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Quasi-permutation representations of Borel and

parabolic subgroups of Steinberg’s triality groups*

M. Ghorbany!
Department of Mathematics, Iran University of Science
and Technology, Mazandaran, Iran.
Abstract

If G is a finite linear group of degree n, that is, a finite group of automor-
phisms of an n-dimensional complex vector space, or equivalently, a finite
group of non-singular matrices of order n with complex coefficients, we shall
say that G is a quasi-permutation group if the trace of every element of G
is a non-negative rational integer. By a quasi-permutation matrix we mean
a square matrix over the complex field C' with non-negative integral trace.
Thus every permutation matrix over C is a quasi-permutation matrix. For
a given finite group G, let ¢(G) denote the minimal degree of a faithful rep-
resentation of G by quasi-permutation matrices over the complex numbers
and let (@) denote the minimal degree of a faithful rational valued complex
character of G. The purpose of this paper is to calculate ¢(G) and r(G) for
the Borel and parabolic subgroups of Steinberg’s triality groups.

Keywords and phrases: Borel subgroup, character table, parabolic sub-
group, quasi-permutation, Steinberg’s triality group.
AMS Subject Classification 2000: Primary 20E10; Secondary 20C15.

1 Introduction

If F' is a subfield of the complex numbers C, then a square matrix over F' with

non-negative integral trace is called a quasi-permutation matrix over F. Thus
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2 M. Ghorbany

every permutation matrix over C' is a quasi-permutation matrix. For a given
finite group G, let ¢(G) be the minimal degree of a faithful representation of G
by complex quasi-permutation matrices.

By a rational valued character we mean a character x corresponding to a
complex representation of G such that x(g) € @, for all g € G. As the values
of the character of a complex representation are algebraic numbers, a rational
valued character is in fact integer valued. A quasi-permutation representation
of G is then simply a complex representation of G whose character values are
rational and non-negative. The module of such a representation will be called a
quasi-permutation module. We will call a homomorphism from G into GL(n, Q)
a rational representation of G' and its corresponding character will be called a
rational character of G. Let r(G) denote the minimal degree of a faithful rational
valued character of G.

Finding the above quantities have been carried out in some papers, for ex-
ample in [3], [4], [5] and [6] we found these for the groups GL(2,q), SU(3,¢?),
PSU(3,q%), SP(4,q) and G2(2"), respectively. In [2] we found the rational char-
acter table and the values of r(G) and ¢(G) for the group PGL(2,q).

In this paper we will apply the algorithms in [1] to the Borel and parabolic
subgroups of Steinberg’s triality groups.

2 Notation and preliminary results

Let 2Dy (q) be the Steinberg’s simple triality group defined over a finite field with
q = p" elements, where p is a prime number and n a positive integer.

Let B be the F-stable Borel subgroup TU of G, where U is the product of
all root subgroups of G to positive roots, and let B = BF be the corresponding
Borel subgroup of GF.

The group B is the semidirect product of T = TF by the unipotent normal
subgroup

U =UF = X, XpXot5Xoa+6X3045X30-425-
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The elements of T' form a set of representatives for the semisimple conjugacy
classes of B and we parametrize these classes according to Table A.3 in Appendix
A of [9].

The character table of the Borel subgroup B is given by Tables A.5 and A.6
in Appendix A of [8] and [9].

Let P = (B, ny,,ny,,ny,) be the F-stable maximal parabolic subgroup of G
corresponding to the subset {ri,r3,r4} C A and P := PF be the corresponding
maximal parabolic subgroup of G =3 D,(q). Then P is generated by B and n,
and |P| = ¢"(¢® —1)(¢ - 1).

P is the semidirect product of the Levi complement Lp = (TF, X, X_,) and
the unipotent radical Up := Xg X4 5X0045X30+8X3a+23- The character table
of the parabolic subgroup P is given by Tables A.9 and A.10 in Appendix A of
[8] and [9].

Let @ = (B,n,,) be the F-stable maximal parabolic subgroup of G corre-
sponding to the subset {rs} C A and Q := QF be the corresponding maxi-
mal parabolic subgroup of G =3 D4(q). Then Q is generated by B, ng, and
1Ql = ¢"(¢* —1)(¢* - 1).

Q@ is the semidirect product of the Levi complement Lg = (TF, X 3,X_g) by
the unipotent radical Ug := X4 Xy 5X0045X30+5X30+28-

The character table of the parabolic subgroup @ is given by Tables A.13 and
A.14 in Appendix A of [8] and [9], respectively.

Assume F is a splitting field for G and that F' is a subfield of E. If x,1 €
Irrg(G) we say that x and 1 are Galois conjugate over F' if F'(x) = F(¢) and
there exists 0 € Gal(F(x)/F) such that x? = 1, where F(x) denotes the field
obtained by adding the values x(g), for all ¢ € G, to F. It is clear that this
defines an equivalence relation on Irrg(G).

Let n; for 0 < ¢ < r be the Galois conjugacy classes of irreducible complex
characters of G. For 0 < i < r, let ¢; be a representative of the class n;, with
o = 1g. Write ¥; = ZX,-emXi and K; = keryp;. We know that K; = ker¥,. For
I1C{0,1,2,---,r}, put K; = ;c;K;. By definitions of r(G), ¢(G) and using the
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above notations we have

r(G) = min{{(1) : { = Yj_yn¥i,n; > 0, Kp =1, for I ={i,i# 0,n; >0}},
¢(G) =min{{(1) : & = zr:nz\lll,nz >0,Kr=1, for I =1{i,i#0,n;>0}},
where ng = — min{f(g)irgoe G}.
d(x),m(x) and ¢(x) have been defined in [1] [see Definition 3.4]. Here we may

redefine them as follows.

Definition 2.1. Let x be a complex character of G, such that ker y = 1 and
X = X1+ -+ Xn, for some x; € Irr(G). Then
n

(1) d(x) = D_ITi(xa)xi(1)
=1

0, if x = 1g,
@mo={ " ) |
|m1n{zi:12a€F¢(X1)X1‘ (g) ‘g € G}|ﬂ otherwise,
n
B ) =) > xF+m)le
i=la€l;(x:)
So
r(G) = min{d(x) : ker x = 1},
and

¢(G) = min{c(x)(1) : ker x = 1}.
The proofs of the following statements may be found in [1].

proposition 2.2. Let x € Irr(G), then 3 ,cp(,) X is a rational valued char-

acter of G. Moreover, c(x) is a non-negative rational valued character of G and

c(x) = d(x) +m(x)-
Lemma 2.3. Let x € Irr(G),x # 1g. Then ¢(x)(1) > d(x) +1 > x(1) + 1.
Lemma 2.4. Let x € Irr(G). Then

(1) c00)(1) > d(x) > x(1);
(2) e(x)(1) < 2d(x). Equality holds if and only if Z(x)/kery is of even order.
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3 Quasi-permutation representations

In this section, we calculate 7(G) and ¢(G) for Borel and parabolic subgroups of
Steinbergs triality groups >Dy(q). First we shall determine these quantities for
odd gq.

Theorem 3.1. Let ¢ be a power of an odd prime number. Then
A) If G is a Borel subgroup B of >D4(q), then
mg*(q — 1) it m< T,
1) r(G) =
%q‘l(q3 —1)(¢—1) otherwise,
mq® if m< qST_l,
%q5(q3 — 1) otherwise,
where m = |I'(Bx17(k))|.

2) ¢(G) =

B) If G is the maximal parabolic subgroup P of 3D,(q), then
1) 7(G) = ¢*(¢ — 1);

2) (G)=¢" .
C) If G is the maximal parabolic subgroup @ of 3D4(q), then
g -1 f 2<qg-1
1) +(G) = mq°(q” — 1) if &<q
ng3(qg—1)%(g+1), otherwise,

2) ¢(G) =
ng®(q—1), otherwise;

where m = |I'(Qx16(k))| and n = |T'(Qx17(k))|.
Proof. In order to calculate 7(G) and ¢(G), we need to determine d(x),m(x),

{mq5 if T<g-1,

and ¢(x)(1), for all characters which are faithful or (), Kery = 1. Since the
degrees of faithful characters are minimal, we only need to consider the faithful
characters and by Lemmas 2.3 and 2.4 we have

A) Using the character table A.6 of [9] for the Borel subgroup B, we have
d(Bxi(k) = [P(Bxar (k) Bxar(K)(1) > g*(g — 1) and s0 c(Bxar)()(1) > o,
d(Bx1s) = d(Bx19) = d(Bx20) = d(Bx21) = [T (Bxis)|Bxis(1) = 2¢*(¢*—1)(¢—
1) and so ¢(Bx1s)(1) = e(Bx19) (1) = ¢(Bx20)(1) = ¢(Bx21)(1) = 5¢°(¢* — 1).

The values are set out in Table (I):
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Table (I)
X d(x) c(x)(1)
Bxaz(k) >q'(q—1) >
Bxis | 34'(@® —1(g—1) | 3¢°(¢* = 1)
Bxis | 34" (@ -1(g—1) | 3¢°(¢* = 1)
Bxao | 30" =1)(g—1) | 3¢°(¢* - 1)
Bxa1 | 34'(¢® —1(g—1) | 3¢°(¢* = 1)

For the character Byi7(k), as |I'(Bxi7(k))| < ¢ — 1, where I'(Bxi7(k)) =

I'(Q(Bx17(k))Q), we have
¢'(q—1) < d(Bxir(k)) < q'(a— 1)(¢* - 1).

Now by Table (I) and the above inequality we have

min {d(x) : Kerx = 1} = d(Bx17(k)) = mq*(q¢ — 1) if m < &
min{d(x) : Kerx =1} =1¢*(¢ —1)(g —1). Also

min {c(x)(1) : Kerx = 1} = ¢(Bxi7(k))(1) = m¢®, it m < €L o
min{c(x) : Kerx =1} = 2¢°(¢* — 1), where m = |T'(Bx17(k))|.
B) By the character table A.10 of [9], we have

d(Px15) = [T(Px15)|Px15(1) = ¢*(¢ — 1) and so ¢(Px15)(1) = ¢°,
d(Px16) = IT(Px16)|Px16(1) = ¢"(¢ — 1) and so ¢(Px16)(1) = ¢°,
d(Px17) = |D(Px17)|Pxa7(1) = 3¢*(¢—1)(¢°+1) and so ¢(Px17)(1) =
d(Px18) = [T(Px18)|Px1s(1) = 54" (¢—1)(¢*+1) and so ¢(Px1s)(1) =
d(Px19) = [T(Px19)|Px19(1) = 54" (¢—1)(¢*—1) and so ¢(Px19)(1) =
d(Px20) = [T(Px20)|Px20(1) = 54" (g—1)(¢*—1) and s0 ¢(Px20)(1) =
d(Px21(k)) = T (Pxa1(k))|[Pxa1 (k) (1) > ¢*(g—1)(¢* +1) and so ¢(Px

(¢ +1),

1 .
1— . otherwise,

NI—= NI N N

Y

d(Px22(k)) = |T(Px22(k))|Px22(k)(1) > q*(q—1)(¢° — 1) and s0 c(Px22)(k)(1)

(@ —1).

The values are set out in Table (II):
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Table (II)

X d(x) c(x)(1)
Pxas q4(q —1) q5
Pxa6 q7(q —1) q8
Pxir | 3¢* (-1 +1) | 56°(@P+1)
Pxiz | 34" (=D +1) | 36°( +1)
Pxug 5(a" —q") 34° (¢ — 1)
Pxa | 3¢*(a—-1(*-1) | 36°(¢* - 1)

Pxai(k) | > ¢ (a -1 +1) | >¢°(¢* +1)
Pxaz(k) | > q*(a—1)(* —1) | 2¢°(¢° — 1)

Now by Table (IT) and the above inequality we have

min {d(x): Kery =1} =d(Pxi5) = ¢*(¢ — 1)) and

min {c(x)(1) : Kerx =1} = ¢(Px15)(1) = ¢*.

