (u(·), x(·)) be an element in W such that

J(u, x) < InfWJ + ε, (25)
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by the definition of infimum, such (u(·), x(·)) ∈W exists.
Since J(u, x) is continuous, for this value of ε, there exists N(ε) so that if
m > N(ε),

|J(u, x)− J(UTΦm, XTΦm)| < ε, (26)

Now if m > N(ε), then using (25) and (26) gives

J(UTΦm, X
TΦm) < J(u, x) + ε < InfWJ + 2ε,

on the other hand

InfWJ ≤ J∗
m = InfWm

Jm ≤ J(UTΦm, XTΦm),

so
InfWJ ≤ J∗

m < InfWJ + 2ε,

or
0 ≤ J∗

m − InfWJ < 2ε,

where ε is chosen arbitrary. Thus

J̄ = limm→∞J
∗
m = InfWJ. □

6 Numerical examples

In this section we give some numerical examples and apply the method
presented in Section 4 for solving them. Our examples are solved using
Matlab2011a on an Intel Core i5-430M processor with 4 GB of DDR3 Mem-
ory. These test problems demonstrate the validity and efficiency of this tech-
nique.

Example 6.1. Consider the following delay fractional optimal control prob-
lem in which 0 < α ≤ 1,

min J = 1
2

∫ 1

0
[x2(t) + 1

2u
2(t)]dt,

s.t c
0D

α
t x(t) = −x(t) + x(t− 1

3 ) + u(t)− 1
2u(t−

2
3 ), 0 ≤ t ≤ 1,

x(t) = 1, − 1
3 ≤ t ≤ 0,

u(t) = 0, − 2
3 ≤ t ≤ 0.

For α = 1, this problem has been numerically solved by applying hybrid
functions based on Legendre polynomials in [19] and the objective value
I = 0.3731 has been achieved. Whilst, in the presented method the solu-
tion has the objective value J∗ = 0.3956 for α = 1 and m = 6. Thus, our
results with m = 6 are in good agreement with the results demonstrated in
[19] for α = 1. In addition, by varying the value of α we can obtain the op-
timal control u(·) and trajectory function x(·) which are shown respectively
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Figure 1: Approximate solution of u(.) for α = 1, 0.999, 0.99 in Example 6.1

Figure 2: Approximate solution of x(.) for α = 1, 0.999, 0.99 in Example 6.1
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Table 1: The objective value and the end point of trajectory for α = 1, 0.999, 0.99 in
Example 6.1

α objective value end-point
1 0.3956 0.6775

0.999 0.3283 0.6443
0.99 0.2907 0.6249

Table 2: The objective value and the end points of trajectories for α = 1, 0.9, 0.8 in
Example 6.2

α objective value end points
1 0.7245 −0.4691 , − 0.0113
0.9 1.0291 −0.6477 , 0.3202
0.8 0.7299 −0.4324 , 0.4674

for some values of α in Fig.1 and Fig.2. Moreover, for these values of α the
objective values and the end points of optimal trajectory are shown in Table
1.

Example 6.2. Consider the following two-dimensional DFOCP in which
0 < α ≤ 1,

min J = 1
2

∫ 1

0
{[x1(t) x2(t)]

[
1 t
t t2

]
[x1(t) x2(t)]

T + (t2 + 1)u2(t)}dt,

s.t c
0D

α
t

[
x1(t)
x2(t)

]
=

[
t2 + 1 1
0 2

] [
x1(t− 1

2 )
x2(t− 1

2 )

]
+

[
1

t+ 1

]
u(t) +

[
t+ 1
t2 + 1

]
u(t− 1

4
), 0 ≤ t ≤ 1,

[x1(t) x2(t)] = [1, 1], − 1
2 ≤ t ≤ 0,

u(t) = 1, − 1
4 ≤ t ≤ 0.

