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Abstract

Recently, a one-parameter extension of the Polak—Rebi¢re—Polyak method
has been suggested, having acceptable theoretical features and promising
numerical behavior. Here, based on an eigenvalue analysis on the method
with the aim of avoiding a search direction in the direction of the maximum
magnification by a symmetric version of the search direction matrix, an
adaptive formula for computing parameter of the method is proposed. Un-
der standard assumptions, the given formula ensures the sufficient descent
property and guarantees the global convergence of the method. Numerical
experiments are done on a collection of CUTEr test problems. They show
practical effectiveness of the suggested formula for the parameter of the
method.
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1 Introduction

Conjugate gradient (CG) methods can be regarded as the most popular op-
timization techniques due to their wide applications in the practical fields
[1, 11, 12, 17]. CG algorithms are advantageous because of affordable mem-
ory storage, the simple structure of the iterative formula, promising compu-
tational performance, and acceptable convergence properties [5, 9, 13].

General form of an unconstrained optimization problem can be given by

min f(z),
where f is a smooth real-valued nonlinear function with the gradient g(x).
Starting from some point zy € R”, iterations of the CG algorithms are in
the form of xx11 = zp + sk and s = agdg, for all k£ > 0, where oy > 0 is
a step length often determined by some inexact line search techniques along
the direction dj, calculated by

do = =90, di41 = —gr+1 + Brd, k>0, (1)

in which 8 € R is called the CG parameter and gy = g(z). Among the
various classical CG techniques, the Polak—Rebiére-Polyak (PRP) method
with

PRP __ gl{—s—lyk

* llgkll*”

in which yx = gr+1 — gx and || - || denotes the £o norm, is regarded as an
efficiently popular classic method, mainly because of adaptive restarts when
dealing with improper search directions [9].

Although being computationally advantageous, the PRP method fails to
ensure the descent property [9]. So, significant attention have been paid to
get descent modifications of the PRP method. For example, Zhang, Zhou,
and Li [18] developed (ZZL) a three-term extension of the method by

T
Gio19k
do = —go, di3% = —gr1 + B di — |I|€;:H2 Yk, k>0, (2)
satisfying the sufficient descent condition, that is,
digr < =7llgel[?, k>0, 3)

where 7 > 0 is a constant. In another effort, Andrei [3] proposed a spectral
PRP (SPRP) method with

T
SPRP _ _ Sk Yk

PRP gg—i—lsk
do = —90, dk+1 ||gk||2 , - k>0, (4)

Gr+1+ By sk Y, k>
llgr|[?
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which in addition to (3), fulfills the effective Dai—Liao conjugacy condition
[6]. Also, Babaie-Kafaki and Ghanbari [4] developed a class of one-parameter
extension of B *F (EPRP) based on the Dai-Liao approach [6]; that is,

T
EPRP _ gPRP _ Gic1x (5)
llgwll?

where t is a positive parameter. Then, to find an optimal choice for ¢, they
noted that from (1) and (5) search directions of EPRP can be written as

div1 = —Hpy19041,
where dky;{ dkd}:
Hk)-‘rl = I - 2 2"
g%l l|gr||
Symmetrizing Hy+1 by
Poyy = Hyy1 + Hg+1 g ldkyg + ykdf e dkdz (6)
2 2 lgll? lgwl 2’

in light of an eigenvalue analysis, the following family of two-parameter
choices for ¢ was suggested in [4]:

2 1 dly, g\
tp,q :pHka + q ( k _ > ’ (7)
B g2 2 (1dill gl Ildal]

1
with p > 1 and ¢ > —1, guaranteeing the descent condition.

Following such studies, here we deal with another choice for parameter of
the EPRP method based on the concept of the maximum magnification by
a matrix. Organization of our study is summarized as follows. In Section 2,
after analyzing eigenvalues of Py 1, we introduce our new formula for the pa-
rameter t of the EPRP method. Also, we conduct a brief global convergence
analysis. In Section 3, we make some competitive computational experiments
on a collection of CUTEr problems, using the Dolan—Moré performance pro-
file. Finally, concluding remarks are given in Section 4.

