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Abstract
One of the major problems in applied mathematics and engineering

sciences is solving nonlinear equations. In this paper, a family of eight-
order interval methods for computing rigorous bounds on the simple zeros
of nonlinear equations is presented. We present the convergence and er-
ror analysis of the introduced methods. Also, the introduced methods
are compared with the well-known interval Newton method and interval
Ostrowski-type methods. Finally, we propose a technique based on the
combination of the newly introduced approach with the extended interval
arithmetic to find all of the roots of a nonlinear equation that are located
in an initial interval.
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1 Introduction

The main motivation for this study is to enclose the simple root x∗ of the
nonlinear equation

f(x) = 0, (1)

by a bounded interval, where f : D ⊆ R → R is a real-valued nonlinear
function on the open interval D.

Nonlinear problems are of interest to engineers, physicists, and many
other scientists because most systems are inherently nonlinear in nature.
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103 A family of eight-order interval methods ...

Up to now, many modified methods for solving nonlinear equations have
been developed to improve the local order of convergence of some classical
methods, such as Newton, Chebyshev, Potra-Pt�ak, and Ostrowski methods;
see [19, 18, 7, 8, 6, 3, 4, 9, 10, 14, 2, 23, 5, 13].

An optimal eight-order method for solving nonlinear equation (1) pro-
posed by Bi, Ren, and Wu [2] that is based on King family [14], is given
by 

yn = xn − f(xn)
f ′(xn)

,

zn = yn − 2f(xn)−f(yn)
2f(xn)−5f(yn)

f(yn)
f ′(xn)

,

xn+1 = zn − h(µn)
f(zn)
f ′(zn)

,

(2)

where µn = f(zn)
f(xn)

and h is a real-valued function with h(0) = 1, h′(0) = 2 and
|h′′(0)| < ∞. Iterative method (2) with eight-order of convergence is very fast
compared with many other methods. Solving the problems in floating-point
arithmetic is inevitably associated with round-off errors, and so the obtained
solution to the problem is accompanied by some errors. Interval analysis is a
tool for bounding the errors and providing rigorous bounds on the solution to
the problems. The interval extension of the Newton method with quadratic
convergence [24, 16], the interval extensions of the Ostrowski method and
modified Ostrowski method, respectively, with fourth-order and sixth-order
of convergence [1, 11], and the interval extension of the n-step Traub method
with (n+ 1)-order of convergence [21], are examples of the interval methods
that give rigorous bounds on the solution to the nonlinear equations.

In this work, we present an interval extension of (2), which has an eight-
order of convergence and gives rigorous and outstanding results, that is, in-
terval enclosures with sharp bounds that contain the exact solution. Also, we
introduce a technique based on combining the new method and the extended
interval arithmetic for enclosing all simple roots that are located in an initial
interval. In contrast, many root-finding methods can only find one root of
the function in the given initial interval.

Here, we use boldface letters to denote intervals. The set of real intervals
is denoted by IR = {x = [x, x] : x ≤ x}. The midpoint and width of an
interval number x = [x, x] are defined by m(x) = x+x

2 and w(x) = x − x,
respectively. The absolute value of x is |x| = max{|x| : x ∈ x}. The interval
extension of real-valued function g is denoted by its corresponding uppercase
and bold letter G.

2 Description of the methods

Many modified methods for solving nonlinear equation (1) with a high-order
of convergence are based on the well-known Newton method. So, we first
give a brief description of the interval Newton method.
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2.1 Interval Newton method

The idea of the interval Newton method for the first time was discussed
in [24, 16]. Suppose that the real differentiable function f in (1) has the
inclusion of monotonic interval extension F′(x) of its derivative f ′(x) and
that x0 is an initial point. Then the interval Newton method is

xn+1 =
{

m(xn)−
f(m(xn))

F′(xn)

}
∩ xn, n = 0, 1, . . . . (3)

Recursive relation (3) produces a sequence {xn} of interval numbers. If the
initial interval x0 contains a zero x∗ of f(x) and 0 /∈ F′(x0), then all iterates
contain x∗ and the method converges to x∗.

