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A three-free-parameter class of power
series based iterative method for

approximation of nonlinear equations
solution

O. Ogbereyivwe*, and O. Izevbizua

Abstract
In this manuscript, for approximation of solutions to equations that are

nonlinear, a new class of two-point iterative structure that is based on a
weight function involving two converging power series, is developed. For
any method constructed from the developed class of methods, it requires
three separate functions evaluation in a complete iteration cycle that is
of order four convergence. Also, some well-known existing methods are
typical members of the new class of methods. The numerical test on some
concrete methods derived from the class of methods indicates that they are
effective and competitive when employed in solving a nonlinear equation.

AMS subject classifications (2020): Primary 65H05; Secondary 41A25.
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1 Introduction

One famous iterative method (IM) that is effective when used for the ap-
proximation of the solution s∗ of the nonlinear equation (NE) f(s) = 0 is the
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Newton Iterative Method (NIM) [18], expressed as

wk+1 = sk − u (sk) , (1)

where u (sk) = f(sk)
f ′(sk)

, k = 0, 1, 2, . . ., and |f ′ (sk)| ̸= 0. The convergence order
(CO) of the NIM is 2 with efficiency index (EI) 1.4142. Since the emergence
of the NIM, the plethora of techniques have been employed to modify it with
the motivation of enhancing its CO or EI when utilized to solve an NE. One
of such techniques that have been used is the weight function, which is a
power series based on the form:

w (θ(s)) = 1 +

m∑
i=1

αi(θ(s))
i (2)

or
w (θ(s)) = 1 +

m∑
i=1

αi(µ(s)− 1)i, (3)

where αi ∈ R, 1 ≤ m ≤ ∞ and θ (s) , µ (s) are often quotients of two real
functions involving the evaluations of f (·) or f ′ (·).

In order to acknowledge some good literature in this direction, we note
that, in the work of Khattri and Abbabandy [9], the NIM was adjusted and
used as a predictor and a corrector iterative function that involves the series
(2) to construct a one-parameter family of IM with CO four presented as

y(sk) = sk − 2
3u(sk),

sk+1 = sk − u(sk)
[
1 +

∑3
i=1 τi(v(s))

i
]
,

τ1 = 21
8 − α4, τ2 =

(
− 9

2 − 3α4

)
, τ3 =

(
15
8 − 3α4

)
,

(4)

where v(sk) =
f ′(yk)
f ′(sk)

and α4is a real parameter that is free.

In a similar manner, the power series (2) was utilized in Chun [4] to
suggest the two-point IM

wk = sk − u(sk),

sk+1 = sk − f(wk)

f ′(sk)

[
1 + 2

f(wk)

f(sk)
+

(
f(wk)

f(sk)

)2
]
.

(5)

Ghanbari [6] used a power series like the one of (2) given as

sk+1 = wk −
[
Af(sk)

2 +Bf(wk)f(sk) + Cf(wk)
2

Df(sk)2 + Ef(wk)f(sk) + Ff(wk)2

]
f(wk)

f ′(sk)
. (6)

To develop a class of three-free-parameter CO three, the IM is obtained as
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sk+1 = wk −
[
1 + (2 + α) tk + σt2k

1 + αtk + βt2k

]
f (wk)

f ′ (sk)
, (7)

where t = (wk)
f(sk)

and α, β, σ ∈ R. It was also shown in [6] that the class of
methods (7) has the methods presented by Ostrowski [14], Chun [4, 3], Kou,
Li, and Wang [10], and Chun and Ham [5] as concrete members.

