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Jafar Saberi-Nadjafi and Asghar Ghorbani

Abstract

This paper deals with a novel proof of convergence of He’s variational iteration
method applied to nonlinear partial differential equations by proposing a new for-
mulation for this technique.

Keywords: Variational iteration method; Convergence theorem; Partial dif-
ferential equations; Burger’s equation.

1 Introduction

Recently He [8] has written a survey article and some new asymptotic tech-
niques with numerous examples. The limitations of traditional perturbation
procedures are illustrated. Various modified perturbation techniques are in-
troduced, and some mathematical tools such as variational theory, homotopy
technique, and iteration technique are proposed to overcome the shortcom-
ings. For the nonlinear oscillators, all the reviewed schemes produce high
approximate periods, but the accuracy of the amplitudes cannot be amelio-
rated by iteration. The emphasis of this author [8] is on the variational ap-
proaches, parameter-expanding methods, parameterized perturbation tech-
nique, homotopy perturbation method, iteration perturbation procedure and
ancient Chinese methods. Variational approaches to soliton solution, bifur-
cation, limit cycle, and period solutions of nonlinear equations including the
Ritz method, energy technique, variational iteration method are illustrated
in his paper [8].

The variational iteration method (VIM) plays an important role in recent
researches in this field. This method is proposed by He [4, 6, 5, 7] as a
modification of a general Lagrange multiplier method [11]. It has been shown
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that this procedure is a powerful tool for solving various kinds of problems
(e.g., see [1, 3, 13, 12]).

In this work, we adapt the technique to nonlinear partial differential equa-
tions and we prove the convergence of this method by proposing a new for-
mulation of the method.

2 The Variational Iteration Method

The idea of VIM is very simple and straightforward. To explain the basic idea
of VIM, we consider an one dimension general first order nonlinear partial
differential equation as follows with the assumption that the equation has the
unique solution (note that one can consider a nonlinear partial differential
equation in higher dimensions and also more general form without loss of
generality):

Φ(t, x, u, ut, ux, · · · ) = 0, (1)

with the specified initial condition (i.e., u(x, t0) = f(x)). We assume that the
nonlinear operator Φ is continuous with respect to its arguments and u(x, t)
is an unknown. We first consider Eq. (1) as follows:

Λ[u(x, t)] + N[u(x, t)] = 0, (2)

with, for example, the assumption α(x, t) ̸= 0

Λ[u] = α(x, t)ut + β(x, t)u

and
N[u] = Φ(t, x, u, ut, ux, · · · )− α(x, t)ut − β(x, t)u, (3)

where, as shown above, Λ with the property Λy ≡ 0 when y ≡ 0 denotes the
linear operator with respect to u and N is a nonlinear operator with respect
to u. We then construct a correction functional for Eq. (2) as [7]:

un+1(x, t) = un(x, t) +

∫ t

t0

λ(x,t,s) {α(x, s)uns
(x, s) + β(x, s)un(x, s)

+N[ũn(x, s)] } ds, (4)

where u0(x, t) is the initial guess and the subscript n denotes the n-th itera-
tion, and λ(x,t,s) ̸= 0 denotes the Lagrange multiplier, which can be identified
efficiently via the variational theory, and ũn is considered as a restricted vari-
ation [7], i.e., δũn = 0.

Taking variation with respect to the independent variable un, noticing that
δun(x, t0) = 0 and by making the correction functional stationary, we obtain
δun+1(x, t) = 0 and therefore we have the following:
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δun+1(x, t) = δun(x, t) + δ

∫ t

t0

λ(x,t,s) {α(x, s)unt(x, s) + β(x, s)un(x, s)

+N[ũn(x, s)]} ds
= δun(x, t) + α(x, s)λ(x,t,s)δun(x, s)

∣∣
s=t

−
∫ t

t0

{
∂

∂s

(
α(x, s)λ(x,t,s)

)
− β(x, s)λ(x,t,s)

}
δun(x, s)ds

= [1 + α(x, s)λ(x,t,s)] δun(x, s)|s=t
−
∫ t

t0

{
∂

∂s

(
α(x, s)λ(x,t,s)

)
− β(x, s)λ(x,t,s)

}
δun(x, s)ds

= 0. (5)

Therefore, we have the following stationary conditions:

α(x, s)λ(x,t,s)
∣∣
s=t

= −1, (6)

∂

∂s

(
α(x, s)λ(x,t,s)

)
− β(x, s)λ(x,t,s) = 0. (7)

Hence, the Lagrange multiplier can be readily identified as

λ(x,t,s) =
−1

α(x, t)
exp

(∫ t

s

ατ (x, τ)− β(x, τ)

α(x, τ)
dτ

)
. (8)

As a result, we have the following variational iteration formula:

un+1(x, t) = un(x, t) +

∫ t

t0

λ(x,t,s)Φ(s, x, un(x, s), uns(x, s), unx(x, s), · · · ) ds.

(9)
Accordingly, the successive approximations un(x, t), n ≥ 0 of VIM will be
readily obtained by choosing all the above-mentioned parameters. Conse-
quently, the exact solution may be obtained by using

u(x, t) = lim
n→∞

un(x, t). (10)

The initial guess can be freely chosen with possible unknown constants,
it can also be solved from its corresponding linear homogeneous equation
Λ[u0(x, t)] = 0. It is important to note that for linear problems, the exact
solution can be obtained easily by only one iteration due to the fact that the
auxiliary function can be suitably identified [9]. For nonlinear problems, in
general, one iteration leads to highly accurate solution by VIM if the initial
solution is carefully chosen with some unknown parameters.
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3 Convergence Theorem

The variational iteration formula makes a recurrence sequence {un(x, t)}. Ob-
viously, the limit of the sequence will be the solution of Eq. (1) if the sequence
is convergent. In this section, we give a new proof of convergence of VIM in
details by introducing a new iterative formulation of this procedure. Here, we
suppose that for every positive integer n, un ∈ C[t0, T ], and {unt(x, t)} and
{unx(x, t)} are uniformly convergent.

Lemma 3.1. The variational iteration formula (9) is equivalent to the fol-
lowing iterative relation

Λ[un+1(x, t)− un(x, t)] = −Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · ), (11)

where Λ is as noted in (3).

Proof . Suppose un and un+1 satisfies the variational iteration formula (9).
Applying ∂

∂t into both sides of (9), results in

∂

∂t
[un+1(x, t)− un(x, t)] =

∫ t

t0

∂λ(x,t,s)

∂t
Φds+

∂

∂t
[λ(x,t,s)

∣∣
s=t

Φ]. (12)

Now, by using conditions (6) and (7), and
∂λ(x,t,s)

∂t = −β(x,t)
α(x,t) , we will have

α(x, t) ∂∂t [un+1(x, t)− un(x, t)] + β(x, t)[un+1(x, t)− un(x, t)] =
−Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · }).

(13)

From the definition (3) of Λ, we obtain

Λ[un+1(x, t)− un(x, t)] = −Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · ). (14)

Conversely, suppose un and un+1 satisfies (11). Multiplying (11) by λ(x,t,s),
in view of the definition of Λ and λ(x,t,s) ̸= 0, and next by integrating on
both sides of the resulted term from t0 to t, yields∫ t
t0

λ(x,t,s)α(x, s)[
∂
∂s

un+1(x, s)− ∂
∂s

un(x, s)]ds+
∫ t
t0

λ(x,t,s)β(x, s)[un+1(x, s)− un(x, s)]ds

= −
∫ t
t0

λ(x,t,s)Φ(s) ds.

(15)
Using simple integration by parts, the expression (15) becomes

α(x, t)λ(x,t,t)[un+1(x, t)− un(x, t)]−
∫ t
t0

(
∂
∂s

(α(x, s)λ(x,t,s)

)
− β(x, s)λ(x,t,s))[un+1(x, s)

−un(x, s)] ds = −
∫ t
t0

λ(x,t,s) Φ(s) ds,

(16)

which exactly results (9) upon imposing conditions (6) and (7), i.e.,

un+1(x, t) = un(x, t) +

∫ t

t0

λ(x,t,s)Φ(s, x, un(x, s), uns(x, s), unx(x, s), · · · )ds.

(17)
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and this ends the proof. ⊓⊔
Theorem 3.1. If the sequence (10) converges, where un(x, t) is produced by
the variational iteration formulation of (9), then it is the exact solution of
the equation (1).

Proof . If the sequence {un(x, t)} converges, we can write

v(x, t) = lim
n→∞

un(x, t), (18)

and it holds
v(x, t) = lim

n→∞
un+1(x, t). (19)

Using expressions (18) and (19), and by the definition of Λ in (3), we can
easily gain

lim
n→∞

Λ [un+1(x, t)− un(x, t)] = Λ lim
n→∞

[un+1(x, t)− un(x, t)] = 0. (20)

From (20) and according to the Lemma 3.1, we obtain

Λ lim
n→∞

[un+1(x, t)− un(x, t)] = − lim
n→∞

Φ(t, x, un(x, t), unt (x, t), unx (x, t), · · · ) = 0, (21)

which gives us

lim
n→∞

Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · ) = 0. (22)

From (22) and the continuity of Φ operator, it holds

lim
n→∞

Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · )
= Φ(t, x, lim

n→∞
un(x, t), lim

n→∞
unt(x, t), lim

n→∞
unx(x, t), · · · )

= Φ

(
t, x, lim

n→∞
un(x, t),

(
lim
n→∞

un(x, t)
)
t
,
(
lim
n→∞

un(x, t)
)
x
, · · ·

)
= Φ(t, x, v(x, t), vt(x, t), vx(x, t), · · · ). (23)

Now, from Equations (22) and (23), we have

Φ (t, x, v, vt, vx, · · · ) = 0, t0 ≤ t ≤ T. (24)

On the other hand, using the specified initial conditions and the definition of
the initial guess, we have

v(x, t0) = lim
n→∞

un(x, t0) = f(x), since u(x, t0) = un(x, t0) = f(x), n ≥ 0,

(25)
Therefore, according to (24)-(25), v(x, t) must be the exact solution of the
equation (1), this ends the proof. ⊓⊔

Note that the above theorem is valid for the linear operator Λ defined by
(3). This convergence theorem is important. It is because of this theorem we
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can focus on ensuring that the approximation sequence converges. It is clear
that the convergence of the sequence (10) depends upon the initial guess
u0(x, t) and the linear operator Λ. Fortunately, VIM provides us with great
freedom of choosing them. Thus, as long as u0(x, t) and Λ are so properly
chosen that the sequence (10) converges in a region t0 ≤ t ≤ T , it must
converge to the exact solution in this region. Therefore, the combination of
the convergence theorem and the freedom of the choice of the initial guess
u0(x, t) and the linear operator Λ establishes the cornerstone of the validity
and flexibility of VIM.

4 An Illustrative Example

In order to illustrate the efficiency of the VIM described in this paper, we
present one example.

Example A much-considered example is the Burger’s equation [12,13]

ut + uux − uxx = 0, (26)

This equation was only intended as an approach to the study of turbulence
because it exhibited some essential characteristics of the more realistic (and
difficult) equations. This equation involves nonlinearity, dissipation, and is
relatively simple. The VIM solves much more difficult systems. We consider
it now to show the simplicity of a proper solution.

According to the VIM procedure, (9), one can obtain the following varia-
tional iteration relation (λ(x,t,s) = −1):

un+1(x, t) = un(x, t)−
∫ t

0

{unt(x, s)+un(x, s)unx(x, s)−unxx(x, s)} ds. (27)

The problem is completely defined when the initial condition is specified. If
we specify u = x when t = 0, we have

u0(x, t) = x,
u1(x, t) = x− xt+O(t2),
u2(x, t) = x− xt+ xt2 +O(t3),
u3(x, t) = x− xt+ xt2 − xt3 +O(t4),
u4(x, t) = x− xt+ xt2 − xt3 + xt4 +O(t5),

· · · (28)

Thus, u(x, t) = x/(1 + t) which is the exact solution of (26).
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5 Conclusion

In this paper, we have given a proof of convergence of He’s variational iter-
ation method by presenting a new formulation of He’s method for nonlinear
partial differential equations. The main property of this method is in its flex-
ibility and ability to solve nonlinear equations accurately and conveniently
without decomposing the nonlinear terms, which makes the procedure very
complex. This technique is a very powerful tool for solving nonlinear prob-
lems. Furthermore, it gives an accurate and easily computable solution by
means of a truncated series whose convergence is fast.
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Block-Coppels chaos in set-valued
discrete systems

Bahman Honary and Mojtaba Jazaeri

Abstract

Let (X, d) be a compact metric space and f : X → X be a continuous map. Consider
the metric space (K(X), H) of all non empty compact subsets of X endowed with
the Hausdorff metric induced by d. Let f̄ : K(X) → K(X) be defined by f̄(A) =
{f(a) : a ∈ A} . We show that Block-Coppels chaos in f implies Block-Coppels

chaos in f̄ if f is a bijection.

