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Toeplitz-like preconditioner for linear
systems from spatial fractional diffusion
equations
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Abstract

The article deals with constructing a Toeplitz-like preconditioner for linear
systems arising from finite difference discretization of the spatial fractional
diffusion equations. The coefficient matrices of these linear systems have an
S+ L structure, where S is a symmetric positive definite (SPD) matrix and
L satisfies rank(L) < 2. We introduce an approximation for the SPD part
S, which is called Pg, and then we show that the preconditioner P = Pg+L
has the Toeplitz-like structure and its displacement rank is 6. The analysis
shows that the eigenvalues of the corresponding preconditioned matrix are
clustered around 1. Numerical experiments exhibit that the Toeplitz-like
preconditioner can significantly improve the convergence properties of the
applied iteration method.

AMS subject classifications (2020): 65F10, 35R05, 65F08, 65M06.

Keywords: Fractional diffusion equation; Toeplitz-like matrix; Krylov sub-
space methods; PGMRES.

1 Introduction

In this article, we aim to propose a Toeplitz-like preconditioner for solving
the linear system resulting from a finite difference approximation of an initial-
boundary value problem of the spatial fractional diffusion equations (FDEs)
that were introduced in [4]. In this article, the authors show that applying
the finite difference method to the FDEs leads to the following linear system:

Ax =0, (1)
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where the coefficient matrix of the linear system (1) is a dense Toeplitz-like
matrix. As we see in [4], the coefficient matrix of (1) can be rewritten as the
sum of a symmetric positive definite matrix S and a low rank matrix L, that
is, A= S+ L (for more details, see [4, 2]). The matrix S has the following
structure:

S =nl, + GD:GT + GT D,G, 2)

where 1 > 0, G is a Toeplitz matrix, and D; and Dy are diagonal matrices
with positive diagonal elements (more details are available in Section 2). In
[4], the authors proposed a preconditioner by replacing G with its Strang’s
circulant approximation and two matrices Dy and Dy by their scalar (identity
matrix) approximation. They showed the superlinear convergence of their
preconditioner, when D; and Dy are scalar identity matrices. In [2], we
introduced a preconditioner based on the approximation of S defined in (2),
and we proved that the proposed preconditioner is strong even though D,
and D5 are not a multiple of the identity matrix. In the following, we give
some definitions about Toeplitz-like matrices.

Toeplitz-like matrices are defined by means of a displacement operator.
Given an n X n matrix A, we consider the down-shift matrix of order n,
Iy = (62 es - e On), and the displacement operator V defined by

V(A)=A-Z,AZT. (3)

We define the displacement rank of matrix A as rank(V(A)). The matrix
A is said to have the Toeplitz-like structure if its displacement rank is low
compared with its order n, that is, rank(V(A)) = m < n. If the displacement
rank of A is m, then we can rewrite V(A) as V(A) = CDT, where C,D €
R™>*™_ Two matrices C and D are called the generators of the matrix A.

Throughout this article, we use the following notations: Capital letters,
boldface lowercase letters, and regular lowercase letters denote matrices, vec-
tors, and scalars, respectively. Moreover, I,, denotes the identity matrix of
order n, while J,, denotes the nxn exchange matrix J,, = antidiag(1,1,...,1).
We denote by e; the jth column of identity matrix, and 0 denotes the zero
vector of proper dimensions.

The organization of this article is as follows. In Section 2, we present
the new preconditioner for the discretized linear systems arising from FDEs.
Some computational remarks are given in Section 3. Numerical experiments
are provided in Section 4 to prove the performance of our preconditioner.
Finally, in Section 5, some concluding remarks are provided.