Theorem 1. [17] Let f be a real rational function of a single real variable
x with rational extensions F and F′ of f and f ′, respectively, such that f
has a simple zero y in an interval [x1, x2] for which F ([x1, x2]) is defined and
F′([x1, x2]) is defined and does not contain zero. Then there is an interval
x0 ⊆ [x1, x2] containing y and a positive real number K such that

w(xn+1) ≤ K(w(xn))
2,

therein {xn} is the produced interval sequence by (3).

2.2 Main results and convergence analysis

In this subsection, a new interval method is introduced to obtain sharp en-
closures for the simple zeros of nonlinear equations. First, for theoretical
considerations, we present the following lemmas.

Lemma 1. [17, 1] For real numbers a and b and interval numbers x and y,
we have

(i) w(ax + by) = |a|w(x) + |b|w(y),
(ii) w(xy) ≤ |x|w(y) + |y|w(x).

Lemma 2. [17] Every nested sequence {xk} converges and has the limit
∩∞
k=1xk.

Lemma 3. [17] If F is a natural interval extension of the real-valued rational
function f with F(x) defined for x ⊆ x0, where x and x0 are intervals, then
there exists a constant L such that

w(F(x)) ≤ Lw(x).

Now we introduce the interval extension of (2) as follows:
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105 A family of eight-order interval methods ...yn = N(xn) ∩ xn,
zn = R(xn, yn) ∩ xn,
xn+1 = S(xn, yn, zn) ∩ xn,

(4)

where
N(x) = m(x)− f(m(x))

F′(x) , (5)

R(x, y) = m(y)− 2f(m(x))− f(m(y))
2f(m(x))− 5f(m(y))

f(m(y))
F′(x) , (6)

S(x, y, z) = m(z)− H(µ̃)
f(m(z))

F′(z) , µ̃ =
F(z)

f(m(x)) , (7)

in which H is the interval extension of the continuous rational function h.
Now we are ready to present the theoretical analysis of the proposed

method (4).

Theorem 2. Assume that f : D ⊆ R → R is continuously differentiable and
that 0 /∈ F′(x0) for a given x0 ⊆ D. If x0 contains a zero x∗ of f(x), then so
do all xk for k = 1, 2, . . ., defined by (4). Furthermore, the intervals xk form
a nested sequence converging to x∗.

Proof. Using the Taylor expansion around x ∈ x0, we have

0 = f(x∗) = f(x) + (x∗ − x)f ′(ξ1),

for some ξ1 between x and x∗. Because f ′(ξ1) ̸= 0, we obtain

x∗ = x− f(x)

f ′(ξ1)
, (8)

which f ′(ξ1) ∈ F′(x0) yields

x∗ = x− f(x)

f ′(ξ1)
∈ x− f(x)

F′(x0)
.

Since x ∈ x0 is arbitrary, so in particular for x = m(x0), and taking into
account that x∗ ∈ x0, we obtain

x∗ ∈
{

m(x0)−
f(m(x0))

F′(x0)

}
∩ x0 = N(x0) ∩ x0 = y0.

Now again using the Taylor theorem, for y ∈ y0, we can write

f(y) = f(x∗) + (y − x∗)f ′(ξ2),

for some ξ2 between y and x∗. Since f ′(ξ2) ̸= 0 and taking into account that
f(x∗) = 0, we get
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x∗ = y − f(y)

f ′(ξ2)
. (9)

As previously mentioned, method (2) is based on the King family. King [14]
proposed the following formula for approximating f ′(yn):

f ′(yn) ≈ f ′(xn)
f(xn) + γf(yn)

f(xn) + βf(yn)
, (10)

with γ = β − 2 to achieve a fourth-order of convergence. Let ξ1 and ξ2 be
sufficiently close to x and y, respectively. Whereas in method (2), β = − 1

2 ,
and using (10), we have

f ′(ξ2) ≈ f ′(ξ1)
2f(x)− 5f(y)

2f(x)− f(y)
. (11)

Substituting (11) into (9) yields

x∗ = y − f(y)

f ′(ξ2)
= y − 2f(x)− f(y)

2f(x)− 5f(y)

f(y)

f ′(ξ1)
. (12)

Indeed f ′(ξ1) ∈ F′(x0) and (12) holds for any x ∈ x0 and y ∈ y0, in particular
for x = m(x0) and y = m(y0). So, we obtain

x∗ ∈
{

m(y0)−
2f(m(x0))− f(m(y0))

2f(m(x0))− 5f(m(y0))

f(m(y0))

F′(x0)

}
∩x0 = R(x0, y0)∩x0 = z0.

