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Approximate solutions to the Allen–Cahn
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functions method
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Abstract

We apply the rational radial basis functions (RRBFs) method to solve
the Allen–Cahn (A.C) equation, particularly when the equation has a so-
lution with steep front or sharp gradients. We approximate the spatial
derivatives by the RRBFs method. Then we apply an explicit, fourth-
order Runge–Kutta method to advance the resulting semi-discrete system
in time. It is well known that the A.C equation has a nonlinear stability
feature, meaning that the free-energy functional is reduced by time. The
presented method maintains the total energy reduction property of the A.C
equation. In the end, five examples to confirm the efficiency and accuracy
of the proposed method are provided.

AMS subject classifications (2020): 65N99, 74G15, 97N40.

Keywords: Allen–Cahn equation, RBFs, Rational RBFs method, Runge–
Kutta method.

*Corresponding author

Received 4 April 2022; revised 26 July 2022; accepted 26 August 2022
Mansour Shiralizadeh
Department of Applied Mathematics, University of Kurdistan, Sanandaj, Iran.
Department of Mathematics, Payame Noor University (PNU), Tehran, Iran. e-mail:
m.shiralizadeh@pnu.ac.ir

Amjad Alipanah
Department of Applied Mathematics, University of Kurdistan, Sanandaj, Iran. e-mail:
a.alipanah@uok.ac.ir

Maryam Mohammadi
Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran.
e-mail: m.mohammadi@khu.ac.ir

187

https://doi.org/10.22067/ijnao.2022.76010.1123
https://ijnao.um.ac.ir/


Shiralizadeh, Alipanah and Mohammadi 188

1 Introduction

In this paper, we examine the Allen–Cahn (A.C) equation as follows:

wt = νwzz − h(w), z ∈ [a, b], t ∈ (0, T ], (1)

with the initial condition

w (z, 0) = g(z), z ∈ [a, b], (2)

and Dirichlet boundary conditions as

w (a, t) = l (t) , w (b, t) = k (t) , t ∈ [0, T ], (3)

where the parameter ν is a positive constant and usually represents the in-
terfacial width. The term h(w) = H

′
(w) with H(w) = 1

4 (w
2 − 1)2 is a given

energy potential.
The A.C equation was initially given by Allen and Cahn [1] to illustrate

the motion of anti-phase boundaries in crystal solids. The A.C equation is
a specific type of nonlinear partial differential equation used extensively to
model various phenomena, such as crystal growth [3, 12], phase transitions
[6, 28], image analysis [2, 8, 20, 26], texture growth [9, 23, 24, 27], and surface
dynamics in material science [13, 21].

We know that the solution w(z, t) to the A.C equation has the feature
that the total energy ET (w) is reduced over time, and it is given as follows:

ET (w) =
∫ b
a

(
1
2ν|wz|

2 +H(w)
)
dz, (4)

and may be used to assess the accuracy of the rational radial basis functions
(RRBFs) method presented here.

In general, the analytical solution of the A.C equation is not available. So
many researchers tend to use numerical methods, such as finite difference [22],
finite element [11], Fourier spectral with periodic boundary condition [25],
and radial basis functions (RBFs) methods [29]. In recent years, researchers
have been interested in developing numerical methods that can preserve the
energy dissipation property of the A.C equations.

Among these methods, the meshless technique avoids mesh generation. It
uses scattered points instead of meshing the domain of the problem. For more
description, see [14, 15, 16, 30, 36, 38]. The RBFs methods are substantial
instruments for scattered points interpolation and solving partial differential
equations (PDEs). When the underlying function or the solution of PDE is
sufficiently smooth, RBFs methods can produce exponential accuracy, but if
the underlying function or the solution of PDE has steep gradients or discon-
tinuities, then the RBFs method may produce solutions with oscillation. In
such situations, the RRBFs method can be used to approximate derivatives of
functions and to solve PDEs [35]. RRBFs method approximating solutions in
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189 Approximate solutions to the Allen–Cahn equation using ...

nonlinear spaces generated by RBFs is more computationally expensive than
the standard RBFs methods. For smooth problems, the accuracy obtained
from these methods may not be worth the additional computations. How-
ever, for problems with discontinuities and steep fronts, these methods will be
considerably more accurate, and the additional computations will be justified.

