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Abstract

For solving large sparse non-Hermitian positive definite linear equations, Bai et

al. proposed the Hermitian and skew-Hermitian splitting methods (HSS). They re-
cently generalized this technique to the normal and skew-Hermitian splitting meth-
ods (NSS). In this paper, we present an accelerated normal and skew-Hermitian
splitting methods (ANSS) which involve two parameters for the NSS iteration. We

theoretically study the convergence properties of the ANSS method. Moreover, the
contraction factor of the ANSS iteration is derived. Numerical examples illustrating
the effectiveness of ANSS iteration are presented.

Keywords: Non-Hermitian matrix; Normal matrix; Hermitian matrix; Skew-
Hermitian matrix; Splitting iteration method.

1 Introduction

Many problems in scientific computation give rise to solving the linear system

Ax = b, (1)

with A ∈ C
n×n a large non-Hermitian positive definite matrix and x, b ∈ C

n.
We observe that the coefficient matrixA naturally possesses the Hermitian/skew-
Hermitian (HS) splitting

A = H + S,

where

H =
1

2
(A+A∗) and S =

1

2
(A−A∗),

with A∗ being the conjugate transpose of A. Bai et al. [2] presented the HSS
iteration method: Given an initial guess x(0) ∈ C

n, for k = 0, 1, 2, . . ., until
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{x(k)} converges, compute

{
(αI +H)x(k+ 1

2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+ 1
2 ) + b,

(2)

where α is a given positive constant. They have also proved that for any
positive α, the HSS method converges unconditionally to the unique solution
of the system of linear equations.

Moreover, based on the HS splitting, Li et al. [5] presented the asymmet-
ric Hermitian/skew-Hermitian splitting (AHSS) iteration method: Given an
initial guess x(0) ∈ C

n, for k = 0, 1, 2, . . ., until {x(k)} converges, compute

{
(αI +H)x(k+ 1

2 ) = (αI − S)x(k) + b,

(βI + S)x(k+1) = (βI −H)x(k+ 1
2 ) + b,

(3)

where α is a given nonnegative constant and β is a given positive constant.
They proved that if the coefficient matrix A is positive definite (Hermitian or
non-Hermitian) the AHSS iteration converges to the unique solution of linear
system (1) with any given nonnegative α, if β is restricted to an appropriate
region.

Bai et al. [1] recently generalized the HS splitting to the normal/skew-
Hermitian (NS) splitting

A = N + S, (4)

where N ∈ C
n×n is a normal matrix and S ∈ C

n×n is a skew-Hermitian
matrix, and obtained the following normal/skew-Hermitian splitting (NSS)
method to iteratively compute a reliable and accurate approximate solution
for the system of linear equations (1):
The NSS iteration method: Given an initial guess x(0) ∈ C

n. For k = 0, 1, 2 . . .
until {x(k)} converges, compute

{
(αI +N)x(k+ 1

2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −N)x(k+ 1
2 ) + b,

(5)

where α is a given positive constant. They have also proved that for any
positive α the NSS method converges unconditionally to the unique solution
of the system of linear equations.

In this paper, we introduce two constants for the NSS iteration and present
a different approach to solve Eq. (1), called the accelerated normal and skew-
Hermitian splitting iteration, shortened to the ANSS iteration. Moreover,
theoretical analysis shows that if the coefficient matrix A is positive defi-
nite (Hermitian or non-Hermitian) the ANSS method can converge to the
unique solution of the linear system (1) with any given nonnegative α, if β
is restricted to an appropriate region. In addition the upper bound of the
contraction factor of the ANSS iteration is dependent on the choice of α and
β, the spectrum of the normal matrix N and the singular-values of the skew-
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Hermitian, but it is not dependent on the eigenvectors of the matrices N , S
and A.

The organization of this paper is as follows. In section 2, we establish the
ANSS iteration and study its convergence properties. Numerical experiments
are presented in section 3 to show the effectiveness of our method. Finally,
in section 4, some concluding remarks are given.

2 The ANSS Method

Throughout the paper, the non-Hermitian matrix A ∈ C
n×n ( i.e. A �= A∗)

is positive definite if its Hermitian part is Hermitian positive definite.
Based on the NSS iteration (5), in this paper we present a new approach

to solve the system of linear equations (1), called the ANSS iteration, and it
is as follows.
The ANSS iteration method: Given an initial guess x(0) ∈ C

n, for k =
0, 1, 2 . . . until {x(k)} converges, compute

{
(αI +N)x(k+ 1

2 ) = (αI − S)x(k) + b,

(βI + S)x(k+1) = (βI −N)x(k+ 1
2 ) + b,

(6)

where α is a given nonnegative constant and β is a given positive constant.
The ANSS iteration alternates between the normal matrix N and the

skew-Hermitian matrix S. In fact, we can reverse the roles of the matrices N
and S in the above ANSS iteration so that we may first solve the system of
linear equations with coefficient matrix βI + S and then solve the system of
linear equations with coefficient matrix αI +N .

