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The time-dependent diffusion equation:
An inverse diffusivity problem
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Abstract

We find a solution of an unknown time-dependent diffusivity a(t) in a lin-
ear inverse parabolic problem by a modified genetic algorithm. At first,
it is shown that under certain conditions of data, there exists at least
one solution for unknown a(t) in (a(t), T(x,t)), which is a solution to the
corresponding problem. Then, an optimal estimation for unknown a(t) is
found by applying the least-squares method and a modified genetic algo-
rithm. Results show that an excellent estimation can be obtained by the
implementation of a modified real-valued genetic algorithm within an Intel
Pentium (R) dual-core CPU with a clock speed of 2.4 GHz.
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1 Introduction

This article considers helium diffusion kinetics, which is important for materi-
als in which helium measurements are made, particularly for thermochronol-
ogy (see [2, 4, 3]). Solutions of an inverse problem for the helium production-
diffusion equation are explored in this research article. This solution is a
time-temperature path derived from apatite fission-track length distribution
to characterize the response of apatite helium ages to thermal histories in-
volving partial retention. Mathematically, the helium production-diffusion
equation without any source of radiogenic production in a rectangle domain
Q={(z,y):0<z<1,0<y<1} can be written as (see [2, 4, 3])

oT O*T 8T
E—a(t)(ax2+ay2), (z,y) € Q, t >0, (1a)
T(x,y,0) = f(z,y), (z,y) € Q, (1b)
T(0,y,t) = go(y, 1), 0<y<1,t>0,  (lc)
T(L,y,t) = g1(y, 1), 0<y<1,t>0, (1d)
%T(x,(),t):ho(w,t), 0<x<1,t>0, (1e)

Y

G 0 1,0) = Iz, ), O<r<1ltz0, ()

where f(x,y), go(y,t), g1(y,t), ho(x,t), and hq(z,t) are known functions and
a(t) is the time-dependent diffusivity and should be determined in this inverse
problem.

Here the special case hg = h; = 0 is considered, that is,

G oa0Gs e @uenio ()
o) = 15 ()€ (2b)
T(0,,1) = g0l ), 0<y<120, (2
T0.5:0) =000, 0<y<1120,  (20)

aT(th): (xlt) 0, 0<z<1,t>0 (2e)
Oy -

together with an overspecified condition for fixed points zg,yo € (0,1), as
Cannon considered in [7, p. 191],

alt) g (o0, ) =plt) (12 0). Q

Problem (1) in one-dimensional case arises from the heat conduction in a ma-
terial that is eroded or damaged. This erosion can be caused, for example,
by radioactive. Duo to the erosion, thermal characteristics of the material
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including its heat capacity, diffusivity, and conductivity change based on
the level of the erosion. These characteristics can be related to time, where
a(t) is the thermal diffusivity, which is the ratio between the thermal con-
ductivity and the heat capacity. Lesnic [14] investigated an inverse problem
for determining the temperature and the time-dependent thermal diffusivity
from various additional nonlocal information (see also [7, Chapter 13]). It
should be remarked that the inverse problem (1) with a(¢) = 1 has been
investigated by several authors; see, for example, [5, 20, 8, 22, 23, 9] and for
a two-dimensional case [21]. Since solving inverse diffusivity problems using
evolutionary algorithms has not been investigated yet, the solution to these
problems using a modified genetic algorithm is considered in this article in
the hope that this effort triggers other authors’ motivation to examine new
artificial intelligence techniques.

2 General solution in term of Green’s functions

For = (0,1) x (0,1) and Q = [0,1] x [0, 1], take

SIZ{XZ(ZE,y)5$E{0,1},0Sygl},
So={x=(z,y):y€{0,1}, 0 <z <1}

Then 092 = S; U Ss. Consider the two-dimensional heat conduction problem
with nonhomogeneous boundary conditions

%(X,t) = V?T(x,1), xeN t>0, (4a)
T(x,0) = f(x), x€Q, (4b)
T(x,t) = g(x,t), xe S, t>0, (4c)

%(x,t) = h(x,1), X € S, t>0, (4d)

where x = (x,y) and

g(X,t) _ g()(y7t)7 XGth:O, h(X,t): ho(x7t)7 X6527y207
91y, 1), x€S,x=1, hi(z,t), x € Sa,y=1.