In 2009, the RRBFs method was used to interpolate functions with steep
gradients by Jakobsson, Andersson, and Edelvik [17]. Sarra and Bai [35] ex-
tended the method of Jakobsson et al. to interpolate discontinuous functions
and solve Burger’s equation. The RRBFs-based partition of unity interpola-
tion was used by De Marchi, Martinez, and Perracchione [4], and in [37], the
authors used the RRBFs method for solving the Sine-Gordon equation.

In this paper, we apply the RRBFs method for solving (1) with conditions
given in (2)–(3), particularly when the equation has a solution with steep
front or sharp gradients. We approximate the spatial derivatives by the
RRBFs method. Then we apply an explicit, fourth-order Runge–Kutta (RK4)
method to advance the resulting semi-discrete system in time.

This paper is organized as follows: In Section 2, we introduce the RBFs
and RRBFs methods. The method implementation is given in Section 3. We
analyze stability issues in Section 4. In Section 5, we present the results of
numerical examples. Section 6 is dedicated to the conclusion.

2 RBFs and Rational RBFs interpolation

2.1 RBFs interpolation

Let Γ ⊆ Rm be a bounded set, let Z = {zc1, . . . , zcN} ⊆ Γ be a set of N distinct
points, hereinafter referred to as centers, and let F = {f(zc1), . . . , f(zcN )} be
a set of function values. An RBF

ψ(z) = ψ (∥z − zc∥2 , ϵ) , z, zc ∈ Rm,

is a function of one variable r = ∥z − zc∥2 that is centered at zc, which ϵ is a
free parameter and called the shape parameter [10, 35]. Also, in this paper,
m = 1.

The inverse quadratic RBF

ψ(r) =
1

1 + (ϵr)2

is a strictly positive definite RBF that we use it in all examples.
The RBF interpolant takes the form
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p(z) =
N∑
j=1

cj ψ
(
∥z − zcj∥2 , ϵ

)
, (5)

which the coefficients cj are obtained by solving the linear system

Ac = f,

based on the interpolation conditions p (zci ) = fi, where f = [f(zc1), . . . , f(zcN )]
T .

The elements of the matrix A are of the form

aij = ψ
(
∥zci − zcj∥2 , ϵ

)
, i, j = 1, . . . , N. (6)

Moreover, A is a symmetric positive definite matrix and thus invertible.
The evaluation of the interpolant (5) at M points zj is done by multiplying
c by E, where the elements of the matrix E are of the form

eij = ψ
(
∥zi − zcj∥2 , ϵ

)
, i = 1, . . . ,M, j = 1, 2, . . . , N. (7)

The first and second derivatives of RBF interpolant are of the form

D(p(z)) =
N∑
j=1

cj D
(
ψ
(
∥z − zcj∥2 , ϵ

))
.

Thus

D(p(zci )) =
N∑
j=1

cj Dψ
(
∥zci − zcj∥2 , ϵ

)
,

that is,
Df ≃ EDc,

where the elements of ED are of the form

(ED)ij = Dψ
(
∥zci − zcj∥2 , ϵ

)
, i, j = 1, . . . , N,

and

D(D(p(z))) =
N∑
j=1

cj D
(
Dψ

(
∥z − zcj∥2 , ϵ

))
.

Thus

D(D(p(zci ))) =
N∑
j=1

cj D
(
Dψ

(
∥zci − zcj∥2 , ϵ

))
,

that is,
D(Df ) ≃ EDDc,

where the elements of EDD are of the form
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191 Approximate solutions to the Allen–Cahn equation using ...

(EDD)ij = D
(
Dψ

(
∥zci − zcj∥2 , ϵ

))
, i, j = 1, . . . , N.

