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Letter from the Editor in Chief

I welcome you to the international Mashhad Research Journal of Mathemati-
cal Sciences (MRJMS). This journal is published biannually and supported by
Faculty of Mathematical Sciences at Ferdowsi University of Mashhad. Faculty of
Mathematical Sciences with three centers of excellence and three research centers
is well-known in mathematical communities in Iran.

The main aim of the journal is to facilitate discussions and collaborations between
specialists in mathematics and statistics, in the region and worldwide.

Our vision is that scholars from different Mathematical research disciplines, pool
their insight, knowledge and efforts by communicating via this international jour-
nal.

In order to assure high quality of the journal, each article will be reviewed by
subject-qualified referees.

Our expectations for MRJMS are as high as any well-known mathematical jour-
nal in the world. We trust that by publishing quality research and creative work,
the possibility of more collaborations between researchers would be provided. We
invite all mathematicians and statisticians to join us by submitting their original

work to Mashhad Research Journal of Mathematical Sciences.

Mohammad Reza R. Moghaddam



Mashhad R. J. Math. Sci., Vol.1(1)(2008) 1-22.

On algebraic characterizations for finiteness of the

dimension of EG

Olympia Talelli*f
Department of Mathematics, University of Athens

Panepistemiopolis, 15784 Athens - Greece
Abstract

Certain algebraic invariants of the integral group ring ZG of a group G
were introduced and investigated in relation to the problem of extending
the Farrell-Tate cohomology, which is defined for the class of groups of finite
virtual cohomological dimension. It turns out that the finiteness of these
invariants of a group G implies the existence of a generalized Farrell-Tate
cohomology for G which is computed via complete resolutions.

In this article we present these algebraic invariants and their basic prop-
erties and discuss their relationship to the generalized Farrell-Tate cohomol-
ogy. In addition we present the status of conjecture which claims that the
finiteness of these invariants of a group G is equivalent to the existence of a
finite dimensional model for EG, the classifying space for proper actions.
Keywords and phrases: Farrell-Tate cohomology, virtual cohomological
dimension, complete resolution, finitistic dimension of the integral group
ring, classifying space for proper action.
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1 Introduction

In their efforts to generalize the Farrell-Tate cohomology, which was defined for
the class of groups of finite virtual cohomological dimension, Ikenaga in [12] and
Gedrich and Gruenberg in [10] considered certain algebraic invariants of a group
and showed that if these were finite then generalized Tate cohomology is defined
for the group.

In particular, Tkenaga defined the generalized cohomological dimension of a

group G, cd G, to be
cd G = sup{k : Extt (M, F) # 0, M Z-free, F ZG-free}

and showed that if G admits a complete resolution and cd G < oo then generalized
Tate cohomology is defined for G.

A complete resolution of G is an acyclic complex { Py }xez of projective ZG-
modules which agree with an ordinary projective resolution of G in sufficiently
high (positive) dimensions.

Gedrich and Gruenberg considered the supremum of the projective lengths
of injective ZG-modules, spli ZG, and the supremum of the injective lengths of
projective ZG-modules, silp ZG. Then showed that if spli ZG < oo then G admits
a complete resolution and moreover silp ZG < oo which implies that any two
complete resolutions are homotopy equivalent, so generalized Tate cohomology is
defined for G.

Note that silpZG and c¢d G are closely related, namely ¢cd G < silpZG <
1+cdG.

Mislin in [19] generalized these ideas and defined generalized Tate cohomol-
ogy, ﬁ”(G,—), for any group G and any integer n as follows: I—Y”(G,—) =

h_II)lS_an—"_j(G, —) where S™TH"J(G,—) denotes the jth left satellite of the
Jj=0
functor H"*J(G,—). Alternative but equivalent definitions were also given by

Benson and Carlson [1] and Vogel (see [11]).

Note that the generalized Tate cohomology can not always be calculated via
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complete resolutions as they do not always exist. It turns out that the general-
ized Tate cohomology can be calculated via complete resolutions if and only if
spliZG < oo [24].

This article is a survey on the algebraic invariants of G that appeared in the
search for the definition of generalized Tate cohomology for G.

We first discuss their basic properties and interrelations.

