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New variable neighborhood search
method for minimum sum coloring
problem on simple graphs

Kh. Erfani*, S. Rahimi and J. Fathali

Abstract

The minimum sum coloring problem (MSCP) is to find a legal vertex
coloring for G using colors represented by natural numbers (1,2,...) such
that the total sum of the colors assigned to the vertices is minimized. The aim
of this paper is to present the skewed variable neighborhood search (SVNS)
for this problem based on a new structure of neighborhoods. To increase the
speed of the neighborhood search process, we present the new concepts of
holder vertex and set. Tested on 23 commonly used benchmark instances, our
algorithm shows acceptable competitive performance with respect to recently
proposed heuristics.

Keywords: Minimum sum coloring; Variable neighborhood search; Skewed
variable neighborhood search; Chromatic sum; Holder vertex; Holder set;
Reducer set.

1 Introduction

The general graph coloring is one of the most well-known problems in combi-
natorial optimization. Besides its theoretical significance as a canonical NP-
Hard problem [d], graph coloring arises naturally in a variety of real-world
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applications such as timetable problems [B], warehouse management [Z9],
frequency allocation in mobile network [28], register allocation in optimizing
compilers [4], scheduling problem [R], design and operation of exible manufac-
turing systems [I0]. For example, in computer systems with multiprocessors
that are in competition over resources, we might seek an allocation under
which no two jobs with conflicting requirements are executed simultaneously
while minimizing the average completion time of the jobs.

MSCP is closely related to the basic graph coloring problem. It was
proposed by Kubicka [Z1] in the field of graph theory and by Supowit [30] in
the field of VLSI design.

Suppose that G = (V, E) is a simple undirected graph (without loop,

multi, and directed edge) with vertex set V' = {v1,va,...,v,} and edge set
E CV x V. A proper vertex k-coloring of G is an assignment of positive
integers to its vertices by function ¢ : V. — {1,2,...,k} such that no two

adjacent vertices are assigned the same number (i.e. c(v;) # c(v;),V(4,7) €
E). The color of a vertex v is denoted by c(v).

A legal k-coloring can also be defined as partition of V' in to k independent
sets Vi, Va, ..., Vi such that for all u,v € V;(i = 1,...,k), (u,v) ¢ E. In other
word, ¢ can also be represented as a partition of V' in to k mutually disjoint
independent set (called color classes) Vi, Va, ..., V; such that U?:l Vi=V
and v € V; if and only if ¢(v) = i.

The general graph coloring problem (GCP) is to determine a proper k-
coloring with a minimum value of k. This value is called the chromatic
number of G and denoted by x(G). A related problem to the GCP is the
minimum sum coloring problem (MSCP), which is to find a proper coloring
c={V1,Va,...,Vi} such that the following total sum of color labels, denoted
by >_. G, to be minimized.

n

k
D G=D clvi) =) iVl

i=1 i=1

Now the vertex chromatic sum or minimum sum coloring of G is denoted

by > G, and defined as

min{ZG|c€C},

where C'is the collection of all proper coloring of G. The vertex strength of G
denoted by s(G), is the smallest number s, where there is a proper coloring ¢
with s colors such that ) (G) = > G. It is clear that s(G) is lower bounded
by x(G). The distance between s(G) and x(G) can be large. Indeed there
are many instances in which s(G) >> x(G) [21].

As shown in [20,21], the decision version of the MSCP is NP-complete in
the general case. As a result, solving the MSCP is computationally challeng-
ing and any algorithm able to determine the optimal solution of the problem
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is expected to require an exponential complexity. Also, it has several practi-
cal applications including VLSI design, scheduling, and distributed resource
allocation (see [24] for a list of references for more application).