In the work of Sharma and Bahl [16], the combination and power series
of the form (2) were utilized to construct a CO four method as

sk+1 = sk −
[
−1

2
+

9f ′(sk)

8f ′(yk)
+

3f ′(yk)

8f ′(sk)

]
f(sk)

f ′(sk)
. (8)

Ogbereyivwe and Ojo-Orobosa [13] employed a kind of the power series (2)
and an additional other weight function to put forward an iterative structure
of the form:

sk+1 = wk −

[
1 +

m∑
i=1

αiΦ(t, u)
i

]
G (u) , (9)

where t = f(wk)
f(xk)

and Φ(t, u) = t
1+u . This iterative structure was utilized in

developing a three-parameter family of IM of CO four.
In the separate work of Ahmad [1] and Babajee [2], the power series (3)

was used as a weight function to develop IMs with CO four presented as

sk+1 = sk − u(sk)

[
1− 3 (µ(sk)− 1)

4
+

9 (µ(sk)− 1)
2

8

]
, (10)

where µ(sk) =
f ′(yk)
f ′(sk)

.
Also, Mahdu [11] used (3) to develop methods that utilize the same func-

tion evaluations to achieve order four presented as

sk+1 = sk − u(sk)
1

2
(3− µ(sk))

[
1− (µ(sk)− 1)

4
+ (µ(sk)− 1)

2

]
. (11)

Motivated by the above literature that uses the power series of the kinds
(2) or (3) as weight functions in developing some good IMs for obtaining s∗

of NE, we put forward a new class of power series-based IM that has some
existing class of IMs that are also power series based, as concrete members.
The method uses the quotient of two power series in the form of (3) as
weight functions as against one power series used in Ahmad [1] and Babajee
[2]. This technique led to the development of a class of three real and free
parameter IM for solving NE with CO four. The manuscript is organized in
the following sequence. Section 1 discusses some literature background, while
Section 2 puts forward the methodology. In Section 3, the convergence test
on the method is carried out. Section 4 presents the results of a numerical
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experiment on the developed method. The final section of the work includes
the conclusion and suggested areas for further research.

2 The method

Consider the IM (iterative method) that is based on the terminal and con-
vergent power series put forward as:

sk+1 = sk − u(sk)

[(
1 +

m∑
i=1

αi(µ(sk)− 1)i

)
/

(
1 +

m∑
i=1

βi(µ(sk)− 1)i

)]
,

(12)
where u(sk) =

f(sk)
f ′(sk)

, µ (sk) =
f ′(yk)
f ′(sk)

, αi and βi, i = 1, 2, 3, . . ., are free and
real parameters to be established. To illustrate the contribution of the IM
(12), the case of m = 3 is considered for investigation and its convergence
conditions. First, the following definitions are acknowledged.

Definition 1 (Asymptotic error, Asymptotic constant, and CO). Let Aj =
sj − s∗ be the IM error at the jth iteration, and suppose that the equation
Aj+1 = ηAρ

k +O(Aρ+1
j ) can be obtained from an IM by the use of the Taylor

expansions on the functions f(·). Then Aj+1 is called the Asymptotic error
equation, η is Asymptotic constant, and ρ is CO.

Definition 2 (Efficiency). If the equation Aj+1 = ηAρ
j +O(Aρ+1

j ) is derived
from an IM as described in Definition 1, then the value Eeff = ρ

1
τ (where

τ is total number of distinct functions f(·) in one IM cycle) is called the
efficiency index of the IM.

3 Method convergence investigation

The investigation on the convergence of the method put forward in (12) for
the case m = 3 is presented in this section. Firstly, the theorem that enables
us the establishment of the method’s convergence is stated and then followed
by its proof.

Theorem 1. Define f : D ⊂ R → R as a function that is real valued such
that it is differentiable for at least three times in the domain D. Suppose
that s∗ ⊂ D and that |f ′ (·)| ̸= 0 in D. Then for an initial guess s0 close to
s∗ in D, the sequence {sj}j≥0 , (sj ∈ D) of approximations, generated by the
class of IM in (12), where m = 3, converges to s∗ with CO four whenever the
free parameters αi and βi satisfy the following conditions: β1 − α1 +

3
4 = 0,

β2 − 1
16 (16α2 + 12α1 − 19) = 0 and β3 − 1

64 (64α3 + 48α2 − 36α1 + 54) = 0.
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161 A three-free-parameter class of power series ...