We then discuss the state of a conjecture (Conj. A in [26]) which claims that
the finiteness of the above algebraic invariants, which imply that the generalized
Tate cohomology can be calculated via complete resolutions, is the algebraic
characterization of those groups G which admit a finite dimensional model for

EG, the classifying space for proper actions of G.

2 spliZG

First we will establish some notation.
Let G be a group, H < G and ¢ : ZH — ZG the ring homomorphism induced
from H — G. Then the ring homomorphism i gives rise to the following functors:
1. 7 : zgcMod — zgMod, where any (left) ZG-module can be regarded as a
ZH-module via i. If M € zeMod, then we denote r(M) by M |g.
2. e: zgMod — zaMod
N — ZG ® N, where the left ZG-action on ZG ® N is inherited
from the (ZG,ZH )—bimzcillule structure of ZG. o
The module e(N) = ZG Z@;I N is called induced and we denote it by 2(1 ZQ% N.
3. ¢: zgMod — zgMod
N — Homyy (ZG, N), where the left ZG-action on Homy gy (ZG, N)
is inherited from the (ZH, ZG)-bimodule structure of ZG.
The (left) ZG-module ¢(N) = Homzy(ZG, N) is called co-induced and we
denote it by HomZH(Zé, N).
Let now G be a group and A, B € zoMod.
We denote by HomZ(E, E) (resp.E (}2 E) the (left) ZG-module Homyz (A, B)
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(resp. A QZ@ B) with the diagonal action (gf)(a) = gf(g7'a), g € G, f €
Homy (A, B), a € A (resp. g(a® ) =ga®gf, g€ G, a € A, B € B).

The following Proposition states the well-known relation between the diagonal
action and the induced and co-induced actions. The Corollary after it, states some
of the Proposition’s well-known consequences.

We state both without proofs.

Proposition 2.1. Let G be a group, H < G and M € zgMod. If Z(G/H) is
the permutation module, where G/H is the set of cosets gH and G acts on G/H
by left translations then

\ N
(i) Z(G/H) @ M = ZG © M/H

zZ
N\
Z(

N e
(1) Hom_Z( G/H),M) = Homzy (ZG, M| ).

Corollary 2.2. Let A € yaMod with proj.dimyzg A < m. Then

NN
(i) If B € zgMod with B Z-free then proj.dimzg A ® B < m;
Z

NN
(ii) If B € zgMod with B Z-injective then inj. dim Homgz (A, B) < m.

The following proposition and theorem state some basic properties of spli ZG
[10].

Spli Z(G is the supremum of the projective lengths of the injective ZG-modules.
It is not difficult to see that spliZG < oo iff every injective ZG-module has finite

projective dimension.
Proposition 2.3.
(i) If G is a finite group then spliZG =1
(ii) If G is a group with cdzG = n then spiZG <n+1

(iii) Let G be a group and H < G. If I is an injective ZG-module then I|g is
an injective ZH -module. Moreover spliZH < spli ZG
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(iv) If H< G and | G : H |< oo, then spliZG = spliZH.

Proof.

(1)

(i)

(iii)

If I is an injective ZG-module, with G finite, then I is cohomologically
trivial [e.g. [2]] and hence proj.dim I < 1 and since I is not Z-free it follows

that proj.dim I = 1.

Since cdzG = n we have that proj. dimzg Z = n hence by Corollary 2.2 (i),
for any ZG-module A with A Z-free we have that proj.dimzg A < n.

Now if M is any ZG-module and one takes a projective presentation of M
0—K—P—M—0

then K, being a submodule of P, is Z-free. Hence proj.dimyzgs K < n and
since P is projective, it follows that proj.dimzg M < n + 1. In particular

if I is an injective ZG-module then proj.dimgzg I < n + 1.

If I is an injective ZG-module, then I|g is an injective ZH-module since

N\
Hong<ZG & —,I> = HOH’IZH(—,I‘H)
ZH

N\,
and ZG ® — is an exact functor: zgMod — zoMod.
ZH

Now if K is an injective ZH-module, then K is a ZH-direct summand of

e
the injective ZG-module Homy gy (ZG, K). Hence
e N
proj.dimzy K < proj.dimgzy Homyy (ZG, K)|g < proj.dimzg Homzy (ZG, K)
, which implies that spliZH < spliZG.

