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An improvised technique of quintic
hermite splines to discretize generalized

Burgers–Huxley type equations

I. Kaur, S. Arora*and I. Bala

Abstract

A mathematical collocation solution for generalized Burgers–Huxley
and generalized Burgers–Fisher equations has been monitored using the
weighted residual method with Hermite splines. In the space direction,
quintic Hermite splines are introduced, while the time direction is dis-
cretized using a finite difference approach. The technique is determined
to be unconditionally stable, with order (h4 +△t) convergence. The tech-
nique’s efficacy is tested using nonlinear partial differential equations. Two
problems of the generalized Burgers–Huxley and Burgers–Fisher equations
have been solved using a finite difference scheme as well as the quin-
tic Hermite collocation method (FDQHCM) with varying impacts. The
FDQHCM computer codes are written in MATLAB without transforming
the nonlinear term to a linear term. The numerical findings are reported
in weighted norms and in discrete form. To assess the technique’s appli-
cability, numerical and exact values are compared, and a reasonably good
agreement is recognized between the two.
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1 Introduction

Nonlinear partial differential equations nowadays turn out to be basic math-
ematical methodologies to study multifarious structures like turbulence in
fluid dynamics, convection-diffusion, flow through a shock wave roaming in
viscid fluid, number theory, continuous stochastic processes, and so on. The
diversity of physical phenomena in basic and applied sciences such as physics,
chemistry, biology, computer science, electronics, and so on can be preem-
inently described by these nonlinear equations. Various authors have used
these nonlinear partial differential equations in different fields such as hy-
drodynamics, solid mechanics, and so on; see [7, 9, 10, 11, 18, 25]. The
Navier–Stokes equation is a fundamental fluid dynamics equation that may
be simplified into a number of mathematical phenomena. By omitting the
pressure factor, the generalized Burgers–Huxley equation (GBHE) simplifies
this intricate equation. This equation explains how reaction, diffusion, and
convection processes interact. Special instances of the GBHE include gen-
eralized Burgers–Fisher equation (GBFE) and generalized Burgers equation.
These equations are widely studied in fluid dynamics, gas dynamics, traveling
wave solutions, and traffic flow. The one-dimensional GBHE, which refers to
nerve pulse transmission in nerve fibers and waves in fluid crystals, can be
written in the following form:

∂u

∂t
= ε

∂2u

∂x2
− µuδ ∂u

∂x
+ f(u), (x, t) ∈ Ω× (0, T ]. (1)

The initial and boundary conditions are presented as

u(x, 0) = g(x), (2)

u(0, t) = f1(t), and u(1, t) = f2(t), (3)

where g(x), f1(t), and f2(t) are continuous functions in x and t, respectively.
Moreover, f(u) is a smooth function with a nonlinear nature that is defined
on Ω× (0, T ). In the theory of traveling wave solutions, it is significant. For
f(u) = 0, equation (1) reduced to modified Burgers equation. On the other
hand, in [24], it has studied the generalized Burgers equation with f(u) ̸= 0,
although in a different way than Burgers–Huxley and Burgers–Fisher. For the
GBHE, f(u) = βu(1−uδ)(uδ−γ̄) and for the GBFE, f(u) = βu(1−uδ), where
µ, δ, β, and γ̄ are real parameters. The viscosity factor ε is another distinction
between the Burgers equation and Burgers–Huxley equation. The viscosity
factor is typically assumed to be 1 in the Burgers–Huxley equation. However,
it plays a vital role in turbulence theory for the Burgers equation. A specific
nonlinear evolution equation is represented by the change in parameters.
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For example, equation (1) presents the modified Burgers equation to explain
wave propagation in nonlinear dissipative systems and various other physical
contexts, such as sound waves in a viscous medium, where β = 0. Therefore,
a significant study of GBHE with different case studies helps to analyze the
behavior of different nonlinear equations from a wide perspective.
Due to the wide applications of GBHE and GBFE, these equations are studied
extensively by many investigators. Hammad and El-Azab [13] have used a
collocation method with a 2N -order compact finite difference scheme, and
Kushner and Matviychuk [17] proposed finite-dimensional dynamics to find
the exact solution of Burgers–Huxley equation. Celik [8] proposed the Haar
wavelet method, whereas Alharbi and Fahmy [1] have proposed an ADM-
pade method to study the behavior of Burgers–Huxley equation. Javidi [16]
followed a spectral collocation method to solve the GBHE, whereas Saha
Ray and Gupta [21] followed a wavelet collocation for the same. The implicit
exponential finite difference method has been followed in [14] to find the
numerical solution to Burgers–Huxley equation.
To solve the GBHE and GBFE, the present work proposes a quintic Hermite
collocation with the forward finite difference technique (FDQHCM). Quintic
Hermite collocation is a weighted residual approach with a Hermite basis,
whereas finite difference scheme is the variational method. Both approaches
are coupled to get numerical outputs that are compatible with numerical
codes and are stable.

2 Quintic Hermite collocation

Quintic Hermite collocation method [4, 6, 5] is one of the weighted residual
methods. Instead of Jacobi orthogonal polynomials, quintic Hermite inter-
polating polynomials are used as the foundation function in this approach.
Over the area Ω, which is considered to be the union of intervals [xi−1, xi],
the solution function is approximated by an approximation function that uses
quintic Hermite interpolating polynomials as its basis.