Now for z ∈ z0, by the Taylor theorem, we have

f(z) = f(x∗) + (z − x∗)f ′(ξ3), (13)

for some ξ3 between z and x∗. Using the Taylor expansion for h(µ) around
zero with µ = f(z)

f(x) , we get

h(µ) ≈ h(0) + µh′(0).

Since h(0) = 1 and h′(0) = 2, we obtain

h(µ) ≈ 1 + 2
f(z)

f(x)
,

and so
f(z)h(µ) = f(z) + 2

f2(z)

f(x)
.

Because z is arbitrary, we can assume that z and x∗ are sufficiently close
together and so f(z)h(µ) ≈ f(z). Now using (13), we obtain
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x∗ = z − h(µ)
f(z)

f ′(ξ3)
. (14)

Indeed f ′(ξ3) ∈ F′(z0) and (14) holds for any x ∈ x0 and z ∈ z0, in particular
for x = m(x0) and z = m(z0). Therefore, since x∗ ∈ x0, we obtain

x∗ ∈
{

m(z0)− H(µ̃0)
f(m(z0))

F′(z0)

}
∩ x0 = S(x0, y0, z0) ∩ x0 = x1.

By continuing this process, we see that

x∗ ∈ xk, k = 0, 1, . . . . (15)

Now by formula (4), it is obvious that xk+1 ⊆ xk for k = 0, 1, . . ., which means
that {xk} is a nested sequence. By Lemma 2, this sequence is convergent to
a = ∩∞

k=1xk. Since x∗ ∈ xk for all k, then x∗ ∈ a. On the other hand, m(zn)
is not contained in S(xn, yn, zn) unless f(m(zn)) = 0. Since m(zn) ∈ zn ⊆ xn,
we conclude that w(xn+1) < w(xn). Therefore a = x∗.

Note that procedure (4) stops when some stopping criteria are fulfilled,
such as w(xn) < ϵ for a tolerance ϵ or xn+1 = xn. The computational scheme
of the proposed interval method (4) for enclosing the simple roots of a given
nonlinear equation f(x) = 0 is presented in Algorithm 1.

Algorithm 1 The new interval method (4) for enclosing roots of nonlinear
equation f(x) = 0

1: procedure Interval Root-finding(f, x0, tol)
2: n = 0;
3: while w(xn) >= tol do
4: Compute N(xn) from (5);
5: yn =intersect(N(xn), xn);
6: Compute R(xn, yn) from (6);
7: zn =intersect(R(xn, yn), xn);
8: Compute S(xn, yn, zn) from (7);
9: xn+1 =intersect(S(xn, yn, zn), xn);

10: n = n+ 1;
11: end while
12: return xn

13: end procedure

Theorem 3. Suppose that f : D ⊆ R → R is continuously differentiable and
that 0 /∈ F′(x0) for a given x0 ⊆ D. If x∗ ∈ x0, then xk contains a unique
root of f(x), for k = 0, 1, . . . . Furthermore, if S(xk, yk, zk) ∩ xk = ∅ for some
k, then f(x) ̸= 0 for all x ∈ x0.
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Proof. Let x∗ ∈ x0. By Theorem 2, we conclude that x∗ ∈ xk for all k, which
is unique because 0 /∈ F′(xk) ⊆ F′(x0).
Now suppose S(xk, yk, zk) ∩ xk = ∅ for some k, but x∗ ∈ x0 is a root of
f(x), so by Theorem 2, we conclude that x∗ ∈ xn for all n. Particularly
x∗ ∈ xk+1 = S(xk, yk, zk) ∩ xk, which is a contradiction.

Theorem 3 is in the category of verification methods. By verifying its
assumptions with the aid of a computer, we can detect when a certain interval
does not contain a root.
Theorem 4. Let f : D ⊆ R → R be continuously differentiable and have
a simple zero x∗ in x0. If 0 /∈ F′(x0), then the interval method (4) has an
eight-order of convergence, that is, there exists a positive real number C such
that

w(xn+1) ≤ C(w(xn))
8.