C) By the character table A.14 of [9], we have

d(@x16(k)) = IT(Qx16(k))|@x16(k)(1) = ¢°(¢* — 1) and so c(Qx16(k))(1) = ¢°,
d(Qxa17(k)) = [T(Qx17(k))|Q@x17(k)(1) > ¢*(¢* —1)(¢—1) and s0 ¢(Qx17(k))(1) >
(¢ —1),

d(Thoo Qx18(k)) = T(Xheo @xus(k)(Xheo @xas(k)) (1) = 2¢°(¢*> — 1)(¢* — 1)
and s0 ¢(E o @x1s(k)) (1) = 2¢°(¢* — 1),
d(Thoo Qx19(k)) = |T(Xheo @x10 (k) (Xheo @x10(k))(1) = 2¢°(¢* — 1)(¢* — 1)
and 50 ¢(E o @x19(k)) (1) = 2¢°(¢* — 1),

d(3071 Qxz0(k) = ID(2F21 Q2o (B)I(ZEZ1 Qx20(k) (1) > ¢*(a—1) (6>~ 1)(¢*—
1) and so c(302] Qx20(k))(1) > ¢°(q — 1)(¢* — 1).

The values are set out in Table (III):
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Table (III)

X d(x) c(x)(1)
Qx16(k) > q*(q® = 1) > q°
Qx17(k) >’ (¢ —1)(g—1) >q¢°(¢—1)

> koo Qx18(k) 2¢*(¢* — 1)(¢* — 1) 2¢°(¢* — 1)
oo Qx190(k) 2¢*(¢* = 1)(¢* - 1) 2¢°(¢° — 1)
TSI @xa0(k) | > Pa— (-1 —1) | >¢°(g—1)(¢* — 1)

For the character Qxi6(k), as [T(Qxw(k))| < ¢ — 1, where T(Qx16(k)) =
I'Q(Qx16(k))Q), we have

¢*(¢* —1) <d(Qxs(k)) < *(¢* —1)(¢* — 1).

Thus, for the character Qx17(k), as |[T'(Qx17(k))| < ¢®+q+1, where T(Qxr (k) =
I'(Q(Qx17(k)) : Q), we have

(g —1)(¢* — 1) <dQxir(k) < ¢*(¢* — 1)(¢* - 1).

Now by Table (ITT) and the above inequality, we have
min {d(x) : Kerx =1} = d(Qx16(k)) = mg*(¢* — 1) if 22 < g —1, otherwise,
min{d(x) : Kerx =1} = d(Qx17(k)) = ng’(¢* — 1)(¢ — 1), and
min {c(x)(1) : Kerx =1} = c¢(Qx16(k))(1) = mq®, if 2 < g—1 , otherwise ,
minfe(x) : Kery = 1} = o(@xur(¥))(1) = ng(q — 1), where m = [F(Qx16(k))
and n = [I'(Qx17(k))|.

In the following theorem, we have constructed the values of 7(G) and ¢(G)

for the case when ¢ is even.

Theorem 3.2. A) Let G be the Borel subgroup B of 3D4(2"), then
1) 7(G) = [T(Bxi5(k))lq" (¢ — 1)
2) «(G) = [T (Bx15(k))la”-

B) Let G be the maximal parabolic subgroup P of 2Dy (2"), then
1) r(G) =q'(g—1)
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2) ¢(G) = ¢°.
C) Let G be the maximal parabolic subgroup Q of 2D4(2"), then

mq3(¢® — 1), if m<g-—1,

1) +(G) = ¢(¢"—1) w <4
ng*(q—1)?(g+1), otherwise,
mq, if m<g-—1,

2) o(G) =4 " n =t
ng®(qg—1) otherwise,

where m = |I'(Qx14(k))| and n = |T'(Qx15(k))|-

Proof. The quasi-permutation representations of Borel subgroup B and maximal
parabolic subgroups P and @ of 3D, (2") are constructed by the same method as
in Theorem 3.1. So in order to calculate 7(G) and ¢(G), we need to determine
d(x),m(x), and ¢(x)(1), for all characters which are faithful or (), Kerx = 1.
Since the degrees of faithful characters are minimal, we only need to consider the
faithful characters. By Lemmas 2.3, 2.4, and the character table A.6 of [8], we
have

A) d(Bxis(k) = ID(Bxas () Bxas (£)(1) > ¢*(g—1) and so e(Bxis) (£)(1) > o,
d(Bxi6) = |T(Bxi6)|Bxi6(1) = q*(¢° — 1)(¢ — 1) and so ¢(Bx1s)(1) = ¢°(¢* — 1).
For the character Bxis(k), as |[T'(Bxis(k))| < ¢* — 1, where T'(Bxis(k)) =
I'(Q(Bxi5(k)) : @), we have

¢'(¢—1) < d(Bxi5(k)) < q*(q—1)(¢* — 1).

Now, we have

min {d(x) : Kerx =1} = d(Bxi5(k)) = [T(Bxi5(k))lg*(¢—1) and min {c(x)(1) :
Kerx =1} = ¢(Bxus(k)) (1) = [T(Bxis(k))|g’-

B) By the character table A.10 of [8] we obtain

d(Px15) = |T(Px15)| Px15(1) = ¢*(¢ — 1) and so ¢(Px15)(1) = ¢°,

d(Px16) = |T(Px16)|Px16(1) = ¢"(¢ — 1) and so ¢(Px16)(1) = ¢°,

d(Pxi7) = [T(Px17)|Pxi7(1) > ¢*(q — 1)(¢> + 1) and so ¢(Px17)(1) > ¢°(¢* + 1),
d(Px1s) = [T (Px1s)[Pxs(1) > ¢*(q — 1)(¢° — 1) and so ¢(Px1s)(1) > ¢°(¢* — 1)
The values are set out in Table (IV):
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Table (IV)

X d(x) c(x)(1)
Pxus q*(g—1) ¢
Pxue q'(g—1) ¢*
Pxir | >q' (¢ =)@ +1) | >¢°(¢* +1)
Pxis | 2 ¢ (q—1)(P—1) | 2¢°(¢° - 1)

Now by Table (IV) we have

min {d(x) : Kery =1} = d(Pxi5) = q"(¢ — 1)) and

min {c(x)(1) : Kerx =1} = ¢(Px15)(1) = ¢’

C) By the character table A.14 of [8] we may calculate the following
d(Qx14(k)) = IT(Qx14(k)|@x14(k)(1) > ¢*(¢* — 1) and so ¢(Qx14(k))(1) > ¢°,
d(Qxa5(k)) = [D(Qx15(k))|Qx15(k)(1) > ¢*(¢—1)*(¢+1) and so ¢(Qx15(k))(1) >
¢*(g—1) and

A4 Qxas(k)) = D], Qxis(k)(Ch-; @xi6(k))(1) = ¢*(g—1)(g+1) (¢’ —
1) so ¢(3f_; Qxa6(k))(1) = ¢°(q — 1)(¢* + g+ 1).

For the character Qx14(k), as |T(Qx14(k))] < ¢* — 1, where I'(Qx1(k)) =
F(Q(Qx14(k)) : Q), we have

¢*(¢* — 1) <d(Qxu(k) < (¢ —1)(¢° —1).

So for the character Qx15(k), as [[(Qx15(k))| < ¢° + ¢+ 1, where T'(Qx15(k)) =
I'Q(Qx15(k)) : Q), we have

(g —1)(¢*> — 1) < d(Qx15(k)) < ¢*(¢* —1)(¢* - 1).

Now by the above inequality we have

min {d(x) : Kery =1} = d(Qx14(k)) = mg*(¢> — 1) if 2 < g— 1, otherwise,
min{d(y) : Keryx =1} = d(Qx15(k)) = ng*(¢* —1)(¢ — 1). and

min {c(x)(1) : Kerx =1} = ¢(Qx14(k))(1) = mg®, if @ < g — 1, otherwise ,
min{e(x) : Kerx = 1} = c(Qx15(0)(1) = ng’(g — 1), where m = [P(Qx14(k))
and n = [[(Qx15(k))|.
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Abstract

In this paper, we consider groups with points which were introduced by V.P.
Shunkov in 1990. In Novikov-Adian’s group, Adian’s periodic products of
finite groups without involutions and Olshansky’s periodic monsters every
non-unit element is a point. There exist groups without points. In this ar-

ticle we shall prove some properties of the groups with points.

Keywords and phrases: Adian’s periodic products, Chernikov group, lo-
cally finite, locally soluble groups, Novikov-Adian’s group, points of group.
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1 Introduction

Finiteness conditions in groups which are connected with finiteness of systems
of subgroups were traditionally studied in Krasnoyarsk group theory School. An
element in a group is a point if the sets of finite subgroups in special system of
subgroups connected with this element are finite. More precisely, an element of

finite order of a group G of the following types is called a point of G

*Received: 24 December 2008; Revised: 28 June 2009
tThe work is supported by the Russian Fund of Fundamental Researches (grant 09-01-00395),

by the grant of Siberian Federal University (the project - elite mathematical education in SFU)

and by the grant 09-09-1/NSh of the Krasnoyarsk Stste Pedagogical University.
te-mail: sen@icm.krasn.ru

13



14 V.I. Senashov and E.N. Iakovleva

a) The identity element is a point if and only if the set of elements of finite
orders of G is finite;

b) Non-identity element a of G is a point if for every non-identity finite sub-
group K of G normalized by the element a, then the set of finite subgroups of
N¢(K) containing a is finite.

The definition of a point was introduced by V.P. Shunkov in 1990(see, for
example [13]).

The concept of the points in groups give us the possibility of studying infinite
groups. In particular, by using this concept, the sign of non-simplicity of an
infinite group came to exist in [12]. In this article, we establish some properties of
groups with points. We start by proving some properties of the common character
(Lemmas and Theorems 1-5). Theorem 6 gives us the sign of placement of a point
in an infinite group outside of infinite locally finite subgroups. Simultaneously, it
will be proved that there are no points in an infinite locally finite group.

Theorems 7-10 have more special character. In Theorem 7, we construct an
infinite subset of the set of finite subgroups with intersection that contains some
points, such that every infinite subset of it has the same intersection. Theorem
8 describes a construction of an infinite subset of a set of finite subgroups with
intersection contains a point of second order. Theorem 9 describes the centralizer
of a point of second order if one more finiteness condition is valid for this point.
Theorem 10 is about Sylow 2-subgroups of groups with point of second order.

Now, we recall some definitions, which we use frequently in this article.

A point a is called a trivial point, if the set of finite subgroups of G containing
a is finite.

A group G is said to be locally finite, if any finite subset of G generates a
finite subgroup.

A group G is called Chernikov group, if it is a finite group and a finite extension
of direct product of a finite number of quasi-cyclic groups.

Let 7’ be the complement of the set of prime numbers 7. The periodic group

G is called a 7'—group, if all the prime divisors of orders of non-unit elements of
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the group G belong to the set of 7.

An element of order two is called an involution.

A group G of the form G = FAH is called a Frobenius group with the kernel F
and the complement H, if HNHY =1, forany g € G\ H and F\1 = G\UgyeccHY,
where H is a proper subgroup of G.

A group G is called locally solvable, if every finite set of its elements generates
a solvable subgroup. A maximal normal p’-subgroup of G is denoted by Oy (G).

For the elements a, b € G, the group G is carried out (a, b)-finiteness condition,
if the subgroup L, = (a,b9) is finite, for almost all g € G (i.e., except may be
finite number). An (a, b)-finiteness condition called strong, if L, is a finite group
for all g € G.

An element a of G is called strictly real with respect to the involution i, if
iai =a" .

A subgroup H of the group G is called strongly embedded, if H contains an
involution and for any element g € G\ H there are no involutions in the subgroup

HnNHY.

2 Examples of groups with points

Here, we give some examples of groups with different sets of points.

All finite groups are examples of groups, in which every element is considered
as a point.

Novikov-Adian’s group, Adian’s periodic products of finite groups without
involution [1] and Olshansky’s periodic monster [11] are examples of groups, in
which every non-unit element is a point.

Unit group and torsion-free group are groups with unique point.

Groups with a finite periodic part is a group, in which every element of finite
order is a point.

Free product of a non-trivial finite group by any other non-trivial group is a

group with infinite set of points.
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Let T1,T5,...,T,, ... be infinite sequence of finite Frobenius groups with the
same complement H, where T,, = F,AH, n =1,2,3,.... Then, the free product G
of groups in this sequence by the joined subgroup H is a group with a non-trivial

point.

3 Some properties of groups with points

In this section, we study some properties of groups with points.