This problem for α = 1 has been studied in [19], where the obtained approx-
imated cost function is I = 1.5622. Using the presented method for α = 1
and m = 6, gives the approximated cost function as J∗ = 0.7245. So we
achieved satisfactory numerical results in comparison with what have been
obtained in [19] for α = 1. Also by varying the value of α the obtained
control and trajectories functions are shown respectively in Fig.3, Fig.4 and
Fig.5. Moreover, for these values of α the objective values and the end points
of optimal trajectories are shown in Table 2.
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Figure 3: Approximate solution of u(.) for α = 1, 0.9, 0.8 in Example 6.2

Figure 4: Approximate solution of x1(.) for α = 1, 0.9, 0.8 in Example 6.2
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Figure 5: Approximate solution of x2(.) for α = 1, 0.9, 0.8 in Example 6.2

7 Conclusion

In this paper, we peresent a new method of using Bernstein polynomials
for solving DFOCP’s. We approximate the objective function and find a
feed back control which minimizes the cost function. Then by replacing the
optimal control in the constraints, we get an algabric system which can be
solved in terms of the approximate coefficents of trajectory. The convergence
of the method is extensively discussed and some test problems are included
to show the efficiency of this very easy to use and accurate method.
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A successive iterative approach for two
dimensional nonlinear

Volterra-Fredholm integral equations

A. H. Borzabadi∗ and M. Heidari

Abstract

In this paper, an iterative scheme for extracting approximate solutions
of two dimensional Volterra-Fredholm integral equations is proposed. Con-

sidering some conditions on the kernel of the integral equation obtained by
discretization of the integral equation, the convergence of the approximate
solution to the exact solution is investigated. Several examples are provided
to demonstrate the efficiency of the approach.

Keywords: Volterra-Fredholm integral equation; Iterative method; Dis-
cretization; Approximation.

1 Introduction

The integral equations provide important tools for modeling a wide range
of phenomena and processes [14], and solving many problems in engineering
and mechanics which are dependent on finding the solution of their integral
equations. They are widely used in plasma physics [10], deblurring of two
dimensional images [8, 20], solving applied boundary value problems [1] and
Laplace’s equations with boundary conditions [16]. Upon the importance
of the integral equations, different numerical methods have been developed
over the years to tackle them, such as time collocation and time discretization
methods [6, 15], trapezoidal Nystrom method [11], Adomian decomposition
method [9, 17] and successive iterative scheme [5] but few of them can be used
for solving two dimensional integral equations such as two dimensional block
pulse functions [3], finite difference inequalities [19], time-stepping methods
[7] and block-by-block method [4].
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Studies on iterative approaches play an important role to accelerate con-
vergence rate in solving any system of equations generated by discretizing
mathematical models in science and engineering problems [5]. The objective
of this study is to present an iterative approach for extracting approximate
solutions of two dimensional Volterra-Fredholm integral equations as

u(x, t) = f(x, t) +

∫ t

c

∫ b

a

k(x, t, y, z, u(y, z))dydz, (x, t) ∈ D := [a, b]× [c, d],

(1)
where f(x, t) (source function) and k(x, t, y, z, u) (kernel function) are the
given analytical functions defined on D and D × D × R, respectively. The
existence and uniqueness of the solution for equation (1) are discussed in
[12, 15]. This work can be considered as an extension of the method proposed
in [5]. Note that, the present approach is applicable to a wide class of integral
equations. The structure of the report is as follows. In Section 2 we transform
the integral equation into a discretized form. Then, in Section 3, we introduce
an successful numerical approach which is used subsequently for making up
the solution algorithm in Section 4. Section 5 demonstrates the efficiency and
advantages of the proposed algorithm whilst Section 6 concludes the paper.

2 Integral equation transformation

Let△(1) = {a = x0, x1, · · · , xn−1, xn = b},△(2) = {c = t0, t1, · · · , tm−1, tm =
d} be equidistance partitions of [a, b] and [c, d], respectively, where hx =
xi+1 − xi, i = 0, 1, · · · , n− 1 and ht = tj+1 − tj , j = 0, 1, · · · ,m− 1 are the
discretization parameters of the partitions. Now, if u∗(x, t) be an analytical
solution of (1), then for the partitions △(1),△(2) on [a, b] and [c, d], we have

u∗(xi, tj) = f(xi, tj) +

∫ tj

c

∫ b

a

k(xi, tj , y, z, u
∗(y, z))dydz, (2)

where i = 0, 1, · · · , n and j = 0, 1, · · · ,m. In (2), the integral term can be
estimated by a numerical method of integration, e.g. Newton-Cotes methods.
Therefore, by taking equidistance partitions △(1),△(2), as above with hy =
yi+1 − yi, i = 0, 1, · · · , n − 1, hz = zj+1 − zj , j = 0, 1, · · · ,m − 1, and also
the weights wi, i = 0, 1, · · · , n and w′

jr
, r = 0, 1, · · · , j, equality (2) can be

written as,

u∗i,j = fi,j +

j∑
r=0

n∑
l=0

w′
jrwlk(xi, tj , yl, zr, u

∗
l,r) +O(hνy) +O(hµz ), (3)
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where u∗i,j = u∗(xi, tj), fi,j = f(xi, tj), i = 0, 1, · · · , n, j = 0, 1, · · · ,m, and
ν, µ depends upon the employed method of Newton-Cotes for estimating the
integral in (2).