Proof. Since xn+1 ⊆ S(xn, yn, zn) so w(xn+1) ≤ w(S(xn, yn, zn)). By the
mean value theorem, we can write

f(m(zn)) = f ′(η1)(m(zn)− x∗),

for some η1 between m(zn) and x∗. Thus we get

S(xn, yn, zn) = m(zn)− H(µ̃n)
f ′(η1)(m(zn)− x∗)

F′(zn)
. (16)

Therefore, from (16) and Lemma 1, we obtain

w(S(xn, yn, zn)) ≤ |H(µ̃n)||m(zn)− x∗||f ′(η1)|w(
1

F′(zn)
) +

w(H(µ̃n))|m(zn)− x∗||f ′(η1)|| 1
F′(zn) |. (17)

Because x∗ ∈ zn, it is obvious that

|m(zn)− x∗| ≤ w(zn). (18)

On the other hand, we can write

zn ⊆ m(yn)−
2f(m(xn))− f(m(yn))

2f(m(xn))− 5f(m(yn))

f(m(yn))

F′(xn)
. (19)

Using the mean value theorem, we have

f(m(yn)) = f ′(η2)(m(yn)−x∗), and f(m(xn)) = f ′(η3)(m(xn)−x∗),
(20)

for some η2 between m(yn) and x∗ and some η3 between m(xn) and x∗.
Because

|m(yn)− x∗| ≤ w(yn) ≤ w(xn) and |m(xn)− x∗| ≤ w(xn), (21)
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so using (20) and (21), we obtain

|f(m(yn))| ≤ |f ′(η2)|w(yn), (22)

|2f(m(xn))− f(m(yn))| ≤ 2|f(m(xn))|+ |f(m(yn))| (23)
= 2|f ′(η3)||m(xn)− x∗|+ |f ′(η2)||m(yn)− x∗|
≤ 2|f ′(η3)|w(xn) + |f ′(η2)|w(xn) ≤ C1w(xn),

where C1 is an upper bound for 2|f ′(η3)| + |f ′(η2)|. On the other hand,
Theorem 1 yields

w(yn) ≤ C2(w(xn))
2, (24)

for a positive constant C2. So by (22) and (24), we obtain

|f(m(yn))| ≤ C3(w,(xn))
2, (25)

in which C3 is an upper bound for C2|f ′(η2)|. Using Lemma 3, we have

w(
1

F′(xn)
) ≤ C4w(xn). (26)

Now from (19) and Lemma 1, we can write

w(zn) ≤
|2f(m(xn))− f(m(yn))|
|2f(m(xn))− 5f(m(yn))|

|f(m(yn))|w(
1

F′(xn)
),

Moreover, using (23), (25), and (26) yields

w(zn) ≤ C5(w(xn))
4, (27)

where C5 is an upper bound for C1C3C4

|2f(m(xn))−5f(m(yn))| . By Lemma 3 and (27),
we get

w(
1

F′(zn)
) ≤ w(zn) ≤ C5(w(xn))

4. (28)

Therefore, from (18), (27) and (28), we have

|H(µ̃n)||m(zn)− x∗||f ′(η1)|w(
1

F′(zn)
) ≤ C6(w(xn))

8, (29)

in which C6 is an upper bound for C2
5 |f ′(η1)||H(µ̃n)|. Now by Lemma 3,

there exists a positive constant C7 such that

w(H(µ̃n)) ≤ C7w(µ̃n). (30)

Using Lemmas 1 and 3 and (27), we obtain

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 102–120



Dehghani-Madiseh 110

w(µ̃n) = w(
F(zn)

f(m(xn))
) =

w(F(zn))
|f(m(xn))|

≤ C8w(zn)
|f(m(xn))|

≤ C9(w(xn))
4, (31)

where C8 is a positive constant and C9 is an upper bound for C5C8

|f(m(xn))| . From
(30) and (31), we can write

w(H(µ̃n)) ≤ C10(w(xn))
4, (32)

in which C10 = C7C9. Using (18), (27), and (32), we obtain

w(H(µ̃n))|m(zn)− x∗||f ′(η1)||
1

F′(zn)
| ≤ C11(w(xn))

8, (33)

where C11 is an upper bound for C5C10|f ′(η1)|| 1
F′(zn) |. Finally, since w(xn+1) ≤

w(S(xn, yn, zn)), by (17), (29), and (33), we conclude that w(xn+1) ≤
C(w(xn))

8, where C = C6 + C11.