All the necessary known results are listed in Section 4 at the end of the article.
We refer to these results with the appropriate numbers.
Lemma 3.1 If a is a point of the group G, then a is a point of any subgroup of
G, containing a.
Proof. Let a be a point of the group G, H be an arbitrary subgroup of G
containing a and L be a non-trivial finite subgroup of H. By the definition of
a point, the set of finite subgroups of normalizer N (L) containing a point a
is finite as the set of finite subgroups of normalizer Ny (L) containing a is also
finite. Hence, the element a is a point of the subgroup H.
Proposition 3.2 No group G can contain simultaneously an infinite set of finite
subgroups with non-trivial intersection containing a point a and a non-trivial
finite normal subgroup.
Proof. Let the group G contain a non-trivial finite normal subgroup K and an
infinite set of finite subgroups with non-trivial intersection L containing a point
a. Then, the group G contains infinite number of elements of finite orders and
a # e, by the definition of a point. As K is a normal subgroup of the group
G, then Ng(K) = G and the set of finite subgroups in Ng(K) containing a is
infinite. Thus a is not a point of the group G. This proves the proposition.
Proposition 3.3 If a group G contains a point a, then for every element b of
finite order of the normalizer Ng(a), the intersection Ng((a)) N Cq(b) has finite
indezx in Ng(a).

Proof. By the way of contradiction, we assume that there is an element b of the
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normalizer N (a), such that the index of the intersection N¢((a)) N Cg(b) in the
normalizer N¢(a) is infinite. We then consider two cases: a = e and a # e in G.

If @ = e, then Ng((a)) = G and by the assumption |G : Cg(b)| = co. It
means that the number of elements, conjugate with b in the group G is infinite.

This is a contradiction to the definition of points.

Now we consider the second case and assume a is a non-identity element
of G. By the assumption, the intersection N¢g((a)) N Cg(b) has infinite index
in the normalizer Ng(a). Then, the number of elements conjugated with b in
the normalizer N¢(a) is infinite. Hence, the normalizer Ng(a) contains infinite
number of finite subgroups of the form < a,b® >, ¢ € Ng(a), which contradicts
Proposition 3.2. So, the result holds.

Proposition 3.4 No group may have simultaneously an infinite set of finite
subgroups containing a point a and a finite non-trivial invariant set of elements
of finite orders.

Proof. Let the group G have a finite non-trivial invariant set of elements of
finite orders. By Ditsman’s Lemma (see Theorem 1), this set generates a finite
normal subgroup in G. However, the group G can not have infinite set of finite
subgroups containing the point a, by Proposition 3.2.

Theorem 3.5 Infinite Chernikov’s group has no points.

Proof. By the properties of Chernikov’s groups, in infinite Chernikov’s group,
every element is contained in an infinite set of finite subgroups. As every infinite
Chernikov’s group has a finite normal subgroup, then the statement follows from

Proposition 3.2.

The following lemma is already proved in [8].
Lemma 3.6 Every group has no infinite locally finite subgroup containing a point
a.
Proposition 3.7Let a be a point of a group G, IM be an infinite set of finite
subgroups of G and a € NgeonH. Then, M contains an infinite subset B such
that for any infinite subset 3 of B, NgeyH = NgesH.

Proof. Let T' = NycopH and assume that the claim is not true. Then, 91 has

17
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an infinite subset M; with intersection 11 = Nyeopn, H # T, M has a subset Ny
with intersection T = Ngeom, H # T1 and etc. As a result of such choices of
subsets M, (n = 1,2,...) from M, we obtain a strictly ascending chain of finite
subgroups T' < Ty < T < ... < T, < ....

Clearly the union V of this chain is an infinite locally finite subgroup contain-
ing the point a, which contradicts Lemma 2.6. Hence, the chain breaks off after
finite number of steps. This proves the result.

Theorem 3.8 Any infinite set M of finite subgroups of a group G with inter-
section T = NpgesmH, where 1 is a point of the second order, almost all (for
exception, may be, of finite number) consists of subgroups isomorphic to Frobe-
nius groups with complements containing T or subgroups isomorphic to groups
S52(Q), SLy(Q), where Q is a field of characteristic two, T = PX(c) and P is
some Sylow 2-subgroup of such subgroups.

Proof. In view of Proposition 3.7 and without loss of generality, the statement
is valid for 9.

1) If B is an infinite subset of 9t such that T'= Ngcxp H.

Assume that for some infinite subset 9 of Mt and for some (4)-invariant sub-
group K # 1 of T we have Ng(K) £ T(H € M).

The set {Ny(K)|H € M} can not be infinite, as in this case we come to the
contradiction of conditions K # 1, 1 € Ny (K) and the involution 7 is a point
of G. Hence, {Ny(K)|H € N} is finite and by statement 1) N has such infinite
subset U, that Ny(K) < T(H € {l) contrary to the definition of the set 1.
The contradiction means, that the condition Ny (K) £ T can be only valid for
finite number of subgroups H € 9. Therefore without loss of generality, we may
suppose that

2) Nuy(K) < T # H, for any non-trivial (7)-invariant subgroup K of T' and
any subgroup H of 91.

Let M be some subgroup of M and Oy (M) # 1. Then, we are able to prove
that

3) M is a Frobenius group with complement Cj(7), containing 7.
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Let R be a nilpotent radical of Oy (M), then by Theorem 3.7, R # 1. If
TNR # 1, then using the normalizer condition for nilpotent groups ([9], Theorem
17.1.4) and statement 2), we show that R < T and M < T contrary to the
condition T # M from statement 2). Hence, TN R = 1 and, in particular,
Cu (i) N R = 1. If Cpr(R) has an involution k. Clearly, R can be chosen so that
k € Ci(i). Now by statement 2), R < Cps(K) < T and we obtain a contradiction
to the above, RNT = 1. From here we have, that Cj;(R) does not contain any
involutions, and as Cs(R) « M, that Cpr(R) < Og (M). Furthermore, in view of
Theorems 11 and 12, Cj/(R) = R and M = RCj;(i). Using this and statement
2), it obviously follows that C';(7) is a complement of Frobenius group M. Hence
the statement 3) is proved.

Now we show that:

4) If H is a subgroup of 9, then all involutions of T are conjugate with 4 in
H.

Let j be an involution from 7. If V = ({j}¥) < T, then by statement 2)
H < Ny(V) < T and T = H, but this is impossible, as in view of statement 2)
T # H. Hence, k = j9 ¢ T for some element g € H. If the element ik has even
order, then by Theorem 13 and statement 2), it follows that £ € T' contrary to
the above that & ¢ T. This contradiction means that the element 7k has odd
order and so by Theorem 13, 7 and k& = j9 are conjugate in H. Hence 7 and j are
conjugate in H and thus the statement 4) is proved.

Finally, we shall prove that:

5) If H € M, then T is strongly embedded subgroup in H. By statement
4), every involution of T is a point and therefore statement 2) is valid for every
involution of T'. Using this remark, it is easy to show that if, for some g € H,
the intersection T'NTY contains an involution, then it contains also some Sylow
2-subgroup S of T'. Then in view of Sylow Theorem [9] tg € Ny (S), where ¢ is
some element of 7. By the above remark and statement 2), tg € Ng(S) < T and
g € T. So, the statement 3) is stablished.

Now, having applied the statements 2) — 5) and Theorems 14 and 15 to every
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subgroup of the set M, we obtain the following theorem.

Theorem 3.9 Let G be a group with infinite set of elements of finite orders
and i its point of the second order satisfying (i,1)-finiteness condition. Then,
H = Cg(i) is a strongly embedding subgroup in G and H has a finite periodic
part that is not contained in any larger subgroup with such a property.

Proof. By Proposition 3.4, C(7) has finite periodic part and |G : C(7)] is infi-
nite. The set M of all subgroups with periodic part containing C¢ (i) is partially
ordered and obviously, the union of any chain of 91 belongs to it. By Zorn’s
Lemma, 971 has a maximal element, i.e., there exists a subgroup H of 9 which
is not contained in any larger subgroup of 9. Let V be a periodic part of H. As
1 € V, Proposition 3.7 implies that V is a finite subgroup. It is obvious that V is
normal in H and V is automorphic permissible in H. In view of maximality of
H in 9, it follows that Ng(V) = Ng(H) = H.

Take an involution k£ € V. If ({k%|g € G}) < V, then we would obviously
arrive to a contradiction with the definition of point 7 and (4,4)-finiteness condi-
tion. Hence, for some ¢ € G, the involution t = k¢ ¢ H. Now, we consider the
dihedral subgroup L = (i,t) and assume that L is not a finite Frobenius group
with complement (i) and kernel (d), where d = 4t. In this case |d| = oo, or |d| is
even. The case |d| = oo is impossible in view of (7, 7)-finiteness condition and The-
orem 13. If |d| is even, then by Theorem 13, (d) contains an involution j where
j € Ca(i) N Cg(t). Obviously, |H : Cq(j) N H| is finite and as ¢ is a point and
(1,1)-finiteness condition is valid in C(j), then Cg(j) has a finite periodic part
R (using Theorem 16 and Proposition 3.4). The intersection H N Cg(j) contains
such subgroup X, so that |H : X| < oc, X<H and V, R < C;(X) < Ng(X). But
t € R, and therefore ¢t € Ng(X). On the other hand, ¢t ¢ H and H < Ng(X).

Hence, H # N¢g(X) and in view of the definition of H a subgroup M = Ng(X)
has no periodic part. Furthermore, X < Cq(i) < H, |H : X| < oo and X has
a finite periodic part. But then i € X would mean that |M : Cg(i)] < oo and

hence M would have a finite periodic part which contradicts the above. Hence,

i ¢ X and obviously in M = M/X the centralizer C;(iX) is finite and (iX,iX)-



Properties of groups with points 21

finiteness condition is valid. By Theorem 18, M is a locally finite group. Now, as
H/X < M and H/X is a finite subgroup of M, H/X is contained in a larger finite
subgroup K/X of M, where K is a subgroup of M and X < H < K. Obviously,
|K : Ci(i)] < oo, means that K has a finite periodic part. But K # H and
H < K. Hence, we obtain a contradiction to the definition of the subgroup H.
This contradiction means that d is an element of odd order and the involutions 4
and k are conjugate in G (Theorem 13), so k and 7 are also conjugate in G.
Now we prove that H is a strongly embedding subgroup in G' and we assume
that it is not so. Then H # HY, for some g € G and H N HY has an involution
k. As it is proved above, k is a point of G and, besides, |H : Cg(k) N H|,
|HY : Cq(k) N HY| are finite. Again as proved above, Cg(k) < H N HY and
H = HY, ie. g € Ng(H) = H. Hence, H is a strongly embedding subgroup
in G. If H has more than one involution, then by Theorem 17 and in view
of (i,1)-finiteness condition in H there would be a non-unit element ¢ of finite
order, strictly real concerning to some involution j € G\ H. By Theorem 17, i
and j are conjugate in G and therefore j is a point. Now consider a subgroup
M = Cg(c)A\(j). As j is a point of M and M is satisfied to (j,7)-finiteness
condition, then by Proposition 3.4, M has a finite periodic part. It is obvious
that |H : M N H| < co and as proved above, we obtain a contradiction to j ¢ M.
Hence, H has a unique involution and so the theorem is proved.
Theorem 3.10 Let G be a group with infinite set of elements of finite orders and
i be its point of the second order satisfying (i,1)-finiteness condition. Then, all
Sylow 2-subgroups of G = Cg(i) are cyclic or generalized quaternion groups.
Proof. By Theorem 3.9 and Theorem 10, it follows that all Sylow 2-subgroups
of H are cyclic or generalized quaternion groups. By Theorem 17, they are also

Sylow subgroups in G, so they are conjugate in G. This completes the proof.
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4 Known results

In this final section, we have collected some known results, which were used in
proving our results and we referred to them as theorems with their appropriate
numbers.

1. Ditsman’s Lemma. Let M be a finite invariant set of elements of finite
orders in a group, then the subgroup generated by this set is finite [10].

2. Remak’s Theorem. Let G be a group, H;,7 € I, be its normal subgroups
and H be their intersection. Then the factor-group G/H is isomorphic to some
sub cartesian product of the factor-groups G/H; [9].

3. Feit-Thompson Theorem. Any finite group of odd order is solvable [5].

4. Let H be a periodic locally solvable group and & an element of prime order
p of H such that C(k) is finite. Then all Sylow p-subgroups of H are Chernikov
groups [16].

5. Let H be a periodic locally solvable group with Chernikov Sylow p-
subgroups for some p € m(H). Then H/Opy (H) is a Chernikov group [4].

6. Blackburn Theorem. If GG is a locally finite p-group and the centralizer
of some finite subgroup of G is a Chernikov group, then G is also a Chernikov
group [3].