Keywords: Chaos; Discrete system; Dynamical system.

1 Introduction

Let (X, d) be a compact metric space with metric d and f : X → X be a
continuous map. For every positive integer n, we define fn inductively by
fn = f ◦ fn−1 , where f0 is the identity map on X. A map f is called to be
Block-Coppels chaotic [3] if there exist disjoint non-empty compact subsets
J,K of X and a positive integer n such that J ∪K ⊆ fn(J) ∩ fn(K).
Roman-Flores and Chalco-Cano investigated Robinsons chaos in set-valued
discrete systems [5]. Gu investigated Katos chaos in set-valued discrete sys-
tems [2]. Devaneys chaos in set-valued discrete systems has been studied in
several papers. For example see [4], [1].
In this paper, we investigate the relationships between Block-Coppels chaotic-
ity of (X, f) and Block-Coppels chaoticity of (K(X), f̄).
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2 Preliminaries

Let (X, d) be a compact metric space with metric d. The distance of a point
x from a set A in X is defined by d(x,A) = inf{d(x, a) : a ∈ A} if A ̸= ∅,
and d(x,∅) = 1. Let K(X) be the family of all non-empty compact subsets
of X.
The Hausdorff metric on K(X) is defined by H(A,B) = max{sup{d(a,B) :
a ∈ A}, sup{d(b, A) : b ∈ B}} for A,B ∈ K(X). It is easy to see that
(K(X),H) is a compact metric space.
Let τd be the topology of X induced by the metric d. The topology τH of
K(X) induced by the Hausdorff metric H coincides with the topology τv
generated by the basis βv consisting of all sets of the form Gu0 ∩Gl1∩ · · · ∩Glk
where G0, G1, . . . , Gk ∈ τd, G

u
0 = {A ∈ K(X) : A ⊆ G0} and

Gli = {A ∈ K(X) : A ∩G ̸= ∅}, i = 1, 2, . . . , k.

The topology τν is also called the Vietoris topology or the exponential topol-
ogy on K(X).
If f : X ∈ X is a continuous map then one can define a continuous map
f̄ : K(X) → K(X) by letting f̄(A) = {f(a) : a ∈ A} for every A ∈ K(X).

3 Block-Coppels Chaoticity

In this section, we show that Block-Coppels chaoticity of (X, f) implies Block-
Coppels chaoticity of (K(X), f̄) if f is bijection.

Definition 3.1. Let A be a subset of X, the extension of A to K(X) is
defined by e(A) = {K ∈ K(X) : K ⊆ A}.

Remark. It is clear that e(A) = ∅ if and only if A = ∅.

Lemma 3.1. Let A be a non-empty compact subset of X. Then, e(A) is a
non-empty compact subset of K(X).

Proof . It is sufficient to show that (e(A))c is open because in this case e(A)
is closed and a closed subset of a compact space, is compact. If K ∈ (e(A))c

then K ̸∈ e(A) which means K ⊊ A. Therefore K ∩ Ac ̸= ∅, and hence
K ∈ (Ac)l. So that

(e(A))c ⊆ (Ac)l (1)

On the other hand if K ∈ (Ac)l then K ∩ Ac ̸= ∅, therefore K ⊊ A and
hence K ̸∈ e(A). So that K ∈ (e(A))c and therefore

(Ac)l ⊆ (e(A))c (2)
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These two relations show that (e(A))c = (Ac)l and the proof is completed. ⊓⊔

The following lemma is obvious from definition.

Lemma 3.2. Let A be a subset of X. Then,

i) e(A ∩B) = e(A) ∩ e(B);
ii) f̄(e(A)) ⊆ e(f(A));
iii) fn = f̄n.

Lemma 3.3. Let f : X → X be a continuous bijection and A be a subset of
X.
Then f̄(e(A)) = e(f(A)).

Proof . According to previous Lemma f̄(e(A)) ⊆ e(f(A)). Conversely if
K ∈ e(f(A)), then f−1(K) ⊆ f−1(f(A)). Also f−1(f(A)) = A because
f is a bijection. Therefore f−1(K) ⊆ A and f(f−1(K)) ∈ f(e(A)). Also
f−1(f(K)) = K. Hence K ∈ f(e(A)) and therefore e(f(A)) ⊆ f̄(e(A)). ⊓⊔

Theorem 3.1. Let X be a compact metric space and f : X → X be a con-
tinuous bijection. If f is chaotic in the sense of Block-Coppel’s, then so is
f̄ .

Proof . Let f be Block-Coppel’s chaotic, then there exist disjoint non-empty
compact subsets J,K of X and a positive integer n such that J ∪ K ⊆
fn(J) ∩ fn(K). We claim that

e(J) ∪ e(K) ⊆ f̄n(e(J)) ∩ f̄n(e(K)).

Since J ⊆ fn(J), then e(J) ⊆ e(fn(J)). According to Lemma 3.3
e(fn(J)) = f̄n(e(J)). Therefore e(J) ⊆ f̄n(e(J)). In a similar way

e(J) ⊆ f̄n(e(K)), e(K) ⊆ f̄n(e(K)) and e(K) ⊆ f̄n(e(J)).

Therefore
e(J) ∪ e(K) ⊆ f̄n(e(J)) ∩ f̄n(e(K))

On the other hand e(J)∩ e(K) = e(J ∩K) = ∅ and according to Lemma 3.1
e(J), e(K) are compact, and the proof is completed. ⊓⊔
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A level set moving mesh method in
static form for one dimensional PDEs

Maryam Arab Ameri

Abstract

In this paper, we propose an adaptive mesh approach for time dependent parial
differential equations, based on a so-called moving mesh PDE(MMPDE) and level
set method. It means that the velocity of mesh nodes is calculated by MMPDE
and is employed as veocity in the level set equation. Then, at each time level, the

mesh points are considered as the level contours of the level set function. Finally
the method is merged with local time step technique.

Keywords: Adaptive grid; Level set function; Level contours; Moving mesh;
Local time stepping refinement; MMPDE.

1 Introduction

In this paper, we discuss a class of adaptive mesh algorithms for solving time-
dependent partial differential equations(PDEs) whose solutions have large
variations over a given physical domain, such as shock waves, boundary layer
and interior layer.

This method is based on the level set concept. the level set methods are
powerful numerical techniques for tracking the evolution of interfaces moving
in complex ways. The level set methods were used for the first time to repre-
sent the evolution of surfaces implicity by Osher and Sethian [11]. Due to its
many advantages, this approach has been used for many cases [1, 5, 9, 13, 19],
for example, it has been used for mesh generation around a body(inside or
outside) by the level set function [12]. Liao et al. presented some points about
using the level set functions for moving grid based on deformation method
[6]. In this paper, we also formulate an adaptive mesh method which is based
on the level set method. This method is combined with a class of moving
mesh methods which employs a moving mesh partial differential equation,
MMPDE, to perform mesh adaptation. The MMPDE is formulated in terms
of coordinate transformation or mapping,[3, 4, 8, 16, 17]. Several moving
mesh equations(MMPDEs) based upon equidistribution principle have been

Maryam Arab Ameri
Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran. e-mail:
arabameri@math.usb.ac.ir

13
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derived in [3], where in Section 2, we briefly review some of them. Finally
after introducing the new method, we present local time stepping refinement
technique based on the slope of the level set function for increasing the effi-
ciency of the moving mesh method. The mentioned method is used to solve
scalar field satisfying

ut(x, t) = L(u), (1)

where L is a differential operator defined on physical domain Ω, a ≤ x ≤ b
and 0 ≤ t ≤ Tf .

2 Moving Mesh Methods

In this section, we develop a new moving mesh method based on the level set
concept. We start with a review of the equidistribution principle(EP)[3, 15]
and derive MMPDEs from that principle in subsection 2.1,then a description
of adaptive grid based on level set method is given in the subsection 2.2.

2.1 MMPDE

The evolution of moving computational grid can be viewed as a discretiza-
tion of a one-to-one time dependent coordinate mapping. Let x and ξ denote
the physical and computational coordinates, with domains Ω and Ωc, respec-
tively. Without loss of generality, both of them are assumed to be in [0, 1].
Define a coordinate transformation by:

x = x(ξ, t), ξ ∈ [0, 1], x(0, t) = 0, x(1, t) = 1. (2)

The computational coordinates is discretized on a uniform mesh given by

ξj =
j

N
, j = 0, 1, · · · , N,

where N is a certain positive integer and the corresponding mesh in x denoted
by

0 = x0 < x1(t) < x2(t) < · · · < xN−1(t) < xN = 1.

A major factor of moving mesh approach is the monitor function, ρ(x, t),
which is chosen to be somehow a measure of the solution error. For a given
monitor function, the mesh point locations, xj(t), could be required to satisfy
the following equidistribution principle (EP) for all the values of time t [3]:∫ xj(t)

xj−1(t)

ρ(x, t)dx =
1

N

∫ 1

0

ρ(x, t)dx =
1

N
θ(t),
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or equivalently ∫ xj(t)

0

ρ(x, t)dx =
j

N
θ(t) = ξjθ(t). (3)

By differentiating (3) with respect to ξ once and twice,, we obtain two dif-
ferential forms of EP,

ρ(x(ξ, t))
∂

∂ξ
x(ξ, t) = θ(t), (4)

∂

∂ξ
(ρ(x(ξ, t), t)

∂

∂ξ
x(ξ, t)) = 0. (5)

These EPs,(3),(4) and (5), which do not contain the node speed ẋ(ξ, t),are
called quasi-static EPs(QSEPs). Related to these QSEPs, various MMPDEs
were derived in [3] by taking the mesh to satisfy the above EP (Eq. (5)) at a
later time t+ τ instead of at t. In this case the mesh should satisfy

∂

∂ξ
ρ(x(ξ, t+ τ), t+ τ)

∂

∂ξ
x(ξ, t+ τ) = 0 (6)

where the parameter τ is called a relaxation time. By expanding the term
∂
∂ξx(ξ, t+τ) in Taylor series and dropping certain higher order terms, various
MMPDEs can be obtained. Two of them which are used in our work are
MMPDE5 and MMPDE6:

MMPDE5 : −ẋ = −1

τ

∂

∂ξ
(ρ
∂x

∂ξ
), (7)

MMPDE6 :
∂2ẋ

∂ξ2
= −1

τ

∂

∂ξ
(ρ
∂x

∂ξ
). (8)

These MMPDEs and also the rest of them not only force the mesh ,x(ξ, t),
toward equidistribution principle but also prevent the mesh from crossing.
More specifically, the term −( 1τ )(

∂
∂ξ (ρ

∂x
∂ξ )) plays the fundamental role of a

correction term to make the mesh equidistribute the monitor function and it
is stabilizing term for the mesh trajectories.
The monitor function, ρ, is chosen such that the mesh points are concentrated
in regions where more accuracy is needed, and so ρ is usually taken to be
some measure of the solution error estimated from discrete solution values. A
commonly used monitor function is ρ =

√
1 + αu2x (α is regularizing factor),

which equidistributes the arclength of the solution u.
In this work, we discretize MMPDE5 and MMPDE6 by centered finite dif-
ference in space, which yields for MMPDE5

ẋj =
Ej
τ
, j = 0, 1, . . . , N

and for MMPDE6
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ẋj+1 − 2ẋj + ẋj−1 = −Ej
τ
, j = 0, 1, . . . , N.

The quantity Ej represents a centered approximation to the term on the right
hand side of MMPDE5 and MMPDE6 given by

Ej =Mj+1/2(xj+1 − xj)−Mj−1/2(xj − xj−1), j = 0, 1, . . . , N

where Mj+1/2 = 1
2 (Mj +Mj+1),Mj = M(uj), and uj ≈ u(xj , t) is an ap-

proximation of the solution at grid point xj .

2.2 Moving Mesh Based on Level Set Approach

In this section, at first a new moving grid method is formulated, and then
the algorithm of this method is presented.
Essential point in all applications of the level set method is using the implicit
representation. This point is also used in grid generation in such a way that
the mesh nodes are represented implicitly by the level contours of the level
set function. In this method, at each time level we construct the level set
function,ψ(x, t), and the mesh points xj , j = 0, 1, . . . , N , are obtained by the
level contours of ψ(x, t), that means the mesh points are:

{xj | ψ(x, t) = cj , j = 1, 2, . . . , N} (9)

where cj is j-th component of a constant vector C = (0, 1
N ,

2
N , . . . , 1) and N

is the number of mesh points.
In fact, in each time, we seek a level set function, ξ = ψ(x, t) : Ω → Ωc
, which maps xj to cj = j

N , j = 0, 1, . . . , N and satisfies the well-known
equidistribution principle

Jρ =
σ

|Ωc|
, (10)

where J is the Jacobian of the coordinate transformation x = ψ−1(ξ, t) :
Ωc → Ω, and ρ = ρ(x, t) is a given monitor function, and σ = σ(t) =∫
Ω
ρ(x, t)dx.