The following theorem [4] gives an error bound in terms of the power
function Pψ,Z , where Nψ(Γ) is the native reproducing kernel Hilbert space
corresponding to the symmetric positive definite RBF [10].

Theorem 1. Let ψ ∈ C(Γ × Γ) be a strictly positive definite RBF, and
suppose that Z = {zc1, . . . , zcN} ⊆ Γ is a set of distinct points and that p is
the interpolant to f ∈ Nψ(Γ). Then for all z ∈ Γ, we have

|f(z)− p(z)| ≤ Pψ,Z(z)∥f∥Nψ(Γ)
.

2.2 Rational RBFs interpolation

The RBFs interpolants have problems, such as ill-conditioning, especially
when the shape parameter tends to zero. These problems might lead to
inaccurate solutions, particularly when the functions with steep front or sharp
gradients are considered [33]. Moreover, when the functions have steep fronts
or sharp gradients, the rational RBFs method approximates them better than
the standard RBFs method [35]. These are the main reasons that we use
rational RBFs interpolants.

The RRBF interpolant of function f is given by

Q(z) = u(z)
v(z) ,

that satisfies in the interpolation conditions

Q(zck) = f(zck), k = 1, 2, . . . , N,

and u(z) and v(z) are the RBF interpolants

u(z) =
N∑
j=1

cuj ψ
(
∥z − zcj∥2 , ϵ

)
,

and

v(z) =
N∑
j=1

cvj ψ
(
∥z − zcj∥2 , ϵ

)
.

Let u = [u(zc1), . . . , u(zcN )]
T and v = [v(zc1), . . . , v(zcN )]

T
. By applying the

interpolation conditions, we have a system of equations that is underdeter-
mined. Thus in order for the rational interpolant to be defined uniquely, we
add an additional condition (for more descriptions, see [17, 35]), which leads
the native space semi-norms [10] of the RBF interpolants u(z) and v(z) to be
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minimized. By adding the condition, we will have a minimization problem
with the solution v, which is the eigenvector corresponding to the smallest
eigenvalue problem

Rv = λv,

where
R = diag

(
1/

(
f 2

∥f ∥22
+ 1

))(
DA−1D

∥f ∥22
+A−1

)
, (8)

and A is the RBF system matrix given in (6), f = [f(zc1), . . . , f(zcN )]
T , and

D = diag (f(zc1), . . . , f(zcN )). Moreover, division is elementwise and f 2 is an
elementwise squaring of the elements of the vector f. When v is found, u is
obtained by u = Dv. When u and v are found, we obtain the coefficients of
the RBF interpolants by solving two linear systems,

Acu = u and Acv = v. (9)

Now we evaluate the rational interpolant at M points zj by

Q =
Ecu

Ecv
, (10)

where division is elementwise, E is the RBF evaluation matrix (7), and Q =

[Q(z1), . . . ,Q(zM )]
T .

Now, we calculate the derivatives of the rational interpolant at N points
zci by applying quotient rule as below:

Q′
=

(Acv) . (EDc
u)− (Acu) . (EDc

v)

(Acv)
2 , (11)

Q′′
=

2(Acu).(EDc
v)2 + (Acv)2.(EDDc

u)

(Acv)3

−
(Acv).

(
2 (EDc

u) . (EDc
v) + (Acu) . (EDDc

v)
)

(Acv)3
, (12)

where Q′
=

[
Q′

(zc1), . . . ,Q
′
(zcN )

]T
, Q′′

=
[
Q′′

(zc1), . . . ,Q
′′
(zcN )

]T
, A is the

RBF system matrix, and ED and EDD are the first and second derivatives
of evaluation matrix at N points zci .

It is concluded from (9) and (10) that the RRBFs interpolant is made by
the RBFs interpolation matrix A. Therefore, we are able to provide error
bounds for the RRBFs interpolation [4]. For this purpose, we must consider
u and v as the values obtained by sampling some functions r and s ∈ Nψ(Γ),
respectively.

