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Abstract

In an earlier work we showed that for ordered fields F not isomorphic to

the reals R, there are continuous 1-1 functions on [0, 1]F which map some

interior point to a boundary point of the image (and so are not open). Here

we show that over closed bounded intervals in the rationals Q as well as in all

non-Archimedean ordered fields of countable cofinality, there are uniformly

continuous 1-1 functions not mapping interior to interior. In particular, the

minimal non-Archimedean ordered field Q(x), as well as ordered Laurent

series fields with coefficients in an ordered field accommodate such patho-

logical functions.
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1 Introduction

A cut C of an ordered field F is a subset satisfying C < F \ C. A nonempty

proper cut is said to be a gap, whenever it fails to have a supremum in the field. A

gap G in F is called regular, when for all ε ∈ F>0, G+ ε 6⊆ G. An ordered field is

Archimedean (has no infinitesimals) if and only if it is (isomorphic to) a subfield

of real ordered field R. The latter is, up to isomorphism, the unique ordered

field which is Dedekind complete, i.e. does not have any gaps. Any Dedekind

incomplete ordered field F has gaps in all its non-degenerated intervals: In the

Archimedean case, F is a proper subfield of R which therefore misses some points

in any real interval. In the non-Archimedean case, and given any two points a < b

of F , downward closure of the set of points x such that x−a
b−a is an infinitesimal,

forms a gap in (a, b).1

Monotone complete ordered fields were introduced in [2]. They are ordered

fields with no bounded strictly increasing divergent functions. From [[4] Corollary

2.7], follows that there are monotone complete ordered fields of any uncountable

regular cardinality and so there exist plenty of monotone complete ordered fields

not isomorphic to R. On the other hand, it is clear that there are no monotone

complete ordered field of countable cofinality, except (those isomorphic to) R.

For the notions of cofinality and regular cardinals, we refer to [1]. We use cf for

cofinality. If F is a monotone incomplete ordered field, then any non-degenerated

interval of F contains the image of a strictly increasing divergent function.

We proved in [[3], Theorem 1.2] that an ordered field F is Dedekind complete,

if all continuous 1-1 functions defined on some (equivalently all) non-degenerated

closed bounded interval(s) of F map interior points [of the interval(s)] to interior

points [of their range(s)]. For proper subfields of R, we show here that the

rather strange functions coming from above can not be uniformly continuous

provided that their unique continuous extensions to R are 1-1. On the other

1Alternatively, one can use linear increasing functions between intervals to map a given gap

(somewhere in the field) to a gap in a given interval.
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hand, on closed bounded intervals in the rational ordered field, as well as in all

non-Archimedean ordered fields with countable cofinality, there are uniformly

continuous 1-1 functions which do not map interior to interior. We will finish by

presenting some ordered fields over which this phenomenon occurs.

2 The Archimedean case

In this section, a well known property of the real ordered field is treated for its

subfields.

Lemma 2.1 Let F be an Archimedean ordered field. If f : [0, 1]F → [0, 1]F is a

uniformly continuous function, then f can be extended to a unique (uniformly)

continuous function f on [0, 1]R.

Proof. Given x ∈ [0, 1]R, there exists a sequence (rn)n≥1 in [0, 1]Q such that

limR rn = x. As f is uniformly continuous on [0, 1]F which contains [0, 1]Q and

the sequence (rn)n≥1 is Cauchy, (f(rn))n≥1 is Cauchy in [0, 1]F and so has a

limit in [0, 1]R. Let f(x) = limR f(rn). This is well defined, since if (rn)n≥1 and

(sn)n≥1 are two Cauchy sequences in [0, 1]Q such that limR rn = limR sn, then by

uniform continuity of f , we have limR f(rn) = limR f(sn). Note that f is indeed

the unique such extension of f . It is also continuous on [0, 1]R: Let x0 ∈ [0, 1]R

and ε ∈ R>0. By uniform continuity of f , there exists δ > 0 such that for all

x, y ∈ [0, 1]F , (|x − y| < δ → |f(x) − f(y)| < ε
2) (∗). We claim that for this

δ, (∀x ∈ [0, 1]R)(|x − x0| < δ → |f(x) − f(x0| < ε). Let x ∈ [0, 1]R be such

that |x− x0| < δ. There exist sequences (rn)n≥1 and (sn)n≥1 in [0, 1]Q such that

limR rn = x0 and limR sn = x respectively. Now let N be a nonnegative integer

such that (∀n ≥ N)(|rn−sn| < δ), so from (∗) we have (∀n ≥ N)(|f(rn)−f(sn)| <
ε
2). Thus |f(x)− f(x0)| = limR |f(rn)− f(sn)| ≤ ε

2 < ε.