Let | G : H |< oo and let spliZH = m. By (iii), to show that spli ZG = m, it
is enough to prove that every injective ZG-module has projective dimension

<m.
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Let I be an injective ZG-module, then by (iii) /| is an injective ZH-module

and since spliZH = m, there is a ZH-projective resolution
0—Py— - —Py—1|g—0,

N\,
which implies that proj.dimze ZG @ I|lg < m.
Z7ZH
Since | G : H |< o0, it follows that

N\, v
7G ® I|H = HOIHZH(ZG,I|H).
ZH

e
But [ is a ZG-direct summand of Homy g (ZG, I|f), hence proj. dimgzg I <

m.

We will show that spliZG < oo is an extension closed property.

For this we need the following lemma.
Ve
Lemma 2.4. Let G be a group and J = Homz(ZG,Z). Then
(i) inj.dimzq J < 1;
(7) if spliZG = m then proj.dimzqg J < m;
(iii) spliZG < oo iff proj.dimzg J < oo.

Proof. The exact sequence of abelian groups 0 — Z — Q — Q/Z gives rise to

the following exact sequence of ZG-modules
e e /
0—Homyz(ZG, Z)—Homgz(ZG,Q)—Homz(ZG,Q/Z)

e e
from which follows (i) and (ii), since Homz(ZG,Q) and Homz(ZG,Q/Z) are
injective ZG-modules.
Now let proj.dimgzq J < co. We will show that every injective ZG-module

has finite projective dimension.
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From the Z-split ZG-exact sequence 0 — IG — ZG = Z — 0, where ¢ is the

augmentation map, we obtain the Z-split ZG-exact sequence
NN
0 —Z — J— Homy(IG,Z) — 0, which gives rise to the ZG-exact sequence 0 —
NN N NN\ /
I-1®J—1®C—0,where C =Homg(IG,Z). Note that Homz(ZG,Z) =
NN NN
Homy(ZG,Z). Since I is a ZG-direct summand of I ® J it is enough to show
NN

that proj.dimzg I ® J < oo.

Let 0 - K — P — I — 0 be a ZG-projective presentation of I. Since J is

Z-torsion-free we obtain the following ZG-exact sequence

NN N N N N
-—mKeJ—PJ—I1 J—0.
Z Z Z

Since proj.dimzg J < oo and P, K are Z-free it follows from Corollary 2.2 (i)
NN NN\
that proj.dimzg K ® J < oo and proj.dim P ® J < oo, hence
Z z

NN
proj.dimzg I ® J < oo. O
Z

It is clear from the proof of (iii) of the above lemma that we have

Corollary 2.5. spliZG < oo iff there is a Z-split, ZG-monomorphism
0 — Z — M with proj.dim M < co and M Z-torsion free.

Theorem 2.6. [10] Let 1 — N — G 55 K — 1 be an extension of groups. Then
spliZG < spliZN + spliZK.

Proof. Let spliZN = n and spliZK = m and let I be an injective ZG-module.
We will show that proj.dimzg I < n + m.

We consider the Z-split ZK-exact sequence
e
0—Z—Homyz(ZK,Z)—Homz (I K,Z)—0

as a ZG-exact sequence via m : G — K and tensoring it with I, we obtain the

following ZG-exact sequence

/
0—I—1 ® Homy(ZK, 7).
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Since [ is a ZG-direct summand of } ® HomZ(ZI/( ,Z) it is enough to show that
proj.dimyzg I ® J < n + m, where J is the ZG-module HomZ(ZI/(, 7).

Now by LeZinma 2.4 (ii), proj.dimzg J < m and since spliZN = n it follows
that proj.dimgzy I|y < n.

Hence there exists @ : 0 — @ — -+ — Qo — J — 0 a ZK-projective
resolution of J of length m and P : 0 - P, — -+ - Py —» I — 0 a ZG-
exact sequence with P; ZG-projective modules for all 0 < i <n —1 and P,|y a
projective ZN-module.

Consider the following ZG-complexes Q' : 0 — Q. — -+ — Qo — 0, a ZG-
complex via 7 : G — K and
P:0—P,— - — Py—0andlet Q@ ® P’ be their tensor product.