Hermite interpolating polynomials, which are an extension of Lagrangian
interpolating polynomials, are of order 2k + 1, where k is a positive inte-
ger. Hermite interpolating polynomials, on the other hand, are superior
to Lagrangian interpolating polynomials in terms of applicability since they
interpolate both the function and its kth-order derivative. Furthermore, La-
grangian interpolating polynomials need a requirement of continuity at node
locations that are not required by Hermite interpolating polynomials. As a
result, quintic Hermite interpolating polynomials with k = 2 yield quintic
Hermite interpolating polynomials that interpolate the function as well as
its first- and second-order derivatives. Arora and Kaur [5] discussed the be-
havior and structure of quintic Hermite polynomials in depth. Let uγ(x, t)
be the approximating function to be adjusted to eq. (1). Although the first-
and second-order derivatives are interpolated by quintic Hermite interpolat-
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ing polynomials, the boundary constraints are satisfied at boundary points.
The approximating function is

u(x, t) =

2∑
i=1

(
Pi(x)ai(t) + P̄i(x)bi(t) +

¯̄Pi(x)ci(t)
)
, (4)

where ai, bi, and c′is are continuous functions of ′t′ and Pi, P̄i, and ¯̄Pi are
smooth functions of ′x′ and expressed as

Pi(x) =


6
(

xj+1−x
xj+1−xj

)5

− 15
(

xj+1−x
xj+1−xj

)4

+ 10
(

xj+1−x
xj+1−xj

)3

, xj ≤ x ≤ xj+1,

6
(

x−xj−1

xj−xj−1

)5

− 15
(

x−xj−1

xj−xj−1

)4

+ 10
(

x−xj−1

xj−xj−1

)3

, xj−1 ≤ x ≤ xj ,

0 elsewhere,

P̄i(x) =


3

(xj+1−x)5

(xj+1−xj)4
− 7

(xj+1−x)4

(xj+1−xj)3
+ 4

(xj+1−x)3

(xj+1−xj)2
, xj ≤ x ≤ xj+1,

−3
(x−xj−1)

5

(xj−xj−1)4
+ 7

(x−xj−1)
4

(xj−xj−1)3
− 4

(x−xj−1)
3

(xj−xj−1)2
, xj−1 ≤ x ≤ xj ,

0 elsewhere,

¯̄Pi(x) =


0.5

(xj+1−x)5

(xj+1−xj)3
− (xj+1−x)4

(xj+1−xj)2
+ 0.5

(xj+1−x)3

(xj+1−xj)
, xj ≤ x ≤ xj+1,

0.5
(x−xj−1)

5

(xj−xj−1)3
− (x−xj−1)

4

(xj−xj−1)2
+ 0.5

(x−xj−1)
3

(xj−xj−1)
, xj−1 ≤ x ≤ xj ,

0 elsewhere,
where
Pi(xj) = δji, P

′

i (xj) = 0, P
′′

i (xj) = 0, i, j = 1, 2, . . . , 6,

P̄i(xj) = 0, P̄
′

i (xj) = δji, P̄
′′

i (xj) = 0, i, j = 1, 2, . . . , 6,
¯̄Pi(xj) = 0, ¯̄P

′

i (xj) = 0, ¯̄P
′′

i (xj) = δji, i, j = 1, 2, . . . , 6.

The points x′
js are the node points or mesh points, which are taken

equidistant to get uniform mesh grid. The principle of collocation is ap-
plied between two consecutive node points, that is, on [xj , xj+1]. The details
are given in [2, 4, 5]. Therefore, to apply the principle of collocation, a new
variable ξ is introduced within each sub-interval [xj xj+1] in such a way that
as x varies from xj to xj+1, ξ varies from 0 to 1, and h is the length of
sub-interval [xj xj+1]. To reduce the complexity of system of equations, the
interval length h is taken to be uniform. Therefore, after rearranging Pi, P̄i,
and ¯̄Pi, quintic Hermite polynomials take the form as given in Table 1.

Table 1: Presentation of quintic Hermite splines

i Hi H ′
i H ′′

i

1 1− 10ξ3 + 15ξ4 − 6ξ5 −30ξ2 + 60ξ3 − 30ξ4 −60ξ + 180ξ2 − 120ξ3

2 h(ξ − 6ξ3 + 8ξ4 − 3ξ5) h(1− 18ξ2 + 32ξ3 − 15ξ4) h(−36ξ + 96ξ2 − 60ξ3)

3 h2

2 (ξ2 − 3ξ3 + 3ξ4 − ξ5) h2

2 (2ξ − 9ξ2 + 12ξ3 − 5ξ4) h2

2 (2− 18ξ + 36ξ2 − 20ξ3)

4 h2

2 (ξ3 − 2ξ4 + ξ5) h2

2 (3ξ2 − 8ξ3 + 5ξ4) h2

2 (6ξ − 24ξ2 + 20ξ3)
5 (10ξ3 − 15ξ4 + 6ξ5) (30ξ2 − 60ξ3 + 30ξ4) (60ξ − 180ξ2 + 120ξ3)
6 h(−4ξ3 + 7ξ4 − 3ξ5) h(−12ξ2 + 28ξ3 − 15ξ4) h(−24ξ + 84ξ2 − 60ξ3)
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The values of quintic Hermite splines at x = 0 and x =1 are given in
Tables 2 and 3. It is analyzed from these tables that these polynomial are
either 0 or 1 at these points, which helps the approximating function to satisfy
the Dirichlet or Neumann type boundary conditions. These quintic Hermite
splines have the properties H1(ξ) = H5(1 − ξ), H2(ξ) = −H6(1 − ξ), and
H3(ξ) = H4(1− ξ).

Table 2: Presentation of quintic Hermite splines and its corresponding first- and second-
order derivatives at ξ=0

H1 1 H ′
1 0 H ′′

1 0
H2 0 H ′

2 h H ′′
2 0

H3 0 H ′
3 0 H ′′

3 h2

H4 0 H ′
4 0 H ′′

4 0
H5 0 H ′

5 0 H ′′
5 0

H6 0 H ′
6 0 H ′′

6 0

Table 3: Presentation of quintic Hermite splines and its corresponding first- and second-
order derivatives at ξ=1

H1 0 H ′
1 0 H ′′

1 0
H2 0 H ′

2 0 H ′′
2 0

H3 0 H ′
3 0 H ′′

3 0
H4 0 H ′

4 0 H ′′
4 h2

H5 1 H ′
5 0 H ′′

5 0
H6 0 H ′

6 h H ′′
6 0

Therefore, equation (4) can be rewritten as

uγ(ξ, t) =

6∑
m=1

Hm(ξ)aγm(t), (5)

where Hm(ξ)’s are quintic Hermite interpolating polynomials and aγm(t)′s are
continuous functions of ′t′ with γ being the number of sub-divisions. To apply
orthogonal collocation, zeros of fourth-order shifted Legendre polynomials
have been taken as collocation points. These polynomials give better results
on center as well as on average [2]. Therefore, the zeros of these polynomials
have been chosen as collocation points. The diagrammatic representation of
these splines is given in Figure 1. In Figure 2, the application of quintic
Hermite splines has been shown. Further details of collocation points and
the technique of quintic Hermite collocation are given in [5, 2].
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Figure 1: Diagrammatic behavior of quintic Hermite polynomials