For updating the level set function or equivalently for updating the position
of mesh nodes, the well-known level set equation is applied,

ψt(x, t) + vψx(x, t) = 0. (11)

The ideal initial condition for the above equation is ψ(x, t) = x, because in
the most mesh adaptation algorithms, the purpose is to convert a uniform
mesh at initial time to an equidistributed mesh at the next time levels. The
mentioned initial condition gives a uniform mesh at t = 0. Also the following
boundary conditions are considered for the level set equation,
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ψ(0, t) = 0, ψ(1, t) = 1.

As we mentioned at each time level, any

ψ(x, t) = a (12)

has a correspondence point on x-axis which is one of the new mesh nodes.
By differentiating (12) with respect to t, we get

ψt(x, t) + ψx(x, t)ẋ = 0, (13)

and when compared with (11) and (13), we get

ẋ = v, (14)

that means, the nodes velocity is equal to v.
So for calculating the nodes velocity in the level set equation, the MMPDE5
or MMPDE6 should be applied which generates an equidistributed mesh
through this algorithm.
At each time level, after determining new nodes, the solution of PDE should
be determined. For this purpose, let

Ũ(ψ(x, t), t) = u(x, t), (15)

then
Ũt = uxẋ+ ut

where ut = L(u) by (1) and ẋ = v by (14). The derivatives in L(u), such as
ux, uxx are also transformed. For example, from (15), we have

Ũψ = uxxψ ⇒ ux =
Ũψ
xψ

=
Ũψ
σ

ρ|Ωc|
=
ρ|Ωc|
σ

Ũψ,

Ũψψ = uxx(xψ)
2+uxxψψ ⇒ uxx =

Ũψψ − uxxψψ
(xψ)2

= (
ρ|Ωc|
σ

)2(Ũψψ−uxxψψ).

The higher derivatives can be derived similarly. The transformed equation
for Ũ(ψ, t) takes the form of

Ũt = L̃(Ũ), (16)

where L̃ is a differential operator in ψ. Finally (16) will be solved on a uniform
grid.
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2.3 Algorithm of Adaptive Level Set Method(ALSM)

In this section, we provide an algorithm to solve the given PDE (1) in a
moving grid based on the level set function.
Step1: Enter the initial time, t0, the final time, Tf , the length of time step,
∆t, and the number of mesh points, N.
Step2: Set i = 0.
Step3: If t0 = 0, set

X(t0) = {x0j =
j

N
, j = 0, 1, . . . , N},

ψ(t0) = X(t0),

U (t0) = u(t0) = u(X(t0), t0),

Ũ (t0) = U (t0)

Step4: Determine ρ(u(x, ti)) by the solution u being calculated.
Step5: Compute mesh velocity, v = ẋ, either by MMPDE5:

ẋj =
Ej
τ
, j = 0, 1, . . . , N

or by MMPDE6:

ẋj+1 − 2ẋj + ẋj−1 = −Ej
τ
. j = 0, 1, . . . , N

Step6: Update the level set function by the following equation:

ψt(x, t) + ψx(x, t).v = 0,

which by forward finite difference discretization in time converts to:

ψ(ti+1) = ψ(ti) +∆t(vψx)ti ,

with the boundary conditions ψ0(ti + 1) = 0 and ψN (ti + 1) = 1.
Step7: Define the inverse of ψ(x, t) for updating the new nodes, X(ti+1), in
current time.
Step8: Determine the values of u on the current time level by the described
procedure in previous subsection and solve (16) or

Ũ(ti+1) = Ũ(ti) +∆t.L̃(Ũ(ti)),

Step9: Set i = i+ 1.
Step10: If ti ≤ Tf go to Step3, else break.
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3 Local Time Step Refinement

Local time stepping for one-dimensional conservation laws was first proposed
by Osher and Sanders [10]. Tan et. al. proposed variable time stepping for one
and two dimension for conservation laws, which uses semi-dynamic moving
mesh method such that the CFL condition is used to obtain time interval
refinement to compute the solution [18]. Also, Soheili and Salahshour used
this approach for the blow-up problems [14].
In this section, we also present the details of the local time stepping refine-
ment(LTSR) which is performed based on the level set function.
Let initial time steps of the problem have the form

t0 = 0 → t1 = t0+∆t→ . . .→ tn = t0+n∆t→ tn+1 = t0+(n+1)∆t→ . . .→ Tf ,

where ∆t is a specified value for the time step and is constant through using
this procedure. On the first interval [t0, t1], set ∆t0 = t1−t0

k0
where k0 ∈ N is

constant and depends on the slope of the level set function, (the method of
determining k0 will be described). We have

t0+(k0−i)∆t0 = t0 + (k0 − i)∆t0, i = k0, k0 − 1, . . . , 0

so the time integration on [t0, t1] involves k0 sub-steps such that

t0 = 0 → t0 +∆t0 → . . . → t0 + k0∆t0 = t1.

Generally, suppose that we are at time level t = tn and we want to move
towards t = tn+1. Similarly consider ∆tn = tn+1−tn

kn
such that

tn+(kn−i)∆tn = tn + (kn − i)∆tn, i = kn, kn − 1, . . . , 0

that means, on interval [tn, tn+1], we have

tn → tn +∆tn → . . .→ tn + kn∆tn = tn+1.

This process continues up to Tf . Now, k0, k1, . . . , kn, . . . are determined by
the following process. At the first step, we start integrate the problem from
t0 to t1 = t0 + ∆t without any LTSR, we call this process prediction step,
then we determine the level set function, the new mesh nodes of adaptive
mesh and solution of PDE at t1. According to the property of the mentioned
adaptive mesh method in previous section, ”for larger slope of the level set
function, more mesh nodes are concentrated”. Thus according to slope of

the level set function, we define the interval [t0, t1]. So the slope of ψ
(1)
j

on [xj , xj+1], j = 0, 1, . . . , N is calculated, then for having more efficient
solution, [t0, t1] is subdivided to k0 parts. Judicious choice for k0 can be

k0 = min{max
j

[slope(ψ
(1)
j ), 10]}, j = 0, 1, . . . , N,
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and the time integration is done on this sub-interval again but with ∆t0 =
t1−t0
k0

. After obtaining the solution at t1 we act on [t1, t2] similarly and de-
termine the solution at t2.
Generally, after calculating the solution at tn, at first we have a prediction
process concluding time integration from tn to tn+1 with pre-determined

value of ∆t as time step for knowing the slope of ψ
(n+1)
j on [xj , xj+1], j =

0, 1, . . . , N and subsequently kn = min{max
j

[slope(ψ
(n+1)
j )], 10}. Then the

time integration is performed on this sub-interval kn times with local time
step ∆tn.

3.1 Algorithm of Adaptive Level Set Method with LTSR

Step1: Enter the initial time, t0, the final time, Tf , the length of time step,
∆t, and the number of mesh points, N .
Step2: Set i = 0.
Step3: If t0 = 0, set

X(t0) = {x0j =
j

N
, j = 0, 1, . . . , N},

ψ(t0) = X(t0),

Ũ (t0) = U (t0) = u(t0) = u(X(t0), t0).

Step4: Run ALSM one time with t0 = ti, Tf = ti+1 and ∆t, then calculate

ψ(ti+1), X(ti+1) and Ũ (ti+1).
Step5: Calculate the slope of ψ(i+1) = ψ(ti+1) on [xj , xj+1], j = 0, 1, . . . , N

and subsequently ki = min{max
j

[slope(ψ
(i+1)
j )], 10}.

Step6: Set ∆ti =
ti+1−ti
ki

.
Step7: Run ALSM ki times with t0 = ti, Tf = ti+1, and ∆t = ∆ti, then

again calculate ψ(ti+1), X(ti+1) and Ũ (ti+1).
Step8: Set i = i+ 1.
Step9: If ti ≤ Tf go to step4, else break.

4 Numerical Experiment

In this section, we implement the present work for two numerical examples
where u(x, t) is a given function. We use the arclength monitor function. In
order to obtain an accurate and non-oscillatory solution, it is necessary to
smooth the mesh points. Following [5], we have applied smoothed monitor
function as below:
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ρ̃i =

∑i+ip
k=i−ip ρk(

γ
γ+1 )

|k−i|∑i+ip
k=i−ip(

γ
γ+1 )

|k−i|
,

where ip is a nonnegative integer and γ is a positive constant. In this paper
we select the mentioned formula for smoothing monitor function with ip = 1
and γ = 1. We apply MMPDE5 and MMPDE6 in the evolution equation of
the level set function for obtaining nodes velocity.

Fig. 1: The mesh trajectory and solution of the first example for 0 ≤ t ≤ 1.0 with adaptive
level set method(MMPDE5) of 21 mesh point,(µ = 0.5, λ = 0.4, ε = 0.01, β = 0).

Example 4.1. Consider the Burger’s equation as first example,

ut + uux − εuxx = 0,

where its exact solution is:

u(x, t) =
µ+ λ+ (µ− λ)e

λ
ε (x−µt−β)

1 + e
λ
ε (x−µt−β)

.

We select µ = 0.5, λ = 0.4, ε = 0.01 and β = 0. This problem is characterized
by moving discontinuities(specially when ε is very small), that means the dis-
continuities move in time, and so the solution at a particular point in space
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Fig. 2: The mesh trajectory and solution of the first example for 0 ≤ t ≤ 1.0 with adaptive

level set method(MMPDE6) of 21 mesh point,(µ = 0.5, λ = 0.4, ε = 0.01, β = 0).

Table 1: The error of ALSM(with MMPDE5) for the first example at t = 1.0, obtained by
the arclength monitor function with α = 0(uniform mesh) and α = 2(moving mesh)without

LTSR and with LTSR, (µ = 0.5, λ = 0.4, ε = 0.01 and β = 0).

MMPDE Time stepping Type of mesh N L∞-error CPU time

21 0.1924 0.504
5 without LTSR fixed mesh 31 0.0782 0.612

(α = 0) 41 0.0564 0.8807

21 0.0711 0.7548
5 without LTSR Moving mesh 31 0.0602 0.8315

(α = 2) 41 0.0587 0.9812

21 0.0510 0.917
5 with LTSR Moving mesh 31 0.0347 1.019

(α = 2) 41 0.0298 1.079

can change very rapidly. The solution of such a problem on a fixed uniform
spatial mesh, needs very small time step in order to have sufficient accuracy,
but using the adaptive mesh for finding the solution of this problem improves
both the accuracy and the efficiency.



A level set moving mesh method in static form for one dimensional PDEs 23

Fig. 3: The solution at t = 0 with uniform mesh and at t = 1 with adaptive level set
method(MMPDE5) of 21 mesh point for the first example, (µ = 0.5, λ = 0.4, ε = 0.01, β =
0).

Table 2: The error of ALSM(with MMPDE6) for the first example at t = 1.0, ob-

tained by the arclength monitor function with α = 0 (uniform mesh) and α = 2(moving
mesh)without LTSR and with LTSR, (µ = 0.5, λ = 0.4, ε = 0.01 and β = 0).

MMPDE Time stepping Type of mesh N L∞-error CPU time

21 0.0645 0.8815

6 without LTSR fixed mesh 31 0.0578 0.9205
(α = 0) 41 0.0512 0.9876

21 0.0441 0.031

6 without LTSR Moving mesh 31 0.0315 1.108
(α = 2) 41 0.0274 1.230

For this reason, we have used new adaptive mesh for this problem and
in order to demonstrate the efficiency of the adaptive level set method
(ALSM)(which has combined with MMPDE5), and also to compare ALSM
with or without LTSR, some results are presented in Table1. These results
show L∞-error and CPU times for different number of mesh points. These re-
sults certify higher accuracy of the mentioned method(ALSM) in comparison
with using uniform mesh. Besides, it shows that using the adaptive method
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Fig. 4: The solution at t = 0 with uniform mesh and at t = 1 with adaptive level set
method(MMPDE6) of 21 mesh point for the first example, (µ = 0.5, λ = 0.4, ε = 0.01, β =
0).

with LTSR gives better results. Similar information, are given in Table 2
when the MMPDE6 is applied for calculating nodes velocity. Figure 1(a)
shows mesh trajectories for 0 ≤ x ≤ 2, 0 ≤ t ≤ 1.0 which has been derived by
using the new method with MMPDE5, also the solution of PDE, u, has been
plotted on the moving mesh for 0 ≤ t ≤ 1.0 in Figure 1(b). The spatial do-
main is divide into 21 mesh points. Like above, mesh trajectories and solution
of Example 4.1 have been plotted by using the new method with MMPDE6
in Figure 2. Also in Figure 3 we plotted the solution of PDE at t = 0 on
a uniform initial mesh and at t = 1 on a moving mesh with MMPDE5 and
similarly, the solution at t = 0 and t = 1 has been plotted with MMPDE6 in
Figure 4.
For demonstrating the efficiency of our method we compare this method with
another moving mesh method. For this purpose, we consider moving element
free Petrov-Galerkin viscous method, MEFP-GVP, where introduced in [2],
for comparing under equal conditions we consider the parameters µ, λ, ε and
β in the Burger’s equation according to [2], (µ = 0.5, λ = 0.4, ε = 1/15 and
β = 0.16). Also, we solve this equation for x ∈ [0, 1] and t ∈ [0, 0.51] again.
With above conditions and with N = 7 grid points the L∞-error is 0.03 by
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Fig. 5: The mesh trajectory and solution of the first example for 0 ≤ t ≤ 1.0 with
adaptive level set method(MMPDE5) of 21 mesh point,(µ = 0.5, λ = 0.4, ε = 1/15, β = 0).