Proof. Suppose in the Taylor expansion of f (s) and f ′ (s) about s∗ that we
set s=sk. Then the following expression can be obtained:

f (sj) = f ′ (s∗) (Aj +

4∑
n=2

cnA
n
j +O

(
A5

j

)
), (13)

and

f ′ (sj) = f ′ (s∗) (1 +

5∑
n=2

ncnA
n−1
j +O

(
A5

j

)
), j=0, 1, 2, . . . , (14)

where cn = 1
n!

fn(s∗)
f ′(s∗) , n ≥ 2.

Using (13) and (14), the series expansions of u(sk) and µ(sk) are, respec-
tively,

u(sk) = Ak−c2A
2
k+
(
2c22 − 2c3

)
A3

k+
(
−4c32 + 7c2c3 − 3c4

)
A4

k+O(A5
k), (15)

and

µ(sk) =1 +
4

3
c2Ak +

(
4c22 −

8

3
c3

)
A2

k +
(
36c32 − 45c2c3 + 13c4

)
A3

k

+

(
80

3
c42 −

148

3
c22c3 +

48

27
c4 − 5c5

)
A4

k +O(A5
k).

(16)

From (15), we have

yk = Ak − 2

3
u(sk)

=
1

3
Ak +

2

3
c2A

2
k − 4

3
(c22 − c3)A

3
k +

2

3

(
4c32 − 7c2c3 + 3c4

)
A4

k +O(A5
k).

(17)

Using (17), the expansion of the function f(yk) is obtained as

f(yk) =
1

3
Ak +

7

9
c2A

2
k

+

(
4c22
9

− 4(c22 − c3)

3
+

c3
27

)
A3

k

+

(
c2

(
4

9
c22 −

8

9
(c22 − c3)

)
+

2

9
c2c3 +

2

3

(
4c32 − 7c2c3 + 3c4

))
A4

k

+O(A5
k),

(18)

and using (18), its derivative f ′(yk) is
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f ′(yk) =1 +
2

3
c2Ak

+

(
4

3
c22 +

1

3
c3

)
A2

k +

(
−8

3
c2
(
c22 − c3

)
+

4

3
c2c3 +

4

27
c4

)
A3

k

+

((
4

3
c22 −

8

3

(
c22 − c3

))
c3 +

8

9
c2c4 +

4

3
c2
(
4c32 − 7c2c3 + 3c4

))
A4

k

+O(A5
k).

(19)

From the expressions in (14) and (19), the Taylor expansion of the quo-
tient f ′(yk)

f ′(sk)
is

f ′(yk)

f ′(sk)
=1 +

4

3
c2Ak

+

(
4c22 +

8

3
c3

)
A2

k − 8

27

(
36c32 − 45c2c3 + 13c4

)
A3

k

+

(
80

3
c42 −

148

3
c22c3 +

32

3
c23 +

484

27
c2c4 − 5c5

)
A4

k

+O(A5
k).

(20)

Using (16), the expansion of the quotient of the two power series in (12)
is obtained as(
1 +

3∑
i=1

αi(µ(sk)− 1)i

)
/

(
1 +

3∑
i=1

βi(µ(sk)− 1)i

)

= 1− 4

3
(α1 − β1) c2Ak

+
4

9

(
4α2c

2
2 − 9β1c

2
2 + β2

1c
2
2 − 4β2c

2
2 + α1

(
(9− 4β1) c

2
2 − 6c3

)
+ 6β1c3

)
A2

k

+
8

27
(8α3c

3
2 − 36β1c

3
2 + 36β2

1c
3
2 − 8β3

1c
3
2 + · · ·

+ α1

(
4
(
9− 9β1 + 2β2

1 − 2β2

)
c32 + 3 (−15 + 8β1) c2c3 + 13c4

)
)A3

k

+
1

81
(1728α3c

4
2 + 256α4c

4
2 − 2160β1c

4
2 − 256α3β1c

4
2 + 3600β2

1c
4
2 + · · ·

+ 4 (−363 + 208β1) c2c4 + 9
(
32 (−3 + 2β1) c

2
3 + 45c3

)
)A4

k +O
(
A5

k

)
.
(21)