2 Preconditioning technique

The finite difference discretization of FDEs was developed in [4]. By intro-
ducing
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the authors showed that the coefficient matrix of resulting linear system by
finite difference discretization of FDEs possesses A = S+ L € R™*" structure,
where

S =nl, + GYD G L GOTD_G), (5)
L =ciag’ +cJa(Jg)", (6)

in which n>0 Dy = diag(diﬁl,diﬁz,...,diyn) with d:l:,i >0, ¢1,c2 > 0,
and

g 0 0
() gl

ale)— | N

o € R, (7)
g g gl

For simplicity, in the rest of the the superscript, («) will be ignored. We see

that the matrix S is a symmetric positive definite and that L is a matrix with

low rank, that is, rank(L) < 2. Denote by di min and di max the smallest

and the largest elements of D, respectively. Letting dy+ = W, in
[2], we used the following preconditioner :
Ps =nl, +d,GGT +d_G"'G. (8)

This preconditioner is an approximation of S. We can replace S in A by Psg,
obtaining so-called TL preconditioner

P=Pg+L 9)
for the matrix A.

Theorem 1. If P is defined as (9), then P~'A = M + N, where M is similar
to P3!S and rank(N) < 2.

Proof. We can extend S = span{g, Jg} to an orthonormal basis of R™. Let
V = (v1 Vo - vn) be the matrix representation of such orthonormal basis,

_ _ Jgth Jg)'g
such that vi = &~ and vy = M» _(||g)|\§

where h = . Suppose that V'

llgll2
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is partitioned as V = (Vl Vg), where V; = (v1 VQ) and V5 = (V3 Vg o vn).
From (6), we see that LV, = 0. We have

_ vy VIPIILV, 0
VTPlLV:(l)Plvaz(ls_ 1). 10
S S (1 2) ‘/QTPSILV;LO ( )

If we define K = I, + Vi Pg'LV; and
B IL—K'VT 0\, ,r
Q =V (_‘/2TPS—1LV1K—1‘/1T 0 Vv )
then

(I+P3' L) =V [I+VTPsiLy] ' vT
L (VIPS'LVi 0 1VT
VTP Lvi 0

0\ yr
v ( Vi Py 1Lv1 -1 In_2> v
I+Q

We note that QV5 = 0. By this assumption, we can prove our assertion in
the following

A= (Ps+ L)Y S+L)=(I+Ps'L)y"'PgtS(I+S7L)
=({I+Pg'L)'PS(I+ Pg'L)(I + P L) (I + S7'L). (11)

In (11), if we define M = (I + Pg'L)~'*Pg*S(I + Pg'L), then

PT'A=MI+Q)(I+57'L)

— M+ N,

where N = M(S™'L+ Q + QS™'L). We see that M is similar to Pg'S. It
can be easily verified that NV, = 0. Hence rank(N) < 2. O
Theorem 2. [2] If A € o(Pg'S), then |1 — \| < k < 1, where k = ﬁ <1
with 7 = m and x = max{ d**“‘a";d+*“““ ) d’*“’a";d’*“’“‘ }.

Based on Theorems 1 and 2, the eigenvalues of the preconditioned matrix
P~'A are clustered around one, and thus Krylov subspace methods with the
proposed preconditioner coverage very quickly.

Remark 1. The main differences between our proposed preconditioner P
and the proposed preconditioner in [2] Pg are as follows:

1- Pg is an approximation of S in (5), while P consists of two parts. The
first part Pg is an approximation of the matrix S and the second one
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is the matrix L (the rest of the matrix A). Hence, we expect that P is
more accurate than Pg.

2- In the next section, in order to show the computational efficiency of pre-
conditioner P, we prove that P has the Toeplitz-like structure, and its
generators will be computed precisely. By using them, we can use fast
algorithms to compute P~!. Hence, in comparison with the circulant
approximation of Ps in [2], the P~! is computed straightforward.

In Section 4, numerical experiments show that the efficiency of the proposed
preconditioner P.

3 Some computational results

In this section, we show that the matrix P defined in (9) has the Toeplitz-
like structure, and we construct its generators. To this end, we define the
following temporary vectors:

_ T - T
g=0(9091 " gn-1) t=(9192 " gn-1) - (12)
The following relations can be easily deduced from (4) and (12)

—ag — (a1 — ap)

1 —a; — (a2 — a1)
- = = ZT nCn, 1
a—g T2 —a) : a+ape (13)
—An—1 — (an - an—l)
g = goer + Zg. (14)

We use the following lemmas in our subsequent discussion.