Note that both αI + N and βI + S are normal matrices. Therefore, the
linear systems with the coefficient matrices αI + N and βI + S may be
solved accurately and efficiently by some Krylov subspace iteration methods,
e.g. GMRES. It is known that the GMRES method naturally reduces to an
iterative process of the three-term recurrence. See [4, 3] for other iteration
methods about solving large sparse normal system of linear equations.

In matrix-vector form, the ANSS iteration method can be equivalently
rewritten as

x(k+1) = M(α, β)x(k) +G(α, β)b, k = 0, 1, 2, . . . , (7)

where
M(α, β) = (βI + S)−1(βI −N)(αI +N)−1(αI − S) (8)

and
G(α, β) = (α+ β)(βI + S)−1(αI +N)−1.
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Here, M(α, β) is the iteration matrix of the ANSS iteration. In fact, (7)
may also result from the splitting

A = B(α, β)− C(α, β)

of the coefficient matrix A, with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(α, β) =
1

α+ β
(αI +N)(βI + S)

C(α, β) =
1

α+ β
(βI −N)(αI − S).

(9)

Obviously

M(α, β) = B(α, β)−1C(α, β) and G(α, β) = B(α, β)−1.

To study the convergence properties of the ANSS iteration and derive the
upper bound of the contraction factor, we first represent the following lem-
mas.

Lemma 2.1. Let α be a nonnegative constant and β be a positive constant.
If (γ, η) ∈ Ω, where Ω = [γmin, γmax] × [ηmin, ηmax], γmin > 0 and ηmin ≥ 0,
then

f(α, β) ≡ max
(γ,η)∈Ω

{
(β − γ)2 + η2

(α+ γ)2 + η2

}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
for γmin ≤ β − α

2

max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
for

β − α

2
≤ γmin.

(10)

Proof . Let us define the function g(η) by

g(η) =
(β − γ)2 + η2

(α+ γ)2 + η2
.

Differentiation gives

g′(η) =
2η(α+ β)(α− β + 2γ)

[(α+ γ)2 + η2]2
.

Since (α+ β) > 0, it follows that the function g(η) is an increasing function

if γ ≥ β − α

2
and is a decreasing function if γ ≤ β − α

2
.
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If
β − α

2
≤ γmin, then for all γ satisfying γmin ≤ γ ≤ γmax, we have

β − α

2
≤ γ. So, for γmin ≤ γ ≤ γmax, the function g(η) is an increasing

function, and

f(α, β) = max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
if γmin ≤ β − α

2
. (11)

If γmin ≤ β − α

2
, then, by using β + α > 0, for all γ satisfying γmin ≤

β − α

2
≤ γ, we obtain (β − γ)2 ≤ (α+ γ)2, which implies that

(β − γ)2 + η2

(α+ γ)2 + η2
≤ 1.

Similarly, for all γ satisfying γmin ≤ γ ≤ β − α

2
, we obtain (β−γ)2 ≥ (α+γ)2

and
(β − γ)2 + η2

(α+ γ)2 + η2
≥ 1.

Therefore,

f(α, β) = max
γmin≤γ≤ β−α

2 ,ηmin≤η≤ηmax

{
(β − γ)2 + η2

(α+ γ)2 + η2

}
, if γmin ≤ β − α

2

From the fact that, for γmin ≤ γ ≤ β − α

2
, the function g(η) is a decreasing

function, we can conclude that

f(α, β) = max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
, if γmin ≤ β − α

2
(12)

Therefore (11) and (12) immediately result relation (10). ��
Lemma 2.2. Let α be a nonnegative constant and β be a positive constant.

If
β − α

2
≤ γmin, where 0 < γmin, then

max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
= max

{
(β − γmin)

2 + η2max

(α+ γmin)2 + η2max

,
(β − γmax)2 + η2max

(α+ γmax)2 + η2max

}

(13)

Proof . Let us define the function g(γ) by

g(γ) =
(β − γ)2 + η2max

(α+ γ)2 + η2max

.