As one can see, the new interval method (4) with three-step has an eight-
order of convergence, while some other interval methods with the same num-
ber of steps have a lower order of convergence; for some of them, see [1, 21].

3 Test problems

In this section, we give some numerical examples to illustrate the performance
of the new approach proposed in Section 2. The new method is compared
with the interval Newton method, interval Ostrowski method, and interval
modified Ostrowski method. In all examples, the procedures are stopped
when w(xk) < 10−16. We utilize INTLAB [22] to compute the verified results
on the computer. We study the following examples:

f1(x) = arcsin(x2 − 1)− 1

2
x+ 1, x∗

1 ≈ 0.5948109683983692,

f2(x) = ln(x2 + x+ 2)− x+ 1, x∗
2 ≈ 4.1525907367571583,

f3(x) = x2 − ex − 3x+ 2, x∗
3 ≈ 0.25753028543986079,

f4(x) = arctan(x) + x− 8, x∗
4 ≈ 6.58002470991429699,

f5(x) = x− 1/x, x∗
5 = 1.

The first two examples are taken from [2] and the latest is taken from [15].
For all examples, we use rational function h as follows:

h(t) = 1 +
2t

1 + t
.

In Figure 1, one can see the graphs of five functions f1, f2, f3, f4, and f5,
respectively, over the initial intervals x1

0 = [0.4, 1], x2
0 = [3.5, 5], x3

0 = [0.1, 2],
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Figure 1: Graphs of functions f1, f2, f3, f4, f5

x4
0 = [5, 9], and x5

0 = [0.5, 1.2]. By this figure, in addition to obtaining
an intuitive view of the functions, we can understand the behavior of the
functions for computing the following parameter:

ρk = max
x∈xk

|f(x)|. (34)

In the tables below, one can see the results obtained by implementing the
interval Newton method, the interval Ostrowski method, the interval mod-
ified Ostrowski method, and the new method (4) introduced in this paper.
The third and fourth columns of the tables show, respectively, the tolerance
parameters δk = w(xk)

max{|xk|,1} and ρk introduced by (34). Note that in some
tables, mark ”—” in the last step shows that the method fails in solving the
problem.

As the first example for f1(x) = arcsin(x2 − 1) − 1
2x + 1, we present the

obtained results by the mentioned methods in Tables 1–4. The presented
results in these tables show that the new method (4) achieves the desired
result with less number of iterations and higher accuracy. Also, the interval
Ostrowski method fails in solving the problem.

Tables 5–8 show the results obtained by executing different methods for
enclosing the root of f2(x) = ln(x2 + x+ 2)− x+ 1. It can be seen that the
new method (4) successes in the least number of iterations. Also, the interval
Ostrowski method fails in solving the problem.

For the third function f3(x) = x2 − ex − 3x + 2, the reported values in
Tables 9–12 show that only the new method (4) successes in getting the result
and the other methods fail.
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Tables 13–16 display the results obtained by executing four methods for
enclosing the root of f4(x) = arctan(x) + x− 8. As one can see, the interval
Ostrowski method has failed to obtain a result, and the new approach gives
better results than the other methods.

The results of different methods for obtaining appropriate enclosures for
the positive root of f5(x) = x − 1/x have been displayed in Tables 17–20.
The interval Newton method does not yield any result. Whereas the new
approach yields the exact root of the function.