2 An adaptive choice for parameter of the extended
Polak—Ribiér—Polyak method

Here, firstly we conduct a concise eigenvalue analysis on Pyy; in order to
explain our adaptive way of computing ¢ in (5). Hereafter, we assume that
dFyy. > 0, as ensured by the strong Wolfe line search conditions [14], that is,
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f(@r + ardy) — fax) < dowgy dy, (8)
IV fzr + andy) T di| < —ogfdy, 9)

with 0 < § < ¢ < 1. The following basic definition is the kernel of our
analysis.

Definition 1. [15] For an arbitrary matrix A € R"*™, the scalar

A
mazmag(A) = max [[Az] ,
w0 |||
is called the maximum magnification by A. Hence, mazmag(A) = || A]|, and
also, the vector « # 0 for which ||Az|| = ||A]| ||=]|, is in the direction of the

maximum magnification by the matrix A.

Firstly, note that the matrix P41 given by (6) can be regarded as a
symmetric approximation of the search direction matrix Hy1. Based on the
analysis of [4], eigenvalues of Py are 1 with multiplicity n — 2, and )\ﬁ and
A, are given by

1
NS =14 —— (t||dp])* — dF
o= g VI dw)

1
4 2
2||grl

\/(L‘IldchI2 = diye)® + lldel Pllyel > — (dfye)?.

It can be seen that with the choice (7), we have )\Z' >1> X, >0, and
consequently, ||Py+1|| = A;. Also, in light of similar analysis carried out
in [2], the eigenvector of P11 corresponding to A}, here called vf, can be
written as vf = ydi, + Yy in which

_ 200 = AD)lgwl1? — diy

0.
|ld |2

So, v¥ as a vector in the direction of the maximum magnification by Py is
specified.

As explained in [2], when the gradient is approximately parallel with
the direction of the maximum magnification by Hy,1, then EPRP may face
with some numerical errors and also, it may converge hardly. Based on this
fact and since Py41 is a symmetric approximation of Hg, it can be stated
that if g1 is as far away as possible from the direction of the maximum
magnification by Py41, then the mentioned possible errors may be diminished
and the convergence may be improved. Hence, we obtain a formula for the
EPRP parameter by making vf to be orthogonal to g1 in the sense of
solving the equation gg+11}lf = 0; that is,

T T
7 = ||Z/k||2(gk+1dk)2 - ||dk||2(gk+11/k)2 ' (10)

297y 1di) (A yn) (97 1) — 11l (91 9n))
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Now, for the sake of positiveness of the EPRP parameter and to achieve the
sufficient descent property, we suggest the following modified version of (10):

2
max 4 g,V [yl , if denominator of ¢, is nonzero,
gl >
9k
th = (11)
2
19||yk|| , otherwise,
[lgwl[?
9k

1
Now, similar to the analysis conducted in the proof of [16, Theorem 3.2],

the following convergence result can be established for the EPRP method.
The proof is omitted to avoid repetition.

Theorem 1. Suppose that the level set Q = {x € R" | f(x) < f(xo)} is
bounded and in some neighborhood A of Q, that the objective function f is
smooth and also, that V f is Lipschitz continuous. For the EPRP method
with the parameter (5), assume that ¢ is equal to ¢} defined by (11) and the
line search fulfills the strong Wolfe conditions (8) and (9). If there exists
a positive lower bound «o* for the step lengths «y (for all £ > 0), then
lim [[gi | = 0.

3 Computational experiments

In this section, we examine the numerical efficiency of the EPRP method
in which ¢ is computed by (11) with ¢ = 0.26 and (7) with (p,q) = (1,0);
here the corresponding methods are, respectively, called EPRP1 and EPRP2.
The methods are compared by the two modified PRP methods of ZZL and
SPRP, respectively, with the search directions (2) and (4) [3, 18]. We have
implemented all the algorithms on a set of 45 test functions of the CUTEr
library [8] with n > 50, as given in Table 1, in MATLAB software envi-
ronment. Hardware and software detailed specifications have been clarified
in [2], together with the strong Wolfe line search features and the stopping
criteria. Detailed outputs have been provided in Table 1.

