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Abstract

Software testing is a crucial step in the development of software that guar-
antees the dependability and quality of software products. A crucial step
in software testing is test case minimization, which seeks to minimize the
number of test cases while ensuring maximum coverage of the system being
tested. It is observed that the existing algorithms for test case minimization
still suffer in efficiency and precision. This paper proposes a new optimiza-
tion algorithm for efficient test case minimization in software testing. The
proposed algorithm is designed on the base parameters of the metaheuristic
algorithms, inspired by scientific principles. We evaluate the performance
of the proposed algorithm on a benchmark suite of test cases from the
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literature. Our experimental results show that the proposed algorithm is
highly effective in reducing the number of test cases while maintaining high
coverage of the system under test. The algorithm outperforms the existing
optimization algorithms in terms of efficiency and accuracy. We also con-
duct a sensitivity analysis to investigate the effect of different parameters
on the performance of the proposed algorithm. The sensitivity analysis
results show that the performance of the algorithm is robust to changes in
the parameter values. The proposed algorithm can help software testers
reduce the time and effort required for testing while ensuring maximum
coverage of the system under test.

AMS subject classifications (2020): Mathematics Education 97-XX; Computer Sci-

ence 97P10, 97P40, 97P80.

Keywords: Metaheuristic optimization; Test cases minimization; Software
engineering; Nature inspired algorithm.

1 Introduction

Software testing is a crucial step in the creation of software that tries to
guarantee the dependability and quality of software products. Test case re-
duction, which seeks to lower the number of test cases necessary to obtain
maximum coverage of the system under test, is one of the crucial jobs in
software testing. The cost and work associated with software testing can be
considerably decreased by test case minimization, which can also increase the
process’s effectiveness and efficiency.

Test case minimization includes selecting a subset of test cases from a
bigger set of test cases to realize the same scope. The chosen subassemblies
must be able to distinguish all absconds and disappointments of the frame-
work beneath the test. The test case diminishment preparation is frequently
done physically, which can be time-consuming and error-prone.

To computerize the method of test case minimization, different optimiza-
tion calculations have been created [21]. These calculations utilize scientific
and computational methods to produce an ideal subset of test cases that ac-
complish the most extreme scope with the least number of test cases. A few of
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3 Particle Physics Optimization Algorithm for Test Case Minimization

the well-known optimization calculations utilized for test case minimization
incorporate genetic algorithm (GA) [2], Ant colony optimization (ACO) [32],
particle swarm optimization (PSO) [14], and simulated annealing. The work
presented in [17] gives a description of the use of search-based techniques in
test suite reduction with a detailed systematic review.

Whereas reduction in the testing time, lower testing expenses, increased
testing efficiency, and higher-quality software products are some of the ad-
vantages of test case minimization. Test case minimization can also help
identify redundant and unnecessary test cases, which can be removed from
the test suite to further improve the efficiency of the testing process.

The existing optimization algorithms for test case minimization have some
limitations in terms of efficiency and accuracy. Therefore, there is a need for
an innovative optimization algorithm that can overcome these limitations,
provide a more efficient, and accurate solution for test case minimization in
software testing.

The utilization of metaheuristic calculations for test case minimization
can offer assistance to overcome the impediments of conventional optimiza-
tion calculations, such as thorough look and covetous calculations. Meta-
heuristic calculations are planned to handle complex optimization issues with
expansive look spaces and nonlinear objective capacities, making them well-
suited for test case minimization. However, based on the particular needs
and demands of the software development project, the goals of test case
minimization utilizing metaheuristic algorithms can change. The goals can
incorporate lessening the number of test cases, diminishing the testing time,
making strides in the proficiency of the testing handle, moving forward the
quality of the program item, and lessening the fetching of testing.

This gives rise to the motivation to work on the optimization of the test
cases in software engineering. This inspiration for test case minimization
utilizing metaheuristic calculations is to optimize the choice of test cases to
decrease the number of test cases, guaranteeing that the chosen test cases
accomplish the most extreme scope of the framework beneath the test. By
lowering the cost and labor needed for software testing, these fewer test cases
increase the efficacy and efficiency of the testing process.
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The motivation behind the development of optimization algorithms for
software testing stems from the need to address the challenges posed by the
complexity of modern software, the demand for efficient resource utilization,
the drive for higher software quality, the acceleration of development cycles,
and the imperative to reduce testing costs. These algorithms offer a strategic
and automated approach to testing that aligns with the dynamic nature of
contemporary software development practices.

As software applications become increasingly intricate, with intricate in-
teractions and dependencies, traditional manual testing methods struggle to
provide adequate coverage and efficiency. Optimization algorithms aim to
address these challenges by automating and improving the test case selec-
tion process. One key motivation is the need for effective resource utiliza-
tion. Software testing can be resource-intensive, requiring significant time
and human effort. Optimization algorithms help streamline this process by
intelligently selecting a subset of test cases that provide maximum coverage
and effectiveness. This efficiency not only saves time but also ensures that
testing resources are allocated to the most critical areas of the software.

With such a motivation, the main contributions of the proposed meta-
heuristic algorithm for test case minimization are as follows:

1. The proposed algorithm produces an ideal subset of test cases that
accomplishes the greatest coverage with the least number of test cases.

2. The algorithm is outlined to handle complex optimization issues with
expansive look spaces and nonlinear objective capacities, making it
more proficient than conventional optimization algorithms.

3. The proposed algorithm takes into account various factors such as code
coverage, test suite size, and execution time to generate an optimal test
suite that achieves maximum coverage with the minimum number of
test cases.

4. The proposed algorithm can be customized to fulfill the particular de-
mands and needs of the software development project.