Due to its high computational complexity, no polynomial-time algorithm
can solve or approximate the problem efficiently unless P = N P. In the past
several decades, much effort has been devoted to developing various heuristic
and metaheuristic algorithms. For the purpose of practical solving of the
general MSCP, several heuristic algorithms have recently been proposed to
find suboptimal solutions. This class of algorithms has been mainly devel-
oped since 2009 and is not proved the optimality of the solution found. Some
examples of the heuristic algorithms include tabu search [2], greedy algo-
rithms [23], genetic and memetic algorithms [6, 719, 26, 32|, breakout local
search [0, iterated local search [IH] , ant colony [6] as well as heuristics based
on independent set extraction [33,B4]. But in contrast, some kinds of liter-
ature have addressed the issue of theoretical bounds that formally proved,
included [@,0T, 12,06, 22,81 for instance.

In recent years, variable neighborhood search (VNS) has been proven as
a very effective and adaptable metaheuristic, used for solving a wide range
of complex optimization problems. In this paper, we design and test a VNS
algorithm for finding proper colorings, which correspond to upper bounds
of the chromatic sum. In the literature on graph coloring several proposals
appeared, combining the following characteristics: partial vs complete color-
ings, proper vs improper colorings, fixed vs variable k (see [[5] for a review).

We opt vector X with size of |V] for a solution representation consisting
of colors that must be proper. We then devise a search strategy that borrows
ideas from modified VNS method called skewed VNS method (SVNS) towards
special kind of neighborhood. The fact that increasing the number of colors
may decrease the chromatic sum was the main motivation of definition of
such new neighborhood structure (see Fig. ).

In the following sections, we first provide integer nonlinear mathematical
formulation along with a definition of Ny neighborhood structure of MSCP. In
the next section, we offer a new concept called holding to expedite the related
local search method. In Section 4 we present our SVNS method with respect
to the neighbors that are mentioned in Section 2. Before concluding, detailed
computational results and comparisons with five algorithms are presented in
Section 5.
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2 Modeling and N, Neighborhoods of MSCP

2.1 Modeling

Let G = (V, E) be a simple undirected graph with vertex set V- = {v1,va,...,v,}
and edge set E C V x V. Although the MSCP can be formulated as a binary
quadratic problem, we also presented another formulation of this problem.
Define variable x; as the color of vertex ¢ for i = 1,2,...,n. Therefore the
integer nonlinear mathematical formulation is defined as follows:

i=1
s.t.
o -zl =21 V(i j) € E 1)
1<z;<n ,integer :i=1,2,...,n (2)

The previous model can be reduced with elimination of redundant constraints
and suitable changing of variables,

P) Min Z‘T’ (3)

s.t.
|$i—l‘j| >1 V(Z,j)GE (4)
x; > 0,integer  :i=1,2,...,n (5)

This mathematical formulation expresses MSCP correctly, since each vector
X = (z1,%2,...,%,) that satisfies equations (@) and (H) is a proper coloring
¢ for G and the objective function (B) minimizes ) . G. Y (X) denotes the
sum of colors of proper coloring c. It should be noted that this model does
not claim about s(G) and focuses on Y G. By assuming that S be set of all
proper coloring of G, P can be written briefly as follows:

P) Min T.X (6)
s.t.
Xes, (7)

where TX is the inner product of T = (1,1,...,1) and X. Indeed > (X) =
S = ?.X . According to the description stated above, any feasible
solution for P is a vector X = (x1, 22, ...,%,) satisfied equations (@) and (B).
So the next neighborhoods should be defined around this vector.



New variable neighborhood search method for ... 43

2.2 New Neighborhoods for MSCP

We know that the neighborhood is an important element that influences the
local search procedure. So, searching for feasible spaces is meaningless with-
out knowing the definition of the neighborhood. Therefore according to the
mathematical model of the previous part, we introduce neighboring structure
for MSCP here. To read more about neighborhoods for this problem you can
see [0, 05,07

Definition 1. Let X and S be a feasible solution and feasible space of
P, respectively. For k =0,1,...,n, a neighborhoods of X are defined by

Ne(X)={Y € S|Y is greater than X in at most k element.} (8)

In fact, Ni(X) contains all of the feasible solutions (proper coloring) that
are greater than X in the k element at most. The size of the Ny(.) becomes
bigger if k increases. Indeed [N (.)| € O((})) and we have

No(X) € Ni(X) € -+ € Ni(X)

As you can see, these neighborhoods will be nested; that is, each one contains
the previous. So if X is locally optimal with respect to N, then it will be
locally optimal with respect to N; for ¢ = 0,1,...,k — 1. Also, if it is not
to be locally optimal w. r. t. INV;, then it will not be locally optimal w. r.
t. N;fori=k+1,...,n. Clearly S = N,(X). But it’s important to know
the minimum value of k such that N = S. In other words, for which value
of k the neighborhood Ny is exact? For a given neighborhood N if any local
optimal is also global optimal, then N is exact [27].