Figure 2: Diagrammatic representation of quintic Hermite collocation scheme

3 Implementation of FDQHCM

To implement the scheme of FDQHCM, equation (1) is discretized in time
direction using forward finite difference scheme with step-size △t

uj+1 − uj

△t
= uxxj − µuδ

juxj + fj , (6)

where fj is f(uj). Initial and boundary conditions can be discretized in the
following way at t = tj , u0(x) = g(x); uj(0) = f1j and uj(1) = f2j , where
f1j = f1(tj) and f2j = f2(tj). By simplifying, equation (6) converts into

uj+1 = △tuxxj −△tµuδ
juxj +△tfj + uj . (7)
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After applying quintic Hermite collocation on the variable uj in the space
direction, equation (6) takes the following form:

6∑
m=1

Hm(ξ)aγm(tj+1) =
△t

h2

6∑
m=1

H ′′
m(ξ)aγm(tj)− µ

△t

h

( 6∑
m=1

Hm(ξ)aγm(tj)

)δ

×
( 6∑

m=1

H ′
m(ξ)aγm(tj)

)
+

6∑
m=1

Hm(ξ)aγm(tj) +△tfj ,

m = 1, 2, . . . , 6, j = 1, 2, . . . , nt.

(8)

At the kth collocation point, equation (8) can be written as

6∑
m=1

Hkmaγm,j+1 =
△t

h2

6∑
m=1

Bkmaγm,j − µ
△t

h

( 6∑
m=1

Hkmaγm,j

)δ

×
6∑

m=1

Akmaγm,j

+

6∑
m=1

Hkmaγm,j +△tfk,j , (9)

m = 1, 2, . . . , 6, k = 2, 3, 4, 5, j = 1, 2, . . . , nt,

where Hkm is the mth interpolating polynomial at kth collocation point and
Bkm and Akm are, respectively, the second-order and the first-order deriva-
tives of mth interpolating polynomial at kth collocation point. Also, aγm,j

is the mth collocation function at jth time step in γth sub-domain and fk,j
is the discretized function f(u) at the jth time step and the kth collocation
point.

Hence, after implementation of quintic Hermite collocation with forward
finite difference scheme, collocation equations reduce to the following matrix
form:

Hāj+1 = M1āj + (Hāj)
δ(M2āj) + f̄ +K, (10)

where H = [Hm(ξk)], M1 =
[△t
h2 Bm(ξk) +Hm(ξk)

]
, and M2 =

[△t
h Am(ξk)

]
.

Moreover, K is obtained from the boundary conditions and f̄ = [△tfk,j ].
Also, āj+1 and āj being the unknown collocation vectors at the (j + 1)th
and jth time steps, respectively. In collective form, left-hand side coefficient
matrix can be written as

J = M1āj + (Hāj)
δ(M2āj) + f̄ +K

and Ā = [āj+1].
Hence, in the combined form, equation (10) can be written as

Ā = H−1J. (11)
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Details of these matrices are given in [5, 3]. In the case of the first and last
elements, the bandwidth is 4× 5, whereas for the remaining elements, band-
width is 4 × 6. Therefore, after combining all the collocation equations, a
set of 4ne × 4ne equations appear, with ne being the total number of sub-
divisions. The discretized set of equations has been solved in MATLAB. For
initial approximation of ā0, the initial condition of u at t = 0 has been taken
at different collocation points. Then the loop was introduced to calculate ā1,
ā2, and so on upto desired accuracy. The details of algorithm are mentioned
hereunder.
Algorithm:
The algorithm of the solution technique is
(i) Define the problem.
(ii) Apply the finite difference technique in the time direction.
(iii) Discretize the problem by applying quintic Hermite interpolating poly-
nomials in space direction.
(iv) Apply collocation points on the interpolating equations.
(v) Solve the collocation equations using the following code.
for ii = 1 : 1 : ti/j
P (:, ii) = B−mu∗A.∗(Udelta)+U+beta∗j.∗U.∗(1−(Udelta)).∗((Udelta)−
gamma);
Z(:, ii) = inv(H) ∗ P (:, ii);
U0 = Z(:, ii);
end

4 Stability analysis

To study the stability of any partial differential equation, it is necessary that
it should be linear. In the case of nonlinear partial differential equations, it
is first linearized, and then the stability behavior is analyzed. Therefore, to
study the stability of equation (1), it is first linearized by taking v̄ = max(uδ)

and f(u) = βu ¯̄f , where ¯̄f = max((uδ − 1)(γ−uδ)), for all (x, t) ∈ Ω× (0, T ).
As given in [20], a method is said to be A-stable if the region of absolute
stability includes the region of Re(λ△t) < 0.
The region of absolute stability for FDQHCM is the set of all complex num-
bers λ△t such that

|uj | ≤ C as tj → ∞. (12)

Let λj , j = 1, 2, . . . , ne, be the set of eigenvalues of the coefficient matrix
aγm,j . The scheme of FDQHCM is said to be stable if Re(λj ,△t) < 0 for all
values of µ, β, γ, and δ. Then

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 59–79
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6∑

m=1

Hm(ξ)aγm,j+1 =
△t

h2

6∑
m=1

H ′′
m(ξ)aγm,j − µ

△t

h
v̄

6∑
m=1

H ′
m(ξ)aγm,j

+

6∑
m=1

Hm(ξ)aγm,j +△tβ

6∑
m=1

Hm(ξ)aγm,j
¯̄f.

(13)

The stability of the given technique can be checked on a linear equation.
Therefore, equation (13) represents the quasi-linearized form of equation (8)
to check the stability of the given technique. From Figure 3, it is observed
that Re(λj ,△t) ∈ [−1, 0] for all values of µ, β, γ, and δ, which justifies the
stability of the numerical scheme.