5. The proposed algorithm is evaluated on a benchmark suite of test cases
from the literature.
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The rest of the paper is arranged in the subsequent section, highlighting
important modules as the background-related work is presented in Section
2. The description of the proposed metaheuristic algorithm is presented in
Section 3. In Section 4, the experimentation results of the proposed algorithm
are presented. Later, a comparative study is presented in Section 5. Finally,
the paper gives the key summarization of the work and is presented in Section
6.

2 Literature review

In the past, there has been significant work done on test case minimization
using metaheuristic algorithms in the field of software engineering. There are
several works on test case prioritization using particle swarm optimization,
where the authors propose a test case prioritization technique using PSO. The
PSO algorithm is used to select the most critical test cases for early execution,
reducing the testing time and effort required [33, 31, 20]. However, there are
many other works that focus on the reverse aspect, that is, generation of
the test cases using the PSO algorithm. One such work is demonstrated
in [29], where the PSO-based search technique is applied with an improved
combined function to generate test cases for the critical paths. Another work
that gives the comparative study on metaheuristic algorithms for test case
generation is presented in [28]. The authors present the details of using the
various optimization algorithms and their fitness functions to generate the
test cases.

Some of the authors have also focused on the method of hybridization
to minimize the number of test cases. One such work is proposed in [9],
where the authors used the collective information of the two metaheuristic
algorithms to minimize the feature description size. Another work by the
authors of [8] presents the study on the test case selection, and reduction
using Quantum PSO. Also, the work using the PSO for regression testing
and its test case minimization is presented in [34]. This paper proposes a
comparative analysis approach for test case selection for regression testing
using PSO. The PSO algorithm is used to optimize the selection of test cases

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Jaiswal and Prajapati 6

based on various criteria, such as coverage and fault detection capability,
while minimizing the size of the test suite.

One of the works published on test case prioritization used the PSO with
the modified conditional criteria for test case minimization and selection is
[25]. A recent work [15] presents the multi-objective modified PSO algorithm
for the reduction of the test suite. In an overall assessment of the work done
on PSO-based test case selection, it is found that the authors claimed that
in terms of increasing the effectiveness and efficiency of the testing process,
PSO had demonstrated encouraging results. Additionally, while retaining
complete coverage of the system under test, PSO algorithms can consider-
ably minimize the number of test cases needed for software testing. Indeed,
in critical analysis, it is observed that PSO can become trapped in local op-
tima, limiting its ability to explore the entire search space. This can lead to
suboptimal solutions and reduce the effectiveness of the test suite. Also, PSO
can become computationally expensive as the number of test cases increases.
This can limit its scalability and make it impractical for larger software sys-
tems. In addition, the performance of PSO is highly sensitive to the choice of
parameters, such as the number of particles, the maximum number of itera-
tions, and the inertia weight. Poor parameter settings can lead to suboptimal
performance and slow convergence. Thus, the PSO may not be found to be
suitable for all types of software systems or test scenarios. Its effectiveness
may depend on the nature of the system under test and the objectives of the
testing process.

Some of the authors have used the ACO algorithm for the minimization of
the test cases. One such work is reported in [24], where the authors used the
complete graph to represent all the test cases in the test suite. An empirical
analysis of using the ant systems for multi-faceted test case prioritization
is presented in [26]. The authors validated their proposed approach on a
freely available widely used benchmark dataset, called software infrastructure
repository. Also, there is a work from early 2017, where the authors used the
ACO approach for regression test case prioritization [11]. The authors here
used the epistatic test case segment approach for multiobjective search-based
regression test case prioritization reflects the correlation between genes in
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the evolution process. Furthermore, the approach is validated on the three
benchmarks and found satisfactory on industry standards.

In the literature, there are some other optimization algorithms as well that
were used for the minimization and prioritization of the test cases [16]. On
this, the work on using test case minimization with GA is presented in [30].
The creators utilized the center concept of the GA to construct an algorithm
called Test Reduce to discover an optimized and negligible set of test cases
for Internet applications. The modified strategy for test case minimization
in the COTS method using the GA was employed by the authors of one of
the research works [10]. To maximize fitness values in test suit development,
the authors applied the GA in the boundary value analysis and partitioning
testing.

Besides this, one of the papers proposes a hybrid approach that combines
GA and Fuzzy logic for the minimization of the test cases. The authors used
the GA to filter out and find the set of candidate test cases. Whereas, the
fuzzy logic is used to select the optimal subset of test cases that minimize
the size of the test suite while maximizing the fault detection ability [19].

In many other works, the literature suggests the use of the various other
metaheuristic algorithms that were used in the optimization of the test data
in a variety of applications. On this, the use of the gravitational search al-
gorithm is also found useful in one of the articles for the test case minimiza-
tion [6]. The authors here utilized the discrete and combinatorial gravita-
tional look calculation to illuminate the test case prioritization and minimiza-
tion. The try is carried out in a controlled environment with the benchmark
dataset, and the results are compared with the GA. In comparison, it is found
valuable within the ideal choice of the test cases.

On a similar aspect, the data optimization and prioritization using the
novel BAT algorithm is proposed in [7]. The authors used the two-step
procedure to enhance the work and modified the traditional BAT algorithm
with the inclusion of the new objective function. The algorithm is tested on
the dataset with different evaluation criteria. Later, the author presented
the comparative analysis with the existing algorithms and found that the
proposed approach is performing well.
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Some of the authors used the hybrid approach as well for the minimization
of the test cases. This hybridization is seen in many aspects by collaborat-
ing the multiple metaheuristic algorithms to form a new objective function.
On a similar theme, the authors of [9] showed the hybridization of the two
metaheuristic algorithms named molecule swarm and positioned firefly calcu-
lation for the program test case minimization. Some of the authors also used
the standalone firefly algorithm [18] for the test case minimization. How-
ever, on comparative, analysis of these two variants suggests that the hybrid
algorithm results are better than the use of the standalone method.