To clarify the issue, Figure 0 shows an illustrative example for Ny (.). The
numbers that are in and out the vertices are vertex number and vertex color,
respectively. With the given 3-coloring X (left figure), we achieve the subop-
timal sum of 18 while Y leads to chromatic sum of 15 (right figure). By Defi-
nition 1, No(X) = {X} and Y ¢ No(X), N1(X) but Y € Ni(X) forallk > 2.
Therefore by starting with X, we achieve the locally optimal Y w. r. t. N,
that is also globally optimal.

The next important point that should be noted is about the size of Ni. As
stated previously by increasing k the size of neighborhood becomes large and
this causes the process of searching happens slowly. Therefore we will offer
a new concept called holding and try to expedite to find the local optimum
with this new concept.
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(b) Y =(2,4,3,1,1,1,1,1,1)

Figure 1: An illustrative example for Ng(.)

3 Holder and Reducer Set

Definition 2. k-holder set: Given a proper coloring X = (z1,...,x,) and
k-element subset H = {t1,t2,...,t;} from V. H is a k-holder set, when for
some v € N(H)™ and index 0 < r < k the following two conditions hold:

1) @, < @y;
2) For any vertex w € N(v) \ H, we have x,, # x4,

In such case, we say that H holds vertex t,.

Especially in above definition when k = 1, we obtain 1-holder set called
holder vertex. Indeed, for two adjacent vertices a and b, we say a holds b
and denoted by a b, if Definition 1 is stated for kK = 1. Consider again the
graph of Figure [ with 3-coloring X. Both two sets H; = {1} and Hy = {2}
are holder vertices according to Definition 2. H;i is a good holder vertex be-
cause Hi holds 4,5,9, 8 and when its color is increased the objective function

1 Denote the set of adjacent vertices of H
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is reduced three units. In contrast Hs is not a good one because no change
does happen when its color starts to increase. Thus, the holding feature not
sufficient to improve the objective function and should have reduction prop-
erty.

Definition 3. k-reducer set: Given a proper coloring X. The k-holder
set H is a k-reducer set, when the objective function is improved (reduced)
by increasing its color of vertices.

The above definitions lead us to the following obvious propositions, which
more specifies the relationship between N and these two new concepts.

Proposition 1. The proper coloring X is locally optimal w.r.t. Ny if and
only if G has no k-reducer set.

Proposition 2. The proper coloring X is a global optimal if and only if there
exists ko € ZT such that G has no k-reducer set w.r.t. X for any k > k.

For a given solution X, if G has no k-holder set for any k € ZT, then it
has no k-reducer set for any k € Z* and so according to Proposition B X is
globally optimal.

4 VNS Method with respect to N, for MSCP

Variable neighborhood search (VNS) algorithm was originally described by
Mladenovic and Hansen ( [I33,25]). The basic strategy of the VNS is to focus
the investigation of the solutions, which belong to some neighborhood of the
current best one. In order to avoid being trapped in local suboptimal solu-
tions, VNS changes the neighborhoods, directing the search in the promising
and unexplored areas. By this systematic change of neighborhoods, VNS
iteratively examines a sequence of neighbors of the current best solution.
But, it may happen that some instances have several separated and possibly
far apart local optimum containing near-optimal solutions. If one considers
larger and larger neighborhoods, the information related to the currently best
local optimum dissolves. It is therefore of interest to modify VNS schemes
in order to explore more fully local optima, which are far away from the cur-
rent solution. This will be done by accepting to recenter the search when a
solution close to the best one known, but not necessarily as good, is found,
provided that it is far from this last solution. So, we study on the modified
and special ingredient of VNS called skewed variable neighborhood search
(SVNS) that is presented in Algorithm M. The relaxed rule for recentering
uses an evaluation function linear in the distance from the current solution;
that is, > (X") is replaced by > (X") — ap(X, X") (line 13 of Algorithm ).
where p(X, X") is the distance from X to X" and a a parameter that is de-
termined experimentally. A metric for distance between solutions is usually
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Algorithm 1 Skewed variable neighborhood search for MSCP