For partitions △(1),△(2), we consider a nonlinear equations system ob-
tained by neglecting the truncation error of (2), as follows,

ξi,j = fi,j +

j∑
r=0

n∑
l=0

w
′
jr

wlk(xi, tj , yl, zr, ξl,r), i = 0, 1, · · · , n, j = 0, 1, · · · ,m, (4)

and suppose that the exact solution of nonlinear system (4) are ξ∗i,j , i =
0, 1, · · · , n, j = 0, 1, · · · ,m. In the following proposition, we seek the condi-
tions of vanishing |u∗i,j − ξ∗i,j |, i = 0, 1, · · · , n, j = 0, 1, · · · ,m.

proposition 2.1.Suppose,
(i) |u∗p,q − ξ∗p,q| = max 0≤i≤n

0≤j≤m
|u∗i,j − ξ∗i,j |,

(ii) k(x, t, y, z, u(y, z)) ∈ C(D ×D × R),
(iii) ku(x, t, y, z, u(y, z)) exists on D ×D × R and γ < 1

(b−a)(d−c) , where

γ = sup
x,y∈[a,b]
t,z∈[c,d]

|ku(x, t, y, z, u(y, z))|.

Then

|u∗p,q − ξ∗p,q| ≤
|O(hνy)|+ |O(hµz )|
1− γ(b− a)(d− c)

. (5)

Proof. By (3) and (4), we have

u∗p,q − ξ∗p,q =
q∑
r=0

n∑
l=0

w′
qrwl(k(xp, tq, yl, zr, u

∗
l,r)− k(xp, tq, yl, zr, ξ∗l,r))

+O(hνy) +O(hµz ).

According to (iii)

k(xp, tq, yl, zr, u
∗
l,r)− k(xp, tq, yl, zr, ξ∗l,r) =

∂k

∂u
(xp, tq, yl, zr, η

∗
l,r)(u

∗
l,r − ξ∗l,r),

(6)
where for each l = 0, 1, · · · , n, r = 0, 1, · · · ,m, ηl,r is a real number between
u∗l,r and ξ∗l,r. Again by (iii) and (6), we conclude that

|u∗p,q − ξ∗p,q| ≤ γ
q∑
r=0

n∑
l=0

w′
qrwl|u

∗
l,r − ξ∗l,r|+ |O(hνy)|+ |O(hµz )|

≤ γ|u∗p,q − ξ∗p,q|
q∑
r=0

n∑
l=0

w′
qrwl + |O(hνy)|+ |O(hµz )|.
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Since in every Newton-Cotes formula
∑q
r=0

∑n
l=0 w

′
qrwl = (b− a)(d− c),

|u∗p,q − ξ∗p,q| ≤
|O(hνy)|+ |O(hµz )|
1− γ(b− a)(d− c)

.

Inequality (5) leads to the following corollary, corollary 2.2. |u∗p,q−ξ∗p,q|
vanishes when hy and hz tend to zero.

Now, to find the approximate solution, one needs to solve nonlinear equa-
tion (4).

3 The successive numerical approach

Iterative methods are widely used for finding approximate solution of non-
linear systems of equations [21]. Borzabadi et. al. in [5] presented a succes-
sive substitution, similar to Gauss-Seidel method for solving one dimensional
Fredholm integral equation. The nonlinear system of equations (4) has also a
structure that permits us to approximate its solution by a similar successive
iterative approach presented in [5]. Hereby we define an iterative process
which leads to the sequence of matrices {ξ(k)}. The components of the ma-
trices satisfy the iteration formula,

ξ
(k+1)
i,j = fi,j +

j∑
r=0

n∑
l=0

w′
jrwlk(xi, tj , yl, zr, ξ

(k)
l,r ), (7)

where i = 0, 1, · · · , n, j = 0, 1, · · · ,m and k = 0, 1, · · · . Though, the con-
vergence scheme can be constructed for detecting approximate solution (4).
However, we first study the conditions that guarantee the convergence of the
sequence {ξ(k)}.

theorem 3.1. Considering assumptions of Proposition 2.1, the produced
sequence {ξ(k)} from the iteration process (7) tends to the exact solution of
(4), say ξ∗, for any arbitrary initial matrix ξ(0).