Figure 3: Behavior of eigenvalues for coefficient matrix given in equation (13)

5 Convergence analysis

The operator L defined by ∂2

∂x2 in spatial and time domains, is positive def-
inite in L2(0, 1), the space of all real valued Lebesgue measurable functions
square integrable (0, 1), for all t > 0. The definition given by [19] is quoted
here:
Consider a family of mathematical problems parametrized by singular pertur-
bation parameter ε, where ε lies in the semi open interval 0 < ε ≤ 1. Assume
that each problem in the family has the unique solution denoted by uε and that
each uε is approximated by a sequence of numerical solutions (Uε, Ω̄

N )∞N=1,
where Uε is defined on the Ω̄N , representing the set of points in R and N
is the discretization parameter. Then the numerical solutions Uε are said
to converge to the exact solution uε, if their exist a positive integer N0 and
positive numbers C and p, where N0, C, and p are all independent of N and
ε, such that for all N ≥ N0, we have

sup0<ε≤1||Uε − uε||Ω̄N ≤ CN−p.
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Here p is the rate of convergence and C is the error constant.

Theorem 1 (Maximum Principle). [19] Let u(x) be a solution of an ad-
vection diffusion equation with u(0) ≥ 0 and u(1) ≥ 0. Then L(u(x)) ≥ 0
for all x on the domain Ω,L be the operator. Hence u(x) ≥ 0 for all x in Ω̄

Lemma 1. [5, 3] Let H be the space of all Hermite interpolating polynomials
of order 5 defined on the interval 0 ≤ x ≤ 1. Then

6∑
m=1

|Hm(x)| ≤ 6, for all x ∈ [0, 1].

Theorem 2. [12] Let H be the space of all quintic Hermite interpolating
polynomialsH of function u(x) defined on [a, b]. Then the rate of convergence
of quintic Hermite interpolation on [a, b] is of order 6. Moreover,

||u(n)(x)−H(n)(x)|| ≤ Cγnh
6−n, n = 0, 1, . . . , 5 (14)

where, the values of γn are given in [12].

Theorem 3. [5, 3] Let U(x, tj) be the quintic Hermite spline interpolate of
u(x, t) from the space H of all Hermite interpolating polynomials of order 5
defined on the interval 0 ≤ x ≤ 1 be the quintic Hermite spline interpolate
of u(x, t), such that Pt(x, tj) ∈ C6([a, b]). Then the uniform error estimate
is given by

||u(x, tj)− U(x, tj)||∞ ≤ C(△t+ h4). (15)

6 Numerical implementation

To check the applicability of FDQHCM, numerical results have been com-
pared to the analytic results. Stability of the proposed technique has been
checked by L2-norm and L∞-norm as follows:

L2-norm, ||u||2 =

√∑
γ

h
∑
i

wi(u(ξi, t)− uγ(ξi, t))2, (16)

where w′
is represents the weight function corresponding to the collocation

points and

L∞-norm, ||u||∞ = max
0≤ξ≤1

|u(ξi, t)− uγ(ξi, t)|, (17)

where u(ξi, t) is the analytic solution and uγ(ξi, t) is the numerical solution
obtained from FDQHCM.
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Problem 1. Consider the GBHE given in equation (1) with f(u) = βu(1−
uδ)(uδ − γ̄). The exact solution to the given equation is

u(x, t) =
( γ̄
2
+

γ̄

2
tanh(a1(x− a2t))

)1/δ

, (18)

where a1 = γ̄
4(1+δ) (−µδ + δ

√
µ2 + 4β(1 + δ)) and

a2 =
2µγ̄−(1+δ−γ̄)(−µ+

√
µ2+4β(1+δ))

2(1+δ) .
The initial and boundary conditions can be derived from the exact solution.
From Tables 4–8, numerical values obtained from the FDQHCM have been
compared to the exact values and of the results obtained from literature
[13, 15, 23].

Table 4: Comparison of results for µ = 1, β = 1, δ = 1, and γ = 0.001

x t Exact FDQHCM Absolute Error [13] [23] [15]
0.1 0.05 0.000500019 0.0005000110 7.9750×10−9 7.7006×10−9 7.72768×10−9 1.9372×10−7

0.1 0.000500025 0.0005000137 1.1300×10−8 1.1268×10−8 1.12968×10−8 3.8743×10−7

1 0.000500137 0.0005001205 1.6478×10−8 1.6863×10−8 1.68647×10−8 3.8750×10−6

0.5 0.05 0.000500069 0.0005000514 1.7607×10−8 1.7284×10−8 1.73534×10−8 1.9373×10−7

0.1 0.000500075 0.0005000462 2.8837×10−8 2.8738×10−8 2.88305×10−8 3.8746×10−7

1 0.000500187 0.0005001405 4.6463×10−8 4.6841×10−8 4.68491×10−8 3.8753×10−6

0.9 0.05 0.000500119 0.0005001110 7.9760×10−9 7.7006×10−9 7.72823×10−9 1.9375×10−7

0.1 0.000500125 0.0005001137 1.1301×10−8 1.1268×10−8 1.12980×10−8 3.8749×10−7

1 0.000500237 0.0005002205 1.6481×10−8 1.6863×10−8 1.68669×10−8 3.8756×10−6

Table 5: Comparison of results for µ = 1, β = 1, and γ̄ = 0.001

δ = 2 δ = 3

x t Exact FDQHCM Absolute Error Exact FDQHCM Absolute Error
0.1 0.05 0.0223614813 0.0223611210 3.60349×10−7 0.0793728109 0.0793714961 1.31479×10−6

0.1 0.0223617974 0.0223612705 5.26908×10−7 0.0793740199 0.0793720972 1.92270×10−6

1 0.0223674857 0.0223666991 7.86609×10−7 0.0793957760 0.0793929065 2.86954×10−6

0.5 0.05 0.0223634233 0.0223626133 8.09958×10−7 0.0793790070 0.0793760514 2.95560×10−6