Lemma 1. Let G be the n x n matrix defined in (7). Then the following
relations hold:

(i) V(GGT) =gg",
(i) V(GTG) = e1g7G + GTgel —glgeiel — J2Tgg"ZJ,
(iii) V(Ps) =neel +d,gg’+d_(e1g” G+GTgel —g'ge1el —72Tgg"2.)).

Proof. The matrix G can be partitioned as

G = (f’to é)l), (16)
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where G; = G(2 : n,2 : n) is a lower triangular Toeplitz matrix, so the
displacement structure of GGT can be viewed as
V(GGT) = GGT — zGGT zT
(90 0 (g0 t 0 0\ (0GT (17)
“\t G )\oGT G;10)\0 0 )"

Now, by a straightforward computation, part (¢) of the lemma can be verified

For part (ii), first we know that
(18)

g'G=(g'g t7Gy).

g
Therefore,
V(GTG)=GTG - zGTGzZT (19)
_ [ 90 ET go 0 0 0 0 Gl (20)
“\oaT)\t &y GT gt ) \o (Jt)T
sl ¥T
g'g t'G, )
= — —— . 21
(G{t —Jtt"J 1)
It gives that
7 _ (878 TG g'g 0\ (g'g 0 (0 0
Vi@ G)—<o 0 >+<G{fo 0 o) \oJies
=eg’G+ G gel —g'geiel —J27gg" 2. (22)
We note that V(I) = e;ef’| so
V(Ps) :nele{ +d V(GGT) +d_V(GTG)
=neie] +d;g8" +d_(e1g" G+ G ge] —g'gere] —JZ"gg"2J),
O

which completes the proof of (4ii)

Lemma 2. If we define the auxiliary vectors hy = d_(Jg) — c2Z(Jg) and

hy = c1g — d+(Zg), then the following relations hold:

Z(Ja)(Jg)" 2" J—{ZTEETZJ (c2—d_)(Ja)(Jg)"+
gnel) {

(i) 2 [(Ja)(Jg)" —
Z(Ja)hT +ei(d_a, +d_g,)(Jg)T +d_(g.(Jg) —
(ii) e [(a)(g)” — Z(a)(g)" 27| + dyg8" = (dy — c1)(Za)(Zg)” + ah] +
e1(aody +digo)(Zg)" + (dygo(Zg) + dygier)e]

Proof. We see that
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e [(Ja)(Jg)" — Z(Ja)(Jg)" 2" —d_JZ"gg" ZJ
=y [(Ja)(Jg)" — Z(Ja)(Jg) 27| —d_ [J(g — gnen)(g — gnen)"J] By (15)
= [e2(Ja) —d_(Jg)] (Jg)" — c2Z(Ja)(Jg)" 2"
+d-gnei(Jg)" +d_gn(Jgle] —d-greie]
=J[ca—d_(a—Z"a—ane,)] (Jg)" — c2Z(Ja)(Jg)"Z" By (13)
+d_gnei(Jg)" +d_gn(Jgle] —d_grere]
= (¢ —d_)(Ja)(Jg)" + Z(Ja)hT + e1(d_a, +d_g.)(Jg)"
+(d-gn(Jg) —d_gher)e] .
In the similar way, we can prove part (i) as follows:
a1 [(a)(e)" — Z(a)(g)" 2] +d.gg"
[(a)(g)T - Z(a)(g)TZT} +d4(goer + Zg)(goer + Zg)" By (14)
[dyg — c1a] (Zg)" + crag” + dy [giere] + goe1(Zg)" + goZgef |
[(dy —c1)a—diZTa—diage,] (Zg)" +crag” By (13)
+d; [goere] + goer(Zg)" + goZge] |
= (dy — c1)(Za)(Zg)" +ah; +ei(aods +d+g0)(Zg)"
+(digo(Zg) + digier)ef .
[

Theorem 3 indicates that P in (9) has the Toeplitz-like structure, and we
can use a superfast solver to compute P~1.