7. Higman-Thompson Theorem. Any finite group with regular automor-
phism of the prime order p is a nilpotent group. The length of its upper central
series is also terminated after a finite number of steps, which only depends on p
[7, 17].

8. Subgroups of a Chernikov group are Chernikov [9].

9. Extension of Chernikov group by a Chernikov group is also a Chernikov
group [15].

10. A 2-group with only one involution is either a locally cyclic group (cyclic
or quasi-cyclic), or a generalized quaternion group (finite or infinite) [16].

11. Let G be a finite group and H be its subgroup with H N H? =1 (for all
g€ G\ H). Then
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a) G = FAH, where F'\ 1 = G\ UgegHY (Frobenius Theorem);

b) (IF|,|H]) = 1;

c¢) Sylow p-subgroups of H are cyclic or generalized quaternion groups;

d) If H has involution i, then H = Cg(7), F' is an abelian subgroup and
i=fNf€eF)

e) If H has odd order, then all elements of prime orders of H generate a cyclic
subgroup;

f) F is a nilpotent subgroup (Thompson Theorem);

g) If p € w(H), then the nilpotent length of subgroups F' is only limited to a
number depends on p (Higman Theorem);

h) If h € H and f € F, then the elements h, fh are conjugate by some element
of F [13].

12. let G be a finite solvable group and L its nilpotent radical. Then Cg(L) <
L [2].

13. Let G = (i, k) and 4, k be involutions of G. Then a) G = (¢)\(i) = (¢)A(k),
where ¢ = ik; b) i lci =ici = ¢!,k 'ck = kck = ¢ '; ¢) 4,ic®™ (or k, kc®™) are
conjugate in G, where m is an integer; d) if ¢ is an element of odd order, then i
and k are conjugate in Gj e) if ¢ is an element of even order and ¢ is an involution
of {c), then G is an elementary Abelian group of 4-th order or Z(G) = (t) [15].

14. Bender Theorem. Let G be a finite group and H be its strongly
embedded subgroup. Then G/O«(G) = T has a unique involution or normal
subgroup of an odd index in 7', which is isomorphic to one of the groups of type
SL(2,Q), Sz(Q) or PSU(3,(Q)), where @ is a finite field of characteristic two [2].

15. Let G ~ PSU(3,Q), where @ is a finite field of characteristic two, S
be a Sylow 2-subgroup of G and H = Ng(S). Then H is a strongly embedded
subgroup in G and H has a non-trivial element b such that Cq(b) £ H and
Ca(b)nS #1 2]

16. If some involution 7 € G satisfies the (7,%)-finiteness condition, then every
involution k£ € G is carried out strong (k, 7)-finiteness condition [13].

17. Let G be a group, H be its strongly embedded subgroup, and 7 be

23
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an involution of H satisfying the condition that for almost all elements g~ 'ig

(9 € G\ H), the subgroups (i9) are finite, then

a) if k is an involution of G \ H, then |ki| is finite and odd number;

b) all involutions of H are conjugate in H;

c) all involutions of G are conjugate in G;

d) any element g of G\ H has the form g = hyj,, where hy € H and j, is an
involution of G\ H;

e) for every involution j of G\ H, the set of elements of H strictly to j, have
the same power as the set of involutions in H [13].

18. Let G be a group and 7 an involution of it with finite centralizer Cg (7).
If G satisfies the (i,4)-finiteness condition, then G is a locally finite and almost
solvable group [13].

19. If G has a locally finite group containing an element with finite centralizer,

then G has locally soluble normal subgroup of finite index [6].
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Abstract

Classical control methods such as Pontryagin Maximum Principle and Bang-
Bang Principle and other methods are not usually useful for solving opti-
mal control systems (OCS) specially optimal control of nonlinear systems
(OCNS). In this paper, we introduce a new approach for solving OCNS
by using some combination of atomic measures. We define a criterion for
controllability of lumped nonlinear control systems and when the system is
nearly null controllable, we determine controls and states. Finally we use

this criterion to solve some numerical examples.
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1 Introduction
We consider a nonlinear time-variant system as follows:

i = g(t, (1), u(t)), Vit € J, (1)
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z(to) = zo, z(ty) =z, (2)
where €y = J x A x U x D, here J is a known closed interval [to, %], A and
D are compact and peicewise connected sets in R™ such that z(t) € A and
z(t) € D,Vt € J, and U is a compact set in R™ such that u(t) € U,Vt € J, and
g is continuous on J. If there are u(.) and z(.) that satisfy equation (1)-(2) we
call the system is controllable.

In the following, by means of a process of embedding and using measure the-
ory, this problem is replaced by another one in the space of Borel measures, that
we seek to minimize to a linear form over a compact subset of the measure space.
The theory allows us to convert the new problem to an infinite-dimensional lin-
ear programming problem. Later on the infinite-dimensional linear programming
problem is approximated by a finite dimensional one. Then by the solution of
the linear programming problem one can find approximate functions for states
z(+) and control u(-).

If the system has an objective function we can use this process for solving the
systems defined by multi-objective control systems.

There are some literature on nonlinear optimal control for lumped and dis-

tributed parameter systems, see for example, [2]-[12].

2 Defining the problem

Let us define in (1), for all ¢ in J = [to, 1]

y(t) £ (), (3)
Then the equations can be rewritten as
y(t) = g(t, z(1), u(?)), (4)
z(to) = zo, x(ty) = xy. (5)
Now we define the function i : Q1 — R as

h(t, (), u(t), y(t)) = lly(t) — g(t, z(t), u(®)), (6)
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and let the functional I(.,z(.),u(.),y(.)) be as follows:

I(2(),ul-),y()) é/]h(tam(t)au(t)ay(t))dt'

Now, we investigate a necessary and sufficient condition for controllability of con-

trol system (1)-(2).

Theorem 1. A necessary and sufficient condition for controllability of control
system (1)-(2) is
Min I(-,-,-,-) =0,

that is equation (1) and boundary conditions (2) are valid on €.
Proof. Since h > 0 and it is continuous, h is Rimman integrable. If
Min I(-,-,-,-) =0,

u*(.) and *(.) are the corresponding control and trajectory and z(tg) = xo, z(ts) =

zy, then
/ h(t,z*(t),u*(t),y*(t))dt =0
J

and we will have h = 0. So

y*(t) = g(t, 2" (1), u" (1)),
or

& (t) = g(t, =" (1), u" (2)).
In other words, in this case u*(.) and z*(.) satisfy equations (1)-(2) and the
system will be controllable.

Conversely, if the system is controllable; that is, if (1)-(2) are satisfied, then
h =0, forall tin J. So

/}h(t,x(t),u(t),y(t))dt =0

and then I(.,z,u,y) =0, hence Min I(.,z,u,y) = 0.
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Note In practice we usually obtain suboptimal solution for I(.,.,.,.) in The-
orem 1, that is we have many errors for controllability of the system, for example
computational errors. So usually [ is not exactly equal to zero, in this case let the

total permissible errors be at most € > 0, where € is a known positive number. If

e(0) £ " () = gt O ) 1a = ([ 170 = glt.” (@), @) Pa) 2 (7

and e < €, then the system is almost controllable, so we define fuzzy controlla-

bility.

Fuzzy controllability Let C be the fuzzy set of permissible controls and tra-

jectories as follows:

C={(z,u,y): C(x,u,y) is as follows}

(e—€)
Clz,u,y) = ‘
0 , otherwise.

, e <€,

Then we say the system is controllable of grade C.

Controllability of multi-objective systems

Let our Multi-Objectives System be the minimization of

Ii(t,x(t),u(t),:b(t)):/]fi(t,x(t),u(t),i(t))dt, i=1,2,k

subject to the conditions (1)-(2), also we would like to be sure that our system
is controllable or fuzzy controllable.

If we consider y(t) as before and
w(t) £ (wi(t), wa (), wer1(t))
such that

w(t) € E, where E C R and E=10,1] x [0,1] x --- x [0,1],
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and also we define an objective function which is a convex combination of the

above objectives, that is, we assume the weights for objectives, as follows:

k
) 23wl | £t 00), )0y ® [ Bt (0.u).u0)at
k+1
wit) =1, 0<wi(t) <1, i=1,2,...k+]1,
=1
and we consider f in the following way
k
f(t,x(t),u(t),y(t),w(t)) £ Zwi(t)fi(-amauay) + W(k+1) (t)h(.,m,u,y),
=1

then I(.,.,.,.,.) will be

1020,y w) & /J £ (b (8), u(t), y(t), w(t)) dt,

then the minimization of I(.,z,u,y,w) will be a criterion for controllability and
also multi-objective performances functional. In the special case, when w;(t) =

0, i=1,2,...k and wy1)(t) = 1, it is just a criterion for controllability.

3 Metamorphism

We define [z(-), u(:), y(-)] to be an admissible triple, provided for all ¢ in .J,
e the function z(-) is continuous, and z(t) € A4;
e the function z(-) is continuous, and y(t) € D;
e the function u(-) is Lebesgue measurable, and u(t) € U;

e the triple satisfies the system of differential equations (4)-(5) and a.e. on

J® = (to,ts) in the sense of Caratheodory.

We denote the set of admissible triples by V. The problem has no solution unless

Vv #£0.
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Using the above assumption, the problem is now as follows:

Find an optimal admissible triple v € V' which minimizes the functional

I('a'a'a'a') = /Jf(t,:v(t),u(t),y(t),w(t))dt. (8)

Assume that B is an open ball in R"*! containing J x A, denote the space of all

differentiable functions on B by C'(B), and for ¢ € C'(B) define

¢g(t,.’L‘,U,y) = ¢x(t7m)'g + ¢t(tax)7 (9)

where ¢(-) and g(-) are n-vectors and the first term in the right-hand side of (9) is
an inner product and ¢? is in the space C(f2) of real-valued continuous functions
defined on the compact set €2, where Q = Q; x E. Then by the definitions of g

and ¢ and using the chain rule we have
[ #ttsto)uo.vnat = [ it atenar
J J
= ¢(ty,z(ty)) — d(to, z(to)) = 6¢.

Therefore
[ # a0, a0yt = 5696 € C'(5). (10)
J
Since A may have an empty interior in R", we need to introduce the set B and
space C'(B). Suppose D(J°), is the space of infinitely differentiable real valued

functions with compact support in J° and each = and g have n components such

as z; and g;,7 = 1,2,...n. For each 1) € D(J°), define

If w is an admissible pair, then for any ¢ € D(J°) we have

Awmﬂmmmmmﬁzﬂwwmm+ﬁwwmﬂ

=%@Wﬂ%—ﬂm—wmﬂmmmwm%

Since 1 has compact support on J°, it follows that
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and hence
/]¢j(t,m(t),u(t),y(t))dt =0. (12)

Now, we choose those functions in C'(B) which depend on the time variable only

and denote this subspace by C1(2). Set

IB(t7$7u7y7w) = IB(t)’ (tﬂxﬂu’y) e Q'

Thus
!LWUJMJW%MmﬁZGmﬁeaﬁm

where ag is the Lebegue integral of 8(t, z,u,y) on J.

In a given classical problem, the set of admissible triples is fixed. If we add
some elements to it, we have changed the problem and considered a new one,
inspired classically, but a different formulation nevertheless.

Consider the mapping
Aercmw+/memmmmmmeu
J

which is a linear and positive functional. Let us rewrite (8) subject to the condi-

tions (4)-(5) in the new representation as follows:
Minimize Ay (f) (13)
subject to
Ay(¢7) = b9, ¢ € C'(B)
Ay(;) =0,7=1,2,...,n;9 € D(J°) (14)

Av(/B) = aﬂMB € CI(Q)

We mention that A, is a positive Radon measure on the set C(£2). We denote
the space of all positive Radon measures on 2 by M (Q). A Radon measure on

2 can be identified with a regular Borel measure on this set (see [13], Riesz
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Representation Theorem). Thus, for a given positive functional on C(2), there

is a positive Borel measure on €2 such that

M(F) = [ Fdu= ().

Now, the problem (13)-(14) can be replaced by a new problem as follows. We

seek a measure in M (£2) which minimizes the functional
peMT(Q) = pu(f) €R (15)
and satisfies the following constraints:
u(¢?) = d¢, ¢ € C'(B)

p(tp;) = 0,5 =1,2,....,m;9 € D(J°) (16)
w(B) = ag, B € C1(92).