Now, substituting (15) and (21) into the iterative structure in (12), the
following error equation is obtained:
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sk+1 =s∗ +

(
c2 +

4

3
(α1 − β1) c2

)
A2

k

+
2

9
(
(
−9− 8α2 + 8α1 (β1 − 3) + 24β1 − 8

(
β2
1 − β2

))
c22

+ 3 (3 + 4α1 − 4β1) c3)A
3
k

+
1

27
((4(27 + 84α2 + 16α3 − 117β3 − 16α2β1 + 84β2

1 − 16β3
1

+ α1

(
117− 84β1 + 16β2

1 − 16β2

)
− 84β2 + 32β1β2 − 16β3)c

3
2

+ 3
(
−63− 64α2 + 168β1 − 64β2

1 + 8α1 (8β1 − 21) + 64β1

)
c2c3

+ (81 + 104α1 − 104β1) c4))A
4
k +O

(
A5

k

)
.

(22)
For the method (12) to attain order four convergence, the second and

third terms of (22) must be annihilated. This can be achieved when the
following set of equations are satisfied:

β1 = α1 +
3

4

β2 =
1

16
(16α2 + 12α1 − 9)

β3 =
1

64
(64α3 + 48α2 − 36α1 + 54) .

(23)

When the conditions in (23) are substituted in (22), the error equation is
obtained as

Ak+1 = s∗ −
(
−9c2c3 + c4

9

)
A4

k +O
(
A5

k

)
. (24)

Following Definition 1, the asymptotic error equation for the method (12)
is the expression on (24), and consequently, the CO is four.

Remark 1. By substituting the conditions (23) into (12), the class of three-
free-parameter IM for solving NE is obtained as

sk+1 = sk − u (sk)
[
1+

∑3
i=1 αi(µ(sk)−1)i

1+
∑3

i=1 βi(µ(sk)−1)i

]
,

β1 = α1 +
3
4 , β2 = 16α2+12α1−9

16 ,

β3 = 64α3+48α2−36α1+54
64 .

(25)

We emphasis here that, for any free choice of αi ∈ R in (25), a CO four
method with Eeff = 1.5867 can be constructed.

Remark 2. Obtaining suitable replacement function(s) for the weight func-
tion(s) used in [17, 13, 12, 15], and many other existing methods that were
developed via the weight function(s) technique, requires subjecting the re-
placement function(s) to satisfy certain conditions that involve its evaluation
and many times differentiation at some fixed points. These procedures are
tedious and cumbersome compared to the proposed three-parameter-based

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 157–169



Ogbereyivwe and Izevbizua 164

class of methods (25) that requires the arbitrary substitution of values for
the parameters. In fact, for any real values for the parameters, the method
works.

Remark 3. It is important to note that for m = 2 in (12), a subclass of
method (25) is obtained as

sk+1 = sk−u (sk)

(
1 + α1 (µ(sk)− 1) + α2 (µ(sk)− 1)

2

1 +
(
α1 +

3
4

)
(µ(sk)− 1) +

(
16α2+12α1−9

16

)
(µ(sk)− 1)

2

)
.

(26)
Some existing methods and their variants are particular members of the

class of methods in (26).

For instance, the method developed by Chun [4] is a concrete method of
(26).