MEFP-GVM but in ALSM we have L∞- error= 0.01. This result shows the
preference of our method. In addition, the CPU time in our method is very
smaller than the MEFP-GVM. Also we plotted grid motion and the solution
for new conditions for 21 grid points in Figure 5.

Table 3: The error of ALSM(with MMPDE5) for the second example at t = 1.0, obtained
by the arclength monitor function (α = 2) without LTSR and with LTSR.

MMPDE Time stepping N L∞-error CPU time

21 0.0060 0.7213
5 without LTSR 31 0.0052 0.8507

41 0.0050 0.9759

21 0.0051 0.906
5 without LTSR 31 0.0032 1.015

41 0.0029 1.076

Example 4.2. Consider the equation
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Fig. 6: The mesh trajectory and solution of the second problem for 0 ≤ x ≤ 1 and

0 ≤ t ≤ 1.0 with adaptive level set method(MMPDE5) of 21 mesh point.

Table 4: The error of ALSM(with MMPDE6) for the second example at t = 1.0, obtained
by the arclength monitor function (α = 2) without LTSR and with LTSR.

MMPDE Time stepping N L∞-error CPU time

21 0.0023 0.8706
6 without LTSR 31 0.0015 0.9844

41 0.0009 1.029

21 0.0048 1.025
6 without LTSR 31 0.0030 1.098

41 0.0024 1.221

ut = uxx,

with the exact solution:

u(x, t) = e−π
2t sinπx

This problem has been used in [3] as a numerical example and also in [15] to
study the moving mesh with variable relaxation time.
Since ux(x, t) → 0 in the limit as t→ +∞, then for typical arclength monitor
function
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Fig. 7: The mesh trajectory and solution of the second problem for 0 ≤ x ≤ 1 and
0 ≤ t ≤ 1.0 with adaptive level set method(MMPDE6) of 21 mesh point.

M =
√

1 + αu2x

we have M(x, t) → 1 as t → +∞ and so the equidistributed mesh should
tend to a uniform mesh in space.
Similar to Tables 1 and 2, some results about the second example are given in
Tables 3 and 4 which certify the quality of the new mesh adaptive algorithm.
Figure 6(a) shows the mesh trajectories for the above problem using adaptive
level set method with MMPDE5 and in Figure 6(b), the numerical solution
of PDE is plotted for 0 ≤ t ≤ 1.0 by the new method with MMPDE6 have
been plotted. We also plotted the solution at t = 0 on uniform initial mesh
and at the times t = 0.3, 0.5 and t = 1 on moving mesh in Figure 8. As we
expect, the adaptive mesh at t = 1 tends towards uniform mesh.
In the second example, because of the smoothness of the solution there is not
any major difference between the uniform and the adaptive mesh and also
between the adaptive mesh with MMPDE5 and MMPDE6. In this example,
ALSM with LTSR does not yield any different result from ALSM without
LTSR.

Example 4.3. We use the following Burger’s equation as the third example,

ut + uux − εuxx = 0, 0 < x < xR.
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Fig. 8: The solution of the second PDE at t = 0, 0.3, 0.5 and t = 1 with its corresponding
mesh nodes.

Fig. 9: The mesh trajectory and the computed solution of the third example up to t = 1
for 0 < x < 2 with adaptive level set method(MMPDE5) of 21 mesh points.
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The initial condition is considered as follows [7]:

u(x, 0) = | sin(2πx
xR

)|.

The boundary conditions are chosen in the form

u(0, t) = u(xR, t) = 0.

We select ε = 10−5 and xR = 2 in this example. This example has been
solved by the presented method up to t = 1.
The mesh trajectory has been plotted along with the nodes of moving grid
with N = 21 mesh points in different times in Figure 9. Also the computed
solution of the third example has been plotted in Figure 9. It is clear that the
mesh moves correctly, because the solution has large variations about x = 0.5
and x = 2 and the mesh also concentrates around these areas.

5 Conclusion

In this paper, we have developed a static moving mesh method based on the
level set approach for solving one dimensional time dependent PDEs, such
that for representing the nodes of adaptive mesh, the level set equation is
used. Also, we proposed a strategy for local time step refinement where the
local time step is selected by the level set function. This adaptive method is
among the static moving mesh. We plan to investigate the dynamical moving
mesh method based on the level set function.
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Abstract

For solving large sparse non-Hermitian positive definite linear equations, Bai et

al. proposed the Hermitian and skew-Hermitian splitting methods (HSS). They re-
cently generalized this technique to the normal and skew-Hermitian splitting meth-
ods (NSS). In this paper, we present an accelerated normal and skew-Hermitian
splitting methods (ANSS) which involve two parameters for the NSS iteration. We

theoretically study the convergence properties of the ANSS method. Moreover, the
contraction factor of the ANSS iteration is derived. Numerical examples illustrating
the effectiveness of ANSS iteration are presented.

Keywords: Non-Hermitian matrix; Normal matrix; Hermitian matrix; Skew-
Hermitian matrix; Splitting iteration method.

1 Introduction

Many problems in scientific computation give rise to solving the linear system

Ax = b, (1)

with A ∈ Cn×n a large non-Hermitian positive definite matrix and x, b ∈ Cn.
We observe that the coefficient matrixA naturally possesses the Hermitian/skew-
Hermitian (HS) splitting

A = H + S,

where

H =
1

2
(A+A∗) and S =

1

2
(A−A∗),

with A∗ being the conjugate transpose of A. Bai et al. [2] presented the HSS
iteration method: Given an initial guess x(0) ∈ Cn, for k = 0, 1, 2, . . ., until
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{x(k)} converges, compute{
(αI +H)x(k+

1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+
1
2 ) + b,

(2)

where α is a given positive constant. They have also proved that for any
positive α, the HSS method converges unconditionally to the unique solution
of the system of linear equations.

Moreover, based on the HS splitting, Li et al. [5] presented the asymmet-
ric Hermitian/skew-Hermitian splitting (AHSS) iteration method: Given an
initial guess x(0) ∈ Cn, for k = 0, 1, 2, . . ., until {x(k)} converges, compute{

(αI +H)x(k+
1
2 ) = (αI − S)x(k) + b,

(βI + S)x(k+1) = (βI −H)x(k+
1
2 ) + b,

(3)

where α is a given nonnegative constant and β is a given positive constant.
They proved that if the coefficient matrix A is positive definite (Hermitian or
non-Hermitian) the AHSS iteration converges to the unique solution of linear
system (1) with any given nonnegative α, if β is restricted to an appropriate
region.

Bai et al. [1] recently generalized the HS splitting to the normal/skew-
Hermitian (NS) splitting

A = N + S, (4)

where N ∈ Cn×n is a normal matrix and S ∈ Cn×n is a skew-Hermitian
matrix, and obtained the following normal/skew-Hermitian splitting (NSS)
method to iteratively compute a reliable and accurate approximate solution
for the system of linear equations (1):
The NSS iteration method: Given an initial guess x(0) ∈ Cn. For k = 0, 1, 2 . . .
until {x(k)} converges, compute{

(αI +N)x(k+
1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −N)x(k+
1
2 ) + b,

(5)

where α is a given positive constant. They have also proved that for any
positive α the NSS method converges unconditionally to the unique solution
of the system of linear equations.

In this paper, we introduce two constants for the NSS iteration and present
a different approach to solve Eq. (1), called the accelerated normal and skew-
Hermitian splitting iteration, shortened to the ANSS iteration. Moreover,
theoretical analysis shows that if the coefficient matrix A is positive defi-
nite (Hermitian or non-Hermitian) the ANSS method can converge to the
unique solution of the linear system (1) with any given nonnegative α, if β
is restricted to an appropriate region. In addition the upper bound of the
contraction factor of the ANSS iteration is dependent on the choice of α and
β, the spectrum of the normal matrix N and the singular-values of the skew-
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Hermitian, but it is not dependent on the eigenvectors of the matrices N , S
and A.

The organization of this paper is as follows. In section 2, we establish the
ANSS iteration and study its convergence properties. Numerical experiments
are presented in section 3 to show the effectiveness of our method. Finally,
in section 4, some concluding remarks are given.

2 The ANSS Method

Throughout the paper, the non-Hermitian matrix A ∈ Cn×n ( i.e. A ̸= A∗)
is positive definite if its Hermitian part is Hermitian positive definite.

Based on the NSS iteration (5), in this paper we present a new approach
to solve the system of linear equations (1), called the ANSS iteration, and it
is as follows.
The ANSS iteration method: Given an initial guess x(0) ∈ Cn, for k =
0, 1, 2 . . . until {x(k)} converges, compute{

(αI +N)x(k+
1
2 ) = (αI − S)x(k) + b,

(βI + S)x(k+1) = (βI −N)x(k+
1
2 ) + b,

(6)

where α is a given nonnegative constant and β is a given positive constant.
The ANSS iteration alternates between the normal matrix N and the

skew-Hermitian matrix S. In fact, we can reverse the roles of the matrices N
and S in the above ANSS iteration so that we may first solve the system of
linear equations with coefficient matrix βI + S and then solve the system of
linear equations with coefficient matrix αI +N .

Note that both αI + N and βI + S are normal matrices. Therefore, the
linear systems with the coefficient matrices αI + N and βI + S may be
solved accurately and efficiently by some Krylov subspace iteration methods,
e.g. GMRES. It is known that the GMRES method naturally reduces to an
iterative process of the three-term recurrence. See [4, 3] for other iteration
methods about solving large sparse normal system of linear equations.

In matrix-vector form, the ANSS iteration method can be equivalently
rewritten as

x(k+1) =M(α, β)x(k) +G(α, β)b, k = 0, 1, 2, . . . , (7)

where
M(α, β) = (βI + S)−1(βI −N)(αI +N)−1(αI − S) (8)

and
G(α, β) = (α+ β)(βI + S)−1(αI +N)−1.
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Here, M(α, β) is the iteration matrix of the ANSS iteration. In fact, (7)
may also result from the splitting

A = B(α, β)− C(α, β)

of the coefficient matrix A, with
B(α, β) =

1

α+ β
(αI +N)(βI + S)

C(α, β) =
1

α+ β
(βI −N)(αI − S).

(9)

Obviously

M(α, β) = B(α, β)−1C(α, β) and G(α, β) = B(α, β)−1.

To study the convergence properties of the ANSS iteration and derive the
upper bound of the contraction factor, we first represent the following lem-
mas.

Lemma 2.1. Let α be a nonnegative constant and β be a positive constant.
If (γ, η) ∈ Ω, where Ω = [γmin, γmax] × [ηmin, ηmax], γmin > 0 and ηmin ≥ 0,
then

f(α, β) ≡ max
(γ,η)∈Ω

{
(β − γ)2 + η2

(α+ γ)2 + η2

}

=


max

γmin≤γ≤ β−α
2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
for γmin ≤ β − α

2

max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
for

β − α

2
≤ γmin.

(10)

Proof . Let us define the function g(η) by

g(η) =
(β − γ)2 + η2

(α+ γ)2 + η2
.

Differentiation gives

g′(η) =
2η(α+ β)(α− β + 2γ)

[(α+ γ)2 + η2]2
.

Since (α+ β) > 0, it follows that the function g(η) is an increasing function

if γ ≥ β − α

2
and is a decreasing function if γ ≤ β − α

2
.