Thus, we consider the extension of our problem: Minimization of (15) over the set
Q of all positive Radon measures on € satisfying (16). Considering such measure

theoretic form of the problem has teo main adventages, namely

e The existence of an optimal measure in the set ), which satisfies (16) can be
studied in a straightforward manner without having to impose conditions

such as convexity, which may be artificial.

By the Proposition II.1, Theorem II.1 and Proposition I1.3 of [14], we are able to

prove the existence of the optimal measure.

4 First approximation

The problem (15)-(16) is an infinite dimensional linear programming(LP) prob-
lem, because all the functionals in (15)-(16) are linear in the variable u even if

the original problem is nonlinear and furthermore, the measure p is required to
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be positive. Of course, (15)-(16) is an infinite dimensional LP problem, because
M™(Q) is an infinite dimensional space. It is possible to approximate the solu-
tion of this problem by the solution of a finite-dimensional LP of sufficiently large
dimension. Also, from the solution of this new finite dimensional LP we induce
an approximated admissible triple in a suitable manner. We shall first develop an
intermediate problem, still infinite-dimensional, by considering the minimization
(15), not over the set Q but over a subset of M*(Q) defined by requiring that
only a finite number of the constraints in (16) are satisfied. This will be achieved
by choosing countable sets of functions whose linear combinations are dense in
the set @), and then selecting a finite number of them. Consider the first set
of equalities in (16). Let the set {¢;,7 = 1,2,...} be such that the linear com-
binations of the functions ¢; € C'(B) are uniformly dense. For instance, these
functions can be taken to be monomials in the components of the n-vectors z and
variable ¢.
Now, we consider the functions in D(J°) defined as below

27TT’(t - t(])
ot

271”)"(t - t(])
ot

sin| ], 1—-cos] l,r=1,2,.. (17)

where 6t =ty — 1o, if ¢y>s are chosen as (17), and the sequence {x ,},I =1,2,... is
of type 1 in (11). Then the first approximation will be completed by using the
above subjects and Proposition III.1 of [14].

5 Second approximation

By Proposition II1.2 of [14] the optimal measure has the form

N
ph=Y o agd(z), (18)
k=1

where 2} € Q and of > 0,k = 1,2,..., N, where J(-) is unitary atomic measure

with the support being the singleton set {z; }, characterized by

d(2)(F) = F(2),z € Q.

35
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This structural result points the way towards a nonlinear problem in which
the unknowns are the coefficients o} and supports {z;},k =1,2,...,N.
To change this problem to a LP problem, we use another approximation.

If w" is a countable dense subset of €, we can approximate p* by a measure

v € M*(Q) such that
N
v= Zaz(s(zk)a
k=1

where z; € w" = {21, 29, ..., 2y } (Proposition 111.3 of [14]).
This result suggests the following LP problem
Given € > 0 and z; € wV, j=1,2,...,N,

Minimize Z aif(z) (19)

subject to

N
| Za]¢zg(zj) - 5¢1 |§ €1=1,2,---, M,

N
| Y aixlz) < el=1,2,.., My, (20)
Jj=1
N
| Zayﬂs(zj) —ag, |[<es=1,2,-- L,
j=1

a;>0,5=1,2,..,N.

Assume P(My, My, L) in RY is defined by o; > 0,5 = 1,2,..., N satisfies (20),
then by Theorem III.1 of [14], for every ¢ > 0 the problem of minimizing the
functional (19) on the set P(My, My, L) has a solution for N = N (e) sufficiently

large, and the solution satisfies
N
(M17M27 Z z] <77 M17M27L) €,

where p(e) > 0ase— 0.
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Let 6, € C (Q),
0T(t7$7u7y7w) :tT7T :0’ ]‘7"" (21)
then the set of 6,°s is dense in C(€2). Assume that there are a number L of them
in the set {¢? }f\ill It is necessary to choose L number of functions of the time

only, to replace the functions 6,,r = 0, 1, ... which were not found suitable, so we

have chosen some suitable functions, to be denoted by f,, s = 1,2, ...L, as follows:

1 ifteJ
fS(t) =

0 otherwise,

where J; = (to+ (s —1)d, to + sd), d = % Since every continuous function can be

written as a linear combination of monomials of type 1,z,z?,.... We assume
$1=T1,¢2 = T2, ..., Pp = Ty,

2 2 2
Gl = T17, Ppt2 = T2, oy o = Ty,

until M; functions are chosen, also assume

2rr(t —t
o) = sin 2ty o
ot
or
2nr(t — 1t
Pr(t) =1-— COS[W],T = My + 1, My +2,...,2Moy,
where x , are chosen as ¢} in (11), then we have My = 2nMy; number of type
X -
Now, if in the problem (19)-(20), e — 0 and z; € w¥,j = 1,2,..., N, then we
have
N
Minimize Z a;f(z) (22)
j=1
subject to

N

Za]¢zg(z]) = (5¢1,Z = 172a T aMla
=1

N

S ajx (z) =0.1=1,2,.... My, (23)
7j=1

37
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N

Zozjfs(zj) =as,s=1,2,..., L,
j=1
a;>0,j=1,2,..,N,

where a, is the integral of fs on J. By solving this finite dimensional LP problem

we obtain the nearly optimal a*’s.

6 Numerical examples

Example 1. Consider the nonlinear time-variant problem

2sin(z) + u

T=z
z(0) =0,z(1) = 0.5.
We let € = 0.1 and partition respectively the sets J = [0, 1], A = [0,0.5], D = [0, 1],
and U = [0,1] into p; = p4 = pp = py = 10 and My = 6, My = 4, and L = 10.

1 - 0B
0.4+t
Zos} |2
0.2t
a — a '
a 0.5 1 0 0.5 1
Optimal Control State

We used Revised Simplex method to solve such problem and found f* = 0.0065,
z*(0) = 0 and z*(1) = 0.4995, and degree of controllability of this example is
C = 0.9349. Below, the figures of z(-) and u(-) are given.

Example 2. Consider the nonlinear time-variant optimal control problem

1
Minimize / u?(t)dt,
0
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subject to the conditions

& = z’sin(z) + u

Then

h(t,z(t), u(t), y(1)) = ly(t) — (2*sin(z) + ), Ve J

and

We let wi(t) = wa(t) = 1 and € = 0.1 and divide respectively the sets J =
[0,1], A = [0,0.5],D = [0,1], and U = [0,1] into p; = pa = pp = py, = 10 and
M, =6,Ms =4, and L = 10.

We used Revised Simplex method to solve this problem and found f* = 0.1133,
z*(0) = 0 and z*(1) = 0.4981. Below, the figures of z(-) and u(-) are given.

04 - DB
0.4+t
S 045} 1 =
=
0.2+
0.4 0 :
a 0.5 1 a 0.5 1
Optimal Control State

Example 3 (A system of coupled hydraulic tanks [1]) A state-space model
can be set up with the inlet flow-rate u as input, the depths of liquid (z1,z2)
in the respective tanks as state variables and the output taken as xzo, since the
objective is to control the level in tank2. With tanks of the same dimensions, and

orifices of equal size, the state-space equations expressed in suitably normalized

39
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variables become

where it is understood that the system operates only in the region
x1 > 29 > 0.

We assume € = 0.1 and divide respectively the sets J = [0,0.5], A1 = [0.05,0.45], D1 =
[0.05,0.45], A2 = [0.05,0.35], D2 = [0.05,0.35], and U = [0, 1] into p; = pa, =
PD, =PA, =PD, =py =4 and My =2,Ms =8, and L = 4.

We solve this problem and found f* = 0.0465, z7(0) = 0.02,z7(0.5) =
0.1214,2%(0) = 0.02 and z5(0.5) = 0.0902, and degree of controllability of this
example is C' = 0.5355. Below, the figures of u(-), z1(-), and z2(-) are given.

1 T T T T
08 .
Z 06 -
0.4F .
Dz 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
Optirmal Cantral
0.1 - 0.15
01
= 005¢ {1 =
= =
0.05¢
0 0
0 0.5 0 0.5

State2 Statel
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The variational iteration method for solving linear and

nonlinear Schrodinger equations®
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Abstract

In this paper, the variational iteration method which proposed by Ji-Huan
He is applied to solve both linear and nonlinear Schrodinger equations. The
main property of the method is in its flexibility and ability to solve linear
and nonlinear equations accurately and conveniently. In this method, gen-
eral Lagrange multipliers are introduced to construct correction functionals
to the problems. The multipliers in the functionals can be identified opti-
mally via the variational theory. Numerical results show that this method
can readily be implemented with excellent accuracy to linear and nonlinear
Schrodinger equations. This technique can be extended to higher dimensions

linear and nonlinear Schrodinger equations without a serious difficulties.

Keywords and phrases: General Lagrange multipliers, linear and non-
linear Schrodinger equations, variational iteration method.
AMS Subject Classification 2000: Primary 11D04; Secondary 34A34.

1 Introduction

The variational iteration method (VIM) was first proposed by Ji-Huan He in 1998
[6,7] and systematically illustrated in 1999 [11]. Since then, it has been success-
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fully applied to various engineering problems [15,16]. This method is employed
in [18] to solve the Klein-Gordon equation which is the relativistic version of the
Schrodinger equation, which is used to describe spinless particles. Application of
He’s variational iteration technique to an inverse parabolic problem is described
in [4]. In [2] the VIM is employed to solve the time dependent reaction-diffusion
equation which has special importance in engineering and sciences and consti-
tutes a good model for many systems in various fields. This technique is also
employed in [5] to solve the Fokker-Planck equation and in [3] to solve a bio-
logical population model. For more application of the method, the interested
reader is referred to [1,17,19,21]. The VIM [11,12] is a powerful tool to search
for approximate solutions of linear and nonlinear equations without requirement
of linearization or perturbation. Another important advantage is that the VIM
is capable of greatly reducing the size of calculation while still maintaining high
accuracy of the numerical solution. Moreover, the power of the method gives a
wider applicability in handling a huge number of analytical and numerical ap-
plications. The convergence of He'variational iterative method is investigated
in [20]. Here, we apply VIM to one and two dimensional linear and nonlinear
Schrodinger equations. This paper is organized as follows: In Section 2, we in-
troduce the model of the problems. In Section 3, first we describe VIM method
and then we apply VIM in a direct manner to establish exact solutions for linear
and nonlinear Schrodinger equations. In Section 4, we describe the numerical
solution of linear and nonlinear Schrodinger equations to show the power of the

method in a unified manner without requiring any additional restriction.

2 The model of the problem

In this paper, the linear Schrodinger equation is considered as follows:

(x,t)—l—i%(x,t) =0, (z,0)=f(z), z€R t>0, i = -1, (1)

9
at
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and we consider the nonlinear Schrodinger equation of the form

O 1y &) 2 2
ZE(XJ) = _E(W(Xat) + a—yQ(Xat)) + By, X eR, t>0, (2)

where X = (z,y) , [4|*> = 9, and S is a real constant.

3 Basic ideas of He’s variational iteration method

In this section, the application of the VIM is discussed for linear and nonlinear

Schrodinger equations. Considering the following general differential equation:
Lijp(z,t) + Rip(z,t) + Nip(z,t) = g(z,1), (3)

where L is a first order partial differential operator, R is a linear operator, N is
a nonlinear operator and g(x,t) is a known analytical function. According to the

VIM[8-10], we can construct the following correction functional:

t
dmﬂ%ﬂz%@ﬁ+AA@%@HR%@HW&ﬁrﬂwﬂﬁ,nZQM)

where X is a general Lagrange multiplier [14], which should be identified optimally
via the variational theory [14], the subscript n denotes the nth approximation,
and 1, is considered as a restricted variation [6,7,11] and [13] i.e 6¢, = 0 . We
first determine the Lagrange multiplier A that will be identified optimally via
integration by parts. The successive approximations ¢, 1(z,t) ,n > 0 of the
solution v (z,t) will be readily obtained using the derived Lagrange multiplier
and by using any selective function 1. The initial values 1 (z,0) and ) (z,0)
are usually used for selecting the zeroth approximation 1y . With A determined,
several approximation 1;(z,0), j > 0 follow immediately. Consequently, the

exact solution may be obtained by using (see [20])

¢ = lim )y, (5)

n—oo
According to the VIM, we consider linear Schrodinger equation (1) in the follow-
ing form([8-10]:

Dy,

IMn
P (2, 8) + i1

23

t
%H@wzwmﬁ+AA@< (r.)de.  (6)
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To find the optimal value of A\, we have

Dy,

Dby,
v x,f)—l—zax?