Furthermore, when α1 = − 3
4 and α2 = 9

8 in (26), the CO four methods
by Ahmad [1] and Babajee [2] are rediscovered as

sk+1 = sk − u (sk)

(
1− 3

4
(µ(sk)− 1) +

9

8
(µ(sk)− 1)

2

)
. (27)

Again, for α1 = 3
4 and α2 = 0 in (26), the well-known Jarratt method in

[8] is rediscovered as

sk+1 = sk − u (sk)

(
1 + 3

4 (µ(sk)− 1)

1 + 3
2 (µ(sk)− 1)

)
. (28)

For some new IMs of the kind (26), the following cases are presented:
Case 1

If α1 = − 3
4 and α2 = 0, then the following iterative structure is discovered:

M1 : sk+1 = sk − u (sk)

(
1− 3

4 (µ(sk)− 1)

1− 9
8 (µ(sk)− 1)

2

)
.

Case 2
The substitution of α1 = 11

6 and α2 = 1
4 in (26) yields the method

M2 : sk+1 = sk − u (sk)

(
1 + 11

6 (µ(sk)− 1) + 1
4 (µ(sk)− 1)

2

1 + 31
12 (µ(sk)− 1) + 17

16 (µ(sk)− 1)
2

)
.

Case 3
Consider α1 = 4

3 and α2 = 0. Then a new method is obtained as

M3 : sk+1 = sk − u (sk)

(
1 + 9

16 (µ(sk)− 1)
2

1 + 3
4 (µ(sk)− 1)

)
.
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Remark 4. In order to illustrate some new methods of kind (25), the fol-
lowing IMs are constructed for some real values of αi:

Case 4
When α1 = α2 = α3 = 0, then the method M4 is constructed as

sk+1 = sk − u (sk)

(
1

1 + 3
4 (µ(sk)− 1)− 9

16 (µ(sk)− 1)
2
+ 27

32 (µ(sk)− 1)
3

)
.

Case 5
Consider the case α1 = α2 = α3 = 3

2 . Then the IM M5 is obtained as

sk+1 = sk − u (sk)

 1 + 3
2

(
(µ(sk)− 1) + (µ(sk)− 1)

2
+ (µ(sk)− 1)

3
)

1 + 9
4 (µ(sk)− 1) + 33

16 (µ(sk)− 1)
2
+ 21

8 (µ(sk)− 1)
3

 .

4 Numerical test

In this section, the methods derived from the developed class of methods are
subjected to numerical tests in order to verify their effectiveness when used
to obtain a solution to NE. The numerical results of the new methods are
compared with the results of some existing methods that are of CO four.
These include the method developed by Sharma and Bahl [16] (presented in
(8)) denoted by SBM, method developed by Ogbereyivwe and Ojo-Orobosa
in [13] (presented in (9)) with the parameters β = 2, η = σ = 0, denoted
by OOM, the method of Hafiz and Khirallah [7], denoted as HKM, the bi-
parameter method in Shams et al. [15] (given in (28)) with β = 1 and α = 2
and denoted as SEM, the methods in Ghanbari [6] (presented in (7)) obtained
by taking α = −2, β = 1, θ = 4 and α = −2, β = 1, σ = −1, and denoted as
GM1 and GM2, respectively. The metric used for comparison includes the
computational CO ρcoc is given by

ρcoc =
log10 |f (sk+1)| / |f (sk)|
log10 |f (sk)| / |f (sk−1)|

,

and |f (sk)|. All computation programs for the methods were written and
executed in the MAPLE 2017 software environment using Intel Celeron(R)
computer with a 2GB RAM processor. The error tolerance |f (sk)| ≤ 200−200

was used in terminating program execution. The computational outputs are
maintained at 2000 digits precision in all computations. The NE fi(s) =
0 used for the test and their respective solutions s∗ presented in 15 digits
precision are as given in Examples 1–5. For comparison, computation results
are presented in Tables 1 and 2.

Consider the following examples:

Example 1. [6] f1(s) = s2−es−3s+2 = 0, s∗ = 0.257530285439860 . . ..

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 157–169
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Example 2. [6] f2(s) = sin2(s)−s2+1 = 0, s∗ = 1.404491648215341 . . ..