0.1 0.0223637393 0.0223623937 1.34559×10−6 0.0793802158 0.0793753057 4.91013×10−6

1 0.0223694271 0.0223672410 2.18610×10−6 0.0794019686 0.0793939936 7.97497×10−6

0.9 0.05 0.0223653650 0.0223650047 3.60299×10−7 0.0793852021 0.0793838875 1.31464×10−6

0.1 0.0223656810 0.0223651541 5.26903×10−7 0.0793864108 0.0793844882 1.92259×10−6

1 0.0223713683 0.0223705817 7.86614×10−7 0.0794081601 0.0794052905 2.86962×10−6

It is observed that results obtained from the FDQHCM are at par with
[13] and are better than [15, 23]. It is also observed that the FDQHCM gives
error varying from 10−9 to 10−5 for varying values of µ, β, δ, and γ̄. The
results obtained from the FDQHCM appear to be more consistent than of
[13]. In Table 9, L2-norm and L∞-norm have been calculated for µ = β = 1,
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Table 6: Comparison of results for µ = 1, β = 1, and γ̄ = 0.001

δ = 4 δ = 8

x t Exact FDQHCM Absolute Error Exact FDQHCM Absolute Error
0.1 0.05 0.1495399548 0.149537428 2.52679×10−6 0.38670979 0.386702959 6.83447×10−6

0.1 0.1495423528 0.149538658 3.69481×10−6 0.38671673 0.386706734 9.99399×10−6

1 0.1495854975 0.149579985 5.51247×10−6 0.38684140 0.386826506 1.48943×10−5

0.5 0.05 0.1495506669 0.149544987 5.67995×10−6 0.38673162 0.386716259 1.53640×10−5

0.1 0.1495530645 0.149543629 9.43545×10−6 0.38673855 0.386713032 2.55228×10−5

1 0.1495961998 0.149580879 1.53208×10−5 0.38686318 0.386821783 4.13948×10−5

0.9 0.05 0.1495613768 0.149558851 2.52579×10−6 0.38675344 0.386746612 6.83197×10−6

0.1 0.1495637738 0.149560080 3.69379×10−6 0.38676037 0.386750381 9.99200×10−6

1 0.1496068999 0.149601387 5.51287×10−6 0.38688495 0.386870055 1.489155×10−5

Table 7: Comparison of results for µ = 1, β = 1, δ = 16, and γ̄ = 0.001

x t Exact FDQHCM Absolute Error
0.1 0.05 0.6218689 0.6218574 1.14208×10−5

0.1 0.6218811 0.6218644 1.66988×10−5

1 0.6221000 0.6220752 2.48186×10−5

0.5 0.05 0.6218956 0.6218699 2.56702×10−5

0.1 0.6219078 0.6218651 4.26434×10−5

1 0.6221265 0.6220576 6.89814×10−5

0.9 0.05 0.6219223 0.6219108 1.14113×10−5

0.1 0.6219344 0.6219178 1.66897×10−5

1 0.6221531 0.6221283 2.48109×10−5

Table 8: Comparison of results for µ = 0, β = 1, δ = 1, and γ̄ = 0.001

x t Exact FDQHCM Absolute Error [13] [23] [15]
0.1 0.05 0.000500030 0.00050001989 1.0286×10−8 1.0269×10−8 1.0303×10−8 1.8747×10−7

0.1 0.000500043 0.00050002762 1.5044×10−8 1.5027×10−8 1.5063×10−8 3.7493×10−7

1 0.000500268 0.00050024509 2.2466×10−8 2.2488×10−8 2.2488×10−8 3.7500×10−6

0.5 0.05 0.000500101 0.00050007775 2.3132×10−8 2.3049×10−8 2.3138×10−8 1.8749×10−7

0.1 0.000500113 0.00050007495 3.8429×10−8 3.8324×10−8 3.8441×10−8 3.7498×10−7

1 0.000500338 0.00050027582 6.2443×10−8 6.2465×10−8 6.2465×10−8 3.7504×10−6

0.9 0.05 0.000500172 0.00050016131 1.0283×10−8 1.0269×10−8 1.0303×10−8 1.8751×10−7

0.1 0.000500184 0.00050016904 1.5047×10−8 1.5027×10−8 1.5063×10−8 3.7502×10−7

1 0.000500409 0.00050038651 2.2464×10−8 2.2488×10−8 2.2488×10−8 3.7509×10−6

γ̄ = 0.001, and for δ = 1, 2, 3, respectively. Both the norms are lying within
the range of 10−8 to 10−6.

Table 9: L2-norm and L∞-norm for µ = 1, β = 1, and γ̄ = 0.001

t L2 − norm L∞-norm
δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

0.1 6.328299×10−9 2.954021×10−7 1.077846×10−6 2.880650×10−8 1.344790×10−6 4.906733×10−6

0.25 9.224090×10−9 4.305708×10−7 1.571002×10−6 4.271075×10−8 1.993759×10−6 7.274619×10−6

0.5 1.000496×10−8 4.669971×10−7 1.703806×10−6 4.645850×10−8 2.168583×10−6 7.911991×10−6
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From Figures 4–7, three-dimensional behavior of u(x, t) has been pre-
sented for µ = β = 1, γ̄ = 0.001, and δ = 1, 2, 3, 4, respectively, which shows
that the values are lying between 0 and 1 for time ranging from 0 to 0.01.

Figure 4: Three-dimensional behavior of u(x, t) for µ = 1, β = 1, γ = 0.001, and δ = 1.

Figure 5: Three-dimensional behavior of u(x, t) for µ = 1, β = 1, γ = 0.001, and δ = 2.

Problem 2. Consider the GBFE given in equation (1) for ε = 1 with f(u) =
βu(1− uδ). The exact solution for the GBFE is

u(x, t) =

(
1

2
+

1

2
tanh(a3(x− a4t))

)1/δ

, (19)

where a3 = −µδ
2(1+δ) and a4 = µ2+β(1+δ)2

µ(1+δ) . The initial condition and boundary
conditions can be obtained from the exact solution. From Tables 10–17,
numerical values obtained from the FDQHCM have been compared to the
exact values and the results obtained from [13, 23]. It is observed that results
obtained from the FDQHCM are at par with the results obtained from [13]
and are better than [22]. However, in Tables 10 and 17, results by [13] are
slightly better than the FDQHCM, but this is overcome by the simplicity of
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Figure 6: Three-dimensional behavior of u(x, t) for µ = 1, β = 1, γ = 0.001, and δ = 3.