The writing moreover depicts the utilization of a half-breed technique for
fault detection and combinatorial optimization procedures for configuration-
aware basic testing [1] and the minimization utilizing the test code closeness
and evolutionary search [27].

In an overall assessment of test case minimization, it is found that it is
an important problem in software engineering that aims to reduce the size
of the test suite while maintaining its effectiveness in detecting faults in the
software system. To address this issue, analysts have connected different
metaheuristic algorithms, such as GA, PSO, and ACO, to optimize the test
suite. Some authors also explored the design framework of the novel design
of the metaheuristic algorithm for software mutation testing in a controlled
environment [4].

The previous contributions on test case minimization using metaheuris-
tic algorithms have shown promising results in improving the efficiency and
effectiveness of the testing process as also discussed in [12] presenting with
a detailed decade review. These approaches have minimized the count of
test cases that were actually required for software testing while maintain-
ing maximum coverage of the system under test. The contributions have
also highlighted the importance of considering the limitations of these al-
gorithms, such as limited scalability, sensitivity to parameter settings, and
limited diversity of solutions.

The comparative study of the related works used for the software test
case minimization is presented in Table 1. The table presents the summa-
rized results of the reviewed works and highlights the advantages and the
limitations of the studies.
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Table 1: Comparative study of the related works on software test case minimization

Reference Optimization Approach Advantages Limitations

[16, 30, 10, 19]
Genetic Algorithms
(GAs)

-
Automatically explores
diverse test cases

-
May get stuck in
local minima, especially for
complex landscapes

-
Handles discrete
search spaces

-
High computational cost
for large-scale problems

-
Captures interactions
between test cases

- Difficult to interpret results

[33, 31, 20, 34, 29]
Particle Swarm
Optimization (PSO)

-
Efficient for continuous and
discrete spaces

- Sensitive to parameter tuning

- Simplicity in implementation -
Convergence to
suboptimal solutions

- Ability to escape local minima -Slow convergence

[7] BAT optimization - Global search capability -
Slow convergence for
certain problem landscapes

[9]
Molecule Swarm and
Firefly Optimization

-
Versatility in handling
various objectives

- Parameter sensitivity

[18] Firefly Optimization -
Provides a probabilistic
framework

-Slow convergence

[24, 26, 11]
Ant Colony
Optimization (ACO)

-
Inspired by natural
foraging behavior

-
Limited scalability for
large problem instances

-
Robustness to changes
in the environment

-
Convergence highly
dependent on parameters

-
Handles discrete and
combinatorial problems

-Slow convergence

[28, 9]
Hybrid algorithms and
Comparative studies

-
Synergy between exploration
and exploitation

-
Increased complexity
in implementation

- Improved global search capability -
Inherit limitations of
individual algorithms

-
Enhanced convergence
characteristics

-Slow convergence

3 Proposed metaheuristic optimization algorithm

The main requirement for an optimization algorithm in software test case
minimization is to reduce the number of test cases required to test a system
while still ensuring that the system’s functionality is thoroughly tested. This
is important because testing is a crucial step in software development, and
reducing the number of test cases required can save time and resources. In
addition to reducing the number of test cases, the optimization algorithm
should also ensure that the remaining test cases provide maximum coverage
of the system’s functionality. This means that the algorithm should be able
to identify the most critical and relevant test cases, rather than just selecting
them randomly or based on simple criteria such as code coverage.

Furthermore, the optimization algorithm should be able to handle large
and complex software systems and be efficient enough to provide results in
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a reasonable amount of time. This is important because testing can be a
time-consuming process, and any optimization algorithm used should not
significantly increase the overall testing time.

Based on this, here we developed a new metaheuristic optimization algo-
rithm called the Physics-informed particle decay Algorithm (PPDA), based
on the nature of the physics to study the decay of the particles. The proposed
approach is new in terms of idea and objective function.

3.1 Physics-informed particle decay algorithm (PPDA)

The PPDA is a metaheuristic optimization algorithm that is inspired by
principles from physics, specifically regarding stability and particle decay.
PPDA simulates the behavior of particles, where each particle represents
a potential solution to the optimization problem being solved. The basic
flowchart of the proposed PPDA algorithm is shown in Figure 1.

The concept of stability is important in PPDA, as it helps to ensure that
the particles converge toward a good solution. The particles in PPDA are
attracted toward the energy valleys, which represent the best solutions to
the optimization problem. The valley itself represents a stable state, while
the particles represent the energy fluctuations that occur in the system. The
proposed algorithm uses the concept of stability to ensure that the particles
move and converge toward the best solution.

The different modes of decay in PPDA are also important for the algo-
rithm’s performance. In physics, particle decay refers to the process by which
a particle breaks down into smaller particles or other forms of energy. In the
proposed algorithm, particle decay is used to simulate the process by which
particles move toward each other.

There are several modes of particle decay in PPDA, each of which repre-
sents a different behavior of the particles. For example, the mode of “attrac-
tive decay” causes the particles to move toward each other and converge to
the best solution. On the other hand, the mode of “repulsive decay” causes
the particles to move away from each other and explore different areas of the
search space.
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Figure 1: Flowchart of the proposed PPDA algorithm.
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3.1.1 Background preliminaries for PPDA

The base of the proposed algorithm is particle physics. In particle physics, the
process of colliding two particles to generate new particles is known as particle
collision. Particle collisions are used to study the properties of subatomic
particles, such as quarks and leptons, and to probe the fundamental forces
of nature. In a particle collision, two particles are accelerated to very high
speeds using particle accelerators, such as the large hadron collider at CERN.
When the particles collide, they can create a shower of new particles that are
detected by particle detectors.