Adjacency matrix of graph G , Select the set of neighborhood struc-
tures N,k =1,..., knasz- Find an initial proper coloring X and its value
> (X). Set Xopt «— X. Choose a stopping condition and a parameter
value o. A solution X,,; and its value Z(Xopt). stopping condition
not reached Set: k +— 1 k < ke Generate a solution X’ at random
from the k* neighborhood of X or perturb X, randomly./*Shaking or
Perturbing */ Apply some local search method with X’ as initial solu-
tion. Denote with X" the so obtained local optimum. /* Local search*/
DX < Y (Xopt) Xopt «— X" 3 (Xopt) «— Y (X") /[*Improvement
or not*/ 3 (X") —ap(X, X") <3 (X) X «— X" k«+— 1k« k+1
/*Move or not.*/

easy to find, for example, the hamming distance when solutions are described
by boolean vectors or the Euclidean distance in the continuous case. Here we
use p-norm distance for p=1,2. P-norm is a class of vector norms, denoted
by [|.||p, is defined as

1
IX[lp = (lza]” + 22" + -+ [za?)r p=1, X €R”

and the distance between to two n-vectors X and Y based on this norm, is
defined as

1
X Y)p = (|21 — 1P + |22 — g2l + -+ + 20 — yal”)?

Algorithm presents the general SVNS algorithm for the MSCP, whose
ingredients are detailed in the following. It has four main phases, shaking
or perturbing, local search, improve or not and mowve or not. Usually, the
second phase will have maximum computing time. SVNS starts with an
initial random coloring X, which must be proper. In the first phase (line
4) we use shaking or perturbing at random. Indeed, we decide shaking to
shake against perturbing strategy with probability p in each iteration of local
search procedure. k42, the maximum value for the size of neighborhoods,
must be identified at first. In local search phase (line 6), we apply variable
neighborhood descent (VND) as an ingredient of VNS method. This method
is illustrated in Algorithm B. Then SVNS check to ensure that any improve-
ment has happened or not (lines 8-11)7 In lines 13-18 it decides on moving
to the new solution or increasing k. SVNS iterates these steps while the
maximum number of iterations since the last improvement is reached.

As noted previously, the maximum computing time is spent on the local
search phase. To improve the solution quality and acceleration of local search,
we will use the holding concept described in Section 2. With determining the
suitable order of falling, the exploration velocity of neighbors is increased. A
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perturbation mechanism will be used to improve solution quality and jumping
from local optimums (attractors).

Algorithm 2 Variable neighborhood descent
Select the set of neighborhood structures Ny,l = 1,...,l4,. Find
an initial proper coloring X and its value > (X). A solution X and
its value > (X). there is improvement Set | +— 1 [ < ;4 Find the
best neighbor X’ of X (X’ € N(X))./*Exploration of Neighborhood*/
XN <Y (X)) X« X'l+— 11« 1+4+1 /*Move or not*/

4.1 Order of Falling

According to Section 2, the existence of k-holder sets are a necessary condition
for the existence of k-reducer sets. Therefore, we will use this necessary
condition for recognition of reducer sets. Then we increase all color of vertices
in reducer set for falling the colors of remaining vertices. It is important that
the remaining vertices meet in what order to take maximum falling of color
vertices happens.

Suppose graph G with proper coloring X. Construct weighted directed
graph D = (V(D), E(D),W) from G as follows:

1) V(D) =V(Q).
2) E(D) ={(a,b)|a,be V(D)&a /" b}.
3) Ve = (a,b) € E(D), we = xp — xq.

D is a weighted directed graph with no directed cycle, multiple edge, and
loop. Actually, D is a directed acyclic graph (DAG). The longest directed
path in D can help us to find the best order of falling.