Since J is Z-torsion free it follows froZm the Kiinneth formula that we obtain

NN
a ZG-exact sequence 0 — By — - — Bg— I ® J — 0, where
Z

_ , A N\ N\
By = Q ® P = D QT®P5~
7 A r+s=A\ 7

O

By Proposition 2.1 (i), By is a projective ZG-module for 0 < A < m+1. Since
Ps|n is a projective ZN-module for all s, we obtain a ZG-projective resolution

NN
of I ® J of length m + n.
Z

3 spliZG, silpZG, fin. dim ZG, K(ZG)

Silp ZG = sup{inj. dimz¢ P|Pproj.ZG-module} and it is not difficult to see that

silp ZG < oo iff every projective ZG-module has finite injective dimension.

Note that silp ZG < m is equivalent to the following extension condition [12]:
For every exact sequence

0— ker 0,,— Py, Ben, Ph 41— —FP—M—0

with P; projective ZG-modules for 0 < i < m, any map kerd,, — P, P a

projective ZG-module, extends to a map P, — P.
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It is not difficult to see that if silp ZG and spliZG are both finite then they
are equal.
The following Proposition, which we state without proof, gives some basic

properties of silp ZG.
Proposition 3.1.

(i) If G is a finite group, then silp ZG = 1.

(ii) If G is a group with cdzG = n then silpZG < n + 1.
(iii) If G is a group and H < G then silp ZH < silp ZG.
Moreover, if |G : H| < oo then silp ZG = silpZH .
Theorem 3.2. [10] For any group G, silp ZG < spli ZG.

Proof. 1t is enough to show that if spliZG < oo then silpZG < co. By Lemma
2.4 (iii), it is enough to show that if proj. dimyg J < oo then silp ZG < oo, where
J = HomZ(Zé,Z).

Let proj.dimyzg J < oo and consider a projective ZG-module P. The exact

sequence 0 — Z — Q — Q/Z — 0 gives rise to the following ZG-exact sequence
0—P—P®Q—P ®Q/Z—0.
Z Z

Hence to show that inj. dimgzg P is finite, it is enough to show that inj. dim P® D
Z
is finite, where D is a Z-injective abelian group.
Let P = P® D, where D is a divisible abelian group, then P is a direct
Z

summand of an induced module hence it is relative projective i.e. if
0— A— B—P—0 (%)

is an exact sequence of ZG-modules which is Z-split, then (x) is ZG-split.
Consider the Z-split ZG-exact sequence 0 — Z — J — C — 0 where C' =
NN
Homy(JG, Z). This gives rise to the following Z-split, ZG-exact sequence

N\ X N N
0—Homy(C, P)—Homy(J, P)—Homgy(Z, P)—0.
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Ny - N
But Homy(Z, P) = P, hence P is a ZG-direct summand of Homg(J, P).
Since proj. dimgzg J < oo it follows from Corollary 2.2 (ii) that
N
inj. dimzg Homg(J, P) < oo. O

Open questions 3.3.
a) It is not known if silp ZG < oo is an extension closed property.

b) It is not known if there is a group G such that silp ZG < oo and spli ZG

infinite.

c¢) It is conjectured in [6] that for any group G, silpZG = cd G + 1 = spli ZG.

This is proved in [6] for certain classes of groups.

Two more algebraic invariant of G, the finiteness dimensions of ZG, and k(G)
are related to spli ZG, and spli ZG. The finiteness dimension of ZG, fin. dim ZG,
which is the supremum of the projective dimensions of the ZG-modules of finite

projective dimension and
k(G) = sup{proj. dimzg M |proj. dimzy M < oo for every finite subgroup H < G}.
Proposition 3.4. [26] Let G be any group, then

fin.dim ZG <silpZG < spiZG < k(ZG).

Moreover, if any of the above invariants is finite then it is equal to the ones less

than equal to it.

Proof. 1t is easy to see that fin.dimZG < silpZGZG and by Theorem 3.2,
silp ZG < spliZG. Now by Proposition 2.3 (i) and (iii) it follows that spli ZG <
k(G).

