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Singularly perturbed robin type boundary
value problems with discontinuous source

term in geophysical fluid dynamics

B.M. Abagero, G.F. Duressa and H.G. Debela∗

Abstract
Singularly perturbed robin type boundary value problems with discontinu-
ous source terms applicable in geophysical fluid are considered. Due to the
discontinuity, interior layers appear in the solution. To fit the interior and
boundary layers, a fitted nonstandard numerical method is constructed.
To treat the robin boundary condition, we use a finite difference formula.
The stability and parameter uniform convergence of the proposed method
is proved. To validate the applicability of the scheme, two model problems
are considered for numerical experimentation and solved for different values
of the perturbation parameter, ε, and mesh size, h. The numerical result
is tabulated, and it is observed that the present method is more accurate
and uniformly convergent with order of convergence of O(h).
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1 Introduction

Singular perturbation problems model convection-diffusion processes in ap-
plied mathematics that arise in diverse areas, including linearized Navier–
Stokes equation at high Reynolds number and the drift-diffusion equation
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of semiconductor device modeling, heat and mass transfer at high Pe’clet
number, and so on; see [6, 13, 18, 19]. The novel aspect of the problem
under consideration is that we take a source term in the differential equa-
tion that has a jump discontinuity at one or more points in the interior
of the domain. This gives rise to an interior layer in the exact solution
of the problem, in addition to the boundary layer at the outflow boundary
point. Problems with discontinuous data were treated theoretically, in the
case of the solution of the convection–diffusion with Dirichlet case problem;
see [9, 10]. Authors of [2, 8, 14] discussed a self-adjoint Dirichlet type problem
with a discontinuous source term. Authors [14, 15, 17] have examined two
parameter singularly perturbed boundary value problems for second-order
ordinary differential equations with discontinuous source term. Authors of
[5, 7] discussed fitted nonstandard finite difference methods for singularly
perturbed second-order ordinary differential equations. Singularly perturbed
delay differential equation was examined by Mohapatra and Natesan [12] on
an adaptively generated grid. Recently, Shandru and shanthi [3] presented a
fitted mesh method to solve singularly perturbed robin type boundary value
problems with discontinuous source terms. Indeed, still, there is a room to
increase the accuracy and show the parameter uniform convergence because
the treatment of singular perturbation problem is not trivial distributions and
the solution is pended on perturbation parameter, ε and mesh size, h; see [6].
Due to this, the numerical treatment of singularly perturbed boundary value
problems is need improvement. Therefore, it is important to develop a more
accurate and convergent numerical method for solving singularly perturbed
boundary value problems under consideration.

2 Definition of the problem

Consider the following singularly perturbed problem with Robin boundary
condition of the form

Ly(x) ≡ εy′′(x) + a(x)y′(x)− b(x)y(x) = f(x), x ∈ Ω− ∪ Ω+. (1)

Subject to boundary conditions{
L1y(0) = α1y(0)− β1εy

′(0) = p,
L2y(1) = α2y(1) + β2y

′(1) = q,
(2)

where α1, β1 ≥ 0, α1 + β1 > 0, α2 > 0, β2 ≥ 0, and ε > 0 is a small
parameter. The functions a(x) and b(x) are smooth on Ω̄, such that a(x) ≥
a > 0 and b(x) ≥ b ≥ 0. Furthermore, the notations for the domain are
Ω = (0, 1), Ω− = (0, d), and Ω+ = (d, 1), where d ∈ Ω stands for the jump
in the source function. Boundary value problem of the governing problem
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under consideration is a model confinement of a plasma column by reaction
pressure and geophysical fluid dynamics; see [4].

The solution y(x) of (1)–(2) has a boundary layer near x = 0 due to the
perturbation parameter, ε and interior layer due to the discontinuous source
term.

3 Properties of continuous solution

The differential operator for (1) is given by

Lε ≡ ε
d2

dx2
+ a

d

dx
− b,

and it satisfies the following minimum principle for boundary value problems.
The following lemmas [6] are necessary for the existence and uniqueness of
the solution and for the problem to be well-posed.