Differentiation gives
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g′(γ) =
−2(α+ β)

[−γ2 + (β − α)γ + βα+ η2max

]
[(α+ γ)2 + η2max]

2 .

The smallest root of g′(γ) is negative and is not in the interval [γmin, γmax].
The largest root of g′(γ) is

γ1 =
(β − α) +

√
(β − α)2 + 4(βα+ η2max)

2
.

By simple computation, we can show that this root is a minimum point for
the function g(γ). Hence (13) holds and the proof of Lemma is completed. ��
Lemma 2.3. Let α be a nonnegative constant and β be a positive constant.

If 0 < γmin ≤ β − α

2
, then

f(α, β) = max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
=

(β − γmin)
2 + η2min

(α+ γmin)2 + η2min

.

Proof . Let us define the function h(γ) by

h(γ) =
(β − γ)2 + η2min

(α+ γ)2 + η2min

.

Differentiation gives

h′(γ) =
−2(α+ β)

[
(β − γ)(α+ γ) + η2min

]
[(α+ γ)2 + η2min]

2

Since (α + β) > 0 and γ ≤ β, for all γ satisfying γmin ≤ γ ≤ γmax and

γ ≤ β − α

2
, we have h′(γ) < 0. Thus

f(α, β) =
(β − γmin)

2 + η2min

(α+ γmin)2 + η2min

.

��
The following theorem describes the convergence property of the ANSS

iteration.

Theorem 2.1. Let A ∈ C
n×n be a positive definite matrix, N ∈ C

n×n be
a normal matrix and S ∈ C

n×n be a skew-Hermitian matrix such that A =
N + S, and α be a nonnegative constant and β be a positive constant. Then
the spectral radius ρ(M(α, β)) of the iteration matrix M(α, β) of the ANSS
iteration is bounded by
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δ(α, β) ≡ max
σj∈σ(S)

√
α2 + σ2

j√
β2 + σ2

j

max
γj+iηj∈λ(N)

√
(β − γj)2 + η2j
(α+ γj)2 + η2j

(14)

where λ(N) is the spectral set of N and σ(S) is the singular-value set of
S. Let γmin and γmax, ηmin and ηmax be the lower and the upper bound of
the real, the absolute values of the imaginary parts of the eigenvalues of the
matrix N , respectively, and σmin, σmax be the lower and the upper bound of
the singular-value set of the matrix S, respectively. Then δ(α, β) < 1 if one
of the following conditions holds:

(a) Any given parameter α and β satisfies

max

{
α(γ2

min + η2max)

2αγmin + γ2
min + η2max

,
α(γ2

max + η2max)

2αγmax + γ2
max + η2max

}
< β ≤ α+ 2γmin

(b) Any given parameter α and β satisfies

α+ 2γmin < β

if σmax ≤
√
γmin + ηmin + 2γminα.

(c) Any given parameter α and β satisfies

α+ 2γmin < β ≤ α(γ2
min + η2min − σ2

max)− 2σ2
maxγmin

γ2
min + η2min − σ2

max + 2αγmin

if σmax ≥
√
γmin + ηmin + 2γminα.

Proof . By the similarity invariance of the matrix spectrum, we have

ρ(M(α, β)) = ρ((βI −N)(αI +N)−1(αI − S)(βI + S)−1)

≤ ‖(βI −N)(αI +N)−1‖2‖(αI − S)(βI + S)−1‖2.

Letting Q(α, β) = (αI − S)(βI + S)−1 and noting that S∗ = −S, we have

Q(α, β)∗Q(α, β) =
[
(αI − S)(βI + S)−1

]∗ [
(αI − S)(βI + S)−1

]
= (βI − S)−1(αI + S)(αI − S)(βI + S)−1

= (αI − S)(βI + S)−1(βI − S)−1(αI + S)

= Q(α, β)Q(α, β)∗

That is to say, Q(α, β) is a normal matrix. Therefore, there exists a unitary
matrix U ∈ C

n×n and a complex diagonal matrix
∧

q = diag(λ̃1, λ̃2, . . . , λ̃n) ∈
C

n×n such that Q(α, β) = U∗
∧

q U . Suppose that λ̃ be an eigenvalue of
Q(α, β) and x be an associated eigenvector, we have
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Q(α, β)x = λ̃x

(αI − S)(βI + S)−1x = λ̃x

(βI + S)−1(αI − S)x = λ̃x

(αI − S)x = λ̃(βI + S)x

If λ̃ �= −1, then
Sx =

α− λ̃β

1 + λ̃
x (15)

If λ̃ = −1, then

(α+ β)x = 0.