85(

S (2,1) = Spn(z, 1) + 6 / AE)( (£,€))de =0, (7)

or

I
23

t
S (2,1) = Bpu(, 1) + 6 /0 A (2 (2, ¢))de = 0. (8)

which follows
t
Hnia(at) = B (.01 XO) =5 [ N(@n(o.dg =0, (©
The following stationary conditions

1+ A(t) =0, (10)

follow immediately. This in turn gives

AE) = 1. (12)

Substituting this value of the Lagrange multiplier A = —1 into the functional (6)

gives in the following iteration formula

t 2,7
bonale,) = o) - [(GE@O+iGR@ M )

Similarly, we obtain the correction functional for (2). Hence we have

Oy, 24y, 8%4hn

Pny1(X,t) = z/)n(X,t)Jr/OtA(f)(z o (X,£)+%( 52 (X&) + oy (X,9)
— ByPp)de. (14)

The stationary conditions are of the following form
14 iX(t) =0, (15)
X&) =0, (16)

and so we have
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Substituting this value of the Lagrange multiplier A = 4 into the functional (14)

gives the following iteration formula

O 1, 0%y 0%
(X = a0+ [ (5 3G + FE )

—  BYPP)de. (18)

(X,8) +

Here, we will use this method to solve linear and nonlinear Schrodinger equations

to establish exact solutions for these equations.

4 Examples

To illustrate the solution procedure and show the ability of the method, some
examples are provided.

Example 4.1 Consider the following linear Schrodinger equation :

0 o
a—zf(:v,t) + ia—;f(x,t) 0, (19)
o(x) = sinh 2z. (20)

Using (13), we obtain the following successive approximations:

Y1(w,t) = (1 — 44t)sinh 2z,
(—4it)?
21

Po(z,t) = (1—4it+ ) sinh 2z,

(—4it)? N (—4it)? - (—4it)"

Yoz, t) = (1 —4it+ 51 3 " ) sinh 2.
Consequently, the exact solution is
Yegact (2, 1) = e 1" sinh 2. (21)
Example 4.2 Consider the nonlinear Schrodinger equation
0 &%) 2
Zg(xat)+w($,t)+2|¢| Y =0, (22)

tho(z) = e™*. (23)

47



48 B. Jazbi and M. Moini

Using (18), we obtain the following successive approximations:

i(z,t) = (1+it)e ™,

it)?
Po(z,t) = (1+ (it) + %)6_”,

it)?  (it)?
palat) = (i) + 0 O

4 2 4 3 4 4 Al )
dn(zl) = (l—l—(z't)—i—(;) +(;) +(L) +...+(7?! Jei,

Consequently, the exact solution is
Yezaet (2, 1) = 7). (24)

Example 4.3 Consider the nonlinear Schrodinger equation

0 1,0° 0?
G+ (TR + G F 2Py =0, (@)

Yolz,y) = ). (26)

Using (9), we obtain the following successive approximations:

Pr(X,1) = (14 it)e@ty),
P (X, 1) = (1+(z't)+( ,) )l ty),
P3(X,t) = (1+(z't)+(2) +%) i(aty)
i) (i) (it)! )"
pa(x) = (1 + G O O B e,

Consequently, the exact solution is

'(/)e:cact(Xa t) = ei(t—l—:v—l—y)‘

Conclusions

In this paper, He’s variational iteration method has been successfully applied to

find the solution of the linear and nonlinear Schrodinger equations. The main



The variational iteration method for solving . .. 49

advantage of the method is the fact that it provides an analytical approximation,
in many cases an exact solution, in a rapidly convergent sequence with elegantly
computed term. Analytical solutions enable researchers to study the effect of
different variables or parameters on the function under study easily. A clear
conclusion can be drawn from the numerical results which VIM provides with
highly accurate numerical solution without spatial discretizations for linear and

nonlinear Schrodinger equations.
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Abstract

In some long term studies, a series of dependent and possibly truncated life-
times may be observed. Suppose that the lifetimes have a common marginal
distribution function. In left-truncation model, one observes data (X;,T;)
only, when 7; < X;. Under some regularity conditions, we provide a strong
representation of the 3,1 estimator of § = P(T; < X;), in the form of an
average of random variables plus a remainder term. This representation en-

ables us to obtain the asymptotic normality for By

Keywords and phrases: a-mixing, left-truncation, product-limit estima-
tor, strong representation, truncation probability.

AMS Subject Classification 2000: Primary 12J15, 26A03; Secondary
26E30.

1 Introduction

In medical follow-up or in engineering life testing studies, one may not be able
to observe the variable of interest, referred to hereafter as the lifetime. Among
the different forms in which incomplete data appears, right censoring and left-

truncation are two common ones. Left truncation may occur if the time origin of

*Received: 18 October 2008; Revised: 26 May 2009
fe-mail: sa_jo67@stu-mail.um.ac.ir
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the lifetime precedes the time origin of the study. Only the subjects which are
failed after the start of the study are followed, otherwise they are left truncated.
Woodroofe [9] reviews examples from astronomy and economy where such data
may occur.

Let X1, Xo,... be a sequence of the lifetime variables which may not be mutu-
ally independent, but have a common continuous marginal distribution function
F. Let T1,T5,... be a sequence of independent and identically distributed ran-
dom variables with continuous distribution function G. They are also assumed
to be independent of the random variables X;’s. In the left-truncation model,
(X;,T;) is observed when T; < X;. Let (X1,T1),...,(Xy,T,) be only the sample
one observes (i.e., T; < X;), and 8 > 0, where

p=pmsx)= [ " G(9)dF(s), 1)

is the truncation probability (TP).

Assume, without loss of generality, that X; and T;,7 = 1,...,n, are non-
negative random variables. For any distribution function H, we denote the
left and right endpoints of its support by ay = inf{z : H(z) > 0} and by =
sup{z : H(z) < 1}, respectively. Then under the current model, as discussed
by Woodroofe [9], we assume that ag < ap and bg < bp. Equation (1) suggests
estimating S by o

b= [ GuliF) )
provided good estimates F,, and G,, for F and G can be obtained.

For the case in which the lifetime observations are mutually independent,
Woodroofe [9] proved that if F,, and G, are product-limit estimates (given by
(4) below), B, converges in probability to 8 as n — oo. Under similar conditions
as in Woodroofe [9], the asymptotic normality of \/n(8, — ) has been investi-
gated by several authors using different methods. Chao [7] used influence curves
and Keiding and Gill [6] used finite Markov processes and the well-known delta
method. Since F,, and GG,, have complicated product-limit forms, the properties

of B3, is generally not easy to study. Let I(A) denotes the indicator function of
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the event A. He and Yang [4] proposed, instead, another estimate of 3 as

Gn(z)(1 = Fo(2))

/Bn = Cn (:E) 5

for all z for which C),(z) > 0, where

n
Co(z) =n"' > I(T; <z < X;),
i=1

is the empirical distribution of
C(z)=P(Ty <z < Xi|Ty < X1) =1 - F(z))G().

Using En, He and Yang [4] proved the almost sure convergence of the estimate
of B and obtained a manageable i.i.d. representation for En, hence the asymptotic
normality of the estimate.

Our basic aim in this article is to express the TP estimator Bn as an av-
erage of a sequence of bounded random variables plus a remainder of order
O(n='2(logn)~%) for some § > 0, for the case in which the underlying life-
times are assumed to be a-mixing whose definition is given below. As a result,
the asymptotic normality of TP estimator is obtained.

Let FF denote the o-field of events generated by {Y;;1 < j < k}. For easy
reference, let us recall the following definition.

Definition. Let {Y;.7 > 1} denote a sequence of random variables. Given a
positive integer n, set

a(n) = ig;fﬂP(A NB) - P(A)P(B)|: A€ Ff,B € F5,} (3)

The sequence is said to be a-mixing (strongly mixing) if the mixing coefficient
a(n) — 0 as n — oo. Among various mixing conditions used in the literature,
a-mixing is reasonably weak and has many practical applications (see, e.g. [1]
for more details). In particular, the stationary autoregressive-moving average
(ARMA) processes, which are widely applied in time series analysis, are a-mixing

with exponential mixing coefficient, i.e., a(n) = e ", for some v > 0.
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The rest of the present paper is organized as follows. In Section 2, we provide
the strong representation results for the TP estimator. The proofs are given in

Section 3.

2  Strong representation for the TP estimator

We first introduce some notation before stating the strong representation result.

The random truncation model is defined by the joint distribution
H(z,t) = P(X; <z,T) <tTy < Xy)
with marginal distributions,
F*(z) = P(X) < 2|Ty < X1) = B! /0 G(5)dF(s),
and
6*(a) = P(Ty < it < X)) =5 [ (1= F(9)G(o)

Let F); and G, be the empirical distributions of F* and G* defined by
Fi(@)=n"' S0 I(X; <a) and  Gh(a) =n~' Y0, I(T; < a).
The well-known product-limit (PL) estimates of F;, and G,, are defined by

Fo(z)=1— l————),  Gnz) = l————). (4
() Z.:)l;[gc( nCn(Xi)) () i%—[ﬂ( nCn(Ti)) (4)
For construction of these estimates, see [9] or [7]. Suppose
dF*(s) dG*(s)
CT(S) < o0 and CT(S) < 00. (5)
Let
I(z <vy) /yI(tgsgm) .
ty) = ——— — ——————dF
Q/)l(ma ay) C(iE) 0 02(8) (5)7
and

I(t It<s<zx
et = e - [T S e ),

Thena Ewl(XZaﬂay) = E'(/)Q(Xzajjzay) = 01 and

vy dF*(s)

Cov(1(Xi, Ti, y1), 1 (Xi, Ti, y2)) :/ 027(8)’

apx*
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and

be= dG*
Cov(ha (X3, Tj, y1), ¢2(Xi, Ty, y2)) ://\ CQ(S))'
Y1/\Y2

The following theorem provides the strong representation for B\n

Theorem 2.1. Suppose that {X,;n > 1} is a sequence of stationary a-mixing

random variables with a(n) = O(n~?), for some v > 3. If ag < ap, then
~ 1<
BH_B:_BEZ@/)(XET%)_FRH(?J)’ (6)
i=1
is uniformly in 0 <y < b < by, where

sup |Rn(y)| = O(n 2(logn)™®)  a.s.
0<y<b

for some § > 0 depending only on v. We next present the asymptotic normality
of the TP estimator based on our strong representation result.
Theorem 2.2. Under the assumptions of Theorem 2.1, if ag < ap, then for

0<y<b<br,

~

V(B — B) < N(0,02), (7)

where

02 = 62{VGT(Q/)(X17T1ay)) +2 Z COU(I(z/)(XlaTlay)allz/)(X’iaT:iay))}'
=2

3 Proofs

In order to prove Theorem 2.1, we need the following lemma which is Theorem
2.1 in Sun and Zhou [8]. Note that the proof of (9) is similar to that of (8) and
is therefore omitted.

Lemma 3.1. Suppose that {X,;n > 1} is a sequence of a-mixing random

variables with a(n) = O(n~"), for some v > 3. If ag < ap, then

Faly) = Fw) + (1= FO) - S a(Xu Ty + Bn(y) s (9
=1

o7
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and

~ 1«

Gn(y) = G(y) = Gy)~ D 12(Xi, T y) + Rua(y) as., (9)

i=1
uniformly in 0 <y < b < by, where
sup |Rp1(y)| = O(n~"?(ogn)™%)  a.s.
0<y<b

and

sup |Rus(y)] = O(n™"(logn) ™) a.s.,
0<y<b

for some § > 0 depending only on v.
Proof of Theorem 2.1. Using Lemma 3.1, for 0 < y < b < bp, with

probability 1 for large n, we have

Gn(y)(1 —Fuly)) Gy - Fly)

=B = Cn(y) - C(y)
(1- F(y)C(y)Gy) , 1« BN

_ {(—=> (X, Tiy) — = > 42(Xi, Ty, y)
Cu(y)C(y) 7 2 Tin) = 50 el Ty

- @ Y (T <y < X)) = C(y)]} + O(n~/*(logn) ™)
=1

= =B (X Tiy) + Ol (logn) ) as.
=1

where

B(XiThy) = 1(Xe Thy) + ve(Xi Toy) + %um <y<X)—Cly)

1 /M“uﬂgsgxa
cXi) Jo C2(s)
It is easy to see from Lemma 1 of Cai [1] that {¢Y(X;,T;,y);Ti < X5, i =

dF*(s)—1 a.s.