Although the longest path problem is NP-hard for a general graph, it
has a linear time solution for directed acyclic graphs. The idea is based on
topological sorting. Topological sorting for a DAG is a linear ordering of
vertices such that for every directed edge (u,v), vertex u comes before v in
the ordering. Topological sorting for a graph is not possible if the graph is
not a DAG.

Figure B shows an illustrative example of the order of falling. Figure 23
shows G with proper 4-coloring X with sum 15 and corresponding weighted
DAG D is depicted in Figure BH. D has three directed longest paths p; =
1,2,3,5,p2 =4,3,5and p3 = 8,7,5 of length 3. Therefore they are examples
of order of falling. For p; it means that if the first vertex of p; (vertex
1) is omitted (or increase its color), then the vertex colors of 2,3,5 begin
to decrease, sequentially. Finally, the color of vertex 1 re-determined and
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another proper 3-coloring Y = (2,1,2,1,3,1,2,1) with sum 13 is obtained
from X. In fact, Y € N1(X). Now we can apply the above process for new
solution Y.

With this idea, the examination of all elements of Ny, to find a local optimum
of Ny is not necessary and therefore the exploration velocity of neighbors in
local search phase of Algorithm [ increases.

(b) The weighted DAG D

Figure 2: An illustrative example for the order of falling

4.2 Perturbation Mechanism

Consider the sub optimal solution X, which has not any suitable falling order.
Indeed the weighted DAG D is an empty or low-density graph. Increasing
the value of k usually is not useful and lead to increase the computation time.
In these cases, local search procedure may be induced to cycle between two
or more locally optimal solutions and leading to search stagnation. So, to
jump from this situations we change in X to create some good falling orders.
We will choose vertex (or vertices) that has more interruptions for holding
of the other vertices and increase their colors to produce holder vertices and
consequently generate orders of falling to decrease objective function.

We explain this mechanism on the example shown in Figure B. We have
plotted this example on two-dimensional axis vertex-color. The horizontal
and vertical axises are the index and color of vertices respectively. Suppose
kmaz = 1, and we stop in proper coloring X = (1,2,2,2,2,1) (Fig.Bd). There
is no holder set of size one and consequently, there is no one-reducer set ac-
cording to X. Therefore Proposition 0 implies that X is locally optimal (but
not globally) with respect to N7. To jump from this situation we should gen-
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Figure 3: An illustrative example for perturbation mechanism

erate holder set by increasing the color of some vertices. But which vertices?
Increasing color of one or even all 2,3,4, and 5 causes nothing in order to
improve the solution. But increasing color of vertex 1 (or 6) is very useful
because it causes to generate holder and reducer set H = {6}(Figs.Bd,B0).
If now we apply local search w.r.t N7 on new solution Y = (3,2,2,2,2,1),
then we get the new better proper coloring (2,1,1,1,1,2), which is globally
optimal (Fig.Bd).

5 Experimental Results

Our SVNS algorithm is programmed in MATLAB(R2015a) and compiled on
a PC with 2.7 GHz CPU and 4 Gb RAM. The 23 of well-known benchmark
graphs from COLOR®? 2002 — 2004 in the literature, which is commonly used
to test sum coloring algorithms is considered in Table M and Table B. The

2 http://mat.gsia.cmu.edu/COLOR02/
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reported values are based on 10 independent runs. Table [ gives the detailed
characteristics of these benchmark graphs. Columns 1-6 indicate the num-
ber of vertices (|V|), the number of edges (|E|), the density d = 222 the
chromatic sum (}_) and the smallest number of required colors (k) of graphs.
Columns 7-9 present detailed computational results of our SVNS algorithm:
Best result obtained (>°,) with the number of required colors (k.), average
coloring sum (Awg.) and standard deviation (Std.). The results, for instances,
of COLORO02 benchmark indicate that SVNS attained the best-known result
for 19 instances, and was unable to reach the current best result for four
instances (homer, queen8.8, miles250 and miles500). Table B reports the