Now if k(G) < oo then clearly k(G) < fin. dim ZG, hence

fin. dim ZG = silp ZG = spi ZG = k(ZG).
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In [4], it was shown that if G is an H F-group then silp ZG = spli ZG = fin. dim ZG =
k(ZG).

The class HF of groups was defined by Kropholler in [14] as follows. Let HyF
be the class of finite groups. Now define H,F for each ordinal a by transfinite
recursion: if « is a successor ordinal then H,F is the class of groups G which
admits a finite dimensional contractible G-CW-complex with cell stabilizers in
H,_1F, and if « is a limit ordinal then H,F = |J HgF. A group belongs to
HF if it belongs to H,F, for some ordinal «. o O

Note that a G-CW-complex is a C'W-complex on which G acts by self-
homeomorphisms in such a way that the set-wise stabilizer of each cell coincides
with its point-wise stabilizer.

The class HF contains among others all groups of finite virtual cohomological
dimension and all countable linear groups of arbitrary characteristic. Moreover,
it is extension closed, subgroup closed, closed under directed unions and closed

under amalgamated free products and H N N-extensions.

4 Another characterization of spliZG < oo

Definition. A complete resolution for a group , (F,P,n), consists of an acyclic
complex F = {(F;,0;)|i € Z} of projective modules and a projective resolution

P ={(P;,d;)|i <0} of G such that F and P coincide in sufficiently high dimen-

sions
On
s Fp——Fy I By i sy F s F g
dn,
oo —Pp—P,— P,1— - —Py—7Z—0

The number n is called the coincidence index of the complete resolution.
Inekaga in [12] defined the notion of generalized cohomological dimension of

a group G, cd G = sup{k : Ext%G(M, F) #0, M Z-free, F ZG-free}.
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Note that cd G <silpZG < cd G + 1.

He showed in [12] that if G admits a complete resolution then G admits a
complete resolution of coincidence index cd G. In particular a group G with
ved G < 0o admits a complete resolution of coincidence index ved G.

Moreover, it was shown in [12] that if a group G admits a complete resolution
of coincidence index n, then

(i) HY(G, P) # 0 for some ZG-projective module P and some i < n

(i) fin.dimZG < n + 1.

Since admitting a complete resolution is a subgroup closed property, and since
if A is a free abelian group of infinite rank, H*(A, P) = 0 for any projective Z.A-
module and any i, it follows from (i) that if a group G contains a free abelian

subgroup of infinite rank then G does not admit a complete resolution.

Proposition 4.1. [2/] If spliZG < oo then there is a Z-split ZG-exact sequence
0 — Z — A with A Z-free and proj.dimzg A < co.

Proof. It was shown in [24] that if spliZG < oo then G admits a complete reso-
lution.

Now consider a complete resolution for G

On On,

—F, 4 —+1>Fn I, — - ——Fy——F — -
dn dn

— P Ontl, P, P, — - —Py—7—0

Let R, = im0y, n € Z. If A: R,, — P is a ZG-homomorphism with P a projective
ZG-module, then by Theorem 3.2 silp ZG < oo hence there is a positive integer
mo and an integer m so that \ represents the zero element in Ext;4(R,,, P).

Hence we obtain the following commutative diagram

= —F,—F, 1 —F, o— . —F—y—F_—

NS
Ro

I e e Y
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o— by — b, —P, 1 —P, o— - — P —Py—17%

where Ry = im 0.

Clearly [f] € Extzg(R-1,Z) and Yoneda product with [f] induces an iso-
morphism: Ext}(Z, —) — Ext, (R_1,—). This implies (c.f. [27]) that [f] is
represented by an extension 0 — Z — A — R_1 — 0 with proj.dimzg A < oo.
The result now follows since R_1 is Z-free as a Z(G-submodule of a projective

ZG-module. O
Theorem 4.2. [2/] The following statements are equivalent for any group G.
(i) spiZG < oo;

(i) There is a Z-split ZG-ezxact sequence 0 — 7 — A with A Z-free and

proj.dimzg A < o.

Proof. (i)=(ii) is Proposition 4.1.
For (ii)=(i). Let I be an injective ZG-module and consider a ZG-projective
presentation of [

0—K—P—I1—0.