Table 1: Results of the interval Newton method for f1(x) = arcsin(x2 − 1)− 1
2
x+ 1

k xk δk ρk

1 [0.40000000000000002, 0.66396313641487115] 2.64× 10−1 7.47× 10−2

2 [0.56560254826011236, 0.66396313641487115] 9.84× 10−2 7.47× 10−2

3 [0.59018815218397114, 0.59856980551945871] 8.38× 10−3 3.98× 10−3

4 [0.59480310218157917, 0.59481912020532601] 1.60× 10−5 8.63× 10−6

5 [0.59481096839332148, 0.59481096840342751] 1.01× 10−11 5.36× 10−12

6 [0.59481096839836900, 0.59481096839836911] 2.22× 10−16 0
7 [0.59481096839836911, 0.59481096839836911] 0 0

Table 2: Results of the interval Ostrowski method for f1(x) = arcsin(x2 − 1)− 1
2
x+ 1

k xk δk ρk

1 [0.54158214865149934, 0.63394129754193074] 9.24× 10−2 4.19× 10−2

2 [0.59477478728793232, 0.59485799844400755] 8.32× 10−5 4.98× 10−5

3 [0.59481096839836756, 0.59481096839837055] 3.11× 10−15 1.33× 10−15

4 — — —

Table 3: Results of the interval modified Ostrowski method for f1(x) = arcsin(x2 − 1)−
1
2
x+ 1

k xk δk ρk

1 [0.58885410911304559, 0.59936304066316770] 1.05× 10−2 4.83× 10−3

2 [0.59481096839549719, 0.59481096840132608] 5.83× 10−12 3.13× 10−12

3 [0.59481096839836922, 0.59481096839836933] 2.22× 10−16 1.11× 10−16

4 [0.59481096839836933, 0.59481096839836933] 0 1.11× 10−16
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Table 4: Results of the new method (4) for f1(x) = arcsin(x2 − 1)− 1
2
x+ 1

k xk δk ρk

1 [0.58015286826057066, 0.60890961953980971] 2.88× 10−2 1.50× 10−2

2 [0.59481096839720404, 0.59481096839958292] 2.38× 10−12 1.29× 10−12

3 [0.59481096839836911, 0.59481096839836911] 0 0

Table 5: Results of the interval Newton method for f2(x) = ln(x2 + x+ 2)− x+ 1

k xk δk ρk

1 [4.09482718955130400, 4.17132082850488750] 1.83× 10−2 3.47× 10−2

2 [4.15231696283340760, 4.15292802943720400] 1.47× 10−4 2.03× 10−4

3 [4.15259073289156170, 4.15259074074274000] 1.90× 10−9 2.40× 10−9

4 [4.15259073675715750, 4.15259073675715840] 4.28× 10−16 4.44× 10−16

5 [4.15259073675715840, 4.15259073675715840] 0 0

Table 6: Results of the interval Ostrowski method for f2(x) = ln(x2 + x+ 2)− x+ 1

k xk δk ρk

1 [4.14427225093898070, 4.15515943057456380] 2.62× 10−3 5.01× 10−3

2 [4.15259073560489430, 4.15259073791874480] 5.57× 10−10 6.10× 10−10

3 [4.15259073675715840, 4.15259073675715840] 0 0

Table 7: Results of the interval modified Ostrowski method for f2(x) = ln(x2 + x+2)−
x+ 1

k xk δk ρk

1 [4.15136705154255560, 4.15297239536206850] 3.87× 10−4 7.37× 10−4

2 [4.15259073675715750, 4.15259073675715840] 4.28× 10−16 4.44× 10−16

3 — — —

Table 8: Results of the new method (4) for f2(x) = ln(x2 + x+ 2)− x+ 1

k xk δk ρk

1 [4.15167922809522590, 4.15321948581378480] 3.71× 10−4 5.49× 10−4

2 [4.15259073675715840, 4.15259073675715840] 0 0
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Table 9: Results of the interval Newton method for f3(x) = x2 − ex − 3x+ 2

k xk δk ρk

1 [0.10000000000000001, 0.76487534371627797] 6.65× 10−1 1.86
2 [0.17953909948997981, 0.30082399330312792] 1.21× 10−1 2.97× 10−1

3 [0.25663052647850410, 0.25844642836458781] 1.82× 10−3 3.46× 10−3

4 [0.25753027894621072, 0.25753029191301735] 1.30× 10−8 2.45× 10−8

5 [0.25753028543986067, 0.25753028543986073] 1.11× 10−16 4.44× 10−16

6 — — —

Table 10: Results of the interval Ostrowski method for f3(x) = x2 − ex − 3x+ 2

k xk δk ρk

1 [0.10000000000000001, 0.31655239623745746] 2.17× 10−1 6.05× 10−1

2 [0.25752321108442017, 0.25753842849505237] 1.52 ×10−5 3.08× 10−5

3 [0.25753028543986073, 0.25753028543986078] 1.11× 10−16 0
4 — — —

Table 11: Results of the interval modified Ostrowski method for f3(x) = x2−ex−3x+2

k xk δk ρk

1 [0.24154741311026207, 2.00000000000000000] 8.79× 10−1 7.39
2 [0.25749104640972659, 0.39675078835778121] 1.39× 10−1 5.20× 10−1