Table 1: Computational results of SVNS on 23 COLORO02 instances

Characteristics of graphs SVNS
Instances V| |E| d > ok > (k) Avg.  Std.
myciel3 11 20 0.36 21 4 21 (4) 21.0 0.0
mycield 23 71 028 45 5 45 (5) 450 0.0
mycielb 47 236 0.22 93 6 93 (6) 93.0 0.0
myciel6 95 755 0.17 189 7 189 (7)  189.0 0.0
myciel7 191 2360 0.13 381 8 381 (8) 3814 0.52
anna 138 986 0.05 276 11 276 (11) 276.3 0.48
david 87 812 0.11 237 11 237 (11) 238.6 0.84
huck 74 602 0.11 243 11 243 (11) 243.0 0.0
jean 80 508 0.08 217 10 217 (10) 217.1 031
homer 561 1629 0.01 - 10 1163 (13) 1168.5 3.5
queend.b 25 160 0.53 75 5 75 (5) 75.0 0.0
queen6.6 36 290 0.46 138 7 138 (8) 138.2  0.42
queen?.7 49 476 04 196 7 196 (7) 1974 44
queen8.8 64 728 0.36 291 9 294 (9) 301 5.33
games120 120 638 0.09 443 9 443 (9) 445.3 1.56
miles250 128 387 0.05 325 8 329 (8) 333.2 2.1
miles500 128 1170 0.11 <709 20 719(20) 728.2 7.03
mug88-1 88 146 0.04 178 4 178 (4) 1780 0.0
mug88-25 88 146 0.04 178 4 178 (4) 1780 0.0
mugl00-1 100 166 0.03 202 4 202 (4) 202.0 0.0
mugl00-25 100 166 0.03 202 4 202 (4) 202.0 0.0
2-insertion-3 37 72 0.11 62 4 62 (4) 62.0 0.0
3-insertion-3 56 110  0.07 92 4 92 (4) 92.0 0.0

comparative results with the following approaches from the literature on the
tested COLORO2 instances: a heuristic EXSCOL [B3], a greedy algorithm
(MRLF) based on the popular RLF graph coloring heuristic [Z3], MDS5 [iH],
a parallel genetic algorithm (PGA) [19], a hybrid local search (HLS) [6]. The
comparisons are based on the criterion of quality; that is, the smallest sum of
colors reached by a given algorithm. Notice that information like computing
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Table 2: Comparative results between our SVNS algorithm and five reference approaches
on the set of COLORO02 instances

Names > EXCOL [83] MRLF [23] MDS5 [i5] PGA [9] HLS [6] | SVNS
myciel3 21 21 21 21 21 21 21
myciel4 45 45 45 45 45 45 45
mycielb 93 93 93 93 93 93 93
myciel6 189 189 189 189 189 189 189
myciel7 381 381 381 381 382 381 381
anna 276 283 277 276 281 - 276
david 237 237 241 237 243 - 237
huck 243 243 244 243 243 243 243
jean 217 217 217 217 217 - 217
queenb.5 75 75 75 75 75 - 75
queen6.6 150 138 138 138 138 138 138
queen7.7 196 196 196 196 196 - 196
queen8.8 291 291 303 291 302 - 294
games120 443 443 446 443 460 446 443
miles250 325 328 334 325 347 343 329
miles500 <709 709 715 712 762 755 719
mug88-1 178 - - 178 - - 178
mug88-25 178 - - 178 - - 178
mugl00-1 202 - - 202 - - 202
mugl00-25 202 - - 202 - - 202
2-insertion-3 62 - - 62 - - 62
3-insertion-3 92 - - 92 - - 92

W

time are not available for all the reference algorithms. Also the symbol
means that the information is not available.

6 Conclusion

In this paper, we have presented the skewed variable neighborhood search
algorithm towards new kind of neighborhood for solving the minimum sum
coloring problem. To acceleration, we introduce a new holding concept in
graph coloring problems too. The computational evaluation of the proposed
algorithm on 23 of COLORO02 benchmark instances has revealed that SVNS
attain the best-known results for 19 instances while failing to reach the best
ones for four instances. Also, these results have acceptable competitive com-
pared with five algorithms for MSCP in final.