The collision itself is a physical reaction that involves the exchange of
energy and momentum between the colliding particles. Depending on the
energy of the colliding particles and the angle of the collision, different types
of particles can be generated. One type of particle collision is known as elastic
scattering, in which the colliding particles bounce off each other without
generating any new particles. Inelastic collisions, on the other hand, can
generate new particles, such as mesons and baryons.

The collision can also generate antiparticles, which are particles that have
the same mass as their corresponding particles but have opposite charges.
For example, a collision between a proton and an antiproton can generate a
shower of particles, including pions, kaons, and other mesons.

Thus, we can see the two forms of the particles in the universe, that is,
stable and unstable particles. Stable particles are particles that do not decay
into other particles, while unstable particles decay into other particles after
a certain amount of time.

Stable particles include fundamental particles such as electrons, neutri-
nos, and photons, as well as composite particles such as protons and neutrons.
These particles have lifetimes that are much longer than the age of the uni-
verse and do not decay spontaneously. On the other hand, unstable particles,
have lifetimes that are shorter than the age of the universe and decay into
other particles through various physical processes.

Furthermore, as a fundamental feature of these particles, unstable parti-
cles emit energy through disintegration or decay. When an unstable particle
decays, it transforms into one or more other particles, releasing energy in the
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process. The decay of an unstable particle can occur through various physical
processes, depending on the nature of the particle and the forces that govern
its behavior. During the decay process, the unstable particle loses energy,
which is released in the form of radiation, such as γ rays, or particles, such as
electrons or positrons. This energy can be measured and used to study the
properties of the unstable particle and the forces that govern its behavior.

The decay rate of an unstable particle is described by its half-life, which
is defined as the amount of time it takes for half of the particles in a sample
to decay. The half-life of a particle can range from fractions of a second to
billions of years, depending on its nature.

However, determining the stability of a particle involves considering var-
ious factors, including the count of neutrons (Ne) and protons (Ze) in the
nucleus, and the Ne/Ze ratio is one of the most crucial factors. The balance
between the strong nuclear force, which binds protons and neutrons together,
and the electromagnetic force, which repels positively charged protons, deter-
mines the stability of a nucleus. If the number of neutrons and protons is such
that the strong force is greater than the electromagnetic force, the nucleus
is stable. However, if the strong force is not strong enough to overcome the
electromagnetic force, the nucleus is unstable and may undergo radioactive
decay.

The Ne/Ze ratio is a key aspect in determining a nucleus’s stability. It is
the ratio of the number of neutrons to the number of protons in the nucleus.
In general, a stable nucleus has a Ne/Ze ratio that is close to 1. If the
Ne/Ze ratio is too high or too low, the nucleus is unstable and may undergo
radioactive decay. For light nuclei, the stable Ne/Ze ratio is close to 1:1.
However, as the atomic number increases, the stable Ne/Ze ratio increases
slightly. In addition to the Ne/Ze ratio, the size of the nucleus also plays a
role in its stability. Larger nuclei tend to be less stable than smaller nuclei
and may undergo radioactive decay to become more stable.

There are three sorts of emissions that define the particle’s level of stability
during the decay process, that is, α decay, β decay, and γ decay [22]. All
three decay particles are emitted from the nucleus, which can result in a
change in the Ne/Ze ratio of the nucleus. In α decay, a nucleus emits an
α particle, which consists of two protons and two neutrons. This emission
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reduces the number of protons (Ze) and neutrons (Ne) in the nucleus by 2
and 4, respectively. As a result, the Ne/Ze ratio of the nucleus decreases,
making it more stable.

In β decay, a neutron in the nucleus is changed into a proton or vice
versa, and the nuclear material emits an electron (β particle), antineutrino,
or positron (positron emission). Depending on the type of β decay, this alters
the number of protons and neutrons in the nucleus, causing the Ne/Ze ratio
to either rise or fall.

In γ decay, a nucleus in an excited state emits a γ ray, which is a high-
energy photon. Moreover, γ decay does not change the number of protons or
neutrons in the nucleus, and thus, it does not directly affect the Ne/Ze ratio.
However, γ decay can occur as a result of α or β decay, which may change
the Ne/Ze ratio.

Within the proposed approach, we have utilized the standards of the decay
process through different particles that can serve as a starting point for the
planning of the modern metaheuristic algorithm in which the arrangement
candidates’ execution can be improved by utilizing the thought that particles
have the inclination to reach a steady position.

3.1.2 Mathematical foundation of PPDA

The mathematical structure of the proposed optimization algorithm uses the
previously defined concept and preliminaries. The first step of the proposed
algorithm is the initialization, wherein in the search space, the solution can-
didates (Ai) are assumed to be particles with changing degrees of solidness
and expected to be a particular locale of the universe as appeared in supposed
to be particles with varying degrees of stability and assumed to be a specific
region of the universe as shown in the following equation (1):
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, (1)

where the symbolic representation of the used variables is defined as the total
number of particles given by variable n, the problem dimension is represented
by m, Aj

i is deciding the beginning position of the ith candidate for jth
decision variable.