Theorem 3. The matrix P defined in (8) is a Toeplitz-like matrix and its
displacement operator is

V(P) =(c2 = d_)(Ja)(Jg)" + (dy — c1)(Za)(Zg)" + Z(Ja)hi
+ahl +ehl +hyel, (23)

where h; and hy are defined in Lemma 2, and

hy = (d_an +d_gn)(Jg) + di (a0 + g0) Zg + ne1 + d_G"g,
hy = d_g.(Jg) — g2e1 + digo(Zg) + digier +d_GTg —d_g"ge;.

Proof. We have P = Pg + L. Hence

V(P) =V(Ps) + V(L) = V(Ps) + c1((a)(9)" — Z(a)(Zg)")
+ eo(Ja(Jgh) — ZJa(ZJg)"). (24)

By part (ii7) of Lemma 1, we can rewrite (24) as follows:
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V(P) =neie] +d,gg" +d_(e1g"G + G gel —g"gere] —72"gg" Z.J)
+ei((a)(9)" = Z(a)(Zg)") + ca(Ja(Jg") — ZJa(ZJg)")
= [(Ja)(Jg)" — Z(Ja)(Jg)" 2" —d_JZ"gg" ZJ
+er [(a)(e)" - Z(a)(g)"Z2"] + d.gg”
tnerel +d_(e1g”G + GTgel —glgejel)

Parts (i) and () of Lemma 2 and the above equations imply that

V(P) =(cs —d_)(Ja)(Jg)" + Z(Ja)h{ +ei(d_an +d_g,)(Jg)"
+ (d_gn(Jg) — grer)e] + (dy — c1)(Za)(Zg)" + ahy
+e1(aods + dygo)(Zg)" + (drgo(Zg) + dygier)e]
+nere] +d_(e1g" G+ G gel —g'gere])
=(cy —d_)(Ja)(Jg)T + Z(Ja)hT + (d\ — ¢1)(Za)(Zg)T + ah?
+e1 ((d-an + d—gn)(Jg) + di(ao + g0) Zg + ne1 + J_GTg)T
+ (d-gn(Jg) — gie1 + dyg0(Zg) + digier +d_G'g —d_g'ge:) e]
=(co —d_)(Ja)(Jg)" + (dy — c1)(Za)(Zg)"
+ Z(Ja)hT + ah? + e;h? + hyel.

O

We showed that our preconditioner P has the Toeplitz-like structure and
its displacement rank of P (rank(V(P))) is 6. So we can use fast and sta-
ble Levinson like algorithms [5] to compute P~'r in O(n?) operations. For
Krylov subspace iteration methods such as preconditioned GMRES [10], high
quality preconditioning plays a crucial role in accelerating the convergence
speed of the Krylov subspace iteration methods. Instead of O(n?) operations
to apply our preconditioner in each iteration, Circulant preconditioners re-
quire only O(nlog(n)) operations in each step. Significant reduction of total
iterations (and total CPU time) by using our preconditioner in numerical
experiments show the efficiency of our preconditioner.