52 Kh. Erfani, S. Rahimi and J. Fathali

Acknowledgements

Authors are grateful to there anonymous referees and editor for their con-
structive comments.

References

1. Benlic, U. and Hao, J. K. A study of breakout local search for the minimum
sum coloring problem, pp. 128-137, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

2. Bouziri, H. and Jouini, M. A tabu search approach for the sum coloring
problem, Electronic Notes in Discrete Math. 36 (2010) 915-922.

3. Burke, E. K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R. A graph-
based hyper-heuristic for educational timetabling problems, Eur. J. Oper.
Res. 176 (2007), no. 1, 177 — 192.

4. de Werra, D., Eisenbeis, Ch.,Lelait, S. and Marmol, B.On a graph- theo-
retical model for cyclic register allocation, Discrete Appl. Math. 93 (1999),
no. 23, 191 — 203.

5. Douiri S.M. and Elbernoussi, S. New algorithm for the sum coloring prob-
lem, Int. J. Contemporary Math. Sci. 6 (2011) no. 9-12, 181-192.

6. Douiri S. M. and Elbernoussi, S. A new ant colony optimization algorithm
for the lower bound of sum coloring problem, J. Math. Model. Algorithms
11 (2012), no. 2, 181-192.

7. Erdos, P., Kubicka, E. and Schwenk, A. J. Graphs that require many
colors to achieve their chromatic sum, In Proceedings of the Twentieth
South-eastern Conference on Combinatorics Graph Theory and Comput-
ing (Boca Raton, FL), vol. 71, 1990, pp. 17-28.

8. Gamache, M., Hertz, A. and Ouellet, J. O. A graph coloring model for
a feasibility problem in monthly crew scheduling with preferential bidding,
Comput. Oper. Res. 34 (2007), no. 8, 2384-2395.

9. Garey, M. R. and Johnson, D. S. Computers and intractability; a guide
to the theory of np-completeness, W. H. Freeman & Co., New York, NY,
USA, 1990.

10. Glass, C. A. Bag rationalisation for a food manufacturer, J. Oper. Res.
Soc. 53 (2002), no. 5, 544-551.

11. Hajiabolhassan, H.,Mehrabadi, M.L. and Tusserkani, R. Minimal color-
ing and strength of graphs, Discrete Math. 215 (2000), no. 1, 265 — 270.



New variable neighborhood search method for ... 53

12. Hajiabolhassan, H.,Mehrabadi, M. L. and Tusserkani, R. Tabular graphs
and chromatic sum, Discrete Math. 304 (2005), no. 1-3, 11-22.

13. Hansen, P. and Mladenovic, N. Varitable neighborhood search: Principles
and applications, Eur. J. Oper. Res. 130 (2001) no. 3, 449-467.

14. Hao J. -K. and Wu, Q. Improving the extraction and expansion method
for large graph coloring, Discrete Appl. Math. 160 (2012), no. 1617, 2397
— 2407.

15. Helmar, A. and Chiarandini, M. A local search heuristic for chromatic
sum, Proceedings of the 9th Metaheuristics International Conference, MIC
2011 (L. D. Gaspero, A. Schaerf, and T. Stutzle, eds.), 2011, pp. 161-170.

16. Jiang, T. and West, D. B. Coloring of trees with minimum sum of colors,
J. Graph Theory 32 (1999), no. 4, 354-358.

17. Jin, Y.,Hao, J. K. and Hamiez, J. P. A memetic algorithm for the mini-
mum sum coloring problem, Comput. Oper. Res. 43 (2014), 318 — 327.

18. Jin, Y. and Hao, J. -K. Hybrid evolutionary search for the minimum sum
coloring problem of graphs, Inf. Sci. 352 (2016), no. C, 15-34.

19. Kokosinski Z. and Kwarciany, K. On sum coloring of graphs with par-
allel genetic algorithms, pp. 211-219, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

20. Kroon, L. G., Sen, A. , Deng, H. and Roy, A. The optimal cost chromatic
partition problem for trees and interval graphs, pp. 279-292, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1997.