Since A is Z-free we obtain the following ZG-exact sequence

NN N N NN
0—KA—PRA—I] @ A—0.
VA 7 VA

NN NN
By Corollary 2.2 (i), proj.dimzg K ® A < oo and proj. dimzg P ® A < 0o hence
7 Z
NN
proj.dimyzg I ® A < oo, but tensoring 0 — Z — A with I we obtain that I is a
Z
NN
7Z.G-direct summand of I ® A, and the result follows. O
Z
The following proposition states some of the properties of such a module A.

Proposition 4.3. [26] Let G be a group and let 0 — Z — A be a Z-split, ZG-

exact sequence with A Z-free and proj.dim A = n. Then

(i) If proj.dimzg M < oo and M is Z-free then proj.dimzg M < n
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(ii) spliZG < n—+1
(iii) For any finite subgroup H of G, Al is a projective ZH -module.

Proof. (i) Consider the ZG-exact sequence 0 — Z — A — A — 0. Clearly A is
Z-free.
Now let proj.dimgzg M = m. By Corollary 2.2 (i) we have that

NN NN
proj.dimzg M ® A < n,m and proj.dimzg M @ A < m. It now follows from the

long exact Ext-sequence associated to

NN NN
0—M-—MSA—Mx A—0
Z Z

that if proj.dimzg M > n then proj.dimzg M ® A > m + 1, which is a contra-
diction and hence proj.dimgzoc M < n.

(ii) Let I be an injective ZG-module and 0 - K — P — I — 0 a ZG-
projective presentation of I. By Theorem 4.2 spli ZG < oo hence
proj.dimzg K < oo and by (i) proj. dimzg K < n which implies that
proj.dimgzg I <n + 1.

(iii) Since A|g is Z-free and has proj.dimzy A < oo it follows that A is a
projective ZH-module (c.f. [2], Ch. VI). O

Theorem 4.4. spliZG < oo is a Weyl-group closed property i.e. if spli ZG < oo
and H is a finite subgroup of G then spiZ(Ng(H)/H) < cc.

Proof. Assume that spliZG < oo and let H be a finite subgroup of G. Let
N = N¢(A), then by Proposition 2.3 (iii) spliZN < oo hence by Theorem 4.2

there is a Z-split ZN-exact sequence
0—Z—A (%)

with A Z-free and proj.dimzy A = n.

Consider a ZN-projective resolution of A of length n

0—P,—P, 1— - —Py—A—0. ()



Algebraic characterizations for finiteness of . ..

Since A|p is a projective ZH-module, (x') gives rise to the following Z(N/H)-

exact sequence
O—>Pf—>Pf_1—> e —>P0H—>AH—>O.

It is not difficult to see that P are projective Z(N/H)-modules since ZNH =
Z(N/H) as Z(N/H )-modules, hence proj. dimg g A <,

Moreover, (x) gives rise to the Z-split and Z(N/H )-exact sequence 0 — Z —
AM . Hence by Theorem 4.2 spliZ(N/H) < oc. O

5 The classes of groups HiF and EG

A group G belongs to HiF if there is a finite dimensional contractible G-CW -
complex with finite cell stabilizers.

By a theorem of Serre (see also Exercise in [2], p. 191) it follows that H;F
contains all groups of finite virtual cohomological dimension.

It also contains infinite torsion groups, for example a countable locally finite
group G is in H1F, since G acts on a tree with finite vertex stabilizers. It was
proved in [5] that if G is a locally finite group of cardinality less than NV, then
G isin Hi F.

For sufficiently large e it is known [13] that the free Burnside groups of expo-
nent e admit actions on contractible 2-dimensional complexes with cyclic stabi-
lizers, hence these groups are in H{.F.

If Gisin H;F and X is a finite dimensional contractible G-C'W-complex with
finite cell stabilizers, then the argumented cellular chain complex of X gives rise
to the following ZG-exact sequence

0— ® Z(G/G;,)— - — @ Z(G/Gi))—Z—0

in€ly io€lp
with Gj; finite for all i;.
So if G is in H1F and G is torsion free then cdzG < .

In particular a free abelian group of infinite rank is not in H;F.