Accelerated normal and skew-Hermitian splitting methods for positive definite... 35

If
β − α

2
≤ γmin, then for all γ satisfying γmin ≤ γ ≤ γmax, we have

β − α

2
≤ γ. So, for γmin ≤ γ ≤ γmax, the function g(η) is an increasing

function, and

f(α, β) = max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
if γmin ≤ β − α

2
. (11)

If γmin ≤ β − α

2
, then, by using β + α > 0, for all γ satisfying γmin ≤

β − α

2
≤ γ, we obtain (β − γ)2 ≤ (α+ γ)2, which implies that

(β − γ)2 + η2

(α+ γ)2 + η2
≤ 1.

Similarly, for all γ satisfying γmin ≤ γ ≤ β − α

2
, we obtain (β−γ)2 ≥ (α+γ)2

and
(β − γ)2 + η2

(α+ γ)2 + η2
≥ 1.

Therefore,

f(α, β) = max
γmin≤γ≤ β−α

2 ,ηmin≤η≤ηmax

{
(β − γ)2 + η2

(α+ γ)2 + η2

}
, if γmin ≤ β − α

2

From the fact that, for γmin ≤ γ ≤ β − α

2
, the function g(η) is a decreasing

function, we can conclude that

f(α, β) = max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
, if γmin ≤ β − α

2
(12)

Therefore (11) and (12) immediately result relation (10). ⊓⊔
Lemma 2.2. Let α be a nonnegative constant and β be a positive constant.

If
β − α

2
≤ γmin, where 0 < γmin, then

max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
= max

{
(β − γmin)

2 + η2max

(α+ γmin)2 + η2max

,
(β − γmax)2 + η2max

(α+ γmax)2 + η2max

}
(13)

Proof . Let us define the function g(γ) by

g(γ) =
(β − γ)2 + η2max

(α+ γ)2 + η2max

.

Differentiation gives
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g′(γ) =
−2(α+ β)

[
−γ2 + (β − α)γ + βα+ η2max

]
[(α+ γ)2 + η2max]

2 .

The smallest root of g′(γ) is negative and is not in the interval [γmin, γmax].
The largest root of g′(γ) is

γ1 =
(β − α) +

√
(β − α)2 + 4(βα+ η2max)

2
.

By simple computation, we can show that this root is a minimum point for
the function g(γ). Hence (13) holds and the proof of Lemma is completed. ⊓⊔

Lemma 2.3. Let α be a nonnegative constant and β be a positive constant.

If 0 < γmin ≤ β − α

2
, then

f(α, β) = max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
=

(β − γmin)
2 + η2min

(α+ γmin)2 + η2min

.

Proof . Let us define the function h(γ) by

h(γ) =
(β − γ)2 + η2min

(α+ γ)2 + η2min

.

Differentiation gives

h′(γ) =
−2(α+ β)

[
(β − γ)(α+ γ) + η2min

]
[(α+ γ)2 + η2min]

2

Since (α + β) > 0 and γ ≤ β, for all γ satisfying γmin ≤ γ ≤ γmax and

γ ≤ β − α

2
, we have h′(γ) < 0. Thus

f(α, β) =
(β − γmin)

2 + η2min
(α+ γmin)2 + η2min

.

⊓⊔

The following theorem describes the convergence property of the ANSS
iteration.

Theorem 2.1. Let A ∈ Cn×n be a positive definite matrix, N ∈ Cn×n be
a normal matrix and S ∈ Cn×n be a skew-Hermitian matrix such that A =
N + S, and α be a nonnegative constant and β be a positive constant. Then
the spectral radius ρ(M(α, β)) of the iteration matrix M(α, β) of the ANSS
iteration is bounded by
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δ(α, β) ≡ max
σj∈σ(S)

√
α2 + σ2

j√
β2 + σ2

j

max
γj+iηj∈λ(N)

√
(β − γj)2 + η2j
(α+ γj)2 + η2j

(14)

where λ(N) is the spectral set of N and σ(S) is the singular-value set of
S. Let γmin and γmax, ηmin and ηmax be the lower and the upper bound of
the real, the absolute values of the imaginary parts of the eigenvalues of the
matrix N , respectively, and σmin, σmax be the lower and the upper bound of
the singular-value set of the matrix S, respectively. Then δ(α, β) < 1 if one
of the following conditions holds:

(a) Any given parameter α and β satisfies

max

{
α(γ2min + η2max)

2αγmin + γ2min + η2max

,
α(γ2max + η2max)

2αγmax + γ2max + η2max

}
< β ≤ α+ 2γmin

(b) Any given parameter α and β satisfies

α+ 2γmin < β

if σmax ≤
√
γmin + ηmin + 2γminα.

(c) Any given parameter α and β satisfies

α+ 2γmin < β ≤ α(γ2min + η2min − σ2
max)− 2σ2

maxγmin

γ2min + η2min − σ2
max + 2αγmin

if σmax ≥
√
γmin + ηmin + 2γminα.

Proof . By the similarity invariance of the matrix spectrum, we have

ρ(M(α, β)) = ρ((βI −N)(αI +N)−1(αI − S)(βI + S)−1)

≤ ∥(βI −N)(αI +N)−1∥2∥(αI − S)(βI + S)−1∥2.

Letting Q(α, β) = (αI − S)(βI + S)−1 and noting that S∗ = −S, we have

Q(α, β)∗Q(α, β) =
[
(αI − S)(βI + S)−1

]∗ [
(αI − S)(βI + S)−1

]
= (βI − S)−1(αI + S)(αI − S)(βI + S)−1

= (αI − S)(βI + S)−1(βI − S)−1(αI + S)

= Q(α, β)Q(α, β)∗

That is to say, Q(α, β) is a normal matrix. Therefore, there exists a unitary
matrix U ∈ Cn×n and a complex diagonal matrix

∧
q = diag(λ̃1, λ̃2, . . . , λ̃n) ∈

Cn×n such that Q(α, β) = U∗ ∧
q U . Suppose that λ̃ be an eigenvalue of

Q(α, β) and x be an associated eigenvector, we have
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Q(α, β)x = λ̃x

(αI − S)(βI + S)−1x = λ̃x

(βI + S)−1(αI − S)x = λ̃x

(αI − S)x = λ̃(βI + S)x

If λ̃ ̸= −1, then

Sx =
α− λ̃β

1 + λ̃
x (15)

If λ̃ = −1, then

(α+ β)x = 0.

Since α + β > 0, it implies x = 0, and this contradicts the definition of
eigenvector. Therefore λ̃ = −1 can not be an eigenvalue of Q(α, β).

From (15),
α− λ̃β

1 + λ̃
is an eigenvalue of S and x is an associated eigenvector.

Since S is a skew-Hermitian matrix, its eigenvalues are pure imaginary and
thus of the form iτj , j = 1, . . . , n, where τj ∈ R, So

λ̃j =
α− iτj
β + iτj

,

where iτj is an eigenvalue of S. Therefore

∥Q(α, β)∥2 = ∥U∗ ∧q U∥2 = ∥ ∧q ∥2 = max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

. (16)

Because N is a normal matrix, there exists a unitary matrix V ∈ Cn×n and
a complex diagonal matrix

∧
N = diag(λ1, λ2, . . . , λn) ∈ Cn×n such that

N = V ∗ ∧
N V. Hence, we have

∥(αI +N)−1(βI −N)∥2 = max
λj∈ λ(N)

| β − λj |
| α+ λj |

= max
λj=γj+iηj∈ λ(N)

√
(β − γj)2 + η2j
(α+ γj)2 + η2j

(17)

Now, from (16) and (17), we see that

ρ(M(α, β)) ≤ max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

max
λj=γj+iηj∈ λ(N)

√
(β − γj)2 + η2j
(α+ γj)2 + η2j

.

Then the bound for ρ(M(α, β)) is given by (14).
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To prove (a), we note that, if
β − α

2
≤ γmin, then β − α ≤ 2γ for γmin ≤

γ ≤ γmax. By using 0 < (β + α), we obtain (β − γ)2 ≤ (α + γ)2. Thus, by
Lemma 2.1, we have

f(α, β) = max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
≤ 1, for

β − α

2
≤ γmin (18)

Moreover, if β > α, then max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

< 1, and therefore

(i) if α < β ≤ α+ 2γmin then δ(α, β) < 1.

If β ≤ α, then max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

≤ α

β
. By using (18), we have

δ(α, β) ≤ α

β
max

γmin≤γ≤γmax

√
(β − γ)2 + η2max

(α+ γ)2 + η2max

.

So, in order to have the bound δ(α, β) < 1, the following inequality must
hold

max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
<
β2

α2
. (19)

By using the results of Lemma 2.2, the following inequalities must hold

(β − γmin)
2 + η2max

(α+ γmin)2 + η2max

<
β2

α2
and

(β − γmax)
2 + η2max

(α+ γmax)2 + η2max

<
β2

α2
(20)

By simple computation, we can show that, for α+β > 0, these two inequalities
hold if β satisfies the following inequalities.

α(γ2min + η2max)

2αγmin + γ2min + η2max

< β and
α(γ2max + η2max)

2αγmax + γ2max + η2max

< β.

Therefore

(ii) if max

{
α(γ2min + η2max)

2αγmin + γ2min + η2max

,
α(γ2max + η2max)

2αγmax + γ2max + η2max

}
< β ≤ α

then δ(α, β) < 1.

Combining (i) and (ii), we have

(iii) if max

{
α(γ2min + η2max)

2αγmin + γ2min + η2max

,
α(γ2max + η2max)

2αγmax + γ2max + η2max

}
< β ≤ α +

2γmin then δ(α, β) < 1
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To prove parts (b) and (c), we note that, if γmin ≤ β − α

2
, by Lemmas 2.1

and 2.3, we have

f(α, β) = max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
=

(β − γmin)
2 + η2min

(α+ γmin)2 + η2min

≥ 1,

since (α+ γmin) ≤ (β − γmin).
On the other hand,

max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

=

√
α2 + σ2

max√
β2 + σ2

max

< 1,

since α < β. So, the relation

δ(α, β) =

√
α2 + σ2

max√
β2 + σ2

max

√
(β − γmin)2 + η2max

(α+ γmin)2 + η2max

< 1

will hold if α and β satisfy the following inequality,

(β − γmin)
2 + η2max

(α+ γmin)2 + η2max

<
β2 + σ2

max

α2 + σ2
max

. (21)

For α+ β > 0, this inequality is equivalent to

0 < (β − α)(γ2min + η2min − σ2
max + 2αγmin) + 2γmin(α

2 + σ2
max). (22)

Since (β − α) > 0, (22) holds if σmax ≤
√
γ2min + η2min + 2αγmin. Thus

(iv) if σmax ≤
√
γ2min + η2min + 2αγmin and α+ 2γmin ≤ β, then

δ(α, β) < 1.

If σmax >
√
γ2min + η2min + 2αγmin, then (22) holds if β satisfies the following

inequality

β <
α(γ2min + η2min − σ2

max + 2αγmin)− 2γmin(α
2 + σ2

max)

γ2min + η2min − σ2
max + 2αγmin

.

Thus

(v) if σmax >
√
γ2min + η2min + 2αγmin and

α+ 2γmin ≤ β ≤ α(γ2min + η2min − σ2
max + 2αγmin)− 2γmin(α

2 + σ2
max)

γ2min + η2min − σ2
max + 2αγmin

then δ(α, β) ≤ 1.

⊓⊔
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Theorem 2.1 mainly discusses the available β for a convergent ANSS it-
eration for any given nonnegative α. It also shows that the choice of β is
dependent on the choice of α, the spectrum of the matrix N , the singular-
values of S, but is not dependent on the spectrum of A. Notice that

α+ 2γmin−
α(γ2min + η2max)

2αγmin + γ2min + η2max

=
2αγ2min + 2γ3min + 2γminη

2
max + 2α2γmin

2αγmin + γ2min + η2max

> 0

and

α+ 2γmin−
α(γ2max + η2max)

2αγmax + γ2max + η2max

=
2αγminγmax + 2γminγ

2
max + 2γminη

2
max + 2α2γmax

2αγmax + γ2max + η2max

> 0,

we remark that for any given nonnegative α the available β always exists.
The bound δ(α, β) of the convergence rate depends on the spectrum of N
and S and the choice of α and β. Moreover, δ(α, β) is also an upper bound
of the contraction factor of the ANSS iteration.

3 Numerical Example

In this section, we give a numerical example to illustrate the effectiveness of
ANSS iteration.

We consider the differential equation

−u
′′
+ qu

′
= f,

on the inteval [0, 1], with the constant coefficient q and the homogeneous
boundary condition. When the finite difference discretization, for example,
the centered difference is applied to the above equation, we get the system
of linear equations (1) with the coefficient matrix

A = tridiag(−1− qh

2
, 2,−1 +

qh

2
)

where the equidistant step-size h =
1

n+ 1
is used.