Proof. By (4) and (7) we have,

ξ
(k+1)
i,j − ξ∗i,j =

j∑
r=0

n∑
l=0

w′
jrwl(k(xi, tj , yl, zr, ξ

(k)
l,r )− k(xi, tj , yl, zr, ξ

∗
l,r)),

and according to condition (iii) of Proposition 2.1,
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ξ
(k+1)
i,j − ξ∗i,j =

j∑
r=0

n∑
l=0

w′
jrwl

∂k

∂u
(xi, tj , yl, zr, η

(k)
l,r )(ξ

(k)
l,r − ξ

∗
l,r),

where η
(k)
l,r is a real number between ξ

(k)
l,r and ξ∗l,r for l = 0, 1, · · · , n and

r = 0, 1, · · · ,m. Thus one may obtain the following inequalities

|ξ(k+1)
i,j − ξ∗i,j | ≤ max

0≤i≤n
0≤j≤m

|ξ(k)i,j − ξ
∗
i,j |

j∑
r=0

n∑
l=0

w′
jrwl|

∂k

∂u
(xp, tq, yl, zr, η

(k)
l,r )|

≤ γ max
0≤i≤n
0≤j≤m

|ξ(k)i,j − ξ
∗
i,j |

m∑
r=0

n∑
l=0

w′
rwl,

where i = 0, 1, · · · , n, j = 0, 1, · · · ,m. By setting λ = γ(b − a)(d − c) we
conclude that

max
0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ∗i,j | ≤ λ max

1≤i≤n
1≤j≤m

|ξ(k)i,j − ξ
∗
i,j |.

By mathematical induction on k, we get

max
0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ∗i,j | ≤ λk max

0≤i≤n
0≤j≤m

|ξ(0)i,j − ξ
∗
i,j |,

for each k = 0, 1, · · · . Since 0 < λ < 1, then, k → +∞ implies that

max 0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ∗i,j | vanishes.

4 Algorithm of the approach

In this section, we propose an algorithm on the basis of the above discussions
to solve the Volterra-Fredholm integral equation (1). This algorithm is pre-
sented in two stages, the initialization and the main steps.

Initialization
Choose ϵ > 0, and equidistance partitions △(1) = {a = x0 = y0, x1 =
y1, · · · , xn−1 = yn−1, xn = yn = b} on [a, b] with the step size hx =
xi+1 − xi, i = 0, 1, · · · , n − 1, plus △(2) = {c = t0 = z0, t1 = z1, · · · , tn−1 =
zn−1, tn = zn = d} on [c, d] with the step size ht = tj+1 − tj , j =
0, 1, · · · ,m − 1 and an initial matrix ξ(0). Set k = 0 and go to the main
steps.
Main steps
Step 1. Compute ξ(k+1) by (6), and go to Step 2.
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Step 2. Compute max 0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ(k)i,j | and go to Step 3.

Step 3. If max 0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ(k)i,j | < ϵ, stop; Otherwise, set k = k + 1 and

go to step 1.

In the next section the advantages and the influence of the proposed
approach in thrilling convergence rate of the solution for the problems is
demonstrated via some examples.

5 Numerical examples

Suppose u∗(x, t) is the exact solution of Volterra-Fredholm integral equation

(1) and ξ̂i,j , i = 0, 1, · · · , n, j = 0, 1, · · · ,m is a solution obtained by applying
the given algorithm with a known ϵ > 0 and partitions △(1) and △(2). To
compare the precision of the approximate solution, the discrete error function

e(xi, tj) = |u∗(xi, tj)− ξ̂(xi, tj)|, i = 0, 1, · · · , n, j = 0, 1, · · · ,m, (8)

is established.

Example 5.1. In this example, we apply the developed method to a two
dimensional Fredholm integral equation as follows [13],

u(x, t) =
1

(1 + x+ t)2
− x

6(1 + t)
+

∫ 1

0

∫ 1

0

x

1 + t
(1 + y + z)u2(y, z)dydz.