Since α + β > 0, it implies x = 0, and this contradicts the definition of
eigenvector. Therefore λ̃ = −1 can not be an eigenvalue of Q(α, β).

From (15),
α− λ̃β

1 + λ̃
is an eigenvalue of S and x is an associated eigenvector.

Since S is a skew-Hermitian matrix, its eigenvalues are pure imaginary and
thus of the form iτj , j = 1, . . . , n, where τj ∈ R, So

λ̃j =
α− iτj
β + iτj

,

where iτj is an eigenvalue of S. Therefore

‖Q(α, β)‖2 = ‖U∗ ∧q U‖2 = ‖ ∧q ‖2 = max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

. (16)

Because N is a normal matrix, there exists a unitary matrix V ∈ C
n×n and

a complex diagonal matrix
∧

N = diag(λ1, λ2, . . . , λn) ∈ C
n×n such that

N = V ∗
∧

N V. Hence, we have

‖(αI +N)−1(βI −N)‖2 = max
λj∈ λ(N)

| β − λj |
| α+ λj |

= max
λj=γj+iηj∈ λ(N)

√
(β − γj)2 + η2j
(α+ γj)2 + η2j

(17)

Now, from (16) and (17), we see that

ρ(M(α, β)) ≤ max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

max
λj=γj+iηj∈ λ(N)

√
(β − γj)2 + η2j
(α+ γj)2 + η2j

.

Then the bound for ρ(M(α, β)) is given by (14).
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To prove (a), we note that, if
β − α

2
≤ γmin, then β − α ≤ 2γ for γmin ≤

γ ≤ γmax. By using 0 < (β + α), we obtain (β − γ)2 ≤ (α + γ)2. Thus, by
Lemma 2.1, we have

f(α, β) = max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
≤ 1, for

β − α

2
≤ γmin (18)

Moreover, if β > α, then max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

< 1, and therefore

(i) if α < β ≤ α+ 2γmin then δ(α, β) < 1.

If β ≤ α, then max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

≤ α

β
. By using (18), we have

δ(α, β) ≤ α

β
max

γmin≤γ≤γmax

√
(β − γ)2 + η2max

(α+ γ)2 + η2max

.

So, in order to have the bound δ(α, β) < 1, the following inequality must
hold

max
γmin≤γ≤γmax

{
(β − γ)2 + η2max

(α+ γ)2 + η2max

}
<

β2

α2
. (19)

By using the results of Lemma 2.2, the following inequalities must hold

(β − γmin)
2 + η2max

(α+ γmin)2 + η2max

<
β2

α2
and

(β − γmax)
2 + η2max

(α+ γmax)2 + η2max

<
β2

α2
(20)

By simple computation, we can show that, for α+β > 0, these two inequalities
hold if β satisfies the following inequalities.

α(γ2
min + η2max)

2αγmin + γ2
min + η2max

< β and
α(γ2

max + η2max)

2αγmax + γ2
max + η2max

< β.

Therefore

(ii) if max

{
α(γ2

min + η2max)

2αγmin + γ2
min + η2max

,
α(γ2

max + η2max)

2αγmax + γ2
max + η2max

}
< β ≤ α

then δ(α, β) < 1.

Combining (i) and (ii), we have

(iii) if max

{
α(γ2

min + η2max)

2αγmin + γ2
min + η2max

,
α(γ2

max + η2max)

2αγmax + γ2
max + η2max

}
< β ≤ α +

2γmin then δ(α, β) < 1
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To prove parts (b) and (c), we note that, if γmin ≤ β − α

2
, by Lemmas 2.1

and 2.3, we have

f(α, β) = max
γmin≤γ≤ β−α

2

{
(β − γ)2 + η2min

(α+ γ)2 + η2min

}
=

(β − γmin)
2 + η2min

(α+ γmin)2 + η2min

≥ 1,

since (α+ γmin) ≤ (β − γmin).
On the other hand,

max
σj∈ σ(S)

√
α2 + σ2

j√
β2 + σ2

j

=

√
α2 + σ2

max√
β2 + σ2

max

< 1,

since α < β. So, the relation

δ(α, β) =

√
α2 + σ2

max√
β2 + σ2

max

√
(β − γmin)2 + η2max

(α+ γmin)2 + η2max

< 1

will hold if α and β satisfy the following inequality,

(β − γmin)
2 + η2max

(α+ γmin)2 + η2max

<
β2 + σ2

max

α2 + σ2
max

. (21)

For α+ β > 0, this inequality is equivalent to

0 < (β − α)(γ2
min + η2min − σ2

max + 2αγmin) + 2γmin(α
2 + σ2

max). (22)

Since (β − α) > 0, (22) holds if σmax ≤
√
γ2
min + η2min + 2αγmin. Thus

(iv) if σmax ≤
√

γ2
min + η2min + 2αγmin and α+ 2γmin ≤ β, then

δ(α, β) < 1.