Here go, g1, ho, h1, and f are known functions. It is known that (4) possesses
a unique solution provided the given initial and boundary data are continuous
functions; see, for example, [7, 10, 19]. The aim of this section is to find
a representation of the solution of (4). To this end, as in [7], define, for
reR,t>0,
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2

\/imexp(%), O(z,t) = Z K(z 4+ 2m,t),

m=—0oo

K(z,t) =

and define the function ®(x,t) = K(z,t)K (y,t) for x = (z,y) € R%, t > 0 by

Lexp<_ll><|l2)
4mt 4t )’

It is well known from [12, Chapter 7], that

D(x,t) =

T(x,t) =P f= | D(x—&N)f(E)dE  (xeR*t>0),  (
R2

(@3
=

where T'(x,t) is a solution for a pure initial value problem in the equation

or

gl _ 2
5t (x,t) = V*T(x,t),

for x € R? and ¢ > 0, provided that the function f(x) is bounded and also
(piecewise) continuous in R2. Now, we extend 7T'(x,t) continuously to Q,
and consider the following heat conduction problem in 2 with homogeneous
boundary conditions:

%—r{(x,t) = V?T(x,1), xeO, t>0, (6a)
T(x,0) = f(x), x € Q, (6Db)
T(x,t) =0, x€ S, t>0, (6¢)

or

a—y(x,t):(], x €8, t>0. (6d)

To solve problem (6), one can first extend f(x) to [—1,1] x [—1, 1] such that
f is odd in 2 and even in y. Then we extend f periodically to R? by

flx+2m,y+2n) = f(z,y), (n,m € 7).

If we define, for z,£ € R, t > 0,
OF (z,6,t) = 0(x — &,1) F O(x + &, 1),
then we can obtain from (5) for T'(x,t) that
T0t) = [ €7 (0,600 (0,01 (€ m)dser. (7)

Now, define G by
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G(z,y,t:&n) =0T (y,1,1)0 (x,,1). (8)

Since 6(z,t) is an even function with respect to the variable z for all values
of t > 0, it is easy to observe for every £, n,t that

g(xay7t7£7n):07 (xay)esla

0
@g(xayat§£an):07 (xvy)ESQ'

So T'(x,t), defined by (7), is, in fact, the solution of (6). This means that

the function G, defined by (8), is the Green function for problem (4), so that
the solution of (4) can be written (see [19, Chapter 6] or [13, Chapter 7]) by

T(x,1) = /Q G(x, 1 €) F(€)de
+ / ar [ ﬁ(x,t—neg(sm)dn 9)

/ dr /S Jh(€, 7)de, (10)

where x = (z,y), £ = ({,n), £ € 51 in (9), and £ € S> in (10); and (9/0m),
in (9), denotes the directional derivative on S;. Therefore, one can write the
solution T'(z,y,t) of (4) in the following form:

T(z,y,t) :/ G(x,y,t:€m) f(§,n)dEdn

2/ go(n (x,t —1)OT (y,n,t — T)dndr
Q
—|—2/ g1(n (x —1,t—7)0 (y,n,t — 7)dndr
Q
=2 [ ho(n. )00t = )0 (a1t i

—2/ hi(n,7)0(y — 1,t —17)0" (x,&, t — 7)dEdT.
Q

Assuming that a(t) is given, one should note that under some suitable
hypotheses on the initial and boundary conditions, the existence of a unique
solution to (6) can be proved.

Theorem 1. Let 7 > 0, Q = (0,1) and f € L?*(Q). Suppose also that
a € L*>((0,7)) and a(t) > 0, for almost every ¢t € (0, 7). Then there exists a
unique function u of (6) satisfying

T € L? ((0,7); Hy(22)) N C ([0, 7]; L*())
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and
oT

ot
where Hg () and H; ' (Q) are the usual Sobolev spaces.

€ L? ((0,7); Hy '()

Proof. The proof of Theorem 1 follows from [16, Theorem 7.1] (see also [1,
15, 17, 18]). O

Remark 1. If a is given and the assumptions of Theorem 1 hold, then one
can obtain a unique solution T' = T'(z,y, t; a) of (6). Hence some consistency
conditions, in boundary, should hold between a and w in (3). Consequently,
the coefficient a is uniquely determined.