Moreover, the mathematical form of the decision variable is shown by the
following equation (2):

Aj
i = Aj

i,min i +Rm(Aj
i,max i −Aj

i,min i), (2)

where Aj
i,min i and Aj

i,max i speaks to the lower and upper bounds of the jth
variable within the ith candidate and the Rm is the irregular generator within
the extend [0, 1].

The core difference between neutron-rich and neutron-poor particles is
then calculated using the objective function set for each particle utilizing
the analysis with the Enrichment Level of Neutron (NEL) of the particles.
NEL of a particle can be calculated using the formula given in the following
equation (3):

NEL =
(Ne− Ze)

(Ne+ Ze)
, (3)

where Ne represents the number of neutrons in the nucleus, and Ze represents
the number of protons in the nucleus.

The NEL value indicates the neutron excess or deficiency in the nucleus
relative to the number of protons. If the NEL value is positive, it indicates a
neutron excess, meaning there are more neutrons than protons in the nucleus.
A positive NEL value suggests a tendency towards neutron-richness. If the
NEL value is negative, it indicates a neutron deficiency, meaning there are
fewer neutrons than protons in the nucleus. A negative NEL value suggests
a tendency towards proton-richness.
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Whereas the following equation (4) gives the computation of the core
difference between neutron-rich and neutron-poor particles using NEL:

CD =

∑n
i=1 NELi

n
, (4)

where CD is the core difference between neutron-rich and neutron-poor parti-
cles, NELi is the NEL for ith particle, and n is the total number of particles.

Thus, if the NEL of a particle is discovered to be more than the CD, that
is (NELi > CD), the associated particle is assumed to have the next Ne/Ze
proportion, and the rot handle is expected to be utilizing α, β, or γ plans.

Next, in the third phase, we will predict the particle’s stability levels
based on the objective function evaluated using the following equation (5):

Li =
NELi −BL

WL −BL
, i ∈ [1, n], (5)

where Li is the ith particle stability level, BL is the particle’s best stability
level, WL is the particle’s worst stability level, and n is the total number of
particles in the system.

Furthermore, to calculate the stability of the system (SS), we generate a
value in the interval of 0 to 1, probably with a random selection. In case the
predicted particle stability level (Li) is higher than the selected SS, that is,
(Li > SS) then α and γ decay are to be considered.

Based on the theory of particle physics for α decay, it is observed that the
α rays were emitted to enhance the particle’s stability. Using the same theory
in the proposed algorithm as a position-updating technique to generate the
new solution particle, two α values were generated, that is, α1 and α2. The
generated αi values are given by the following equation (6):

α1 ∈ [1, r], α2 ∈ [1, α1], (6)

where α1 is for the number of emitted rays, r is a random number in between
1 to n, and α2 is the number of to-be-emitted α rays. These emitted rays
are considered as the decision variables to generate the new particle, which
is given by the following equation (7):

Anewα
i = Ai(ABL

(Aj
i )), (7)
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where i ∈ [1, n], j = α2, Anewα
i is the new particles generated in the sample

space, Ai is the ith particle’s current position in the sample space, ABL
is the

particle’s position with the leading soundness level, and Aj
i is the jth choice

particle for the transmitted beam.

Aside from the α decay, there is also a γ decay in which γ rays are
emitted to strengthen the stability of the excited particles. In the proposed
algorithm, this is considered as another particle’s position-updating process
to generate the new particles. On a similar pattern, like for α decay, here also
we use two values of γ, that is, γ1 and γ2. Here, γ1 signifies the number of
emitted photons, and γ2 in the range of [1, γ1] denotes the information on the
photons to be examined in the particles. Thus, these photons in the particles
are considered to be the decision variable in the sample space, where the
old particle is replaced with the neighboring particle. Finally, the distance
between the particle of interest and other leftover particles is calculated as we
do in the K-nearest neighbor algorithm. Here we select the nearest particle
having the value of k = 1 and is given by the following equation (8):

min(Distki ) =
√

(X2 −X1)2 + (Y2 − Y1)2, (8)

where i ∈ [1, n], j ∈ [1, n− 1], Distki is the distance between the ith particle
and the neighbor k particles, and the pair (Xi, Yi) is the particles coordinate
in the sample space.

Using the above information, the second particle generating process is
given by using the following equation (9):

A
newγ

i = Ai(AN (Aj
i )), (9)

where i ∈ [1, n], j = γ2, A
newγ

i is the new particles generated in the sample
space, Ai is the ith particle’s current position in the sample space, AN is the
ith particles neighborhood position vector, and Aj

i is the jth decision particle
in space (emitted ray).

It is to be noted here that if the particle’s stability level (Li) is lower than
the SS, that is, (Li < SS), then the β decay is then thought to occur with
increasingly unstable particles with lower stability levels.
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Now, the mathematical representation of the particle position update via
reaching towards the stability band is given by the following equation (10):

AUpdate1
i = Ai +

(a.ABL
− b.AC)

Li
, (10)

where i ∈ [1, n], AUpdate1
i and Ai are the updated and current positions of the

ith particle, a and b are the two numbers randomly chosen from the interval
of [0, 1] and controls the particle’s movement, and AC is the position of the
center of the particle in space and is given by the following equation (11):

AC =

∑n
i=1 Ai

n
. (11)

Another position overhauling preparation is carried out for particles utilizing
β rot, in which a controlled development towards the particle or a candidate
with the leading solidness level (ABL

) and a neighboring particle (AN ) is
performed, while the particle’s stability level has no bearing on the movement
process. This strategy points to extending the misuse and investigation levels
of the calculation which is given by the following equation (12):

AUpdate2
i = Ai + (c.ABL

− d.AN ), (12)

where i ∈ [1, n], AUpdate2
i and Ai are the updated and current positions of the

ith particle, c, and d are the two numbers randomly chosen from the interval
of [0, 1] and control the particle’s movement, and ABL

, AN have their usual
meaning as discussed earlier.