Let H = 1
2 (A+A∗) and S0 = 1

2 (A−A∗) be Hermitian and skew-Hermitian
parts of A, respectively. We consider a NS splitting

A = N + S
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where
N = H + icI and S = S0 − icI

and c is a real number. We test the spectral radius of the iteration matrix
M(α, β) (8) with different values of qh. All the tested matrices are 64× 64.

In Figs. 1 and 2, we show the spectral radius of the iteration matrix of
the ANSS method and the NSS method with different values of α. ANSS
represents the spectral radius of the iteration matrix of the ANSS method,
where parameter β is tested to be the optimal one, and NSS represents that
of the NSS method.
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Fig. 1: Spectral radius of iteration matrices of ANSS and NSS methods for
c = .1

We find that if c = 0.1 is used, the spectral radius of the iteration matrix
of the ANSS method is always smaller than that of the NSS method, and
when qh is large, the spectral radius of the iteration matrix of the ANSS
method is much smaller than that of the NSS method, but if c = 10 is used,
these two spectral radius of the iteration matrices are almost the same.
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Fig. 2: Spectral radius of iteration matrices of ANSS and NSS methods for
c = 10

4 Conclusion

In this paper, we have introduced two constants for the NSS iteration and
presented a different approach to solve the system of linear equations (1),
called ANSS method.

Theoretical analysis showed that if the coefficient matrix A is positive
definite (Hermitian or non-Hermitian) the ANSS method can converge to
the unique solution of the linear system (1) with any given nonnegative α,
if β is restricted to an appropriate region. In addition the upper bound of
the contraction factor of the ANSS iteration is dependent on the choice of α
and β, the spectrum of the normal matrix N and the singular-values of the
skew-Hermitian, but is not dependent on the eigenvectors of the matrices N ,
S and A. Numerical examples illustrated the effectiveness of ANSS iteration
and showed that the spectral radius of the iteration matrix of the ANSS
method is always smaller than or equal to that of the NSS method.
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An alternative 2-phase method for
evaluating of DMUs using DEA

Mohammadreza Alirezaee

Abstract

Computationally, selection of a proper numerical value for infinitesimal non Archime-

dean epsilon in DEA models has some difficulties. Although there are several algo-
rithms for selecting the proper non-Archimedean epsilon, it is important to introduce
methods in order to calculate the efficiency of DMUs without using epsilon. One of
these methods is a two-phase method, which obtains the efficiency of each DMU

through solving two LPs, which the second LP is depended to the first. This paper
proposes a method, which is able to compute the efficiency of DMUs by two LPs,
which are not depended to each other and computationally can solve in a parallel
computation. The major of this method is to find two references for each unit and

combine them to obtain actual reference.

Keywords: Data Envelopment Analysis (DEA); Decision Making Units
(DMUs); Non-Archimedean; Two-phase method; Reference point.

1 Introduction

Since the first mathematical model of Data Envelopment Analysis (DEA) by
Charnes et al. (1978), (known as CCR), and Banker et al. (1984) (known
as BCC), there have been many theoretical and applied researches in DEA
(Emrouznejad ea al., 2008). In 1979 the first version of DEA model has been
updated by adding the non-Archimedean ε as a lower bound for weights of
inputs and outputs of the corresponding DMUs(Charnes et al. 1979). Differ-
ent methods have been proposed for computing a suitable value for ε. Ali
and Seiford (1993) introduce a method to find an acceptable value for ε.
Mehrabian et al. (2000) modify this method and propose an LP to select a
proper value for ε. Up to now, some researchers have published methods and
discussions about the non-Archimedean ε such as Amin and Toloo (2004),
MirHassani and Alirezaee (2004), Alirezaee and Khalili (2006).

As the first and most important substitution method for epsilon-based
DEA solving methods, Cooper et al. (1999) introduce the two-phase method

Mohammadreza Alirezaee

School of Mathematics, Iran University of Sciences and Technology, Tehran, Iran. e-mail:
mralirez@iust.ac.ir
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for evaluating the efficiency in DEA without using ε. In this method , two
LPs must be solved respectively for each DMU.

In this paper, we introduce an alternative algorithm for evaluating the
efficiency of DMUs without using ε. In the proposed method, firstly, we find
the references of DMUs and then inherited the references in a way that we can
find out if the reference point of the unit is located on the weak frontier. The
most advantage of this method is reducing the overall running time, because
we can use parallel computation for our independent LPs in the algorithm.

2 Classification of DMUs

In DEA a set of DMUs are partitioned into two main classes: efficient and
inefficient. The efficient units make the efficiency frontier. Figure 1 shows
the classification of DMUs, based on the position of their reference on the
efficiency frontier (Charnes et al., 1991).

Fig. 1: Classifying DMUs.

In this classification, E and E
′
are efficient andNE andNE

′
are inefficient

DMUs. In addition, F and NF are weakly efficient and weakly inefficient,
respectively.

Suppose that there are n Decision Making Units (DMUs) each consumes
m inputs to produce s outputs. Let xj = (x1j , x2j , . . . , xmj) and yj =
(y1j , y2j , . . . , ysj) are input vector and output vector of DMUj (j = 1, . . . , n),
respectively. Hence, the CCR model corresponding to DMUp is as follow:

CCR Model:



An alternative 2-phase method for evaluating of DMUs using DEA 47

min z = θ − ε(Σm
i=1(s

−
i ) +Σs

r=1(s
+
r ))

s.t.

xipθ − s−i −Σn
j=1xijλj = 0, ∀i

− s+r +Σn
j=1yrjλj = yrp, ∀r

λj , s
−
i , s

+
r ≥ 0, ∀i, r, j

To introduce the new method, all of the values of variables for all DMUs are
needed. So consider the following integrated model.

CCRP Model:

minz = θp − ε(Σm
i=1s

−
ip +Σs

r=1s
+
rp)

s.t.

xipθp − s−ip −Σn
j=1xijλjp = 0, ∀i

− s+rp +Σn
j=1yrjλjp = yrp, ∀r

λjp, s
−
ip, s

+
rp ≥ 0, ∀i, r, j

In the above model, for each variable an index has been added. To simplify
the notation, let uj = (yj , xj) be DMUj. Hence one can present members of
productivity possibility set as u = (y,−x). Clearly, uj ∈ PPS,(j = 1, . . . , n).
Let (θ∗p, λ

∗
p, s

+∗

p , s−
∗

p ) is an optimal solution of CCRp, then efficiency of up
is equal to θ∗p. We also denote the efficiency of u by θ∗u. The dominate space
and reference of up are denoted by DSp and u(p), respectively, and the set
of reference indices of up is denoted by E(p).

DSp = {u ∈ PPS|u ≥ up}, u(p) = Σn
j=1l

∗
jpuj , E(p) = {j : λ∗jp > 0}

It is clear that u(p) ∈ DSp and u(p) = Σj∈E(p)λ
∗
jpuj . These concepts are

illustrated in Figure 2.
The shading pattern in this figure and other figure in the paper represents
the dominant space of up, so every point in that region has inputs less than or
equal and outputs more than or equal to up. And dashed line in the frontier
is weakly frontier.

Therefore, we have:

1. up is efficient ⇔ θ∗p = 1, Σm
i=1s

−∗

ip +Σs
r=1s

+∗

rp = 0.

2. up is weak efficient ⇔ θ∗p = 1, Σm
i=1s

−∗

ip +Σs
r=1s

+∗

rp > 0.

3. up is inefficient ⇔ θ∗p < 1, Σm
i=1s

−∗

iu(p) +Σs
r=1s

+∗

ru(p) = 0.

4. up is weak inefficient ⇔ θ∗p < 1, Σm
i=1s

−∗

iu(p) +Σs
r=1s

+∗

ru(p) > 0.

Notice that u(p) lies on the efficiency frontier, and so θ∗u(p) = 1.
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Fig. 2: Efficient frontier, dominate space, reference point and set of reference
index.

3 New Method

As explained in previous section, for classifying the DMUs, the values of θ and
slacks of reference point must be used. For each up, two reference points are
determined, the first reference belongs to DSp which minimize θp. The second

reference belongs to DSp which maximize Σm
i=1s

−∗

ip +Σs
r=1s

+∗

rp . Consider the
following models:

Model P1:

min z = θps.t.

xipθp −Σn
j=1xijλ

l
jp ≥ 0, ∀i

Σn
j=1yrjλ

l
jp ≥ yrp, ∀r

λljp ≥ 0, ∀j

Model P2:

min z = −(Σm
i=1s

−
ip +Σs

r=1s
+
rp)

s.t.

s−ip +Σn
j=1xijλ

2
jp = xip, ∀i

− s+rp +Σn
j=1yijλ

2
jp = yrp, ∀i

λ2jp, s
−
ip, s

+
rp ≥ 0, ∀j, i, r
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The first reference for up is determined by Model P1 as u1(P ) = Σn
j=1λ

l∗

jpuj .
Similarly, the second reference for up is determined by the model p2 as
u2(p) = Σn

j=1λ
2∗

jpuj . These references are illustrated in Figure 3:

Fig. 3: up and its first and second references.

u1(p) is not always the same as the reference point which is defined as
(θ∗xj , yj) for (xj , yj). If up be an efficient or inefficient unit then its reference
point and u1(p) are the same and if it is a weakly efficient or inefficient unit
then probably its reference probably its reference point and u1(p) are not
equal to each other. For example, in the Figure 4(a), u1(p) and reference
point of up are the same, but if the weakly efficient unit u1(p) is removed as
illustrated in the Figure 4(b), the two definitions become different. In this
case the reference point can be improved to the u1(p), therefore we must
improve the reference point, too. Reference of each unit must be on the
(strong) frontier and not on the weakly frontier. Weakly frontier is shown by
dashed line in the figures in the paper.

Definition 3.1. The revised reference for up is defined as bellow:
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û(p) = Σn
k=1(Σ

n
j=1λ

1∗

jpλ
2∗

kj)

If up be an efficient or an inefficient unit then the revised reference is u1(p),
but if it is a weekly efficient or inefficient unit then the reference for up on
the frontier is moved by û(p) using the weights belonging to E(P). Revised
reference is simply the second reference of the first reference of the pth unit.
We introduce a simple algorithm to identify the revised reference of up and
describe the idea of revised reference. It woks as follows:

1. Find the first reference of up. There are one or more units that create the
first reference of up. They are efficient or weakly efficient units.

2. For each unit that participating the construction of the first reference of
up, find the second reference. For each of them, there are one or more units
that are efficient (and not weakly efficient).

3. The second reference of the first reference of up is the actual reference of
it, so calculate values of the new variable that create the second reference
of the first reference of up. The revised reference is on the efficient frontier
and is the actual reference of up.
This algorithm computed the revised reference of up, in other word we
move of up to u1(p) and then move to u2(u1(p)), as illustrated in Figure
4.

Fig. 4: Reference point and u1(p) may be different.

These concepts lead to the next theorems 1 proves that only efficient (not
weakly efficient) units participating in construction of revised reference. And
theorem 2 proves that comparing up to the revised reference results the actual
efficiency.

Theorem 3.1. If uk is not an efficient unit then
∑n
j=1 λ

1∗

jpλ
2∗

kj = 0.
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Proof . Since λ2
∗

kj is the optimum weight of uk in the model P2 for evaluating
uj , if uk is a weakly efficient, an inefficient or a weakly inefficient unit then
for all j, λ2

∗

kj = 0 and
∑n
j=1 λ

1∗

jpλ
2∗

kj = 0. ⊓⊔

Theorem 3.2. If we select û(p) as a reference for up in the model P1, then
efficiency value of up is equal to θ∗p.

Proof . We knew that u1(p) is on the efficient frontier and θ∗p is the minimum
value of θp, so we must prove that û(p) ≥ u1(p). We rewrite the û(p) as follow:

û(p) =
∑n
j=1 λ

1∗

jp

∑n
j=1 λ

2∗

kjuk

 =
∑n
j=1 λ

1∗

jpu2(j), where u2(j) is the

reference of uj in the model P2.
There are three possibilities for sj :

1. If uj is an inefficient or a weakly inefficient unit, then λ1
∗

jp = 0.

2. If uj is an inefficient unit, then λ1
∗

jp > 0 and u2(j) = uj .

3. If uj is an weakly unit, then λ1
∗

jp > 0 and u2(j) ≥ uj .

In all cases we have û(p) =
∑n
j=1 λ

1∗

jpu2(j) ≥
∑n
j=1 λ

1∗

jpuj = u(p).
Since θ∗p is the minimum value of θp, therefore, if we select û(p) as the

reference of up in model P1, the efficiency value of up is equal to θ∗p. ⊓⊔

This shows that û(p) is on the efficient frontier, and
∑n
j=1 λ

1∗

jpλ
2∗
kj > 0 if

and only if ui is an efficient unit.
Based on Theorems 1 and 2, û(p) is a combination of (only) efficient units

and its corresponding efficiency value is the same as in model P1. After
applying models P1 and P2 for all units, it is possible to compute the revised
references of all units, which are on the efficient (and not on the weakly
efficient) frontier. It sounds that this method is similar two phase method,
but in the new method, the two models are independent.