Proposition 1. Suppose that Γ ⊆ Rm, ψ ∈ C(Γ × Γ) is a strictly positive
definite RBF, and let Z = {zc1, zc2, . . . , zcN} ⊆ Γ be a set of distinct points
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and let Q be the RRBF interpolant to f ∈ Nψ(Γ). Moreover, let us suppose
r, s ∈ Nψ(Γ). Then for all z ∈ Γ, we have

|f(z)−Q(z)| ≤ 1

|v(z)|
(
|f(z)|∥s∥Nψ(Γ) + ∥r∥Nψ(Γ)

)
Pψ,Z(z).

So Proposition 1 gives the error bound for the RRBFs interpolant in terms
of data values and power function, as for the standard RBFs interpolant.

3 RRBFs method for solving A.C equation

Now, we use the RRBFs method to solve the A.C equation. In fact, we de-
velop RRBFs to study the A.C equation with Dirichlet boundary conditions.
In our method, we employ the derivatives of the RRBFs to approximate the
spatial derivatives. Then we apply an explicit, RK4 method to advance the
resulting semi-discrete system in time. In fact, we first approximate the
spatial derivatives at N centers zci at time tn, that is,

Wzz (z, t
n) =

[
Wzz (zc1, tn) ,Wzz (zc2, tn) , . . . ,Wzz (zcN , tn)

]T
,

of the A.C equation
wt = νwzz − h(w)

by the RRBFs method, which is given by computing (12) when

Wn =
[
W (zc1, tn) ,W (zc2, tn) , . . . ,W (zcN , tn)

]T
,

is considered instead of f. This leads to a system of ordinary differential
equations of the form

Wt = G(W, t).

Then we apply RK4 method to solve the above system of equations as follows:

K1 = ∆tG(Wn, tn),

K2 = ∆tG(Wn + 0.5k1, t
n + 0.5∆t),

K3 = ∆tG(Wn + 0.5k2, t
n + 0.5∆t),

K4 = ∆tG(Wn + k3, t
n +∆t),

Wn+1 = Wn + 1
6 (K1 + 2K2 + 2K3 + K4),

(13)

where tn = tn−1 + ∆t and ∆t is the time step size. Clearly, to obtain W1

initial value, W0 is required in the iterative computation. Using the initial
condition in (2), we have W0 =

[
g(zc1), g(zc2), . . . , g(zcN )

]T .
Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 187–204
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To apply the Dirichlet boundary conditions (3), we directly replace
W (zc1, tn) with w(a, tn) = l(tn) and W (zcN , tn) with w(b, tn) = k(tn).

4 Stability issue

Since the RRBFs interpolant is constructed by using the standard RBFs inter-
polation matrix, the RRBFs method can also suffer from instability problems,
especially for ϵ→ 0. In fact, serious problems of ill-conditioning may occur by
choosing the wrong values of the shape parameter, particularly for infinitely
smooth RBFs. In order for the system matrix B to be well-conditioned, the
shape parameter ϵ must not be too small, but small shape parameters are
required to obtain better accuracy for the interpolation with RBFs. This
is known as the uncertainty principle. We choose the shape parameter ϵ so
that the collocation matrix B has a condition number, κ(B), in the range
1013 ≤ κ(B) ≤ 1015, in order to determine the proper value for ϵ [34]. These
bounds for the condition number are valid when using a computer that im-
plements double precision floating point arithmetic, but the bounds will be
different when using other floating point number systems.

5 Numerical results

In this section, we consider five numerical examples of the A.C equation to
validate the presented scheme. The accuracy and efficiency of the method
are confirmed by calculating L∞, L2, and RMS error norms as follows. We
also investigate energy dissipation property in our numerical experiments to
illustrate the efficiency of the presented method.

L∞ = ∥W − w∥∞,

L2 = ∥W − w∥2,

RMS =
√

1
N ∥W − w∥2,

where w and W are the exact and numerical solutions, respectively. Moreover,
in all numerical examples, we have used uniformly spaced centers

zci = a+
i− 1

N − 1
(b− a), i = 1, 2, . . . , N.