When the NEL of a particle is discovered to be lower than the CD, that
is, (NELi < CD), this indicates that the particle has a lower value of Ne/Ze
ratio. It means that the particle tends to emit positrons in order to come
closer to the stability band. Using a similar concept in the proposed algo-
rithm, the new particle position is updated by using the following equation
(13):

Aupdate
i = Ai + e, (13)

where i ∈ [1, n], AUpdate
i and Ai are the updated and current positions of the

ith particle, e is the numbers randomly chosen from the interval of [0, 1] and
control the particle’s movement.
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Finally, after the execution of the proposed algorithm completely, at the
end, we are with any one of the solution steps, that is, (1) if (NELi >

CD), the algorithms return two newly generated particle positions for each
of the particles as given by (10) and (12), and (2) if (NELi < CD), the
algorithms return a single new particle position as given by (13). Hence, in
an overall analysis, three processes for updating positions are included in the
algorithm. Whereas one position upgrading method happens in arrangement
candidates, where abuse is fulfilled, two of these methods happen in choice
factors, where the investigation is performed. This technique’s problematic
aspect is that while the exploration phase may direct the program to locally
optimal answers, the other phase aims to fine-tune the prior solutions to find
the best candidate globally.

3.1.3 Algorithmic design of the proposed methodology

The description of the proposed algorithm in the pseudo-code is presented
in Algorithm 1. The given code provides the detailed flow of the algorithm
step-by-step. At the end of the algorithm, the return is in the form of the
particle positioning with the best stability prediction.

4 Experimentation results

4.1 Dataset for experimentation

To test the performance of the proposed algorithm we used the dataset from
the open-source platform, which was having the test cases of size 100. The
structure of the dataset is composed of several attributes, which were given
as follows:

• Test ID

• Test cases

• Pre-Conditions

• Precedence
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Algorithm 1: Pseudo-code of the proposed approach
Input: Initialize the population of particles randomly within the

search space
Input: Evaluate the fitness of each particle in the population using

NEL
Output: Particle with best stability level
Data: Set the global best position and fitness value as the position

and fitness of the best particle.
while iteration− count < Maxiteration do

Compute the CD of the particle
Compute the particle’s best stability level ABL

for i ∈ [1, n] do
Compute the stability of the ith particle (Li)
Compute the NELi of the ith particle
if NELi > CD then

Compute the SS of the particle
if Li > SS then

Generate α1 and α2

for j ∈ [1, α2] do
compute Anewα

i = Ai(ABL
(Aj

i ))

Generate γ1 and γ2

Determine neighboring particle (AN )
for j ∈ [1, γ2] do

compute A
newγ

i = Ai(AN (Aj
i ))

else if Li < SS then
Find the center of the particle (AC)
compute AUpdate1

i = Ai +
(a.ABL

−b.AC)

Li

Find the neighboring particle (AN )
compute AUpdate2

i = Ai + (c.ABL
− d.AN )

if NELi < CD then
compute Aupdate

i = Ai + e;

Return the particle with stability level (ABL
)
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• Pass/Fail

The downloaded dataset is in the form of the comma separated file having
attribute information. The sample structure of the used dataset is given in
Figure 2.

Figure 2: Sample description of the dataset used for experimentation.

4.2 Parameters value for optimization algorithms

The various optimization algorithms that were used in the experimentation
will be having some parameter values that is shown in Table 2.

Table 2: Optimization algorithms used in experimentation with their parameter values

Algorithm Parameter 1 Value 1 Parameter 2 Value 2 Parameter 3 Value 3 Parameter 4 Value 4
ACO Alpha 0.5 Beta 1 Evaporate 0.1 - -
GA Population 100 Crossover 0.8 Mutation 0.05 - -
PSO Swarm 100 Inertia wt 0.7 Personal Coff. 2.0 Social Coff. 1.5

GSK Population 100
Knowledge
factor

0.5
Knowledge
ratio

0.9
Knowledge
rate

10

WSO Moment 0.7 Modality 0.6 Movement 0.3 Search Coff. 0.5
TOA Team size 100 T factor 0.4 random num 0.2 - -

CHIO Population 100
Reproduction
rate

0.4 Case age 0.3 - -
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4.3 Result computation

To evaluate the performance of the proposed algorithm here ten benchmark
test functions were used. These functions are known as Bukin function,
cross-in-tray function, Easom function, Goldstein-price function, Himmel-
blau’s function, Levi function, six-hump camel function, Schaffer’s function,
Weierstrass function, and Xin-She Yang function. These test functions cover
a range of characteristics, such as multimodality, irregularity, and high di-
mensionality, allowing researchers to assess the performance of metaheuristic
algorithms in different problem landscapes.

It’s worth noting that each test function has its own mathematical formu-
lation and specific properties, making them suitable for evaluating different
aspects of optimization algorithms. Also, each of the test functions is con-
sidered to have a fixed dimension of size 50. The set value of the global best
is selected as 0 for all the test functions to make uniformity.

Here, we have utilized 100 partitioned optimization runs to calculate the
cruel, the standard deviation, and the vital number of objective work as-
sessments in order to assess the performance. The method utilizes a halting
criterion with a tolerance of 1×10−12 for the globally optimal values of the al-
leged problems and a maximum of 50,000 evaluations of objective functions.
To evaluate the performance of the proposed algorithm, all the tests were
conducted with a fixed population of size 50. The iteration-wise convergence
of the proposed algorithm with respect to the time taken is shown in Figure
3. The theoretical convergence of the NEL and the CD with +ve and -ve
values on the iteration count of 50 is shown in Figure 4.