Efficiency of the algorithms was compared by applying the performance
profile proposed by Dolan and Moré [7] on the norm of gradient, the CPU
time (CPUT), and the total number of function and gradient evaluations
(TNFGE), following the notation of [10]. Results are shown by Figures 1-3.
As seen, EPRP is preferable to the other methods. Particularly, the results
show that the choice (11) for the EPRP parameter is practically effective.
Our experiments showed that averagely in 62.63% of the iterations of EPRP1,
we had ¢} = .



fard and Babaie-Kafaki

ini

Am

216

c0-HgE's 691 TO-HPR'T 9V L CO-HRL'6 08T 10-HCC T vor 0007V SAOOM
€0-H0L'8 €eT T0-dS0°€ TET TO-dSR'ES (44 [4URC €TT 0s TADIHYUVA
€0-HTIL'S | €0-d67°€ 8 z0-d76°T 8 co-gec'v R 00T WNIAYUYVA
T0-HL9'C ¥¥e c0-d12'2C 99T 20-d6¢€°C SPT T0-HLs'T €TT 0g HOOLNIOL
T0-HLG € Ice 00+3C0°T cLOT T0-HL0'T 79 T0-HI8'T €% 000% SSODINIOL
T0-H9T T TI8IT TO-H96'T qQTvy TO-HRS'¢ qTL TO-HER L S99 0g YHODLNIOL
T0-H9€'€ G€T T0-HZT' € 9ce T0-dATI8'T L8T T0-HOT'¥ v.iT 0000T HNOSHVAS
T0-HTR'T LTT T0-HLE € 16T TO-HKK'T 90T T0-H00'€ €T 0009 aAvNONIS
T0-HOT ¥ 86 10-HLlT° S oTT T0-HES'€ L8 TO-HIS'¥ 8% 00T SHOSNHS
T0-g¥S'T va TO-HL9'T 8% T0-"HE9'T Ve T0-d¥6°T Qg 000% LLIANHDS
CO-HET' € i cOo-dvT'v i c0-HZ8'€ id c0-dcL ¢ 14 0009 oLavVND
€0-H0€°6 i €0-HL9°8] i TO-HS6'T 4 T0-U88'cT i 00T CALIVNAJA
T0-HTE € v TO0-HTL'¥ v T0-HOV ¥ 14 c0-d67°¢ 14 0009 TNXADNON
T10-H6V L i 4] 00+388'T GOGT 00+H92'T S06 T0-"H¥€°9 cLe 010% 02dDON
T0-HOL'T 08e TO-HSL'T 1416 20-d0S°6 GTT c0-d67°6 <6 0009 AdHYON
T0-HGS'T 86 T0-H9S°C 86 T0-d6V'C €6 10-H0C € €6 00T ONIDNVIN
T0-HEE'9 v T0-H98°¢ v T0-d8Z 9 v c0-gsc'9 14 000¢ SAINNHNED
T0-HVL S 186 T0-HZ8'6 6012 TO-HEL'T 91 T0-H1Z'T QLT 0009 HLOYNHYA
T0-"HS¥'T 941 TO-HS?'T 8¥T T0-"P¥'T 9¢T TO-HOS'T 9¢T 000% AdHDLATA
TO0-HTIO9'T Y91 TO-HSKY'T 091 10-HZ9 T Y91 T0-H6K'T vor 0009 EAdOLHTA
TO0-HGT L i TO0-dS¥'8 i T0-dL0'8 id T0-HLO0'T 14 000¢ TAIOLETA
TO-HSV'6 z9 TO-dTI1'6 8¢ TO-AST 6 8¢ T0-AVT'T ]¢ 000G TIVADNA
c0-H1C'C €T co-gee'e €T 20-H60°% €T co-dece'e €T 0001 [49)C]
T0-HLO"L 68 c0-geL 9 76 c0-d0T L 6% co-dv1'8 9L 000¢ HOSNHdH
TO0-H6L'S v T0-H6T°6 v T0-HS6'8 v c0-H99°'8 14 6871 OIEAVOHA
T0-HEO' T i T0-HE9'8 i T0-HEO0'T id T0-HE9'8 14 6877 OIZAVOHA