This integral equation has analytical solution u(x, t) = 1
(1+x+t)2 on [0, 1]×

[0, 1]. We take ϵ = 10−6 and partitions with the discretization parameters
hx = 1

100 and ht = 1
100 . The initial matrix ξ(0) = 0 is considered first to

start the algorithm. In Table 1, one can see all acceptable values for error
estimation (8) which is obtained by applying the developed algorithm to the
illustrated equation.

Table 1: Error estimation for Example 5.1
x t 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.2 3.980× 10−6 3.317× 10−6 2.843× 10−6 2.488× 10−6 2.211× 10−6 1.990× 10−6

0.4 7.958× 10−6 6.631× 10−6 5.684× 10−6 4.973× 10−6 4.421× 10−6 30979× 10−6

0.6 1.193× 10−5 9.943× 10−6 8.522× 10−6 7.457× 10−6 6.629× 10−6 5.966× 10−6

0.8 1.590× 10−5 1.325× 10−5 1.136× 10−5 9.940× 10−6 8.835× 10−6 7.952× 10−6

1.0 1.987× 10−5 1.656× 10−5 1.420× 10−5 1.242× 10−5 1.104× 10−5 9.937× 10−6

Example 5.2. In this example, we apply our method for the following two
dimensional Fredholm integral equation [2],
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u(x, t) = xe−t − 1

2
t− 7

12
x+

1

3
xe−1 +

∫ 1

0

∫ 1

0

(xy + tez)u(y, z)dydz.

The analytical solution of this integral equation is u(x, t) = xe−t + t
on [0, 1] × [0, 1]. By solving this equation, we observe that the proposed
algorithm does not give rise to a convergent sequence. So, to overcome this
shortcoming, we put [0, 0.1] × [0, 0.1] in place of [0, 1] × [0, 1], where the
conditions of Theorem 3.1 hold. Then

u(x, t) = xe−t +
1799

2000
t− 43

120000
x+

9

100
te−0.1 +

1

3000
xe−1

+

∫ 0.1

0

∫ 0.1

0

(xy + tez)u(y, z)dydz.

Table 2 shows that in this region of integration, approximate solution tracks
the exact one, almost precise.

Table 2: Error estimation for Example 5.2
x t 0.0 0.02 0.04 0.06 0.08 0.1

0.0 0.000 3.598× 10−11 7.197× 10−11 1.080× 10−10 1.439× 10−10 1.799× 10−10

0.02 3.178× 10−11 6.776× 10−11 1.037× 10−10 1.397× 10−10 1.757× 10−10 2.117× 10−10

0.04 6.356× 10−11 9.954× 10−11 1.355× 10−10 1.715× 10−10 2075× 10−10 2435× 10−10

0.06 9.533× 10−11 1.313× 10−10 1.673× 10−10 2.033× 10−10 2.393× 10−10 2.752× 10−10

0.08 1.271× 10−10 1.631× 10−10 1.991× 10−10 2.351× 10−10 2.710× 10−10 3.070× 10−10

0.1 1.589× 10−10 1.949× 10−10 2.308× 10−10 2.668× 10−10 3.028× 10−10 3.388× 10−10

Example 5.3. In this example, we apply the proposed method to the fol-
lowing two dimensional Volterra integral equation [18],

u(x, t) = xsin(t)(1− x2sin2(t)

9
) +

x6

10
(
sin(2t)

2
− t)

+

∫ t

0

∫ x

0

(xy2 + cos(z))u2(y, z)dydz.

This integral equation has analytical solution u(x, t) = xsin(t) on [0, 1]×
[0, 1]. We take ϵ = 10−6 and partitions with the discretization parameters
hx = 1

100 and ht =
1

100 . The initial matrix ξ(0) = 0 is considered for starting
the algorithm. Table 3 illustrates the precision of the approximate solution
by showing the error criteria (7) corresponding to the given partition.

Table 3: Error estimation for Example 5.3
x t 0.0 0.2 0.4 0.6 0.8 1.0

0.0 3.906× 10−31 2.651× 10−33 1.716× 10−33 7.961× 10−34 2.432× 10−34 4.102× 10−35

0.2 3.227× 10−33 1.722× 10−8 8.025× 10−8 2.172× 10−7 4.268× 10−7 6.769× 10−7

0.4 4.711× 10−33 8.889× 10−8 2.616× 10−7 5.724× 10−7 1.025× 10−6 1.569× 10−6

0.6 1.199× 10−32 2.928× 10−7 7.087× 10−7 1.338× 10−6 2.213× 10−6 3.293× 10−6

0.8 5.513× 10−32 7.761× 10−7 1.742× 10−6 3.063× 10−6 4.852× 10−6 7.135× 10−6

1.0 3.906× 10−31 1.833× 10−6 4.003× 10−6 6.847× 10−6 1.067× 10−5 1.571× 10−5
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Example 5.4. In this example, we apply our method to a Volterra-Fredholm
integral equation as follows [3],

u(x, t) = x2 + xt− 1

15
xt4 − 1

16
xt5 +

∫ t

0

∫ 1

0

xty2z2u(y, z)dydz.