Proposition 2.2 Let F be an Archimedean ordered field. If f : [0, 1]F → [0, 1]F

is a uniformly continuous function whose unique extension (as above) to R is one-

to-one, then it maps every open subset of [0, 1]F onto an open subset of f([0, 1]F ).
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Proof. Let U be an open subset of [0, 1]F . There is an open subset V of R such

that U = V ∩ [0, 1]F . We have f(U) = f(U) = f(V ∩ [0, 1]F ) = f(V ∩ [0, 1]R) ∩

f([0, 1]F ) = f(V ∩ [0, 1]R) ∩ f([0, 1]F ). But f is open, hence f(V ∩ [0, 1]R) is a

relatively open subset of f([0, 1]R) and so there is an open subset W of R, such

that f(V ∩ [0, 1]R) ∩ f([0, 1]F ) = (W ∩ f([0, 1]R)) ∩ f([0, 1]F ) = W ∩ f([0, 1]F ).

Therefore f(U) is a relatively open subset of f([0, 1]F ).

Proposition 2.3 There is a uniformly continuous 1-1 function on [0, 1]Q, which

its range has empty interior.

Proof. Consider the function f(x) = |14x2 + x − 1
2 |. By changing the variable

x = 2(u − 1), the proof of f being 1-1 is based on the fact that the equation

r2 + s2 = 3 is not solvable in Q. A further argument shows that the complement

of the range of f with respect to [0, 1]Q is dense in [0, 1]Q and so the range, as a

subspace of [0, 1]Q, has empty interior.

3 The non-archimedean case of countable cofinality

Theorem 3.1 Let F be a non-Archimedean ordered field with cf(F ) = ω. Then

for all a < b in F , there exist 1-1 uniformly continuous functions f : [a, b]F →

[a, b]F whose ranges are closed such that f maps some interior point of [a, b]F to

a boundary point of its image.

Proof. Let [a, b] be a non-degenerated interval in F and c = a+b
2 . Fix a strictly

increasing sequence (ak)k∈ω in [a, c) such that a0 = a, (∀k ≥ 1)|ak+1 − ak| ≤
1
4 |ak − ak−1| and limk ak = c. Put b0 = b, and for all k ≥ 1, bk = b0 − (ak − a0).

Downward closure of the monad of 0 is an irregular gap G in [0, 1]F . Fix (an

infinitesimal) γ ∈ G>0. Note that (∀x ∈ G)(∀y ∈ F \G)(y−x > γ). For each k ∈

ω, let Uk be the image of G∩ [0, 1] under the linear increasing function from [0, 1]

onto [ak, ak+1] and Vk the image of G∩ [0, 1] under the linear increasing function

from [0, 1] onto [bk+1, bk]. Let S0 = U0, T0 = [a, b] \ (downward closure of V0),

and for all k ≥ 1, Sk = Uk \ Uk−1, Tk = Vk−1 \ Vk. For all k ≥ 1, we have
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(∀x ∈ Sk)(∀y ∈ Sk+1)(y − x > γ(ak+1 − ak)) (∗) and, from a similar observation

for the Tk’s, Ik = [bk − γ(bk − bk+1), bk + γ(bk − bk+1)] ⊆ Tk. For k ∈ ω \ {0}, let

hk be the linear increasing function which maps [ak−1, ak+1] onto I2k. For k = 0,

first pick out some d0 ∈ T0 \ {b} such that b − d0 < a1 − a and put I0 = [d0, b].