Figure 7: Three-dimensional behavior of u(x, t) for µ = 1, β = 1, γ = 0.001, and δ = 4.

the FDQHCM as compared to the technique of former. The absolute error
varies from 10−11 to 10−5 for varying values of µ, β, and δ. In Table 18, L2-
norm and L∞-norm have been calculated for µ = β = 0.001 and δ = 1, 2, 3,
respectively.

Table 10: Comparison of results for µ = 0.001, β = 0.001, and δ = 1

x t Exact FDQHCM Absolute Error [13] [22] [15]
0.1 0.001 0.499988 0.499988 9.999×10−10 5.8147×10−11 1.01 ×10−7 9.68763×10−6

0.005 0.499989 0.499989 6.999×10−9 2.6058×10−10 4.38 ×10−7 1.93753×10−6

0.01 0.499990 0.499990 1.100×10−8 4.4599×10−10 7.53 ×10−7 1.93752×10−5

0.5 0.001 0.499938 0.499938 4.460×10−13 5.6241×10−11 1.04 ×10−7 9.68691×10−6

0.005 0.499939 0.499939 9.310×10−13 3.0621×10−10 5.21 ×10−7 1.93738×10−6

0.01 0.499940 0.499940 9.985×10−10 6.1867×10−10 1.04 ×10−6 1.93738×10−5

0.9 0.001 0.499888 0.499888 9.980×10−10 5.8135×10−11 1.01 ×10−7 9.68619×10−6

0.005 0.499889 0.499889 6.998×10−9 2.6053×10−10 4.38 ×10−7 1.93724×10−6

0.01 0.499890 0.499890 1.100×10−8 4.4591×10−10 7.53 ×10−7 1.93724×10−5
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Table 11: Comparison of results for µ = 0.001, β = 0.001

δ = 2 δ = 3

x t Exact FDQHCM Absolute Error Exact FDQHCM Absolute Error
0.1 0.001 0.70709535 0.70709535 4.65367×10−10 0.79369100 0.79369100 5.3640×10−10

0.005 0.70709676 0.70709677 1.02299×10−8 0.79369259 0.79369260 1.1100×10−8

0.01 0.70709853 0.70709855 1.54395×10−8 0.79369457 0.79369459 1.7813×10−8

0.5 0.001 0.70704821 0.70704821 2.5057×10−10 0.79365131 0.79365131 4.9914×10−10

0.005 0.70704962 0.70704962 7.9174×10−11 0.79365290 0.79365290 9.5943×10−11

0.01 0.70705139 0.70705139 1.2627×10−11 0.79365489 0.79365489 4.1912×10−10

0.9 0.001 0.70700106 0.70700106 1.17716×10−9 0.79361162 0.79361162 1.4294×10−9

0.005 0.70700248 0.70700249 1.07532×10−8 0.79361321 0.79361322 1.1675×10−8

0.01 0.70700424 0.70700426 1.57272×10−8 0.79361519 0.79361521 1.6992×10−8

Table 12: Comparison of results for µ = 0.001, β = 0.001, and δ = 4

x t Exact FDQHCM Absolute Error [22]
0.1 0.001 0.84088843 0.84088843 1.37598×10−9 1.75 ×10−8

0.005 0.84089011 0.84089012 1.25399×10−8 7.37 ×10−7

0.01 0.84089221 0.84089223 1.82591×10−8 1.27 ×10−6

0.5 0.001 0.84085479 0.84085479 2.0918×10−10 1.75 ×10−8

0.005 0.84085647 0.84085647 1.7133×10−10 8.77 ×10−7

0.01 0.84085857 0.84085857 6.3821×10−10 1.75 ×10−6

0.9 0.001 0.84082114 0.84082115 1.0779×10−9 1.75 ×10−8

0.005 0.84082283 0.84082284 1.1838×10−8 7.38 ×10−7

0.01 0.84082493 0.84082495 1.8053×10−8 1.27 ×10−6

Table 13: Comparison of results for µ = 0.001 and β = 0.001

δ = 8 δ = 16

x t Exact FDQHCM Absolute Error Exact FDQHCM Absolute Error
0.1 0.001 0.91699941 0.91699941 8.421940×10−10 0.9576009 0.9576009 1.023×10−9

0.005 0.91700124 0.91697903 2.222702×10−5 0.9576028 0.9576029 4.177×10−8

0.01 0.91700353 0.91695864 4.491036×10−5 0.9576052 0.9576053 4.778×10−8

0.5 0.001 0.91697903 0.91700124 2.221422×10−5 0.9575897 0.9575897 2.435×10−8

0.005 0.91698086 0.91698086 3.297860×10−10 0.9575916 0.9575916 2.357×10−10

0.01 0.91698315 0.91696048 2.267573×10−5 0.9575940 0.9575940 1.435×10−8

0.9 0.001 0.91695864 0.91700353 4.488876×10−5 0.9575784 0.9575784 6.336×10−9

0.005 0.91696048 0.91698315 2.266323×10−5 0.9578803 0.9575803 2.227×10−8

0.01 0.91696277 0.91696277 1.947571×10−8 0.9575827 0.9575827 2.092×10−8
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Table 14: Comparison of absolute errors for µ = 0.1 and β = −0.0025

δ = 2 δ = 4

x t FDQHCM [13] & [22] FDQHCM [13] [22]
0.1 0.1 1.9313×10−5 1.76638×10−5 1.121×10−5 5.9667×10−6 1.26230×10−5 1.343×10−5

0.3 7.0917×10−5 2.51379 ×10−5 1.600×10−5 2.1779×10−5 1.79797 ×10−5 1.919×10−5

0.5 1.2556×10−5 2.61751 ×10−5 1.667×10−5 3.8540×10−5 1.87212×10−5 2.001×10−5

0.5 0.1 6.4389×10−6 4.49179 ×10−5 2.904×10−5 2.0158×10−6 3.21358 ×10−5 3.489×10−5