4 Numerical experiments

The GMRES(20) (restarts every 20 inner iterations) with the proposed pre-
conditioner is applied to solve the linear system (1). We choose the right-hand
side such that #* = (1,2...,7n)T is the exact solution, that is, b = Az*. The
stopping criterion in the numerical experiments is ||7x||2/]|b]|2 < le —7, where
71 is the residual vector of the linear system after k iterations and b is the
right-hand side. For all experiments, the initial guess is chosen as the zero
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Table 1: Numerical results for Example 1
(&% n I PC PS TL
Iter CPU | Iter CPU | Iter CPU Iter CPU
0.7 | 219 | 81 23.5113 6 0.6189 4 0.4012 1 0.3001
21 1 - 7 2.1718 b) 1.6312 1 0.9017
212 1 - 7 7.9142 5 5.1305 1 2.7321
213 1 - 8 9.8320 5 6.3483 1 5.9821
214 1 - 11 14.8639 7 9.6407 1 8.9231
0.9 | 219 1 - 13 1.4921 8 1.2134 1 0.5743
A 1 - 21 9.5901 13 5.8513 1 1.2401
212 1 - 29  46.2163 17 26.2245 1 3.5421
213 1 - T - T - 2 7.3142
ol | 4 - + - + - 2 10.6893

vector. All the numerical experiments are run in MATLAB on a desktop with
the configuration: Intel(R) Core(TM) CPU Q9450 2.66 GHz and 8.00 GB
RAM. In the following tables, “I” represents the GMRES method without
preconditioning technique. We use Po to denote the circulant preconditioner
[4], Ps to denote preconditioner in [2], and T'L to present the proposed pre-
conditioner defined in (9). Also the “Iter” denotes the number of iterations,
“CPU” denotes the total CPU time in seconds for solving the problem, and n
denotes the size of our linear system. In the tables, { indicates no convergence
within 100 iterations.

Example 1. In this example, we consider

- L 11—« L 11—«
D+_dlag{07(n_1) 7(71—1) 7'~'71} (25)
T n—2 11— n—3 11—
D- = diag(1, (1), (A=), .0}, (26)

and ¢ = ¢ = 2.

Example 2. In this example, DL are random diagonal matrices with diag-
onal entries taken independently at random from [0, 1] and ¢; = ¢3 = 2.

The numerical results of Examples 1 and 2 are shown in Tables 1 and 2,
respectively. Tables 1-2 show clearly the fast convergence of the T'L precon-
ditioner. We see that T'L preconditioner is more effective in both CPU time
and the number of iterations than Pg and P preconditioners.

In what follows, we compare the eigenvalues of A and P! A for Example
1, the results are shown in Figures 1 and 2. As we see the eigenvalues of
preconditioned matrix P~ A are clustered around 1.



104 Akhoundi
Table 2: Numerical results for Example 2
(&% n I PC PS TL
Iter CPU | Iter CPU Iter CPU Iter CPU
07201 94 05931 | 6 06907 | 4  0.4455 1 0.2517
21l | 4 - 7 17012 | 5 1.3259 1 0.8993
212 | ¢ - 7 82302 | 5  6.4216 1 2.3263
213 | § - 9 114134 | 6  8.1983 1 7.3129
214 |4 - 11 143921 | 7 11.0214 | 2 10.9386
0.9 [ 29| ¢ - 30 23102 | 17 1.7492 1 0.4352
2L - 41 14.0561 | 25 109318 | 1 1.3107
212 | § - 75  47.5169 | 44 20.9312 | 1 4.3563
213 1§ - i - T - 2 9.8311
214 | § - t - T - 2 14.0968
1.5 1.5
1 1 17 1
0.5F q 0.5 1

-0.5r

Figure 1: Eigenvalues of P~1A (left) and A (right) for Example 1, with o =

n = 210,

0E>OCDO O O O OQTE

0.9

0.95

1

1.05

5 Concluding remarks

1.1

.9 and

In this article, the preconditioned GMRES method with Toeplitz-like struc-
ture was employed to solve the discretized linear systems arising from FDEs.
The displacement structure of the Toeplitz-like preconditioner was computed
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Figure 2: Eigenvalues of P~1A (left) and A (right) for Example 1, with a = .9 and
n =212,

precisely. The efficiency of the proposed preconditioner was proved even
though the diffusion coefficients are not constants. Numerical experiments
have demonstrated the efficiency of the proposed preconditioner.

Nevertheless, it is interesting that to propose the possible Toeplitz-like
preconditioner for two-dimensional FDEs, and then examine the efficiency of
the proposed preconditioner.
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