1,2,...} is a sequence of stationary a-mixing bounded random variables. The
random variable 1 (X;, T;,y) does not depend on y, therefore, the proof of Theo-
rem 2.1 is complete.

Proof of Theorem 2.2. An application of Theorem 18.5.4 of Ibragimov and
Linnik Yu [5] and Theorem 2.1 gives (2.4). It can be easily checked that

T dF*(s) /”G* dG*(s) 1

C2(s) C2(s)  C(s)

Va’r(Q/)(XlaTlay) = +2a—1a

apx*
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which is finite under (5). On the other hand, a(n) = O(n™"),v > 3 implies
Y- a(n) < oo and therefore > o0, Cov(y(X1,T1,y), %(Xi, T;,y)) < 0o. So, 02 is a

positive finite number and the proof of Theorem 2.2 is complete.
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Abstract

In this paper, the geometric distribution is considered. The means, vari-
ances, and covariances of its order statistics are derived. The Fisher infor-
mation in any set of order statistics in any distribution can be represented
as a sum of Fisher information in at most two order statistics. It is shown
that, for the geometric distribution, it can be further simplified to a sum of
Fisher information in a single order statistic. Then, we derived the asymp-

totic Fisher information in any set of order statistics.

Keywords and phrases: Fisher information, geometric distribution, order
statistics, percentile, Quantile.
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1 Introduction

The geometric distribution with parameter 6 is given by the probability mass

function (pmf)

flz;0)=(1-0)0", £=0,1,2,... , 0< 6 < 1. (1)

*Received: 17 November 2008; Revised: 12 June 2009
te-mail: m.roozbeh.stat@gmail.com
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In general, the distribution theory for order statistics is complex when the parent
distribution is discrete. However, order statistics from a geometric distribution
exhibit some interesting properties. The geometric distribution possesses several
properties (like lack of memory) of exponential distribution. Due to the relation-
ship between the geometric and the exponential distributions, there also exists a
close relationship between the dependence structure of order statistics from a ge-
ometric distribution and those from the exponential distribution. To this end, we
may first note that when Y has an exponential distribution, i.e., it’s probability

density function is given by
1
) = 5e 30, y >0, A >0, (2)

then X = [Y], when [.] stands for integer part, is distributed as geometric

with parameter § = 1 — e~ 1/,

Also, the geometric distribution is the only
discrete distribution for which the first order statistic and the sample range are
independent [2].

The Fisher information plays an important role in statistical inference in
connection with estimation, sufficiency and properties of variance of estimators.
It is well known that Fisher information serves as a valuable tool for derivation of
variance in the asymptotic distribution of maximum likelihood estimators (MLE).
For a random variable X, discrete or continuous, which pmf or pdf is f(z;6),

where § € O is a real value and © is the space parameter, the exact Fisher

information contained in X is defined as

6logafe(x;0))2:_E<8210§2fe(m;0)> | 3)

under certain regularity condition (see [7]). Let X;, ¢ = 1,...,n be a sample

Ix(6) :E(

from Fjy, the exact Fisher information about # in any k order statistics, X, ., <

Xy < oo Xppiny 1 <rp <1 <. <71 <n\,is defined as

0 2
IT'17'2...7'k:’n(0) = E{% log fnrz...rk:n(e)} 3 (4)

where frpy. ron(6) is joint pmf or pdf of (X;,:n, Xryim, ... Xp:n). The problem

of obtaining the Fisher information in order statistics was described in [2] with
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the words: “while the recipe for Iy (6)is simple, the details are messy in most
cases” where Y is an arbitary collection of order statistics. Several results have
been published in this direction in recent years. For example, Mehtoria et al.
[8] presented the Fisher information in the first r order statistics. Park [9] used
an indirect approach to obtain the Fisher information in r order statistics, and
presented very information plots to demonstrate which order statistics have more
Fisher information. Zheng and Gastwirth [14] calculated the Fisher information
contained in any collection of order statistics. Abo-Eleneen and Nagaraja [1]
studied the Fisher information in collections of order statistics and their con-
comitants from bivariate samples. Park and Zheng [12] derived a necessary and
sufficient condition under which two distribution have equal Fisher information
in any set of order statistics. Hofman et al. [6] used the Fisher information in
minima and upper record values for characterization of hazard function. Park [10]
considered the optimal spacing based on the Fisher information. Park and Kim
[11] considered the Fisher information in exponential distribution and simplified
the Fisher information in any set of order statistics to a sum of single integrals.
In other application, such as life testing surveys (see [3]) and optimal spacing (see
[4] and [10]), the asymptotic Fisher information is used.

The rest of the paper is organized as follows. In Section 2, the means, vari-
ances, and covariances of geometric order statistics are derived. We derived
the asymptotic Fisher information about @ contained in the rth sample quantile
(Xy.m) of geometric distribution in Section 3. In Section 4, we provide the simple
method for obtaining the Fisher information and asymptotic Fisher information

in any set of order statistics of geometric distribution.

2 Calculating means, variances, and covariances

Since the Fisher information is related to the variance-covariance matrix of the
estimate of ¢, being its inverse under certain conditions, we derive variances, and

covariances of order statistics come from a geometric population.
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Let X, ..., X, be a sample from (1) and denote the corresponding order statis-
tics by Xl:n < X2:n <..< X’nn

Lemma 2.1 Let piy.y, and Ufm, and oy 5., be mean of X,.,, and variance of X;.,,

and covariance of X,., and Xs.p,, respectively. Then, we have, for 1 <r <s<mn

r gn—i+1
Brn = Z 1 gt (5)
§=0
r pn—i+1
2 _
O = Z A= gy (6)
§=0
and
Or,sin = Ug:n . (7)

Proof. Under the transformation Z; = (n—i+1)(X;.p— Xj—1.) fori =1,2,...,n,
one can see that the variables 71, Zo, ..., Z,, are independent random variables and
pmf each of Z; is given by (see [2])
fo(2:0) = (1 =070 2=0, n—i+1, 2(n—i+1),... . (8)
The equivalent transformation can be written as
Z.
Xpp =y —L . 9
n Z n—j+1 ©)
7=0
From (8) and (9) we immediately, conclude that

r )
en—j—i—l
Krn = Z 1_ g+
=0
Orin = (1 _ 9n—j+1)2’
§=0
and
r )
9n—]+1
Or,s:n = Z m
§=0

We may similarly derive the higher-order moments of X,.,, if needed.
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3 Asymptotic Fisher information in the rth order
statistic
Definition ([13]) Assume 7= — p; (for i=1, 2, ..., k) as n — oo, where 0 <p; <

po < ... < pr < 1. The asymptotic Fisher information about 6 contained in k
sample quantiles (X, ., Xpoins .. X m) , denoted by I p,..p, (6), is defined as

.1
Iplpg...pk (0) = nlgglo EIrlrg...rk:n(g)a (10)
which can be written as ([13])
k 2
1 f;DiJrl o
Lypyp,(0) =) ——— / — f(z;9 d:v} , 11
@) = 3ot d [ ) (1)

where pg = 0,pi1 =1, and &, = F1(p; 0).
The asymptotic Fisher information in a single order statistic can be obtain
rapidly by substituting £ =1 in (11). Thus, we get
1 & 9 2
o) = o [ ) (12
In what follows, we find the asymptotic Fisher information in a single quantile
of geometric distribution. From (1), we have F(z;0) = (1 —60*t1) so F~!(p;0) =

(M —1). By (12), I,(6) for geometric distribution can be calculated as

log 0
follows
1 ép a 2
I,(0) = m{l:o %f(m,e)}
ép 9
= 1 b z—1 T T
“pu—m{§%9 w10
S it L B
a p(l—p){<[ log 0 1]“) 0 } : (13)

where [-], denotes the integer part.

Remark 3.1 By using (13) for geometric distribution, we can approzimate the
Fisher information contained in X,., about 6 by nothing that I,.,(0) ~ nl,(8) for

large values of sample size and r < n as follows
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Lrn(6) =~ — ) {([log(" _lgée_log(” —1]+1)292["’g(”‘1§5“’g(”1]} . (14)

4 Asymptotic Fisher information in k order

statistics

Park [10] has shown that the Fisher information in any set of order statistics can

be written as
k

k—1
ITlT;)...Tk:’I’L(e) - eri,lri:n(e) - ZInn(e)a (15)
=2

i=2
where 0 < 7 < 19 < ... < 1 < n. We will show that it can be further simpli-

fied to a sum of Fisher information in a single order statistics while the parent

distribution is geometric.

Theorem 4.1 If the random sample comes from a geometric population, then

k
I’rl'rz...'rk:n (0) = Z IT‘—L'—’I‘Z‘_1:TL—T‘Z'_1 (9)7 (16)
=1

where rg = 0.

Proof. The proof follows by using the lack of memory property of the geo-
metric distribution. As it has been shown in [2], X,,., — X,._, . is distributed as
Xy —ri_1m—r;_, in geometric distribution, (X, .p, Xpyem, oy Xppin) and (Xp i, Xppin—
Xoiins ooy Xppin—Xr,_,:n) arve equivalent statistics and (X;, .y Xroin—Xr iy ooy Xppin—
Xy,_,:n) are independently and geometrically distributed, therefore the proof is

completed.

Theorem 4.2 If the random sample has geometric distribution, then

1—p; —P;

1-p
—Pi log(1=5- 2~

B
(17)
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Proof. By using (13), the asymptotic Fisher information of I, _,, ,.n—r, ,(f) can
be written as 1—:0;'1] pi-pi_1 (0). Thus, the the proof is completed by considering
i—1l g

—Pi—1
Theorem 4.1.

Remark 4.1 By using (17) for geometric distribution, we can approzimate the
Fisher information contained in (Xy ., Xpyim, ... Xp,m) about 6 by nothing that
Liiro.opin(0) = 0y py. p, (0) for large values of sample size and vy (fori=1,...,k)
as follows

n—r; 10g(ﬂ)

- - n?(n —ri_1) IOg(n—r,-,l)_ 2 o — il 1]
Liiryryin(0) = 2% ( {([ 1]+1) 70 }

n—r;)(n—ri—1) log 6

=

where 0 <1y <19 < ... <1} < M.

5 Acknowledgements

The authors would like to thank the anonymous referees and the Associate Editor
for their constructed suggestions which significantly improved the presentation
of the paper. Partial support from the ”"Ordered and Spatial Data Center of

Excellence” of Ferdowsi University of Mashhad, Iran is acknowledged.

References

[1] Abo-Eleneen, Z.A. and Nagaraja, H.N., Fisher information in order statistics

and its concomitant, Ann. Inst. Statist. Math. 54(2002), 667—680.

[2] Arnold, B.C., Balakrishnan, N. and Nagaraga, H.N., A First Course in Order
Statistics, John Wiley, New York, 1992.

[3] Battacharyya, G.K., The asymptotic of maximum likelihood and related es-
timators based on Type II censored data, J. Amer. Statist. Assoc. 80(1985),
398-404.



68

[4]

[11]

[12]

[13]

[14]

M. Roozbeh and S.M.M. Tabatabaey

Cheng, S.W., A unified approach to choosing optimum quantiles for ABLE’s.
J. Amer. Statist. Assoc. 70(1975), 155-159.

David, H.A. and Nagaraja, H.N., Order Statistics, 3" Ed. John Wiley, New
York, 2003.

Hofmann, G., Balakrishnan, N. and Ahmadi, J., Characterization of hazard
function factorization by Fisher information in minima and upper record

values, Statist. Probab. Lett. 72(2005), 51-57.

Lehmann, E.L., Theory of Point Estimation, Second Edition, John Wiley,
New York, 1998.

Mehtoria, K.G., Johnson, R.A. and Battacharyya, G.K., Exact Fisher infor-
mation for censored samples and the extended hazard rate function, Comm.

Statist. - Theory Methods 15(1979), 1493-1510.

Park, S., Fisher information in order statistics, J. Amer. Statist. Assoc.

91(1996), 385-390.

Park, S., On simple calculation of the Fisher information in order statistics,

Statist. Papers 46(2005), 293-301.

Park, S. and Kim, C.E., A note on the Fisher information in exponential

distribution, Comm. Statist. -Theory Methods 35(2006), 13-19.

Park. S. and Zheng, G., Equal Fisher information in order statistics, Sankhya
Statist. 66(2004), 20-34.