Then let h0 : [a, a1] → I0 be the onto linear increasing function. Let fk be the

restriction of hk to Sk; so fk is a function which maps Sk linearly and increasingly

into I2k ⊆ T2k. Similarly, for all k ∈ ω, we can get linear increasing functions

gk : Tk → T2k+1. Let f = (
⋃

k∈ω fk)∪ (
⋃

k∈ω gk)∪{(c, c)}. Then f is a one-to-one

function from [a, b] into [c, b] with a closed range which maps c ∈ (a, b) to the

boundary point c ∈ f([a, b]) ⊆ [c, b].

To prove that f is uniformly continuous, we proceed as follows. Given ε ∈ F>0

which we may assume without loss of generality to be less than a2−a1, let δ = 1
4γε.

Take x, y ∈ [a, b] with |x − y| < δ. If either x or y (but to avoid trivialities not

both) equals c or x < c < y, then one easily checks that |f(x)− f(y)| < |x− y|.

So assume both x and y are strictly less or greater than c, they will be either

both in two S’s or both in two T ’s. The arguments will be similar, we only deal

with the S’s. Suppose x ∈ Sk and y ∈ Sl. There are the following exclusive cases

of how l is compared to k.

(A) l = k. Here f = fk is the restriction of hk to Sk. If k = 0, then by

the condition on d0, we have |f(x) − f(y)| = |f0(x) − f0(y)| < |x − y|. Assume

k ≥ 1. Then hk : [ak−1, ak+1] → I2k is linear and |I2k| < (ak+1 − ak−1), so

|f(x)− f(y)| = |fk(x)− fk(y)| < |x− y| < δ, which is infinitely smaller than ε.

(B) l = k + 1. By the choice of δ, we must have k ≥ 2. The reason is

that we will have δ < γ(a2 − a1) (and in particular δ < γ(a1 − a0)). We have

|f(x)−f(y)| = |fk(x)−fk+1(y)| < |b2(k+1)+1−b2k−1| ≤ |bk+1−bk| = |ak+1−ak| <

[by (∗)] 1
γ |x− y| < 1

γ δ = 1
4ε < ε.

(C) k ≥ 2 and l = k + 2. We will have |f(x) − f(y)| ≤ |f(x) − f(ak+1)| +

|f(ak+1)− f(y)|. Both of these terms are less than 1
4ε, by case (B).

(D) k ≥ 2 and l ≥ k + 3. We will have |f(x)− f(y)| < |b2l+1 − b2k−1|. Using

|ai+1−ai| ≤ 1
4 |ai−ai−1|, one gets |b2l+1−b2k−1| < |ak+1−al−1|. The latter value
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is less than |x− y|.

(E) k = 0 and l ≥ 2. We will have |f(x) − f(y)| ≤ |f(x) − f(a1)| + |f(a1) −

f(a2)| + |f(a2) − f(y)|. The first two terms on the right hand side are, by case

(B), less than 1
4ε. The last one is also less than 1

4ε: If l = 2, l = 3, l = 4, l ≥ 5,

then one may use the cases (A), (B), (C) and (D) respectively.

(F) k = 1 and l ≥ 3. We will have |f(x)−f(y)| ≤ |f(x)−f(a2)|+|f(a2)−f(y)|.

The first term on the right is, by case (B), less than 1
4ε. The second one is also

less than 1
4ε: If l = 3, l = 4, l ≥ 5, then one may use the cases (B), (C) and (D)

respectively.

Finally, We present some non-Archimedean ordered fields allowing the men-

tioned kind of strange functions.

Example 3.2 Consider the ordered field (Q(x),+, ·, <) with x > Q. It is non-

Archimedean and of cofinality ω, hence monotone incomplete. So there are uni-

formly continuous one-to-one functions f : [0, 1]Q(x) → [0, 1]Q(x), which map some

interior point to a boundary point of its image.

Example 3.3 Let F be an ordered field. Then the ordered field of Laurent series

with coefficients in F is non-Archimedean of cofinalty ω, and so it is monotone

incomplete. Once again, there will exist the mentioned kind of functions over

closed bounded intervals of this field.

Note added in the proof. In 2002, Lobachevskii (J. Math.) (it is available

online), in addition to the above for non-Archimedean ordered fields of countable

cofinality, we constructed uniformly continuous 1-1 functions which although map

interior to the interior of the image, but still are not open.
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