0.3 5.0445×10−5 6.91014 ×10−5 4.468×10−5 1.5604×10−5 4.94694×10−5 5.373×10−5

0.5 1.0433×10−4 7.24595×10−5 4.687×10−5 3.2214×10−5 5.18702 ×10−5 5.641×10−5

0.9 0.1 1.9529×10−5 1.75391 ×10−5 1.154×10−5 6.1067×10−6 1.25646×10−5 1.393×10−5

0.3 7.1767×10−5 2.50111 ×10−5 1.643×10−5 2.2305×10−5 1.7920 ×10−5 1.981×10−5

0.5 1.2709×10−4 2.60482 ×10−5 1.711×10−5 3.9456×10−5 1.86610 ×10−5 2.065×10−5

Table 15: Comparison of absolute errors for µ = 0.1, β = −0.0025, and δ = 8

x t FDQHCM [13] [22]
0.1 0.1 4.8295×10−7 7.65875×10−6 1.471×10−5

0.3 1.5645×10−6 1.09129×10−5 2.107×10−5

0.5 2.6947×10−6 1.13630 ×10−5 2.203×10−5

0.5 0.1 1.8448×10−7 1.95143 ×10−5 3.832×10−5

0.3 1.1484×10−6 3.00445 ×10−5 5.911×10−5

0.5 2.2738×10−6 3.15019 ×10−5 6.218×10−5

0.9 0.1 4.9302×10−7 7.63553 ×10−5 1.533×10−5

0.3 1.6078×10−6 1.08887 ×10−5 2.183×10−5

0.5 2.7772×10−6 1.13383 ×10−5 2.280×10−5

Table 16: Comparison of absolute errors for µ = 1 and β = 0

δ = 3 δ = 8
x t FDQHCM [13] FDQHCM [13]
0.1 0.0001 2.3559×10−10 5.7870×10−11 8.59409×10−11 2.7729×10−11

0.0005 2.6056×10−8 2.0870×10−5 1.35615×10−8 1.0782×10−5

0.001 6.7400×10−7 4.5521×10−5 3.86425×10−7 2.3520×10−5

0.5 0.0001 4.6311×10−10 5.1671×10−11 9.37×10−11 2.0409×10−11

0.0005 2.6853×10−10 1.7895×10−5 4.82443×10−10 9.4066×10−6

0.001 4.8165×10−10 4.0262×10−5 2.49371×10−10 2.1163×10−5

0.9 0.0001 4.5141×10−10 5.3143×10−11 1.40942×10−10 1.8090×10−11

0.0005 2.9347×10−8 1.6546×10−5 1.7873×10−8 8.7305×10−6

0.001 7.5936×10−7 3.6150×10−5 4.92825×10−7 1.9075×10−5
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Table 17: Comparison of absolute errors for µ = 1 and β = 1

δ = 1 δ = 2
x t FDQHCM FDQHCM [13] [22]
0.1 0.0001 1.2969×10−6 3.03026×10−10 4.4788×10−10 1.55 ×10−5

0.0005 5.9286×10−5 9.30236×10−8 2.4700 ×10−5 7.62 ×10−5

0.001 1.9592×10−4 1.62366×10−6 5.3872 ×10−5 1.50 ×10−4

0.5 0.0001 5.9153×10−10 1.99555×10−10 7.1278 ×10−11 1.83 ×10−5

0.0005 1.5519×10−10 2.98812×10−10 2.0953 ×10−5 9.14 ×10−5

0.001 9.1902×10−8 2.91233×10−10 4.7151 ×10−5 1.83 ×10−4

0.9 0.0001 1.1642×10−6 2.34912×10−10 5.5348 ×10−10 2.07 ×10−5

0.0005 5.3457×10−5 9.77826×10−8 1.9314 ×10−5 1.02 ×10−4

0.001 1.7683×10−4 1.70078×10−6 4.2211 ×10−5 2.00 ×10−4

Table 18: L2-norm and L∞-norm for µ = 0.001 and β = 0.001

t L2 − norm L∞-norm
δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

0.01 6.996123×10−9 8.760110×10−9 9.773331×10−9 4.937500×10−8 6.633549×10−8 7.056646×10−8

0.05 1.243733×10−8 1.776084×10−8 2.003356×10−8 6.687500×10−8 1.007198×10−7 1.096476×10−7

0.1 1.680553×10−8 2.385368×10−8 2.735586×10−8 7.375000×10−8 1.090978×10−7 1.229183×10−7

Both the norms are lying within the range of 10−8 to 10−7. From Figures
8–11, three-dimensional behavior of u(x, t) has been presented for µ = β =
0.001 and δ = 1, 2, 3, 4, which shows that the values are lying between 0 and
1 for time ranging from 0 to 0.01.

Figure 8: Three-dimensional behavior of u(x, t) for µ = 0.001, β = 0.001, γ = 0.001, and
δ = 1.
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Figure 9: Three-dimensional behavior of u(x, t) for µ = 0.001, β = 0.001, γ = 0.001, and
δ = 2.

Figure 10: Three-dimensional behavior of u(x, t) for µ = 0.001, β = 0.001, γ = 0.001,
and δ = 3.

Figure 11: Three-dimensional behavior of u(x, t) for µ = 0.001, β = 0.001, γ = 0.001,
and δ = 4.
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7 Conclusions

The technique of the FDQHCM has been implemented successfully on the
GBHE and GBFE. The technique is a combination of the weighted residual
method and the finite difference method, which gives stability to the numeri-
cal results and is easily adaptable to computer codes. Numerical results have
been calculated for a vast range of parameters, even for those parameters not
been calculated earlier. The technique is found to be more consistent than
[13, 15, 22, 23]. It was also shown that the FDQHCM could be applied to
nonlinear partial differential equations of higher order too.