T0-d0S L 14 TO-HKST'R® 7 T0-d9S'8 14 T0-"8S'6 7 6377 OITAVOYHA
[4SChazdad i4 TO-HST'¥ 14 20-H8R'E i4 T0-H68'% ¥ 000% o1IYda
00+HZ9'T 997 00+HTILT €8TTT T10-d99°¢ zs91 T0-HI8’'¢S 8071 000% DITHAdAa
c0-H60°9 PAS T0-dOT' ¢ L€ CO-"RT'¢ LE co-dvL¢ LE 000€ ANVVINXIA
TO-HO¥'S 145 T0-"OT ¢ (45 T0-d06'¥ (43 c0-"0T1T'9 [43 000¢ DONVVINXIA
TO-HIL'¥ (45 T0-H96°¢ (44 TO-HURKT ¢ LT c0-d92'9 (49 000¢€ ANV VINXIA
T0-HT6'¥ I¢e 20-HS6'¥ 185 20-d6L°V 1€ ¢0-dc0o'9 9¢ 000¢ VNVVINXIA
10-HES'8 €Lzt 00+3LT'T L6ST T10-d09°€ 6LV T10-H99°€ LSV 0000T OTATHND
00+HS8E'T LZTT 00+H06°C vozce TO0-AGL S LYY T0-H66°9 TeY 000¢ ANTDDVED
TO-HEST'T |¢€ T0-"HEE'T 97 TO-AST'T Le T0-d6C'T LT 0000T ANISOD
00+H9¥% T TERY T0-HET 9 96T¢€ TO-H6L'T €€9 T0-HLS'T 918 0009 MUVHNHHD
T10-HIL'T €67 00+329°¥ veect T0-HE6°9 €481 T0-HL0'¥ 699 000% ANgAYd
00+HLO¥ ¥800% 00+HE6 € 8007 00+HST' ¥ L2T8RE 10-H9Z 9 vov 00c TVNMOYd
T0-HSGO'S 4§89 T0-HO0L 6 1€1C TO-AST'E 8€T co-gvL'e 662 0s WISVOHJIdDAG
z0-d0T"° g GR9 T0-"HZO'T 1€1C TO0-d9L'V R€T T0-"HL9' L 662 0g nWigavododg
00+HS6°9 €L09¢ T0+HET T €200% T0+HVE T 69092 T0+529° T 12092 000S orrudadga
c0-d¥¥'9 T T0-UL6'9 (49 T0-U89°L cT T0-deL'6 [N 000% dXaadg
00+H68V oeLee 00+HGT '8 €900% 00+HST' ¥ S600C T0-HLAT'C €0T1 0009 AVHHMYY
T0-HEB'S (49 T0-HL6°L (49 20-d0%°6 c1 T0-HET'T (4 00T VNITODYUV

ILNddD UDANL LNndo HDANL LILNddD HDANL ILNdD HOANL u uorjounyg

1ZZ d4dds cdddd Iddadd
sindinQ 1 aIqel,




An adaptive descent extension of the Polak—Rebiére—Polyak conjugate ...

05

——EPRP1
-—-EPRP2 |
~ = -SPRP

04 : !

Figure 1:

TNFGE performance profiles

EPRP1 4
- - EPRP2

Figure 2:

4 Conclusion

CPUT performance profiles

217

Based on the concept of maximum magnification, we have conducted an
eigenvalue analysis to suggest an optimal choice for the parameter of the
recently proposed EPRP method. The suggested formula guarantees the
sufficient descent property as well as the global convergence of the method.
Effect of the proposed formula has been numerically investigated in contrast
to several other modifications made on the classical PRP method. Results
showed the effectiveness of the suggested choice for the EPRP parameter.
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