Zheng, G., On the rate of convergence of Fisher information in multiple type

IT censored data, J. Japan Statist. Soc. 30(2000), 197-204.

Zheng, G. and Gastwirth, J.L., Where is the Fisher information in the or-
dered sample?, Statist. Sinica 10(2000), 1267-1280.



Mashhad R. J. Math. Sci., Vol. 2(1)(2009) 69-80

Estimation of P[Y < X] for generalized exponential

distribution in presence of outlier*

P. Nasirif(X)
Department of Statistics, Tehran Payam-e Noor University, Tehran, Iran
and M. Jabbari Nooghabi
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

This paper deals with the estimation of P(Y < X), where Y has generalized
exponential distribution with parameters a and A and X has mixture gen-
eralized exponential distribution (or marginal distribution of X1, X, ..., X,
in presence of one outlier with parameters $; and f3) such that X and Y
are independent. when the scale parameter (\) is known the maximum like-
lihood estimator of R = P(Y < X) is derived. Analysis of a simulated data
set has also been presented for illustrative purposes.

Keywords and phrases: Maximum likelihood estimator, outlier, stress-
strength model.
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1 Introduction

Recently the two-parameter generalized exponential (GE) distribution has been
proposed by many authors. It has been studied extensively by Gupta and Kundu
([11]-[17]), Ragab [26], Ragab and Ahsanullah [27], Zheng [34] and Kundu et
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al. [21]. Note that the generalized exponential distribution is a submodel of the
exponentiated weibull distribution introduced by Mudholkar and Srivastava [22]
and later studied by Mudholkar et al. [24] and Mudholkar and Huston [23].

The two-parameter GE distribution has the following density function
fz, o, \) = ade (1 — e M)l x> 0. (1)
and the distribution function
F(z,o,\) = (1 — e )2, x>0 (2)

Here @ > 0 and A > 0 are the shape and scale parameters, respectively. For
different values of the shape parameter, the density function can take different
shape. For detail description of the distribution, one is referred to the original
paper of Gupta and Kundu [11]. From now one GE distribution with the shape
parameter o and scale parameter A will be denoted by GE(a, A).

Let the random variables X1, X5, ..., X;,_1 are independent, each having the

probability density function f(x),
fi(z, Bo) = Pae™ (1 — ™)1 z > 0. (3)

and the one random variable (As outlier) is also independent, has the probability

density function g(z).

fo(z, 1) = Bre (L —e ™)1 x>0 (4)

The joint density of Xy, Xo,..., X}, is given as

f(.’L‘l,ZEQ, ,.’L‘n) =

_ 1 "e—zz;lcviﬁ( B 12516 “a( —6_“1)&*1
n'” ~1 (e T (1= T )i
1=
1 n
— 551527!—16—2?:1@1_[( ﬁz 1 Z ~Ta) B1—p2
i=1 Ap=1
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(see [7] and [8])

From equation (5), the marginal distribution of X is,

n—1

Bre "(1—e 7)1, x>0 (6)

h($a61a62) = %6167m(1—67$)ﬂ1*1+

n

The main purpose of this paper is to focus on the inference of R = P(Y <
X), where Y ~ GE(a, ) and X has mixture GE or marginal distribution of
X1, Xa, ..., X;, with presence of one outlier. For simplify we consider A = 1. The
estimation of R is very common in the statistical literature. For example, if X is
the strength of a component which is subject to a stress Y, when R is a measure
of system performance and arises in the context of mechanical reliability of a
system. We obtain the maximum likelihood estimator (MLE) of R. It may be
mentioned here that related problems have been widely used in the statistical
literature. The MLE of P(Y < X), when X and Y have bivariate exponential
distribution, has been considered by Awad et al. [2]. Church and Harris [4],
Downtown [6], Govidarajulu [9], Woodward and Kelley [33] and Owen, Craswell
and Hanson [25] considered the estimation of P(Y < X), when X and Y are
normally distributed. Similar problem for the multivariate normal distribution
has been considered by Gupta and Gupta [10]. Kelley, Kelley and Schucany [18],
Sathe and Shah [29], Tong [31], [32] considered the estimation of P(Y < X) when
X and Y are independent exponential random variables. Constantine and Karson
[5] considered the estimation of P(Y < X), when X and Y are independent
gamma random variables. Sathe and Dixit [8] have been estimate of P(Y < X)
in the negative binomial distribution. Ahmad et al. [1] and Surles and Padgett
[30] considered the estimation of P(Y < X), where X and Y are Burr Type
random variables. Baklizi and Dayyeh [3] have done shrinkage estimation of
P(Y < X) in exponential case.

The rest of the paper is organized as follows. In section 2, we derive the MLE
of R. Analysis of a real life data set has been presented in section 3 and finally

we draw conclusion in section 4.
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2 Maximum likelihood estimator of R

Let Y1,Y9,...,Y,, be a random sample for Y with pdf
gy, @) = ae V(1 — e ¥)* 1, y >0 (7)
and X1, X9, ..., X;, be random sample for X with pdf

Lope (1 —e )t 2>0 (8)

f($7161’62) = %61671(1 —e )ﬁ1 1
Then

R PY < X)

/ / 9(y,a) f(z, 1, P2, )dydx
- /0 [/0 ae V(1 — V) dy)

A1 — )P S e (1 — )

| [me=a- eVt — o e

/ / ”_152e (1= e e Y(1 — e V) dydz
_ /0 Lo (1 — e )t

+ / n—l Boe (1 — e~ )21y
0

1 /61 Lo 1 B
n a+ B n a+f
Therefore, the MLE of R becomes

. 1 A -1 4
P B L n B2

n &+ 31 no a4+ ,32
Now, to compute the MLE of R, we first consider the joint distribution of

X1, Xg, ..., X, with presence of one outlier in (5), so

L(a71617162) = g(ylayQa"'7ym)-f($17$27---a$n)

m . — . —
— ame—Zizlyzwgl(l_e yiye—1

% _61,6” 1 *Z"I%H” (1_671:1 ﬂr) 1 Z IL‘AI B1—B2
Ar=1
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The Log-likelihood function of the observed sample is
WL(aff) = min@) - pit+(a—1)> In(l—e®)
i=1 i=1

4 ln[wef >y TR (1- e*l’i)/ﬁ*l i (1— e*l‘i)ﬁl*ﬁz]
n =1
Ar=1
(10)
The MLE’s of a, 1 and (9 say &, ,51 and ,6}, respectively, which is obtained as

the solutions of

Oln L m m
=—+ Zln(l —e¥i) =0
80( 6% —
or
m m
n S e
i=1
Hence
-m
= 11
=S (e w) (11)
olnL 1 % 221:1(1 — e %Ay )f1—Be
0B P Th(1—e )i
1 221:1(1 — 6733141 )/Bl—ﬂzln(]_ _ 6*32141 )131_52
B S (= ~0 )
B =t iln(l —e )+ o L= (1= e )
8162 162 =1 221:1(1 — eimAl )ﬁl*ﬁ2
n—1 —l—il (1 —:1:-) 221:1(1_6—5&41)&*@ ln(l—e_mz‘h)ﬁl*@
= n — e 1)
B o R

= (13)

Form (13), (14), 1 and B, can be obtained as the solution of non-linear equations.
For f; = B2 = B in homogenous case, & and B can be obtained as

. —m . -n

O ST =) ST =y
These equations proposed by Kundu and Gupta (2006).

(14)
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3 Numerical experiments and discussions

In order to have some idea about Bias and Mean Square Error (MSE) of MLE,
we perform sampling experiments using Maple.

To have inference about R, we consider the following small sample sizes; (m,n)=
(15,15), (20, 20), (25, 25), (15, 20), (20, 15), (15, 25), (25, 15), (20, 25), (25, 20).

Here, we take a = 1.50 and 7 = 2.5 and [y = 2.75, respectively. As we know,
the generated sample size n from f(z, 1, 32), (n-1) sample generated from the
equation (3) and one sample generated from the equation (4). All the results are
based on 1000 replications. Here we present a complete analysis of a simulated
data. The data has been generated using m = n = 20, @ = 1.5,4; = 2.5 and
Bo = 2.75.

The data has been truncated after two decimal places and it has been pre-

sented below. The Y values are,

0.74 141 086 0.20 0.72 3.11 0.73 0.44
1.31 086 0.27r 227 088 1.32 441 1.17
0.86 2.19 0.53 0.08

and the corresponding X values are,

1.12 530 0.65 146 127 0.74 151 0381
179 211 1.33 1.50 1.57 1.26 0.49 2.93
0.85 0.85 1.73 1.83

Now, we obtain the MLE of & = 1.671, $; = 0.315 and (2 = 2.18. Therefore,
R = 0.5457.
4 Conclusions

In this paper, we have addressed the problem of estimating P(Y < X) for the

Generalized Exponential distribution with presence of one outlier, when the scale
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parameter is know. The results are given in table 1, 2 and 3. It is observed
that the maximum likelihood estimator R work quit well. We report the average
estimates and the MSEs based on 1000 replications. The results are reported in
the following Tables. In this case, as expected when m=n and m, n increase then
the average biases and the MSEs decrease . For fixed m as n increases the MSEs

decrease and also for fixed n as m increases the MESs decreases.

Table 1
a = 1.5,,61 = 2.5,62 =2.75

A

(n,m) R R Bias R MSE R
(15,15) | 0.6455882354 | 0.3358738948 | -0.3097143406 | 0.1837793490
(20,20) | 0.6459558824 | 0.3335933151 | -0.3123625673 | 0.1882900337
(25,25) | 0.6461764706 | 0.3448594453 | -0.3013170253 | 0.1811570295
(15,20) | 0.6455882354 | 0.3489987431 | -0.2965894923 | 0.1767666919
(20,15) | 0.6459558824 | 0.3433466835 | -0.3026091989 | 0.1804719689
(15,25)
(25,15)
(20,25)
(25,20)

0.6455882354 | 0.3547599579 | -0.2908282775 | 0.1719679412
0.6461764706 | 0.3489031863 | -0.2972732843 | 0.1791734199
0.6459558824 | 0.3373103044 | -0.3086455780 | 0.1854977684
0.6461764706 | 0.3412694950 | -0.3049069756 | 0.1847561247

75
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Table 2

a = 1.5,,61 = 2.5,ﬁ2 =2.75

(n,m) & Bias & MSE &

(15,15) | 1.642093877 | 0.142093877 | 0.2526986879
(20,20) | 1.580778465 | 0.080778465 | 0.1554931754
(25,25) | 1.566022760 | 0.066022760 | 0.1135263151
(15,20) | 1.575140968 | 0.075140968 | 0.1467095745
(20,15) | 1.618209236 | 0.118209236 | 0.2182551913
(15,25) | 1.563346657 | 0.063346657 | 0.1069492224
(25,15) | 1.606350563 | 0.106350563 | 0.2132163252
(20,25) | 1.562139231 | 0.62139231 | 0.1176980818
(25,20) | 1.581781725 | 0.081781725 | 0.1455059822

Table 3
a =158 =258 =2.75

(n,m) B Bias 1 MSE f;

(15,15) | 2.257869912 | -0.242130088 | 383.2417437
(20,20) | 1.239779251 | -1.260220749 | 14.25371765
(25,25) | 3.353135569 | 0.853135569 | 1509.645815
(15,20) | 6.881500401 | 4.381500401 | 19357.50094
(20,15) | 1.228829792 | -1.271170208 | 20.41377913
(15,25) | 1.634796843 | -0.865203157 | 33.74240776
(25,15) | 2.291221924 | -0.208778076 | 628.5131946
(20,25) | 14.49625222 | 11.99625222 | 86704.72425
(25,20) | 4.531374567 | 2.031374567 | 5162.227553
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Table 4

a = 1.5,,61 = 2.5,62 =2.75

(n,m) s Bias £ MSE f,
(15,15) | 3.002631681 | 0.252631681 | 0.9558988122
(20,20) | 2.932442797 | 0.182442797 | 0.6090520559
(25,25) | 2.891735451 | 0.141735451 | 0.4601051183
(15,20) | 3.002309839 | 0.252309839 | 0.9969076983
(20,15) | 2.900321238 | 0.150321238 | 0.5981276207
(15,25) | 2.969478335 | 0.219478335 | 0.8879485964
(25,15) | 2.863795246 | 0.113795246 | 0.4227174191
(20,25) | 2.935928610 | 0.185928610 | 0.6328966532
(25,20) | 2.871473618 | 0.121473618 | 0.4015675626
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