Based on theorems 1 and 2, û(p) is on the efficient frontier and as a ref-

erence for up, the efficiency value is not changed. λ̂∗kp =
∑n
j=1 λ

1∗

jpλ
2∗
kj , where

the related slacks are computed as follows:

ŝ−∗
ip = θ∗pxip −

n∑
j=1

λ̂∗jpxij , ŝ
+∗
rp =

n∑
j=1

λ̂∗jpyrj − yrp.

Therefore, after applying P1 and P2 models for all units, we can compute
the revised references, which are on the efficiency frontier, and the related
slacks. According to classifying the DMUs, we have:

1. If θ∗p = 1 and
∑m
i=1 ŝ

−∗
ip +

∑s
r=1 ŝ

+∗
rp = 0, then up is efficient,

2. If θ∗p = 1 and
∑m
i=1 ŝ

−∗
ip +

∑s
r=1 ŝ

+∗
rp > 0, then up is weakly efficient,

3. If θ∗p < 1 and
∑m
i=1 ŝ

−∗
ip +

∑s
r=1 ŝ

+∗
rp = 0, then up is inefficient,

4. If θ∗p < 1 and
∑m
i=1 ŝ

−∗
ip +

∑s
r=1 ŝ

+∗
rp > 0, then up is weakly inefficient.
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The reference for up is û(p) =
∑n
j=1 λ̂

∗
jkuj .

The basic role of this method is removing the non-Archimedean epsilon of
models and using models that have no dependency to each others and could
be solved separately while the models of two-phase method needs to be solved
respectively, because second model uses of result of first model.

The basis of traditional two-phase method is to find the optimum value
of θ in the first stage and fix it to the second LP and solve it to find the
maximum value for sum of slacks.

4 Numerical Example

In this section we solve a simple numerical example. We add the constraints∑n
j=1 λ

1
jp = 1 and

∑n
j=1 λ

2
jp = 1 to models P1 and P2 respectively and create

the BCC versions of DEA models.
Consider the following example:

Table 1: Data for the numerical example

Output
y

Input
x

DMU1 1 1

DMU2 2 1

DMU3 0.2 2

DMU4 3 3

DMU5 4 3

These data are illustrated in Figure 5.

Fig. 5: DMUs of the example.
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Table 2 shows the optimum solutions of models P1 and P2 in the BCC
format:

Table 2: Results of the example using model P1 and P2 with variable returns
to scale

DMU θ∗ λ1∗ λ2∗

1 2 3 4 5 1 2 3 4 5

DMU1 1 1 0 0 0 0 0 1 0 0 0

DMU2 1 0 1 0 0 0 0 1 0 0 0

DMU3 0.50 1 0 0 0 0 0 1 0 0 0

DMU4 0.6667 0 0.5 0 0 0.5 0 0 0 0 1

DMU5 1 0 0 0 0 1 0 0 0 0 1

For example for DMU4, we have λ2
∗

24 = 0.5, λ2
∗

54 = 0.5, and λ2
∗

54 = 1. The

following table presents ŝ−
∗
, ŝ+

∗
and λ̂∗:

Table 3: ŝ−
∗
, ŝ+

∗
and λ̂∗

DMU θ∗ ŝ−
∗

ŝ+
∗

λ̂∗

1 2 3 4 5

1 1 0.0 1.0 0 1 0 0 0

2 1 0.0 0.0 0 1 0 0 0

3 0.50 0.0 1.80 0 1 0 0 0

4 0.6667 0.0 0.0 0 0.5 0 0 0.5

5 1 0.0 0.0 0 0 0 0 1

Thus, the revised references of DMUs are as follow:

Table 4: The revised references of DMUs

DMU uj u(j) E(j)

1 (1, -1) 1× u2 {2}
2 (2, -1) 1× u2 {2}
3 (0.2, -2) 1× u2 {2}
4 (3, -3) 0.5× u2 + 0.5× u5 {2, 5}
5 (4, -3) 1× u5 {5}

It is concluded that we can compute the results of the efficiency evaluation
of DMUs by applying a linear programming for each unit.
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5 Conclusion

There are two major methods for solving the basic DEA models: the epsilon
based method, which selects a real number for epsilon, and the two phases
method, which is used two LPs for each DMU. In this paper, we presented
another method that determines two references for each DMU and then com-
bines them and computes new lambdas and slack variables. Solving models
without using non-Archimedean epsilon is an advantage of the new method
and ability of computing the models in parallel can reduce the overall running
time.
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Abstract

R. Ewing, O. Liev, R. Lazarov and A. Naumovich in [1] proposed a finite volume

discretization for one dimensional Biot poroelasticity system in multilayer domains.
Their discretization and exact solution are invalid. We derive valid discretization
and exact solution. Finally, our numerical solution is compared with known exact
solution in discrete L2 norm.

Keywords: Biot poroelasticity system; Interface problem; Finite volume
discretization.

1 Introduction

The presence of a moving fluid in a porous medium affects its mechani-
cal response. At the same time, the change in the mechanical state of the
porous skeleton influences the behavior of the fluid inside the pores. These
two coupled deformation-diffusion phenomena lie at the heart of the theory
of poroelasticity. More precisely, the two key phenomena can be summarized
as follows:

1. fluid-to-solid coupling: occurs when a change in the fluid pressure or the
fluid mass induces a deformation of the porous skeleton.

2. solid-to-fluid coupling: occurs when modifications in the stress of the
porous skeleton induce change in the fluid pressure or the fluid mass.

In accordance with these two phenomena, the fluid-filled porous medium acts
in a time-dependent manner. Indeed, suppose that the porous medium is com-
pressed. This will result in an increment of the fluid pressure inside the pores
and consequent fluid flow. The time dependence of the fluid pressure will in-
duce a time dependence of the poroelastic stresses, which in turn will respond
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back to the fluid pressure field. The earliest theories, which is related to Terza-
ghi, accounted for the fluid-to-solid coupling only. In this case, the problem is
mathematically much easier. This kind of theory can model successfully some
of the poroelastic processes in the case of highly compressible fluids such as
air. However, when one deals with slightly compressible or incompressible
fluids, the solid-to-fluid coupling cannot be neglected since the changes in
stress field can influence significantly the pore pressure. Maurice Biot was
the first who, by means of phenomenological approach, developed a detailed
mathematical theory of poroelasticity which successfully incorporated both
basic phenomena mentioned above. In this paper, assumption of only ver-
tical subsidence is invoked and this leads to the one dimensional model of
poroelasticity. We consider a finite volume discretization for one dimensional
Biot poroelasticity system in multilayer domains. For stability reasons, stag-
gered grids are used. The discretization takes into account discontinuity of
the coefficients across the interfaces between layers with different physical
properties.

2 Biot model in one dimension

In one dimension, the domain of consideration Ω is an interval (0, L) where
the boundary Γ is {0, L}. The Biot model, which describes poroelastic process
in Ω can be written as a system of partial differential equations for the
unknown fluid pressure p(x, t) and displacement of the porous medium u(x, t)
consisting of the equilibrium equation and the diffusion equation

− ∂

∂x
((λ+ 2µ)

∂u

∂x
) +

∂p

∂x
= 0, x ∈ (0, L), t ∈ (0, T ],

∂

∂t
(ϕβp+

∂u

∂x
)− ∂

∂x
(
κ

η

∂p

∂x
) = q(x, t), x ∈ (0, L), t ∈ (0, T ],

where λ (dilation moduli) and µ (shear moduli) are Lame coefficients of the
porous medium. Here ϕ, β, κ, η and q(x, t) are porosity of porous medium,
compressibility of the fluid, permeability of the porous medium, viscosity
of the fluid and source term, respectively. We define stress tensor and fluid
velocity, respectively by the following relationships

S = (λ+ 2µ)
∂u

∂x
, V = −κ

η

∂p

∂x
.

In classical formulation, the one-dimensional Biot model describes, fluid flow
and skeleton deformation caused by the constant vertical load applied on the
top of column of soil, which is bounded with rigid and impermeable bottom
and lateral walls, and a top wall which is free to drain. The following boundary
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and initial conditions supplement this model

p = 0, (λ+ 2µ)
∂u

∂x
= −s0, at x = 0.

This means that the upper boundary is free to drain and a load with the
value s0 is applied to it. Also

u = 0,
∂p

∂x
= 0, at x = L,

corresponds to a rigid and impermeable lower boundary. The initial condition

ϕβp+
∂u

∂x
= 0, at t = 0,

means that the variation in water content is zero at the beginning of the pro-
cess. Now, consider the case when the porous medium is not homogeneous but
has a layered structure, each layer being characterized by different porosity,
permeability and Lame coefficients. For the simplicity of presentation, let us
restrict ourselves to the case of only two layers. In the case of the considered
two-layered medium, coefficients of the governing equations are discontinuous
across the interface ξ

λ(x) =

{
λ1 x ≤ ξ,
λ2 x > ξ,

µ(x) =

{
µ1 x ≤ ξ,
µ2 x > ξ,

κ(x) =

{
κ1 x ≤ ξ,
κ2 x > ξ,

ϕ =

{
ϕ1 x ≤ ξ,
ϕ2 x > ξ.

Assuming a perfect contact, the interface conditions look as follows

[u] = 0, [p] = 0, (1)

which express continuity of the displacement and of the fluid pressure across
the interface. Also

[S] = 0, [V ] = 0, (2)

which means continuity of the stress of the porous skeleton and continuity of
the fluid flux, respectively. In the formulae (1) and (2), we have

[q] = q |x=ξ+0 −q |x=ξ−0,

where q is a symbol for quantities u, p, S and V . As it is shown in [3], the set
of interface conditions (1) and (2) can also be derived directly from the Biot
equations if they are written for a general inhomogeneous medium. Now, the
following dimensionless dependent and independent functions are introduced



58 M. Namjoo, H. Atighi Lorestani

x :=
x

L
, ξ :=

ξ

L
, t :=

(λ0 + 2µ0)κ0t

η0L2
, p :=

p

s0
, u :=

(λ0 + 2µ0)u

s0L
,

ν :=
λ+ 2µ

λ0 + 2µ0
, κ :=

κ

η
κ0
η0

, a := ϕβ(λ0 + 2µ0), f(x, t) :=
L2η0
s0κ0

q(x, t).

Then, the governing equations together with the boundary, initial and inter-
face conditions can be transformed to dimensionless form

− ∂

∂x
(ν
∂u

∂x
) +

∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂

∂t
(ap+

∂u

∂x
)− ∂

∂x
(κ
∂p

∂x
) = f(x, t), x ∈ (0, 1), t ∈ (0, T ],

ν
∂u

∂x
= −1, p = 0, at x = 0, t ∈ [0, T ], (3)

u = 0, κ
∂p

∂x
= 0, at x = 1, t ∈ [0, T ],

ap+
∂u

∂x
= 0, at t = 0, x ∈ (0, 1),

[u] = 0, [ν
∂u

∂x
] = 0, [p] = 0, [κ

∂p

∂x
] = 0, at x = ξ, t ∈ [0, T ].

Further, the possible discontinuities of the dimensionless coefficients at x = ξ
are distinguished

ν(x) =

{
ν1 x ≤ ξ,
ν2 x > ξ,

κ(x) =

{
κ1 x ≤ ξ,
κ2 x > ξ,

a(x) =

{
a1 x ≤ ξ,
a2 x > ξ.

For the convenience of the theoretical analysis, the problem (3) is transformed
into a problem with homogeneous boundary conditions, by the following sub-
stitution

u(x, t) := u(x, t)− 1

ν
x+

1

ν
.

According to this substitution, problem (3) is reformulated as follows:
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− ∂

∂x
(ν
∂u

∂x
) +

∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂

∂t
(ap+

∂u

∂x
)− ∂

∂x
(κ
∂p

∂x
) = f(x, t), x ∈ (0, 1), t ∈ (0, T ],

ν
∂u

∂x
= 0, p = 0, at x = 0, t ∈ [0, T ], (4)

u = 0, κ
∂p

∂x
= 0, at x = 1, t ∈ [0, T ],

ap+
∂u

∂x
=

1

ν
, at t = 0, x ∈ (0, 1),

[u] = 0, [ν
∂u

∂x
] = 0, [p] = 0, [κ

∂p

∂x
] = 0, at x = ξ, t ∈ [0, T ].