Remark 2. One should note that Theorem 1 improves [3, Lemma 2.1].

3 Utilizing an appropriate transformation

Turn back to the main problem (2), in which u(x,y,t) and a(t) are unknown.
Denote by F the family of all continuous functions a : R — R such that
a(t) > 0, for all t € R. For a € F, let (see [7])

s=at) = /0 a(T)dr (t>0).

Then «(0) = 0 and &'(t) = a(t) > 0, and thus s = «(t) is a nonnegative

invertible function with inverse t = 3(s). By plugging
v(@,y, s) = u(@,y, B(s)),
b0y, s) = g0(y, B(s)),  d1(y, s) = g1(y, B(s)),
b(s) = a(B(s)), a(s) =p(B(s)),
problem (2) is rephrased in the following form:

Vg = Vga + Uyy, (z,y) € Q, s >0, (11a)
v(z,y,0) = f(z,y), (r,9) € Q, (11b)
U(O Y,s ) ¢0(?Ja5)7 0< Yy < 17 52> 07 (11C)
’U(l Y,s ) ¢1(y78)7 0< Yy < 17 52> 07 (]-]-d)
vy(2,0,5) = vy(x,1,5) =0, 0<z<1,5>0. (11e)

In this setting, the over-specified condition (3) implies that

b(s)vz(0,50,8) =q(s) (s> 0).

By [7, Chapter 13], the solution of (11) is represented as follows:
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v(z,y, s /ffn (,y, ;€ m)dEdn
2 [ P 00 s - Ot Otnac (12
w2 [ [ 21, 00 s — oo,
Applying the change of the variable ¢ = a(7) in (12), one obtains
uwpot) = [ €m0l € micdn
=2 [ 20,00 - 010" o att) - alraol7)inatr)in

t pl
+ 2/0/0 91(7777)%@ —1,a(t) — a(r)0F (y,n, at) — a(r))dna(r)dr.
(13)

For the sake of simplicity, from now on, let

/a—/ )¢ = alt) — alr).

Using (13) and calculating u,(x,y,t), one writes uy(z,y,t) = J1 + Jo + J3,
where

)= / F(&.m) 3Gy, (D) €, e,

=—2// gzz /t )0 (y,m, /:a)go(nﬁ)dna(f)dﬂ
n=2[[ 241 [(wo*wn. [ ot nauar

It is known that 0;(z,t) = 0. (x,t) (see [7]), so

gii(x,/:a) = gf(x,/:a):—a(i);ﬂw,/:a)'

Since go(y,0) = g1(y,0) = 0 and 6(x,0) = 0 for = # 0 (see [7]), integration
by parts yields that
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:_%//‘"*G.K WW%mledmﬂMW
:—géAéMaKaMTGW%m[zMMmﬂPWﬂ
Js :2/;/010@— 1,[ a)(i_{@f’(y,n,/: a)gl(nﬁ)}dndf

Now by applying the over-specified condition (3), we have

L) /f g 77 x07y07a(t);§7n)d€dnv

—2// xo,/ yo,n,/: &)go(n,r)}dndf (14)
+2/0/0 9(1:0—1,/T a)aaT[@+(y0,n,/Tta)gl(n,r)]dndr.

Thus one obtains the following result.

Theorem 2. Suppose that the function f(z,y) is piecewise continuous on €,
that go(y,t), g1(y,t), (8/0t)go(y,t), and (9/0t)g1(y,t) are continuous func-
tions for 0 <y < 1, ¢t > 0, and that go(y,0) = ¢1(y,0) = 0 for all y [or just
y = yoJ. Then problem (2) possesses a unique solution (u,a) if and only if
the integral equation (14) has a unique solution a € F.

4 Uniqueness and existence of solution for a certain
problem

Now, consider the problem

oT 0*T 09T
Eoa)(Ss + S Q 1
=Gt GE) @yei>0 (15
T(z,y,0) =0 (z,y) € Q, (15b)
T(0,y,t) =0, 0<y<1,t>0, (15¢)
T(1,y,t) = g(y,t), 0<y<1,t>0, (154d)
oT oT
il - = <zr< > 1
8y(;zc,O,t) a9 (z,1,t) =0, 0<x<1,t>0, (15e)

and the overspecified condition

a2 0,00 =p),  (120)

The solution of (15) is as follows:
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t t
T(y.t) = 12 / / 9. 7) 0 2 1 / 0)0* (4,1, / a)dna(r)dr.