The fitness values recorded by using the dataset with the proposed algo-
rithm are given in Table 3. The table shows the result of the calculation of
fitness values computed on the basis of per epoch size.

The experimentation result of the proposed algorithm on the selected
ten benchmark test functions is presented in Table 4. All the benchmark
test functions on the proposed algorithm are evaluated by using the three
parameters, that is, mean, standard deviation, and the best value.
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Figure 3: Performance analysis of the proposed algorithm in between the iterations
count and time taken by the algorithm.

(a) NEL Curve (b) CD Curve

Figure 4: Convergence of the NEL and CD on the iteration count 50

Table 3: Result of the proposed algorithm on the dataset giving fitness values

Iteration count Test Case Fitness function
1 10 5.9488e(-010)
5 18 7.1491e(-010)
10 27 1.7217e(-009)
15 38 4.1091e(-009)
20 46 6.0999e(-009)
25 55 6.1999e(-009)
30 62 8.2628e(-007)
35 70 8.2101e(-007)
40 85 9.998e(-007)
45 93 9.9974e(-007)
50 100 9.998e(-007)

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Jaiswal and Prajapati 24

Table 4: Performance analysis of the proposed algorithm with ten benchmark functions

Benchmark Function Parameters Experimented value

Bukin Function
Mean 0.11958
Std. Dev 1.15982
Best 3.24853

Cross-in-Tray Function
Mean 20.8456
Std. Dev 4.12124
Best 9.05642

Easom Function
Mean 27.5468
Std. Dev 11.2619
Best 8.4653

Goldstein-Price Function
Mean 12.5887
Std. Dev 3.8911
Best 4.5997

Himmelblau’s Function
Mean -2.805118
Std. Dev 3.131312
Best 3.584428

Levi Function
Mean 13.1087
Std. Dev 7.7724
Best 19.4376

Six-Hump Camel Function
Mean 0.0898
Std. Dev -0.7126
Best 0.7126

Schaffer Function
Mean 5.47× 10−13

Std. Dev 5.47× 10−12

Best 0

Weierstrass Function
Mean 1.53× 10−03

Std. Dev 1.41× 10−03

Best 1.18× 10−06

Xin-She Yang Function
Mean 1.25× 10−03

Std. Dev 1.12× 10−03

Best 6.96× 10−06
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5 Comparative analysis

The comparative analysis of the proposed algorithm with the other bench-
mark metaheuristic algorithms like ACO, GA, and PSO on the ten selected
benchmark functions is presented in Table 5. We explored some recent works
on the optimization of the problems and selected few named, as gaining-
sharing knowledge-based algorithm (GSK) [23], war strategy optimization
(WSO) [5], teamwork optimization algorithm (TOA) [13], and Coronavirus
herd immunity optimizer (CHIO) [3]. The comparative analysis using some
recently proposed metaheuristic algorithms is also presented in Table 5.

Table 5: Comparative analysis of the proposed algorithm with other metaheuristic op-
timizations on ten benchmark functions

Parameters Experimented value
Benchmark
Functions

Proposed
Algorithm

ACO GA PSO GSK WSO TOA CHIO

Mean 0.11958 0.0452 0.0845 0.1045 0.6424 0.7594 0.4645 0.8215
Std. Dev 1.15982 0.8875 0.8952 0.9973 0.0353 0.5204 0.5329 0.9762

Bukin
Function

Best 3.24853 1.2975 2.0128 2.9861 1.5612 1.8345 2.4699 2.9164
Mean 20.8456 12.5465 14.5612 17.7789 11.9246 12.3320 15.4976 18.5564
Std. Dev 4.12124 2.2498 2.8167 3.4242 1.7783 1.9201 2.1286 2.5546

Cross-in-Tray
Function

Best 9.05642 5.1971 7.1267 8.9462 2.5610 3.8848 5.5585 6.4319
Mean 27.5468 17.5641 20.5731 23.1973 17.2564 21.5645 20.0843 23.4997
Std. Dev 11.2619 8.8891 10.0245 11.1189 8.1469 10.1213 11.0046 11.1873

Easom
Function

Best 8.4653 5.2307 6.7239 7.8912 4.3469 4.8501 5.4321 6.0197
Mean 12.5887 9.1327 10.8123 11.7831 7.8873 8.8213 9.4631 9.9799
Std. Dev 3.8911 1.0891 1.9921 2.5618 1.2390 2.0049 2.7391 3.7721

Goldstein-Price
Function

Best 4.5997 2.2080 3.0891 4.1129 1.9951 2.5739 3.0852 3.7894
Mean -2.805118 -4.1978 -3.331946 -2.913354 -5.3349 -4.0167 -2.4223 -2.8521
Std. Dev 3.131312 0.1974 1.079641 2.139734 0.5216 1.0841 1.9898 2.0173

Himmelblau’s
Function

Best 3.584428 0.1941 1.943137 2.139424 1.0409 1.9744 2.3367 3.0889
Mean 13.1087 9.1346 11.4621 1.7921 7.2252 8.5545 10.1446 9.8878
Std. Dev 7.7724 4.9134 6.1389 7.5134 4.4464 5.1973 6.5565 5.8552

Levi
Function

Best 19.4376 12.9434 16.4673 18.9124 10.2881 12.4652 17.8446 15.5550
Mean 0.0898 1.1913 0.1843 0.0661 0.9979 0.6732 0.2212 0.1101
Std. Dev -0.7126 -1.7349 -0.9943 -0.7112 -1.2333 -1.1249 -0.9999 -0.4156