Due to the complexity of the Biot system, analytical solutions in closed form
are available only in very special cases. Certainly, the situation gets compli-
cated in the case of inhomogeneous porous media. The choice of the numerical
method for the discretization of the poroelasticity system is not obvious. The
finite element method currently dominates in solving poroelasticity system,
especially when dealing with complex domains (see [4] for further details).
Although finite element methods can be applied to the interface problems,
however, they usually work on grids which resolve the interfaces. Hence this
fact leads to that imposes certain restriction on the method. Moreover, even
when the grids resolve the interfaces, standard finite element methods do not
provide good approximation for the flux variables. On the other hand, there
is variety of successful finite difference and finite volume approaches, where
the interfaces are allowed to cross the grid cells (see [5]).

2.1 Grids and notations

For the interval (0, 1) and N > 1, we define stepsize h in the following form

h :=
2

2N − 1
.

To overcome stability difficulties, which often arise when the discretization of
the Biot model is done on the collocate grids, the use of staggered grids was
proposed in [2], [7]. Two different spatial grids, ω̄p to discretize the pressure
equation and ω̄u to discretize the displacement equation, are employed

ω̄p = {xi : xi = ih, i = 0, 1, ..., N − 1},
ω̄u = {xi−0.5 : xi−0.5 = xi − 0.5h, i = 1, 2, ..., N}.

Further, the grids ωp and ωu are also used
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ωp = {xi ∈ ω̄p, i = 1, 2, ..., N − 1},
ωu = {xi−0.5 ∈ ω̄u, i = 1, 2, ..., N − 1}.

A grid in time with a stepsize τ is also defined

ωT = {tn : tn = nτ, n = 1, 2, ...,M}.

These grids as designed to represent the values of the pressure p at the grid
points xi ∈ ω̄p and the values of the displacement u at the midpoints xi−0.5 ∈
ω̄u of the subintervals (xi−1, xi). According to these grids, position of the
interface ξ could be represented in the form

ξ = xiint−0.5 + θh,

where 0 < iint < N is an integer and 0 ≤ θ < 1. Now, the following notations
for discrete functions, defined on ω̄u × ωT and ω̄p × ωT , respectively, are
introduced

u : = un := uni := u(xi−0.5, tn),

p : = pn := pni := p(xi, tn),

pσ : = σpn+1 + (1− σ)pn,

p∧ : = pn+1.

Moreover we use some notations for the first order forward and backward
finite differences on a uniform mesh in the following form

px := px,i =
p(xi+1, t)− p(xi, t)

h
,

px̄ := px̄,i =
p(xi, t)− p(xi−1, t)

h
.

In a similar way we define

ux := ux,i =
u(xi+0.5, t)− u(xi−0.5, t)

h
,

ux̄ := ux̄,i =
u(xi−0.5, t)− u(xi−1.5, t)

h
.

Finally, the finite differences in time are defined

ut := unt := ut(xi−0.5, tn) =
un+1
i − uni

τ
, xi−0.5 ∈ ωu,

pt := pnt := pt(xi, tn) =
pn+1
i − pni

τ
, xi ∈ ωp.
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2.2 Finite volume discretization

In order to approximate the differential problem (4) by finite volume method.
Firstly the Biot equations are rewritten in the following way

−∂S
∂x

+
∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂

∂t
(ap+

∂u

∂x
) +

∂V

∂x
= f(x, t), x ∈ (0, 1), t ∈ (0, T ].

(5)

Now, the first equation in (5) is integrated over the interval (xi−1, xi)

−
∫ xi

xi−1

∂S

∂x
dx+

∫ xi

xi−1

∂p

∂x
dx = 0, (6)

and the second equation over the interval (xi−0.5, xi+0.5)∫ xi+0.5

xi−0.5

∂

∂t
(ap+

∂u

∂x
)dx+

∫ xi+0.5

xi−0.5

∂V

∂x
dx =

∫ xi+0.5

xi−0.5

f(x, t)dx. (7)

Hence, in accordance with the interface conditions (1) and (2), some integrals
from (6) and (7) can be rewritten as∫ xi

xi−1

∂S

∂x
dx = S(xi)− S(xi−1),

∫ xi+0.5

xi−0.5

∂V

∂x
dx = V (xi+0.5)− V (xi−0.5),

∫ xi

xi−1

∂p

∂x
dx = p(xi)− p(xi−1),

∫ xi+0.5

xi−0.5

∂u

∂x
dx = u(xi+0.5)− u(xi−0.5).

(8)
Using the rectangular quadratic formula, we can write∫ xi+0.5

xi−0.5

∂

∂t
(ap)dx ≈ ∂p

∂t
(xi)

∫ xi+0.5

xi−0.5

a(x)dx ≈ ai
pn+1
i − pni

τ
,

where

ai =

∫ xi+0.5

xi−0.5

a(x)dx. (9)

In order to approximate the fluxes S(x) and V (x) in (8) in the grid points,
with integrating the equation

S(x)

ν
=
∂u

∂x
,

over the interval (xi−0.5, xi+0.5) and the equation
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V (x)

κ
= −∂p

∂x
,

over the interval (xi−1, xi) we will have the following integral equations∫ xi+0.5

xi−0.5

S(x)

ν
dx =

∫ xi+0.5

xi−0.5

∂u

∂x
dx,

∫ xi

xi−1

V (x)

κ
dx = −

∫ xi

xi−1

∂p

∂x
dx.

Then, by applying approximate formulae for integrals, we can transform these
equations into the following form

S(xi)

∫ xi+0.5

xi−0.5

dx

ν(x)
dx ≈ ui+0.5−ui−0.5, V (xi−0.5)

∫ xi

xi−1

dx

κ(x)
dx ≈ −(pi−pi−1).

From these two formulae, approximate expressions for fluxes can be found

S(xi) ≈ Si = νi
ui+0.5 − ui−0.5

h
, V (xi−0.5) ≈ Vi = −κi

pi − pi−1

h
,

where

νi = (
1

h

∫ xi+0.5

xi−0.5

dx

ν(x)
)−1, κi = (

1

h

∫ xi

xi−1

dx

κ(x)
)−1. (10)

After the substitution of approximate expressions for all the integrals into
equations (6) and (7), weighted discretization in time with the weight pa-
rameter σ is applied. This procedure produces a finite difference scheme,
which is a discrete analogue of the problem (4). The obtained finite differ-
ence scheme is theoretically investigated and detailed convergence analysis
is presented in [6]. Using non-index notations, this scheme for the discrete
approximate solution u = uni at point (xi−0.5, tn) ∈ ωu × ωT and p = pni at
grid point (xi, tn) ∈ ωp × ωT can be written as in the following form

− ν
hu

∧
x + p∧x̄ = 0, x = x0.5 (i = 1), t ∈ ωT , ν(x) =

{
ν1 x ≤ ξ,
ν2 x > ξ.

− ν1(u
∧
x̄ )x + p∧x̄ = 0, xi ≤ ξ, (i = 2, 3, ..., N − 1), t ∈ ωT ,

− ν2
h u

∧
x + ν1

h u
∧
x̄ + p∧x̄ = 0, xi−1 ≤ ξ, xi > ξ, (i = 2, 3, ..., N − 1), t ∈ ωT ,

− ν2(u
∧
x̄ )x + p∧x̄ = 0, xi−1 > ξ, (i = 2, 3, ..., N − 1), t ∈ ωT ,

(ap+ ux)t − κ1(p
σ
x̄)x = fσ, xi−0.5 ≤ ξ, (i = 1, 2, ..., N − 2), t ∈ ωT , (11)

(ap + ux)t − κ2

h p
σ
x + κ1

h p
σ
x̄ = fσ, xi−0.5 ≤ ξ, xi+0.5 > ξ, (i = 1, 2, ..., N −

2), t ∈ ωT ,

(ap+ ux)t − κ2(p
σ
x̄)x = fσ, xi−0.5 > ξ, (i = 1, 2, ..., N − 2), t ∈ ωT ,

(ap + ux)t +
κ
hp

σ
x̄ = fσ, x = xN−1, (i = N − 1), t ∈ ωT , κ(x) =
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κ1 xN−1.5 ≤ ξ,
κ2 xN−1.5 > ξ.

p0 = 0, uN = 0, t ∈ ωT ,

ap+ ux = 1
ν , x = xi ∈ ω̄p, (i = 1, 2, ..., N − 1), t = 0,

where coefficients a, κ and ν are calculated according to the formula (9),
(10) and the right hand side f is defined as

fi(t) =
1

h

∫ xi+0.5

xi−0.5

f(x, t)dx.

3 Numerical results

In this section, results of the numerical experiment are presented. Conver-
gence of all unknowns of the system, i.e., u and p produced by the scheme
(11) with respect to the exact solution of the continuous problem are shown.
The numerical solution is compared to the known exact solution in discrete
L2 norm, which is calculated according to the following form

∥εw∥L2 = h
∑

xi ∈ ωw

|wext(xi, tn+1)− wapp(xi, tn+1)|2,

where wext and wapp stand for the exact and numerical solutions, respectively
and w = {u, p}. In the following experiment, weight parameter is σ = 0.5.

Example 3.1 Suppose the following values of the parameters are used:

ν1 = 1, ν2 =
tan( 1

12 ) tan(
10π
3 )

8π
,

κ1 = 1, κ2 =
1

8π tan( 1
12 ) tan(

10π
3 )

,

a1 = 0, a2 = 0, f(x, t) = 0.

The position of the interface is at ξ = 1
6 . There is no exact solution of problem

(4). Now, consider the following initial condition

(a− 1)p+ ν
∂u

∂x
= 0 at t = 0.

If we substitute the above condition in problem (4), the exact solution is as
the following forms
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p(x, t) =

 cos( 10π3 ) sin(x2 ) exp(−0.25t) x ≤ ξ,

sin( 1
12 ) cos(4π(1− x)) exp(−0.25t) x > ξ,

u(x, t) =


−2 cos( 10π3 ) cos(x2 ) exp(−0.25t) x ≤ ξ,

−2
cos( 1

12 )

tan( 10π
3 )

sin(4π(1− x)) exp(−0.25t) x > ξ.

Note that the mesh size h is decreased in a way, preserving a constant value
for the parameter θ in the expression ξ = xi−0.5 + θh. The convergence
results are given for times t = 0.1 and t = 1. All numerical results are shown
in Tables 1 and 2. In Figures 3.1(a-e) and 3.2(f-j), we have the convergence

Table 1: Convergence in discrete L2 norm at the time t = 0.1.

h = τ ∥εu∥ ∥εp∥
1
10

0.010978550724151 2.584356430578406× 10−5

1
40

4.299657739862227× 10−7 1.565023743780048× 10−6

1
160

5.255105309209073× 10−9 4.642021997862129× 10−7

1
640

5.263842780036844× 10−10 2.411707866280830× 10−7

1
2560

3.408942895693747× 10−11 6.152003882582387× 10−8

Table 2: Convergence in discrete L2 norm at the time t = 1.

h = τ ∥εu∥ ∥εp∥
1
10

6.010657532287119× 10−5 2.069371443954429× 10−5

1
40

2.741582817269723× 10−7 9.979031969906696× 10−7

1
160

3.350803084864384× 10−9 2.959883906284094× 10−7

1
640

3.356374342242523× 10−10 1.537772829030507× 10−7

1
2560

2.173637957624389× 10−11 3.922690864486794× 10−8

of displacement for given stepsizes h=0.1, 1/40, 1/160, 1/640 and 1/2560 at
t=0.1 and t=1, respectively. Also, Figures 3.3(k-o) and 3.4(p-t) are prepared
for representation of convergence of pressure for given stepsizes h=0.1, 1/40,
1/160, 1/640 and 1/2560 at t=0.1 and t=1, respectively. In all of these figures,
exact and approximate solutions are represented by continuous lines and
broken lines, respectively.
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h=1/40,  t=0.1
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Figure 3.1(c)

h=1/160,  t=0.1
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h=1/2560,  h=0.1
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Figure 3.2(f)

h=0.1,  t=1
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Figure 3.2(g)
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Figure 3.2(h)

h=1/160,  t=1
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Figure 3.2(i)

h=1/640,  t=1
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Figure 3.2(j)
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Figure 3.3(k)
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Figure 3.3(l)

h=1/40,  t=0.1
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Figure 3.3(m)
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Figure 3.3(o)

h=1/2560,  t=0.1
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Figure 3.4(s)
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Figure 3.4(t)

h=1/2560,  t=1

4 Conclusion

In this paper, we derived a finite volume discretization for the Biot system
with continuous coefficients. In example 3.1, numerical solution was compared
to the known exact solution in descrete L2 norm. In Tables 1 and 2 and de-
rived figures, when the stepsize h becames smaller, we derived better results.
In fact, our numerical experiments confirmed the theoretical considerations.
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