The integral equation (14) becomes

t
%_2// / @+0n/ a)g(n, )| dndr
—2// / @fg—i—@"'gT}dndT
Moreover,

P(talt) ~ pa') o [
()7 =2 (t)/o d

(16)

< [, [ of-ameromn + @*%@m}
+0(-1, /:a)[—a(f)@;ig(n, r)+0F 52 (n,7)]dn.

Remark 3. Since ©1(0,7,-) = 20(n,-) and ©;(0,7,-) = 26,(n, ), equation
(16) can be rephrased in the following forms:

t) = p(;){/ot 9(—1,/: a) /01[9gT — a(T)Gtg]dndT}
= p(;){ / o, / ") / g, + a(T)Gmg]dndT}_l~

Lemma 1. If g = g(t), then one can write (16) in the following form:

_ p(;){/otou,/: a,)g/(T)dT}_l. (17)

Proof. If g = g(t), then

o 0,4) / / g'g + a(r)g(r) [ewu,/ta)—ow(o, /: )] bar
:2/0 9(—1,/T a

Corollary 1. Under the assumption that g = ¢(¢) is continuously differen-
tiable and that g(0) = 0, problem (15) possesses a unique solution (u,a) if
and only if the nonlinear integral equation (17) possesses a unique positive
solution a(t) that is continuous for 0 <t < T.

-1
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Definition 1. Suppose that g = g(t) is continuously differentiable and that
¢(0) = 0. For a positive continuous function a(t), that is, a € F, define

(La)(t) = pg“‘){/otou,/: a)g’(r)dT}_l.

Therefore, a is a solution of (17) if and only if a is a fixed point of the
operator £, that is, La = a. In the rest of this section, it is proved that under
certain conditions, £ possesses a fixed point.

For a function h defined on [0, T], let
[2]l: = sup{|h(s)| : 0 < s < t}.

For a positive constant 4, if § < a(t) and § < b(t), then, using the mean value
theorem, one obtains

’—2

pt)]| [
o) — o) < 2 [ 00,6 - g (ryir
0
t t
X ’/ 0:(1,7) [/ a(s) — b(s)ds] g/(T)dT}
0 T
DIINE -2
<200 [ ou1.a - o (ryar| 100kl - blitla(ol.
0
where f: a<y< f: b.
Corollary 2. Suppose for some r € (0,1) that
tpt)g(®)]| [ -2
OO0 [ 0.0,5 g/ @r| “odle<r welo. ()
0
Then the mapping a — La is a contraction.

The main result of this section will be obtained by using (17) and Corol-
laries 1 and 2.

Theorem 3. Suppose that p(t) and g = g(t) are continuously differentiable,
that ¢g(0) = 0, and that, for some r € (0,1), (18) holds. Then (15) possesses
a unique solution (7', a).

5 Discretization of the problem

In this section, the following linear inverse parabolic problem is considered:
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oT o*T 0T

—(z,t) = a(t —— 0 LLo<t<t 19
ot (JI, ) ()(8132 + 8y2 )7 <zr,y<LU<i<tm, ( a’)
T(z,y,0)= f(z,y), 0<z,y<l, (19b)
T(0,y,t) =go(y,t), 0<y<1,0<t<ty, (19¢)
T(l,y,t) = gi(y,t), 0<y<1,0<t<tn, (19d)
T(x,0,t) = ho(z, 1), 0<x<1,0<t<ty, (19¢)
T(z,1,t) = hi(z,t), 0<z<1,0<t<ty, (19f)

with the overspecified conditions for the fixed points x,yo € (0,1),

T(m07y07t) = S(t)v 0 <t< tMa (]‘gg)

where f(z,v), go(y,t), g1(y, 1), ho(zx,t), h1(z,t), and ¢(t) are known functions
while a(t) and T'(z,y,t) are unknown in this inverse problem.