Example 3. [13] f3(s) = arctan(s) = 0, s∗ = 0.

Example 4. [6] f4(s) = (s− 1)
3 − 2 = 0, s∗ = 2.259921049894873 . . ..

Example 5. [13] f4(s) =
√

1
s + 2 log10

(
ϵ/D
3.7 + 2.51

R
√
s

)
= 0, where ϵ

D = 10−4

and R = 105, s∗ = 0.004129319146099 . . ..

Table 1: Methods results comparison for Examples 1– 2

Methods s0 |f(s1)| |f(s2)| |f(s3)| |f(s4)| |f(s5)| ρcoc
SBM 5.3e− 4 7.1e− 18 2.3e− 73 2.7e− 295 − 4.0
HKM 7.3e− 3 3.4e− 16 1.6e− 66 7.1e− 268 - 4.0
SEM 5.9e− 3 1.7e− 13 1.1e− 55 1.7e− 224 - 4.0
OOM 1.7e− 2 2.9e− 11 2.5e− 46 1.4e− 186 - 4.0
GM1 2.8e− 4 3.4e− 19 7.5e− 79 1.7e− 317 - 4.0
GM2 -0.3 3.0e− 3 1.1e− 14 1.6e− 60 8.4e− 244 - 4.0
M1 1.6e− 4 4.8e− 20 4.8e− 82 4.3e− 330 - 4.0
M2 2.3e− 3 3.9e− 15 3.1e− 62 1.2e− 250 - 4.0
M3 7.3e− 5 2.3e− 21 2.5e− 87 3.1e− 351 - 4.0
M4 2.1e− 3 2.6e− 15 5.1e− 63 1.5e− 253 - 4.0
M5 2.4e− 3 4.0e− 15 3.3e− 62 1.6e− 250 - 4.0
SBM 5.3e− 2 4.5e− 7 2.8e− 27 4.0e− 108 1.8e− 431 4.0
HKM 3.7e− 2 6.2e− 8 5.0e− 31 2.1e− 123 6.3e− 493 4.0
SEM 1.2e− 2 1.5e− 9 4.1e− 37 2.2e− 147 1.7s− 588 4.0
OOM 1.0e− 2 1.6e− 5 1.7e− 20 2.2e− 80 3.6e− 320 4.0
GM1 6.1e− 2 1.0e− 6 1.1e− 25 1.1e− 101 1.4e− 405 4.0
GM2 2 1.4e− 2 2.8e− 9 3.9e− 36 1.6e− 143 4.7e− 573 4.0
M1 5.6e− 2 7.5e− 7 3.0e− 26 6.7e− 104 1.8e− 414 4.0
M2 6.1e− 2 1.2e− 6 1.9e− 25 1.3e− 100 2.9e− 401 4.0
M3 5.9e− 2 9.3e− 7 6.8e− 26 1.9e− 102 1.1e− 408 4.0
M4 2.7e− 2 2.1e− 9 9.8e− 38 5.1e− 151 3.6e− 604 4.0
M5 1.5e− 2 2.4e− 10 1.9e− 41 6.8e− 166 1.1e− 663 4.0

From the numerical results in Tables 1 and 2, we observe that all the par-
ticular methods constructed from the developed class of methods (25) solved
the test problems very well. Furthermore, the new methods’ computational
order of convergence displayed in the last column of Tables 1 and 2 agree
with the theoretical CO established in Section 3. The methods computation
results outputs are also highly competitive with the methods compared.