This integral equation has analytical solution u(x, t) = x2+xt on [0, 1]×[0, 1].
We take ϵ = 10−6 and partitions with the discretization parameters hx = 1

100

and ht = 1
100 . The initial matrix ξ(0) = 0 is considered for starting the

algorithm. Table 4 exhibits good error values by applying the developed
algorithm.

Table 4: Error estimation for Example 5.4
x t 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.2 0.000 4.063× 10−8 2.567× 10−7 9.000× 10−7 2.425× 10−6 5.598× 10−6

0.4 0.000 8.126× 10−8 5.133× 10−7 1.800× 10−6 4.850× 10−6 1.119× 10−5

0.6 0.000 1.219× 10−7 7.699× 10−7 2.700× 10−6 7.276× 10−7 1.679× 10−5

0.8 0.000 1.625× 10−7 1.027× 10−6 3.600× 10−6 9.701× 10−6 2.239× 10−5

1.0 0.000 2.031× 10−7 1.283× 10−6 4.500× 10−6 1.213× 10−5 2.799× 10−5

6 Conclusions

In this paper, an iterative approach for obtaining approximate solutions for
two dimensional Volterra-Fredholm integral equations, considering some spe-
cial conditions on the kernel, as continuous differentiability of kernel, is pro-
posed. Theorem 3.1 provides a sufficient condition for convergence of the
approach, but it is not necessary. Therefore, Examples 5.1, 5.3, and 5.4 show
that, despite the lack of conditions, convergence of the proposed method
holds for a class of two dimensional Volterra-Fredholm integral equations.
Also the changing in problem for holding conditions of Theorem 3.1 lead to
the convergence of the method, as it is described in Example 5.2. The valid-
ity and efficiency of the proposed scheme is demonstrated on the examples
included.
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ناپیوسته ضرایب با آکوستیک موج معادله برای بالا مرتبه ور غوطه واسط روشهای

حسینی محمد سید و فرضی جواد

واسطهایی شامل جواب دامنه که است آکوستیک موج معادله عددی حل مورد در مقاله این : چکیده
واقع، در شود. حاصل بالا دقت مرتبه تا شود واسطها به زیادی توجه باید واسط مسائل حل برای باشد.
با نادقیق تقریبی جوابهای به مسائلی چنین برای بالا مرتبه متناهی تفاضل روش یک مستقیم کاربرد هرگونه
این رفع برای بالا مرتبه روشهای آوردن بدست امکان وجود، این با شود. می منجر واسطها در بالا نوسانات
آکوستیک موج معادله برای ششم مرتبه ور غوطه واسط روش یک مقاله این در دارد. وجود واسط در پدیده
عددی بررسی تعدادی شود. می حفظ پرش شرایط از استفاده با ناپیوستگی در دقت مرتبه شود. می ارائه

کند. می تایید را شده ارائه روش عددی پایداری و دقت مرتبه که است شده داده قرار
شرایط ناپیوسته؛ ضرایب وندروف؛ لکس روش بالا؛ مرتبه روشهای واسط؛ روشهای : کلیدی کلمات

پرش.



شیمیایی های واکنش از آمده بدست سخت دیفرانسیل معادلات دستگاه عددی حل

مثل بی سعید و میرزایی، فرشته عبدی، علی حجتی، غلامرضا

شیمیایی، های واکنش از بزرگ گیری انتگرال های بازه در سخت اولیه مقدار مسایل های دستگاه : چکیده
خطی های روش مقاله این در دارند. نیاز وسیع پایداری ناحیه و خوب دقت با کارا های روش به حل برای
و HIRES مساله شیمیایی، نوبل آکزو مانند شیمیایی سخت مساله چند حل برای را دوم مشتق عمومی

بریم. می کار به OREGO مساله
شیمیایی؛ های واکنش معمولی؛ دیفرانسیل معادلات عمومی؛ خطی های روش : کلیدی کلمات