Now we can solve problem (19) in the least-square method. Also, we can
consider the amount of difference between calculated values of the problem at
the location of sensor and measured temperatures, which come from sensor as
the cost function. When the cost function approaches to zero, the estimated
value for a(t) approaches to exact a(t). Let

G) =) (Tj —s;)° (20)
j=1

where T}, 7 = 1,2,3,...,m, are calculated by solving the direct heat problem
To do this, consider a prior guess for a(t). Also s; = s(t;), j =1,2,3,.

are measured temperatures. Here, when (20) reaches its minimum, the estl—
mated value for a(t) is optimal.

Remark 4. In this article, we use an explicit finite difference approximation
to discretize problem (19) as follows:

Tijot1 =kas(rTi—1 s —2rmTi, 5, s +mTi+ 1,4, s + 10T j_1.5 — 2r2T%, j, s
+T2Tiaj + 173) + CZWi,j,sa

i=1,...,N—1,j=1,....,N—1, §=0,...,N —1,
Ti;0=f(ih,jk), i=1,...,N—1,j=1,...,N—1,
Tojs =90(jk,sw), j=1,...,N—1, s=0,...,N—1,
T ;s = (jk,sw), j=1,...,N—1, s=0,...,N—1,
Tios =ho(ih,sw), i=1,...,N—1, s=0,...,N—1,
T s =h1(ih,sw), i=1,...,N—1,s=0,...,N—1,

where z = ih, y = jk, and t = sw.
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6 Genetic algorithm

The genetic algorithm was introduced by Holland [11] and has been used
to solve a wide range of problems. This algorithm is a searching method
that has been inspired by Darwinian principles of biological evolution. This
algorithm utilizes an initial stochastic set of candidate solutions as an initial
population. Each individual of this set is a numeric vector that estimates a
possible solution to the problem. Then, genetic operators such as Mutation
and Recombination are successively applied to initial populations in order to
simulate a biological evolution. These operators push all populations toward
optimal solutions to the problems. After a predefined number of iterations
or termination conditions, the best individual in the population is considered
as an optimal solution to the problem.

In the classic genetic algorithms, the vectors are a binary string and
present a possible solution to the problem. Indeed there are many prob-
lems in which a real-valued vector is needed as an optimal solution. In this
article, a real-valued genetic algorithm (RVGA) is used to estimate unknown
a(t) in its corresponding time. The steps of our RVGA in this article are as
follows:

Step 1. A random set of real-valued vectors are generated as an initial pop-
ulation.

Step 2. Each individual in the population is evaluated by the fitness function.

Step 3. Some individuals are selected based on their fitness by Tournament
Selection.

Step 4. A recombination operator is applied to the selected individuals to
generate offsprings.

Step 5. The Mutation operation is applied to offspring.
Step 6. The offsprings are evaluated accordingly.
Step 7. The population is updated.

Step 8. Steps 3-7 are repeated, until the termination condition satisfies.

7 A modified real-valued genetic algorithm to estimate
unknown a(t)

In this research article, a modified genetic algorithm is presented to determine
unknown a(t). This algorithm employs a real-valued vector as a candidate
solution to the problem. In this algorithm, a new step is added to the proce-
dure of the original genetic algorithm after the Mutation operator to increase
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the capability of the algorithm for solving the problems of this article. In
the presented algorithm, the jth element of each vector is a real number that
estimates a(j *.001) for j = 0,1,2,..., N — 1. Each vector is considered as
a chromosome in the population, and accordingly ecach clement of chromo-
somes is considered as a gene. Therefore, gy, ; is the jth gene of chromosome
of p. To reach an acceptable estimation for a(t), equation (20) should reach
its minimum. To meet this purpose, equation (20) is considered as the fit-
ness function of the algorithm. When the algorithm stops, a vector with the
lowest value of fitness is considered as the best solution of a(t). Then this
vector is interpolated to estimate a(t) as a polynomial function.

The steps of our presented real-valued genetic algorithm (RVGA) are as
follows:

Step 1. A random set of real-valued vectors is generated as the initial popu-
lation.

Step 2. Each individual in the population is evaluated by the fitness function.

Step 3. Some individuals are selected based on their fitness by Tournament
Selection.