Also in the examples, we evaluate the total energy ET given in (4) using the
composite trapezoidal rule for integration.

Example 1. In this example, we examine the A.C equation with three large
gradients

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 187–204
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wt = νwzz + w − w3, z ∈ [−1, 1],

and with the initial and Dirichlet boundary conditions [18]

w(z, 0) = 0.5z − 0.5 sin(1.5πz), w(1, t) = −w(−1, t) = 1.

The results are obtained using ν = 10−5, k = ∆t = 0.01, shape parameter
ϵ = 6, and N = 100 centers. In Figure 1, we present the approximate solution
at time t = 10 and the space-time graph of the approximate solution. Table
1 shows the values of the energy at various times. It can be seen from Table
1 that energy reduces over time and that the RRBFs method resolves the
problem accurately.

Table 1: Energy of the A.C equation for Example 1 at several times.

Time (t) t = 0 t = 1 t = 2 t = 5 t = 10 t = 20
Energy (ET ) 0.3403 0.1941 0.0738 0.0017 7.6908e-04 7.6900e-04

Example 2. In this example, we examine the A.C equation

wt = νwzz + w − w3,

in the computational domain [−1, 1] × [0, 10] with the parameter ν = 10−6.
The initial condition is given by [31, 5]

w(z, 0) = 0.6z + 0.4 sin
(π
2
(z2 − 3z − 1)

)
,

and the Dirichlet boundary conditions are

w(1, t) = −w(−1, t) = 1.

We solve the problem with the RRBFs method with k = ∆t = 0.01, N = 100
centers, and the shape parameter ϵ = 6. We have obtained the solution up
to time t = 10. The graph of approximate solutions at times t = 0, 2, 4, 6, 10
and space-time graph for t ∈ [4, 10] are shown in Figure 2. As it is seen, the
solution has a steep front at different times. Table 2 shows the energy at
several times. It can be seen from Table 2 that energy reduces over time as
theory guarantees and that the RRBFs method resolves the problem accu-
rately.

Example 3. Consider the A.C equation

wt = νwzz + w − w3, z ∈ [0, 1], t ≥ 0

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 187–204
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Figure 1: Numerical results for the solution of Example 1.
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(b) RRBFs solution at time t = 2.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

W
(z

,t)

(c) RRBFs solution at time t = 4.
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(d) RRBFs solution at time t = 6.
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(f) Space-time graph.

Figure 2: Numerical results for the solution of Example 2.
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Table 2: Energy of the A.C equation for Example 2 at several times.

Time (t) t = 0 t = 2 t = 4 t = 6 t = 10
Energy (ET ) 0.3161 0.0945 0.0154 5.3755e-04 7.1318e-05

with the initial and Dirichlet boundary conditions [7]

w(z, 0) = sin(7πz), w(0, t) = w(1, t) = 0.

For the numerical solution, we use N = 100 centers, ν = 0.0025, k = ∆t =
0.001, and the shape parameter ϵ = 8. The plots of the numerical solution
and the energy are shown in Figure 3. It can be seen that energy reduces
over time, as the theory guarantees. Compared with [7], better accuracy is
obtained.

Example 4. Consider the A.C equation

wt = wzz +
1

ν2
(w − w3),

in the region 0 ≤ z ≤ 15, where the parameter ν = 0.08, and the initial
condition is given by

w(z, 0) = 0.5− 0.5 tanh
(
z − 2

2
√
2ν

)
.

The analytical solution is given in [19] as

w (z, t) = 0.5− 0.5 tanh
(
z − 2− rt

2
√
2ν

)
,

where r = 3√
2ν
, we obtain the Dirichlet boundary conditions from the exact

solution and solve this problem with the RRBFs method with k = ∆t =
0.00001, N = 200 centers and the shape parameter ϵ = 2.25.