21. Kubicka, E. The chromatic sum of a graph, Ph.D. thesis, Western Michi-
gan University, Michigan, 1989.

22. Kubicka, E. and Schwenk, A. J. An introduction to chromatic sums, Pro-
ceedings of the 17th Conference on ACM Annual Computer Science Con-
ference (New York, NY, USA), CSC ’89, ACM, 1989, pp. 39-45.

23. Li, Y. ,Lucet, C., Moukrim, A. andSghiouer, K. Greedy Algorithms for
the Minimum Sum Coloring Problem, Logistique et transports (Sousse,
Tunisia), March 2009, pp. LT-027.

24. Malafiejski, M. Sum coloring of graphs, pp. 55-65, AMS, Poland, 2004.

25. Mladenovic, N. and Hansen, P. Variable neighborhood search, Comput.
Oper. Res. 24 (1997) no.11, 1097-1100.

26. Moukrim, A., Sghiouer, K., Lucet, C. and Li, Y., Lower bounds for
the minimal sum coloring problem, Electronic Notes in Discrete Math.
36 (2010), 663 — 670.



54 Kh. Erfani, S. Rahimi and J. Fathali

27. Papadimitriou, C. H. and Steiglitz, K. Combinatorial optimization: Algo-
rithms and complezity, Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1982.

28. Smith, D.H., Hurley, S. and Thiel, S.U. Improving heuristics for the
frequency assignment problem, Eur. J. Oper. Res. 107 (1998), no. 1, 76 —
86.

29. Stecke, K. E. Design, planning, scheduling, and control problems of exible
manufacturing systems, Ann. Oper. Res. 3 (1985), no. 1, 1-12.

30. Supowit, K. J. Finding a mazimum planar subset of a set of nets in a
channel, Trans. Comp.-Aided Des. Integ. Cir. Sys. 6 (2006), no. 1, 93-94.

31. Thomassen, C., Erdos, P. , Alavi, Y., Malde, P. J. and Schwenk, A. J.
Tight bounds on the chromatic sum of a connected graph, J. Graph Theory
13 (1989) no. 3, 353-357.

32. Wang, Y., Hao, J. K.,Glover, F. and Lu, Zh. Solving the minimum sum
coloring problem via binary quadratic programming, CoRR abs/1304.5876
(2013).

33. Wu Q. and Hao, J. -K. An effective heuristic algorithm for sum coloring
of graphs, Comput. Oper. Res. 39 (2012), no. 7, 1593 — 1600.

34. Wu Q. and Hao, J. -K. Improved lower bounds for sum coloring via clique
decomposition, CoORR abs/1303.6761 (2013).



“L"’GL"’JI;d}J&}“.’“d}?‘T"{“Jr‘f&“d:“Md‘Xxx“g;ideL;’ﬁJ

lenid jier g Clyal ooy dolo dlijus e LI
&8 by 055 g mls axas oKl

VYAF il & dlin By VYA sl s YV st oMol dlis Sdlys FR0 3 V) dlie 23y

Sl 3l ol 3l Sy 8L 51 Sedile (MSCP) €S 6 gozma (s500) S5 i £ 0082
Sy sy 0 K5y (ol girs S (g3l § soze S ok (3Y5)) redb slael sl sl LG GIS
sy uJ).oJ:x:.eg{jw (575w uij)g_{icgb\ dlis CJ‘i‘J; ul.o\ Oud 395 £eS ) a0l
S (Solaer gz G Gl Gl sl i (Sles (o Sl i s )
G Jsd JoB s Shee Colg s bl sslinl Glasgama 5 (ouly (SIS (L'd. S sade
A;m‘&;J‘J.; 4......:|L5.A :J)Ax}‘ubjb ‘5)&4‘ &)).\;’:} lg ‘dﬁ\“\:"‘ PV 43}43 Yr(_gj) BAS 4.3\)‘

5,0 ey (55 § azme € oin Solaen (g gt 48 (G300l K, § 3oz P gads olls
a..\...bts‘u-jw ‘:oJJ)\J.,gﬁt 48 gouo



	3-E
	3-F