Step 4. To apply the recombination operator on the pair of parents, we act
as follows:

gchl,j:axgpl,j+(1_a) Xg;DQ,ja j:172737"'7N_17

gch2,j :ﬁxgplg—"(l_ﬁ) Xgp2,j7 .7: 172737"'7N_17

Step 5. To apply the Mutation operator on the offsprings, a gene of each
offspring is selected randomly and a small random value is added to
it.

Step 6. Fitness of offsprings is evaluated.

Step 7. All other offsprings are moved toward the best offspring. Then a
small random value is added to a gene of each offspring selected
randomly to ensure the variety of the population.

Step 8. The population is updated.

Step 9. Steps 3-7 are repeated, until the termination condition satisfies.
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Table 1: Parameters of the real-valued genetic algorithm

Representation Real-valued vector
Recombination Arithmetic crossover
Recombination probability 100%
Mutation Add a random value to one gene
Mutation probability 1/n for each gene
Parents selection Best 4 out of random 10
Survivor selection All of the old generations
replaced with new offsprings
Number of offsprings 4
Population size 20
Initialization Random
Termination condition Number of generations

Table 1 shows the parameters of the RVGA and their roles.

8 Numerical results and discussion

The main purpose of this section is to show the capability of our presented
algorithm in the previous section for solving IPP. The capability of the algo-
rithm is investigated by an example of IPP as follows.

Example 1. In this example, for (z,y,t) € (0,1) x (0,1) x (0,1), consider
the IPP

=Gy + 50, (220)
T(z,y,0) = (cos(my) + sin(nwz)), (22b)
T(0,y,t) =€ -t cos(my), (22¢)

T(l,y,t)=eT" i (cos(my) + sin(m)), (22d)
T(x,0,t)=e" " i (sin(mrz) + 1), (22¢)
T(x,1,t)=¢"" o (cos(m) + sin(wx)), (22f)

and with the following overspecified condition

s(t;) = T(0.1,0.1,t;) + oR, t; = (0.001)j, j=0,1,2,...,999.
(22g)

In this problem, the values of s(t;)’s are gained from the exact solution of the
problem. It is evident that in the real-world application of this algorithm,
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Table 2: Result of the execution of the modified RVGA, with 10 to 100 generations
when the noise of the measurement is on the s (overspecified condition).

Gen. | Fitness | Time(s) S
10 1.2936 371.1635 | 0.1821
20 1.1459 | 715.8062 | 0.2162
30 0.6429 | 1063.0171 | 0.0823
40 0.7662 | 1446.6704 | 0.0966
50 0.4227 | 2012.2701 | 0.0515
60 | 0.4109 | 2171.3517 | 0.0529
70 | 0.3383 | 2543.9981 | 0.0435
80 | 0.3379 | 2890.7852 | 0.0168
90 | 0.2945 | 3254.4581 | 0.0080
100 | 0.2407 | 3663.9104 | 0.0064

these values come from sensors. It is obvious that all sensors have a small
error of measurement. Therefore, to simulate these errors, a small random
value is added to s(t;)’s to have noisy data.

In this example, a(t) = 2t and

T(x,y,t) = et (cos(my) + sin(7x)).

Remark 5. In this article, we use the following equation to calculate total
error S, in our numerical computations (see [6]):

Nl=

1 N
s=] (@ - a)?]
(N -1) =

where (N — 1) is the length of estimated vector (chromosome), a@;,i =
1,2,--- N, come from interpolated function, and a;,i = 1,2,--- , N, are
the exact values of a(t).

In this section, the population size of the algorithm is 20. Each chromo-
some in the population has 1000 genes (¢ = 0.001, 0.002, 0.003, ..., 0.999).
Table 2 shows the result of the execution of the modified RVGA, with 10 to
100 generations when the noise (noisy data = input data+ (0.00001)rand(1))
is on s. To study the ability of the algorithm to solve an IPP, we have
severally executed it while the noise of the measurement is on the different
functions. Table 3 illustrates the result of those executions. Also, Figures
1-6 show the executions.

Remark 6. One should note that by tending to the real value of a(t), the fit-
ness value (the difference of the calculated and measured values in the sensor
position) will be reduced (see (20)). Thus the total error S will decrease.
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Table 3: Result of the different executions when the noise of the measurement is on

the different functions.