References

[1] Alharbi, A. and Fahmy, E.S. ADM-Pade solutions for generalized Burg-
ers and Burgers–Huxley systems with two coupled equations, J. Comput.
Appl. Math. 233 (2010) 2071–2080.

[2] Arora, S., Dhaliwal, S.S. and Kukreja, V.K. Application of orthogonal
collocation on finite elements for solving non-linear boundary value prob-
lems, Appl. Math. Comput. 180 (2006) 516–523.

[3] Arora, S., Jain, R. and Kukreja, V.K. Solution of Benjamin-Bona-
Mahony-Burgers equation using collocation method with quintic Hermite
splines, Appl. Numer. Math. 154 (2020) 1–16.

[4] Arora, S. and Kaur, I. An efficient scheme for numerical solution of
burgers′ equation using quintic Hermite interpolating polynomials, Arab.
J. Math. 5 (2016) 23–34.

[5] Arora, S. and Kaur, I. Applications of quintic Hermite collocation with
time discretization to singularly perturbed problems, Appl. Math. Com-
put. 316 (2018) 409–421.

[6] Arora, S., Kaur, I., Kumar, H. and Kukreja, V.K. A robust technique of
cubic Hermite collocation for solution of two phase nonlinear model, J.
King Saud Univ. Eng. Sci. 29 (2017) 159–165.

[7] Asogwa, K., Mebarek-Oudina, F. and Animasaun, I., Comparative in-
vestigation of water-based Al2O3 nanoparticles through water-based CuO
nanoparticles over an exponentially accelerated radiative Riga plate sur-
face via heat transport. Arab. J. Sci. Eng. (2022) 1–18.

[8] Celik, I. Haar wavelet method for solving generalized Burgers-Huxley
equation, Arab J. Math. Sci. 18 (2012) 25–37.

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 59–79



Kaur, Arora and Bala 78

[9] Chabani, I., Mebarek Oudina, F. and Ismail, A.I. MHD flow of a Hybrid
nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle.
Micromachines, 13 (2022) 224.

[10] Djebali, R., Mebarek-Oudina, F. and Choudhari, R. Similarity solution
analysis of dynamic and thermal boundary layers: Further formulation
along a vertical flat plate. Phys. Scr. 96 (2021) 085206.

[11] Farhan, M., Omar, Z., Mebarek-Oudina, F., Raza, J., Shah, Z., Choud-
hari, R.V. and Makinde, O.D. Implementation of one step one Hybrid
block method on nonlinear equation of the circular sector oscillator. Com-
put. Math. Model. 31 (2020) 116–132.

[12] Hall, C. On error bounds for spline interpolation, J. Approx. Theory. 1
(1968) 209–218.

[13] Hammad, D. A. and El-Azab, M. S. 2N order compact finite differ-
ence scheme with collocation method for solving the generalized Burger′s-
Huxley and Burger′s-Fisher equations, Appl. Math. Comput. 258 (2015)
296–311.

[14] Inan, B. and Bahadir, A. R. Numerical solution of the generalized Burg-
ers Huxley equation by implicit exponential finite difference method, J.
Appl. Math. Inform. 11 (2015), 57–67.

[15] Ismail, H.N.A., Raslan, K. and Rabboh, A.A.A. Adomain-decomposition
method for Burger′s Huxley and Burger′s Fisher equations, Appl. Numer.
Math. 159 (2004) 291–301.

[16] Javidi, M. A numerical solution of the generalized Burgers-Huxley equa-
tion by spectral collocation method, Appl. Math. Comput. 178 (2006)
338–344.

[17] Kushner, A.G. and Matviychuk, R.I. Finite dimensional dynamics and
exact solutions of Burgers-Huxley-equation, Twelfth International Con-
ference ”Management of large scale system development”, Moscow, Rus-
sia,(2019) 1–3.

[18] Marzougui, S., Mebarek-Oudina, F., Mchirgui, A. and Magherbi, M.
Entropy generation and heat transport of Cu-water nanoliquid in porous
lid-driven cavity through magnetic field. Int. J. Numer. Methods Heat
Fluid Flow, (2021).

[19] Miller, J.J.H., O′Riordan, R.E. and Shishkin, G. I. Fitted numerical
methods for singular perturbation problems, World Scientific, Singapore,
1996.

[20] Rathish Kumar, B. V., Vivek, S., Murthy, S.V.S.S.N.V.G.K. and Nigam,
M. A numerical study of singularly perturbed generalized Burgers–Huxley

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 59–79



79 An improvised technique of quintic ...

equation using three-step Taylor–Galerkin method, Comput. Math. Appl.
62 (2011) 776–786.

[21] Saha Ray, S. and Gupta, A.K. On the solution of Burgers-Huxley and
Huxley equation using wavelet collocation method, Comput. Model. Eng.
Sci. 91 (2013) 409–424.

[22] Sari, M., Gurarslan, G. and Dag, I. A compact finite difference method
for the solution of the generalized Burgers-Fisher equation, Numer.
Methods Partial Differ. Equ. 26 (2009) 125–134.

[23] Sari, M., Gurarslan, G. and Zeytinoglu, A. High-order finite difference
schemes for numerical solutions of the generalized Burger-Huxley equa-
tion, Numer. Methods Partial Differ. Equ. 27 (2011) 1313–1326.

[24] Tersenov, A.S. On the generalized Burgers equation, Nonlinear Differ.
Equ. Appl. 17 (2010) 437–452.

[25] Warke, A.S., Ramesh, K., Mebarek-Oudina, F. and Abidi, A. Numerical
investigation of nonlinear radiation with Magnetomicropolar Stagnation
point flow past a heated stretching sheet. J. Therm. Anal. Calorim. 135
(2021) 533–549.

How to cite this article
Kaur, I., Arora, S. and Bala, I., An improvised technique of quin-
tic hermite splines to discretize generalized Burgers–Huxley type equa-
tions. Iran. j. numer. anal. optim., 2023; 13(1): 59-79.
https://doi.org/10.22067/ijnao.2022.75871.1120.

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 59–79


	A modified Liu-Storey scheme for nonlinear systems with an application to image recovery
	A.I. Kiri, M.Y. Waziri and K. Ahmed