Six-Hump Camel
Function

Best 0.7126 1.9431 0.9937 0.6574 0.7449 0.7552 0.7449 0.8510
Mean 5.47E-13 9.77E-13 7.87E-13 6.34E-13 9.44E-13 8.14E-13 6.49E-13 5.11E-13
Std. Dev 5.47E-12 7.71E-12 6.89E-12 6.07E-12 8.11E-12 7.57E-12 6.04E-12 6.01E-12

Schaffer’s
Function

Best 0 1.6972 0.9234 0.0569 0.6646 0.7411 1.1012 1.6887
Mean 1.53E-03 3.33E-03 2.89E-03 1.943E-03 2.84E-03 2.41E-03 1.72E-03 1.50E-03
Std. Dev 1.41E-03 2.61E-03 1.99E-03 1.65E-03 2.43E-03 1.90E-03 1.99E-03 1.57E-03

Weierstrass
Function

Best 1.18E-06 4.81E-06 3.11E-06 2.01E-06 4.71E-06 3.11E-06 1.53E-06 1.96E-06
Mean 1.25E-03 2.55E-03 2.012E-03 1.95E-03 1.53E-03 2.84E-03 2.61E-03 1.47E-03
Std. Dev 1.12E-03 2.56E-03 1.99E-03 1.24E-03 1.55E-03 1.72E-03 1.30E-03 1.24E-03

Xin-She
Yang Function

Best 6.96E-06 4.75E-06 5.09E-06 6.66E-06 4.21E-06 5.01E-06 5.78E-06 6.11E-06

To test the significance of the proposed model, the statistical analysis is
also computed and compared. To do this, the well-known statistical mea-
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sure test named Kolmogorov–Smirnov (KS) test is used in this work. The
KS test is a nonparametric test that is used to determine if a sample comes
from a specific distribution. It is particularly useful for assessing whether
a sample follows a particular theoretical distribution, such as a normal dis-
tribution. The test is based on the cumulative distribution function of the
empirical distribution and the theoretical distribution being tested. The KS
test statistic, denoted as D, is the maximum absolute difference between the
empirical distribution function of the sample and the cumulative distribu-
tion function of the theoretical distribution. If the calculated test statistic is
greater than the critical value from the KS distribution table (or the p-value
is less than the significance level), then the null hypothesis will be rejected.
The experimentation results of the KS test are presented in Table 6. The
KS test results are given in Table 6, and since the test’s p-value is less than
0.05, the hypothesis regarding the data’s normal distribution is satisfied. As
a result, nonparametric statistical tests can be used for more research.

Table 6: The KS test values showing the significance of proposed method

Algorithm Data type
Existing Algorithms

ACO GA PSO GSK WSO TOA CHIO

Proposed
Algorithm

Best 8.22E-06 8.22E-06 8.22E-06 6.45E-06 8.22E-06 7.19E-06 7.84E-06
Mean 1.65E-04 1.93E-04 1.65E-04 1.65E-04 2.01E-04 1.99E-04 1.65E-04
SD 2.12E-02 2.12E-02 1.96E-02 2.76E-02 2.12E-02 2.12E-02 2.76E-02

6 Conclusion

In conclusion, the proposed metaheuristic algorithm based on the physics in-
formed particle decay principle, specifically for test case minimization, shows
promising potential. By leveraging concepts from physics, such as particle
stability and different modes of decay, the algorithm offers a unique approach
to optimize test case generation and reduce redundancy.

The algorithm’s utilization of physics principles allows for the generation
of stable particles that represent high-quality test cases, while unstable par-
ticles can decay and be replaced by new particles to explore different areas of
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the search space. This enables the algorithm to efficiently converge towards
optimal or near-optimal solutions.

Through the use of the proposed algorithm, the test case minimization
process can benefit from the inherent properties of particles in physics, such
as stability and decay. This approach can enhance the efficiency of test case
generation by reducing the number of redundant or irrelevant test cases,
leading to improved resource utilization and reduced testing time.

Also, the proposed metaheuristic algorithm for test case minimization,
validated on ten benchmark functions, has demonstrated its effectiveness and
potential in optimizing the generation and selection of test cases. The algo-
rithm has been evaluated and compared against well-known mathematical
functions, which serve as standard test cases for assessing the performance
of optimization algorithms.

The results of the validation process indicate that the proposed meta-
heuristic algorithm performs well in terms of minimizing the test case suite
while maintaining the required coverage and effectiveness. The algorithm
has shown competitive performance in terms of convergence towards optimal
or near-optimal solutions, as well as the ability to handle different types of
objective functions.

Through the use of metaheuristic techniques, the algorithm has success-
fully explored the search space and identified high-quality test cases that
meet the specified criteria. The algorithm’s ability to adapt and evolve over
iterations has been instrumental in achieving good performance across the
benchmark functions.

The validation of ten benchmark functions has provided insights into the
algorithm’s strengths and weaknesses. The algorithm’s robustness and gen-
eralization capabilities have been evaluated by testing its performance on
various types of objective functions. The results indicate that the algorithm
is capable of effectively minimizing test cases across different problem do-
mains.

Future work will still need to be done in order to evaluate the algorithm
on a larger variety of benchmark functions and real-world test situations. The
algorithm’s performance can also be increased by refining its parameters and
taking into account knowledge particular to the situation. The work could
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be extended with the design of the nonconvex objective function in place of
the convex function. Introducing nonconvexity can make the optimization
problem more challenging, as it increases the likelihood of multiple local
minima.
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