Tabasi, Mazraeh, Irani, Pourgholi, and Esfahani

Noisy data | Gen. | Fitness | Time(s) S

s(t;) and f 100 | 0.1381 | 3551.8039 | 0.0216
s(t;) and go | 100 | 0.4914 | 3602.6282 | 0.0525
s(t;) and g1 | 100 | 0.3511 | 3649.0969 | 0.0385
s(tj) and ho | 100 | 0.4028 | 3704.7115 | 0.0627
s(tj) and hy | 100 | 0.3718 | 3679.4812 | 0.0373
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Figure 1: The exact and approximated a(t) (Left) and the best chromosome (Right)
with the noisy data on condition (22g).
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Figure 2: The exact and approximated a(t) (Left) and the best chromosome (Right)
with the noisy data on conditions (22g) and (22b).
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Figure 3: The exact and approximated a(t) (Left) and the best chromosome (Right)
with the noisy data on conditions (22g) and (22c¢).
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Figure 4: The exact and approximated a(t) (Left) and the best chromosome (Right)
with the noisy data on conditions (22g) and (22d).

8.1 Computational time and accuracy comparison

To study computational time and accuracy efficiency, the example of this
section is solved by a general real-valued genetic algorithm. Table 4 shows
the execution of a general real-valued genetic algorithm for the number of
generations from 10 to 100. Also, Figures 7, 8, and 9 illustrate a comparative
study of execution time, fitness, and total error (S) between the modified
and general real-valued genetic algorithm, respectively.
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Figure 5: The exact and approximated a(t) (Left) and the best chromosome (Right)
with the noisy data on conditions (22g) and (22e).
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Figure 6: The exact and approximated a(t) (Left) and the best chromosome (Right)
with the noisy data on conditions (22g) and (22f).
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Table 4: The execution of a general RVGA, with 10 to 100 generations when the noise
of the measurement is on the s (overspecified condition).

Gen. | Fitness | Time(s) S

10 3.0323 | 318.4011 | 0.3824

20 2.9706 | 672.6387 | 0.3792

30 1.4854 992.8147 | 0.2140

40 1.4103 | 1156.1270 | 0.2041

50 1.1419 | 1434.9134 | 0.2043

60 1.1557 | 1617.6324 | 0.1285

70 1.0357 | 1701.0975 | 0.1253

80 1.1049 | 1927.8542 | 0.1077

90 0.9340 | 2154.6946 | 0.1174

100 | 0.9267 | 2315.6700 | 0.0939
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Figure 7: Comparative execution time study between the modified

RVGA.
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Figure 8: Comparative fitness study between the modified and a general RVGA.
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Total Error (S) Study
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Figure 9: Comparative total error (S) study between the modified and a general RVGA.

It is evident from Figure 7 that the execution time of the modified and the
general RVGA increase steadily as the number of generations grows from 10
to 100. Compared to the general RVGA, the modified RVGA generally has a
higher run time due to an additional step. In contrast to the execution time,
there are significant improvements in the fitness values and accordingly, the
total errors (5) in the modified RVGA. This study suggests that the modified
algorithm is more suitable for the applications that need a higher amount of
accuracy.

9 Discussion

In Table 2, the amount of S (total error) significantly decreases while the
number of generations (iterations) is increasing from 10 to 100. Our ex-
periments showed that the amount of S fluctuates around 0.0064 after 100
generations. Therefore, an optimal solution can be obtained in problem (1)
with 100 generations while the noise of measurement is only on s (overspeci-
fied condition). Table 3 illustrates the results of the algorithm when the noise
of measurement is on one of the initial or boundary conditions in addition to
s. It is evident that, the amount of total error increases when the number of

noisy resources increases. Therefore, the amount of total error varies between
0.0216 and 0.0627.

10 Conclusion

1. The presented modified genetic algorithm is a capable method to find
unknown a(t) in an IPP even with noisy data.
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2. Results showed that an acceptable estimation can be obtained by the
presented algorithm with 100 generations within a CPU with a clock
speed of 2.4 GHz.

3. The presented algorithm is stable with respect to a small perturbation
in the input data.

4. The execution time of the presented algorithm is acceptable to be used
in real-world applications.
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