سخت. های دستگاه



خطی غیر دیفرانسیل-انتگرال معادلات حل برای عملیاتی های ماتریس مبنای بر عددی روش یک

گلبابایی احمد

کند، می بیان دیفرانسیل انتگرال معادلات از دسته دو برای را محاسباتی روش یک مقاله این : چکیده
مرتبه از خطی غیر دیفرانسیل انتگرال معادله و فردهلم ولترا دیفرانسیل انتگرال معادله خطی غیر دستگاه
این با باشد. می کسری انتگرال و انتگرال عملیاتی های ماتریس کار این برای استفاده مورد ابزار . کسری
ودقت کارایی که شده داده عددی هایی مثال شود. می جبری دستگاه یک به تبدیل شده داده مساله ، روش

کنند. می اثبات را روش بالای
دیفرانسیل؛ انتگرال معادله خطی غیر دستگاه فردهلم؛ – ولترا انتگرال؛ عملیاتی ماتریس : کلیدی کلمات

لژاندر. موجک کسری؛ مرتبه



بازتولید هسته فضای در موضعی غیر مرزی شرایط با سهموی معادله برای معکوس مساله حل

اصفهانی طوطیان فرشته و مختاری، رضا محمدی، مریم

مرزي شرط يك با سهموي معكوس مساله يك حل براي بازگشتي الگوريتمي مقاله، اين در : چکیده
صورت به بازتوليد هسته فضاي در مساله تحليلي جواب مي�شود. ارايه بازتوليد هسته فضاي در غيرموضعي
همگرايي مي�آيد. دست به تحليلي جواب نامتناهي سري كردن قطع از تقريبي جواب و نامتناهي سري يك
كه است آن از حاكي روش، از آمده دست به عددي نتايج مي�شود. ثابت نيز تحليلي جواب به تقريبي جواب

گرفت. نظر در معكوسي مسايل چنين حل در كارا و ساده روش يك عنوان به را آن مي�توان
بازتوليد. هسته فضاي غيرموضعي؛ مرزي شرط سهموي؛ معكوس مساله : کلیدی کلمات



از استفاده با بعدی چند تأخیری کسری بهینه کنترل مسائل عددی حل برای تقریبی روش
برنشتاین های چندجملهای

فراهی هادی محمد و صفایی الهه

: چکیده
و وضعیت تابع روی تأخیر که تأخیری کسری بهینه کنترل مسائل حل برای جدید روشی مقاله این در
و برنشتاین های ای چندجمله از استفاده اساس بر روش این گردد. می ارائه شده، اعمال کنترل تابع نیز
کنترل چنین تأثیر توان می که است این بازخورد کنترل کارگیری به مزیت مهمترین باشد. می بازخورد کنترل
مقاله این در کرد. اصلاح مشاهدات این اساس بر را خروجی و مشاهده دینامیکی دستگاه روی بر را هایی
یک به زمان، به وابسته ضرایب با تأخیری کسری کنترلی دستگاه تبدیل برای برنشتاین های ای چندجمله از
لازم بریم. می بهره برنشتاین تقریب در کنترل تابع و وضعیت تابع مجهول ضرایب حسب بر جبری دستگاه
چند پایان در است. شده استفاده ۰ < α ≤ ۱ درجه با کپتو کسری مشتق از مقاله این در که است ذکر به

گردد. می ارائه روش اعتبار و صحت دادن نشان برای عددی مثال
برنشتاین. ای چندجمله کپتو؛ کسری مشتق تأخیری؛ کسری بهینه کنترل مسأله : کلیدی کلمات



بعدی دو غیرخطی فردهلم والترا- انتگرالی معادلات برای متوالی تکرار رهیافت یک

حیدری محمد و برزآبادی هاشمی اکبر

ولترا-فردهلم انتگرالی معادلات جوابهای آوردن بدست برای تکراری روش یک مقاله، این در : چکیده
انتگرالی معادله سازی گسسته از که انتگرالی معادله هسته روی شرایطی گرفتن نظر در با است. شده پیشنهاد
روش کارایی نمایش برای است. شده بررسی معادله دقیق جواب به تقریبی جواب همگرایی شده، حاصل

است. شده گرفته نظر در مثال چندین
تقریب. سازی؛ گسسته تکراری؛ روش ولترا-فردهلم؛ انتگرالی معادله : کلیدی کلمات
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