15
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Proposition 5.1. If G is in H1F then
fin.dimZG = silpZG = spli ZG = k(ZG) < oc.
Proof. Since G is in H1F, there is a ZG-exact sequence
0— z’n?In 7(G/G;))— - — z‘oée@]o Z(G/Gi,)—Z—0
with G; finite subgroups of G for all i;.

If M is a ZG-module such that proj.dimgzy M|y < oo for every finite sub-
group H of G, and 0 - K — P — M — 0 is a ZG-projective presentation of M
then K| is a projective ZH-module for every finite subgroup H of G.

Hence if we tensor (x) with K we obtain the following ZG-exact sequence

0— ® Z(E’/Gln) ® I\(—> e ® Z(E/Gio) ® I\(—>K—>O
in€ly Z io€lp Z
which by Proposition 2.1 (i), is a ZG-projective resolution of K, since K| is a
projective ZH-module for every finite subgroup H of G.

Hence proj.dimzg K < n which implies that k(ZG) < n. The result now

follows from Proposition 3.4. 0

In [15] Kropholler and Mislin proved

Theorem A. Every HF-group of type F Py is in H1F.

A group G is said to be of type F' Py if there is a ZG-projective resolution of
G

- —P,—P, 11— —FPy—7Z—0
with P; finitely generated ZG-modules for all i > 0.

Notation. If X is a class of groups, we denote by A}, the subclass of X’ consisting
of those groups in X, for which there is a bound on the orders of the finite
subgroups.

To prove Theorem A, they first considered the following two properties of
H F-groups of type F' Py, which were both shown using complete cohomology.
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o If G is an HF-group of type F' Py, then G is in HF,.

In particular, if |A(G)| is the G-simplicial complex determined by the poset
of the non-trivial finite subgroups of G, then dim |A(G)| < oo.

o If G is an HF-group of type F Ps, then proj.dimzg B(G,Z) < oo, where
B(G,Z) is the ZG-module of bounded functions from G to Z.

They then proved, by induction on dim |A(G)|

Theorem B. If G is an HF-group such that dim |[A(G)| < oo and
proj.dimzq B(G,Z) < oo then G is in H1 F.

Clearly Theorem A follows from Theorem B.

Generalizations of this Theorem were obtained in [17], [20], [26].

Note that B(G,Z), the ZG-module of bounded functions from G to Z, is a
Z-free ZG-module and there is a Z-split ZG-exact sequence 0 — Z % B (G,7Z)
where i(n) : G — Z is the constant function ¢, [16].

By Theorem 4.2 proj. dimyzg B(G,7Z) < oo implies that spliZG < oo. Now if
G is in HF then it is known [4] that spliZG = k(ZG).

So if G is in HF and proj.dimzq B(G,Z) < oo then k(ZG) < oco. It is easy
to see that k(ZG) < oo is a subgroup closed property and by Theorem 4.4 a
Weyl-group closed property [26].

These properties, which are implications of the finiteness of the proj.dim of
B(G,Z), for G in HF, are crucial for the proof of Theorem B.

The following Conjecture, (Conj. A in [26]), claims that the finiteness of the
algebraic invariants we’ve studied here, give an algebraic characterization for the

class H1 F.

Conjecture A. The following statements are equivalent for a group G:
(1) Gis in H1 F;
(2) G is of type ;
(3) spliZG < oo;
(4) silpZG < oo

17
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(5) fin. dim ZG < oo,
where, a group G is said to be of type @ if it has the property that for every ZG-
module M, proj.dimzg M < oo if and only if proj.dimgzy M|y < oo for every

finite subgroup H of G.

Note that G is of type @ it if has the property that for every ZG-module M,
proj.dimzg M < oo if and only if M|y is a cohomologically trivial ZH-module,
for every finite subgroup H of G.

Proposition 5.1 shows that (1) = (2) = (3) = (4) = (5) in Conjecture A.

Kropholler and Mislin’s Theorem show essentially that (5) = (1) if G is in
(HF)p.

In [26] it was shown that (5) = (1) if G is a torsion-free locally soluble group.

In support of Conj. A is also a result obtained in [5] which says that a group
G is finite if and only if spliZG = 1. It is worth mentioning that its proof uses

the theory of groups acting on trees.

If G is in H1F then there is a ZG-res