3 [0.25753043640242368, 0.25753384076872499] 3.40× 10−6 1.34× 10−5

4 — — —

Table 12: Results of the new method (4) for f3(x) = x2 − ex − 3x+ 2

k xk δk ρk

1 [0.22110828457567316, 0.27623770073133980] 5.51× 10−2 1.38× 10−1

2 [0.25753028543982470, 0.25753028543989787] 7.32× 10−14 1.40× 10−13

3 [0.25753028543986078, 0.25753028543986078] 0 0
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Table 13: Results of the interval Newton method for f4(x) = arctan(x) + x− 8

k xk δk ρk

1 [6.5762681889199976482, 6.5869858860385530619] 1.62× 10−3 7.11× 10−3

2 [6.5800246452848929479, 6.5800247578416417582] 1.71× 10−8 6.60× 10−8

3 [6.5800247099142961105, 6.5800247099142978868] 2.69× 10−16 1.77× 10−15

4 [6.5800247099142969986, 6.5800247099142969986] 0 0

Table 14: Results of the interval Ostrowski method for f4(x) = arctan(x) + x− 8

k xk δk ρk

1 [6.5799958235806119689, 6.5800370828300822623] 6.27× 10−6 2.95× 10−5

2 [6.5800247099142961105, 6.5800247099142969986] 1.34× 10−16 8.88× 10−16

3 — — —

Table 15: Results of the interval modified Ostrowski method for f4(x) = arctan(x)+x−8

k xk δk ρk

1 [6.5800246462005800296, 6.5800248588084278012] 3.23× 10−8 1.52× 10−7

2 [6.5800247099142969986, 6.5800247099142969986] 0 0

Table 16: Results of the new method (4) for f4(x) = arctan(x) + x− 8

k xk δk ρk

1 [6.5800247087713694683, 6.5800247104028359857] 2.47× 10−10 1.16× 10−9

2 [6.5800247099142969986, 6.5800247099142969986] 0 0

Table 17: Results of the interval Newton method for f5(x) = x− 1/x

k xk δk ρk

1 — — —

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 102–120



Dehghani-Madiseh 116

Table 18: Results of the interval Ostrowski method for f5(x) = x− 1/x

k xk δk ρk

1 [0.99046958119024919309, 1.0128785276723828446] 2.21× 10−2 2.55× 10−2

2 [0.9999999856310709534, 1.000000014532778092] 2.89× 10−8 2.90× 10−8

3 [1.000000000000000000, 1.000000000000000222] 2.22× 10−16 3.33× 10−16

4 [1.000000000000000222, 1.000000000000000222] 0 3.33× 10−16

Table 19: Results of the interval modified Ostrowski method for f5(x) = x− 1/x

k xk δk ρk

1 [0.99900511706023975567, 1.0007695812111181421] 1.76× 10−3 1.99× 10−3

2 [1.000000000000000000, 1.000000000000000222] 2.22× 10−16 3.33× 10−16

3 [1.000000000000000222, 1.000000000000000222] 0 3.33× 10−16

Table 20: Results of the new method (4) for f5(x) = x− 1/x

k xk δk ρk

1 [0.99968995513425429333, 1.0004281041560696419] 7.37× 10−4 8.56× 10−4

2 [1.0000000000000000000, 1.000000000000000222] 2.22× 10−16 3.33× 10−16

3 1 0 0

4 Enclosing the roots using extended interval arithmetic

In this section, we want to introduce a technique that can find all the roots
of a nonlinear equation f(x) = 0 located in a wide initial interval. Many
root-finding methods in floating-point arithmetic can only find one root of
the function in a given interval. Our technique is based on combining the
new method (4) introduced in this paper and the extended interval arithmetic
[12, 17].