If σmax >
√
γ2
min + η2min + 2αγmin, then (22) holds if β satisfies the following

inequality

β <
α(γ2

min + η2min − σ2
max + 2αγmin)− 2γmin(α

2 + σ2
max)

γ2
min + η2min − σ2

max + 2αγmin
.

Thus

(v) if σmax >
√
γ2
min + η2min + 2αγmin and

α+ 2γmin ≤ β ≤ α(γ2
min + η2min − σ2

max + 2αγmin)− 2γmin(α
2 + σ2

max)

γ2
min + η2min − σ2

max + 2αγmin

then δ(α, β) ≤ 1.

��
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Theorem 2.1 mainly discusses the available β for a convergent ANSS it-
eration for any given nonnegative α. It also shows that the choice of β is
dependent on the choice of α, the spectrum of the matrix N , the singular-
values of S, but is not dependent on the spectrum of A. Notice that

α+ 2γmin− α(γ2
min + η2max)

2αγmin + γ2
min + η2max

=
2αγ2

min + 2γ3
min + 2γminη

2
max + 2α2γmin

2αγmin + γ2
min + η2max

> 0

and

α+ 2γmin− α(γ2
max + η2max)

2αγmax + γ2
max + η2max

=
2αγminγmax + 2γminγ

2
max + 2γminη

2
max + 2α2γmax

2αγmax + γ2
max + η2max

> 0,

we remark that for any given nonnegative α the available β always exists.
The bound δ(α, β) of the convergence rate depends on the spectrum of N
and S and the choice of α and β. Moreover, δ(α, β) is also an upper bound
of the contraction factor of the ANSS iteration.

3 Numerical Example

In this section, we give a numerical example to illustrate the effectiveness of
ANSS iteration.

We consider the differential equation

−u′′ + qu
′
= f,

on the inteval [0, 1], with the constant coefficient q and the homogeneous
boundary condition. When the finite difference discretization, for example,
the centered difference is applied to the above equation, we get the system
of linear equations (1) with the coefficient matrix

A = tridiag(−1− qh

2
, 2,−1 + qh

2
)

where the equidistant step-size h =
1

n+ 1
is used.

Let H = 1
2 (A+A∗) and S0 = 1

2 (A−A∗) be Hermitian and skew-Hermitian
parts of A, respectively. We consider a NS splitting

A = N + S



42 F. Toutounian, D. Hezari

where
N = H + icI and S = S0 − icI

and c is a real number. We test the spectral radius of the iteration matrix
M(α, β) (8) with different values of qh. All the tested matrices are 64× 64.

In Figs. 1 and 2, we show the spectral radius of the iteration matrix of
the ANSS method and the NSS method with different values of α. ANSS
represents the spectral radius of the iteration matrix of the ANSS method,
where parameter β is tested to be the optimal one, and NSS represents that
of the NSS method.
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Fig. 1: Spectral radius of iteration matrices of ANSS and NSS methods for
c = .1

We find that if c = 0.1 is used, the spectral radius of the iteration matrix
of the ANSS method is always smaller than that of the NSS method, and
when qh is large, the spectral radius of the iteration matrix of the ANSS
method is much smaller than that of the NSS method, but if c = 10 is used,
these two spectral radius of the iteration matrices are almost the same.
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Fig. 2: Spectral radius of iteration matrices of ANSS and NSS methods for
c = 10

4 Conclusion

In this paper, we have introduced two constants for the NSS iteration and
presented a different approach to solve the system of linear equations (1),
called ANSS method.

Theoretical analysis showed that if the coefficient matrix A is positive
definite (Hermitian or non-Hermitian) the ANSS method can converge to
the unique solution of the linear system (1) with any given nonnegative α,
if β is restricted to an appropriate region. In addition the upper bound of
the contraction factor of the ANSS iteration is dependent on the choice of α
and β, the spectrum of the normal matrix N and the singular-values of the
skew-Hermitian, but is not dependent on the eigenvectors of the matrices N ,
S and A. Numerical examples illustrated the effectiveness of ANSS iteration
and showed that the spectral radius of the iteration matrix of the ANSS
method is always smaller than or equal to that of the NSS method.
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