5 Conclusion

The new three-parameter class of IM put forward in this manuscript was
shown to have a capacity of approximating the solution of NE with CO
four requiring three evaluations of distinct functions in an iteration cycle.
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Table 2: Methods results comparison for Examples 3– 5

Methods s0 |f(s1)| |f(s2)| |f(s3)| |f(s4)| |f(s5)| ρcoc
SBM 6.8e− 3 2.3e− 12 1.1e− 59 2.2e− 296 - 4.0
HKM 4.7e− 3 3.7e− 13 1.1e− 63 2.3e− 316 - 4.0
SEM 4.7e− 3 5.0e− 13 6.8e− 62 3.2e− 312 - 4.0
OOM 6.1e− 2 1.5e− 7 1.6e− 35 2.6e− 175 - 4.0
GM1 9.3e− 3 1.6e− 11 2.2e− 55 1.1e− 274 - 4.0
GM2 −0.5 1.3e− 3 7.3e− 16 4.6e− 77 4.8e− 383 - 4.0
M1 9.2e− 3 1.1e− 11 2.4e− 56 1.2e− 279 4.0
M2 2.9e− 3 3.1e− 14 4.8e− 69 4.4e− 343 - 4.0
M3 3.1e− 3 4.4e− 14 2.7e− 68 2.2e− 339 - 4.0
M4 1.5e− 3 1.4e− 15 9.6e− 76 1.3e− 376 - 4.0
M5 3.1e− 3 4.5e− 14 3.2e− 68 5.6e− 339 - 4.0
SBM 2.5e− 1 2.5e− 5 3.8e− 21 2.0e− 84 1.3e− 337 4.0
HKM 1.5e− 1 1.8e− 6 4.8e− 26 2.2e− 104 1.0e− 417 4.0
SEM 8.2e− 1 7.2e− 2 4.0e− 7 3.0e− 28 1.0e− 112 4.0
OOM 4.6e− 1 7.5e− 4 1.0e− 14 4.0e− 58 8.5e− 232 4.0
GM1 2.9e− 1 5.7e− 5 1.3e− 19 3.3e− 78 1.4e− 312 4.0
GM2 3 3.2e− 2 1.1e− 8 1.5e− 34 5.9e− 138 1.3e− 551 4.0
M1 2.7e− 1 4.2e− 5 3.8e− 20 2.6e− 80 5.8e− 321 4.0
M2 3.5e− 2 2.3e− 9 4.4e− 38 5.8e− 153 1.7e− 612 4.0
M3 3.4e− 2 6.6e− 10 1.0e− 40 5.2e− 164 3.8e− 657 4.0
M4 9.6e− 2 9.4e− 8 1.2e− 31 3.5e− 127 2.2e− 509 4.0
M5 1.2e− 2 3.3e− 11 1.9e− 45 2.1e− 182 3.2e− 730 4.0
SBM 3.7e− 1 1.4e− 5 2.6e− 23 3.7e− 94 1.5e− 377 4.0
HKM 1.6e− 3 8.5e− 16 7.6e− 65 4.3e− 261 - 4.0
SEM Failed to converge
OOM 6.1e− 1 3.4e− 4 2.8e− 17 1.4e− 69 8.7e− 279 4.0
GM1 4.5e− 1 3.7e− 5 2.0e− 21 1.6e− 86 6.8e− 347 4.0
GM2 0.002 2.9e− 1 1.5e− 5 8.0e− 23 7.3e− 92 5.2e− 368 4.0
M1 4.1e− 1 2.9e− 5 7.8e− 22 4.3e− 88 4.0e− 353 4.0
M2 1.0509 8.1e− 4 2.4e− 16 1.9e− 66 7.4e− 267 4.0
M3 5.1e− 1 3.3e− 5 4.9e− 22 2.6e− 89 2.0e− 358 4.0
M4 1.2e− 1 1.4e− 7 1.9e− 31 8.1e− 127 2.4e− 508 4.0
M5 7.3e− 1 1.7e− 4 5.0e− 19 3.6e− 77 9.7e− 310 4.0

Several famous existing methods, such as Chun [4], Ahmad [1], Babajee [2],
Jarrat [8], and others, are typical members of the class of developed methods.
For future research, the implementation of the method developed herein in
Banach spaces may be considered.
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