The graphs of exact and approximate solutions at time t = 0.04 are shown
in Figure 4. As it is seen, the solution has a steep front. Table 3 shows the
L∞, L2, RMS errors, and energy

ET (w) =

∫ b

a

(
1

2
|wz|2 +

1

4ν2
(w2 − 1)2

)
dz

at several times. It can be seen from Table 3 that the energy reduces over
time and that the RRBFs method resolves the problem accurately. Also, the
results of the method are well matched with analytical solutions.

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 187–204
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(b) RRBFs solution at time t = 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

W
(z

,t)

(c) RRBFs solution at time t = 10.
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(d) RRBFs solution at time t = 40.
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Figure 3: Numerical results for the solution of Example 3.
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Table 3: Errors and energy of Example 4.

t L∞ L2 RMS Energy (ET )
0 0 0 0 509.2856

0.001 2.3112e-05 2.3259e-05 1.6447e-06 508.2498
0.005 5.8036e-04 1.2000e-03 8.2960e-05 504.0963
0.01 5.8573e-04 1.2000e-03 8.2963e-05 498.9173
0.04 7.8661e-05 1.6396e-04 1.1594e-05 467.8536

0 5 10 15

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
(z

,t)

rational
exact

(a) RRBFs and analytical solutions at
t = 0.04.

0 5 10 15

z

0

1

2

3

4

5

6

7

8

|W
-w

|

10-5

(b) Pointwise error at t = 0.04.

Figure 4: Numerical results for the solution of Example 4.

Example 5. Consider the A.C equation

wt = wzz +
1

ν2
(w − w3),

with a forcing term h added by imposing analytical solution w(z, t) =
e−t cos(2πz) in the domain 0 ≤ z ≤ 1, where the parameter ν = 0.1 [32].
We obtain the Dirichlet boundary conditions from the analytical solution
and solve this problem with the RRBFs method with k = ∆t = 10−4/8,
N = 100 centers and the shape parameter ϵ = 8. The graphs of exact and
approximate solutions at time t = 0.1 are shown in Figure 5. Table 4 shows
the L∞, L2, RMS errors, and energy at several times. It can be seen from Ta-
ble 4 that the energy reduces over time and that the RRBFs method resolves
the problem accurately. Also, the results of the method are well matched
with analytical solutions and somehow better than the earlier works.
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Table 4: Errors and energy of Example 5.

RRBF RBF [32]
t L∞ L2 RMS ET L∞ L∞
0 0 0 0 19.2446 0 -

0.001 1.6671e-07 2.6333e-07 2.6333e-08 19.2374 2.1880e-06 -
0.005 1.7437e-07 3.7249e-07 3.7249e-08 19.2095 2.3599e-06 -
0.01 1.7140e-07 4.2040e-07 4.2040e-08 19.1766 2.3762e-06 8.3500e-06
0.1 1.1485e-05 8.0532e-05 8.0532e-06 18.8965 1.2587e-05 6.6300e-05
0.3 4.2165e-05 2.5234e-04 2.5234e-05 19.5199 6.5511e-04 -
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Figure 5: Numerical results for the solution of Example 5.

6 Conclusion

This paper investigated the application of the RRBFs method to find the nu-
merical solution of the A.C equation with Dirichlets’s boundary conditions,
especially when the equation has a solution with steep front or sharp gradi-
ents. The combination of RRBFs in space and RK4 in time gave accurate
and reliable solutions to the A.C equation. To illustrate the accuracy and ef-
ficiency of the presented method, we carried out five examples and presented
the corresponding graphs and tables, and compared the results with some
earlier works. Moreover, it can be observed that in the case where the an-
alytical solution exists, the numerical solutions described the good accuracy
of the method. These results support the assurance of using the method for
equation (1) when the analytical solution is not known. In addition, for all
examples, the energy dissipation law was investigated. In order to generalize
the RRBFs method implementation to higher dimensional time-dependent
PDEs, we need to localize the method with a modified partition of the unity
method. It is behind the scope of our paper, and we leave it to our further
work.
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