For a continuously differentiable function f(x), if x0 contains more than
one zero of f(x), then o ∈ F′(x0), and the discussed theorems in Section 2
will not be applicable. Using the extended interval arithmetic, this problem
can be handled. As said in [17], the definition of interval division can be
extended as follows:

[a, b]/[c, d] = [a, b](1/[c, d]),

where
1/[c, d] = {1/y : y ∈ [c, d]}.

If 0 /∈ [c, d], the we are using the ordinary interval arithmetic. If 0 ∈ [c, d],
leaving aside the case c = d = 0, then the extended interval arithmetic
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Figure 2: Graph of function f(x) = sinh(x)− x2 tan(x)

specifies the following cases:

1/[c, d] =


[1/d,+∞) if c = 0 < d,

(−∞, 1/c] ∪ [1/d,+∞) if c < 0 < d,

(−∞, 1/c] if c < d = 0.

Now if the initial interval x0 is such that 0 ∈ F′(x0), then the quotient
f(mid(x0))

F′(x0)
in (5) splits into two unbounded intervals. Thereafter intersecting

N(x0) with the finite interval x0 yields two disjoint intervals y11 and y12.
First, for y11, if 0 /∈ F′(y11), then we take y11 as the initial point for the new
method (4), otherwise again by computing N(y11) and then intersecting it
with y11, we obtain two other intervals. By repeating this process, we find
some intervals that contain a simple zero of f(x) and F′ over them does not
contain zero. The process for y12 is similar. Considering these intervals as
initial points for the new method (4), we find all roots of f(x) on the initial
interval x0. A similar idea previously has been used for the interval Newton
method; see [17].

For an example, we consider f(x) = sinh(x) − x2 tan(x) on the initial
interval x0 = [−1, 1.5]. The graph of this function on x0 = [−1, 1.5] is shown
in Figure 2. We have 0 ∈ F′(x0) = 102[−4.9097, 0.3056]. Using the extended
interval arithmetic, we obtain

N(x0) = m(x0)−
f(mid(x0))

F′(x0)

= (−∞, 0.24225490053166] ∪ [0.25048201511344,+∞).

Intersecting N(x0) with x0, we get

y1 = [−1, 0.24225490053166] ∪ [0.25048201511344, 1.5].
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Indeed F′([−1, 0.24225490053166]) and F′([0.25048201511344, 1.5]) contain
zero, too. We repeat the above process by putting x0 = [−1, 0.24225490053166]
and x0 = [0.25048201511344, 1.5], separately. Doing this work several times,
we obtain three appropriate intervals, and then we apply the new method
(4) on these intervals. The obtained results are shown in Table 21.

As one can see, in a few iterations, all three roots of f(x) = sinh(x) −
x2 tan(x) in x0 = [−1, 1.5] have been enclosed with sharp bounds and high
accuracy.

Table 21: Results of the new technique in Section 4 for f(x) = sinh(x)− x2 tan(x)

k xk δk ρk

1 x11=[0.87539095698495750, 0.93264721412667118] 5.73× 10−2 9.89× 10−2

2 x12=[0.90196399818943263, 0.90196401144268923] 1.33× 10−8 2.08× 10−8

3 x13=[0.90196400520858955, 0.90196400520858966] 2.22× 10−16 4.44× 10−16

1 x21=[-0.00000014204496225, 0.00000008340020063] 2.25× 10−7 1.42× 10−7

2 x22=10−50[-0.20045735325692, 0.46773382426614] 6.68× 10−51 4.68× 10−51

1 x31=[-0.90414914681585001, -0.90027520645356984] 3.87× 10−3 6.51× 10−3

2 x32=[-0.90196400520858988, -0.90196400520858899] 8.88× 10−16 1.33× 10−15

5 Concluding remarks

In this work, a new family of numerical methods for enclosing the simple roots
of the nonlinear equations was proposed. We showed that the new methods
have an eight-order of convergence and also that the convergence analysis of
the methods was studied. Some numerical examples were presented to show
the feasibility and effectiveness of the new method proposed in Section 2.
Also, we proposed a technique based on combining the new method (4) with
the extended interval arithmetic to find all the roots of a nonlinear equation
located in an initial interval. Finally, a numerical example for testing this
technique was presented.
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