Lemma 1 (Continuous minimum principle). Suppose that the function
y ∈ C1(Ω̄) ∩ C2(Ω−∪Ω+) satisfies L1y(0) ≥ 0 , L2y(1) ≥ 0, and Ly(x) ≤
0, for all x ∈ Ω− ∪ Ω+ and [y′](d) ≤ 0. Then, y(x) ≥ 0 for all x ∈ Ω̄.

Proof. For the proof, we refer to [3].

Lemma 2 (Stability result). Consider the boundary value problem (1)–(2)
subject to the conditions a(x) ≥ a > 0 and b(x) ≥ b ≥ 0. If y ∈ C1(Ω̄) ∩
C2(Ω−∪Ω+), then

∥ y ∥Ω̄≤ Cmax{| L1y(0) |, | L2y(1) |, | Ly |Ω−∪Ω+}.

Proof. For the proof, see[3].

Lemma 3. For each integer k satisfying 0 ≤ k ≤ 4, the solution of (1)–(2)
satisfies the bounds ∥ y(k) ∥Ω̄\{d} ≤ Cε−k.

Proof. For the proof, see [3].

Lemma 4. Let yε be the solution of (Pε). Then, for k = 0, 1, 2, 3,

| y(k)ε (x) |≤ C(1 + ε−k exp(
−a

ε
x)) for all x ∈ [0, l].

Proof. For the proof, see [1].
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4 Formulation of the method

The theoretical basis of the nonstandard discrete numerical method is based
on the development of the exact finite difference method. The author of [11]
presented techniques and rules for developing nonstandard finite difference
methods for different problem types. In Mickens’s rules, to develop a dis-
crete scheme, the denominator function for the discrete derivatives must be
expressed in terms of more complicated functions of step sizes than those used
in the standard procedures. These complicated functions constitute a general
property of the schemes, which is useful while designing reliable schemes for
such problems.

For the problem of the form in (1)–(2), in order to construct the exact
finite difference scheme, we follow the procedures used in [1].
Let us consider the following singularly perturbed differential equation of the
form

εy′′(x) + a(x)y′(x)− b(x)y(x) = f(x). (3)

The constant coefficient homogeneous problems corresponding to (3) are

εy′′(x) + ay′(x)− by(x) = 0, (4)

εy′′(x) + ay′(x) = 0, (5)

where a(x) ≥ a and b(x) ≥ b. Two linear independent solutions of (4) are
exp(λ1x) and exp(λ2x), where

λ1,2 =
−a±

√
a2 + 4εb

2ε
. (6)

We discretize the domain [0, 1] using the uniform mesh length ∆x = h such
that ΩN = {xi = x0 + ih, 1, 2, . . . , N, x0 = 0, xN = 1, h = 1

N }, where N de-
notes the number of mesh points. We denote the approximate solution to y(x)
at the grid point xi by Yi. Now our main objective is to calculate the differ-
ence equation, which has the same general solution as the differential equation
(4) has at the grid point xi given by Yi = A1 exp(λ1xi)+A2 exp(λ2xi). Using
the theory of difference equations and the procedures used in [1], we have

det

Yi−1 exp(λ1xi−1) exp(λ2xi−1)
Yi exp(λ1xi)) exp(λ2xi)

Yi+1 exp(λ1xi+1) exp(λ2xi+1)

 = 0. (7)

Simplifying (7), we obtain

− exp(
ah

2ε
)Yi−1 + 2 cosh(

h
√
a2 + 4εb

2ε
)Yi − exp(−ah

2ε
)Yi+1 = 0, (8)
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which is an exact difference scheme for (4).
After doing the arithmetic manipulation and rearrangement on (8), for the
constant coefficient problem (5), we get

ε
Yi−1 − 2Yi + Yi+1

hε
a (exp(ahε )− 1)

+ a
Yi+1 − Yi

h
= 0. (9)

The denominator function becomes Ψ2 =
hε

a

(
exp

(
ha

ε

)
− 1

)
. Adopting

this denominator function for the variable coefficient problem, we write it as

Ψ2
i =

hε

ai

(
exp

(
hai
ε

)
− 1

)
, (10)

where Ψ2
i is the function of ε, ai, and h.

By using the denominator function Ψ2
i in to the main scheme, we obtain the

difference scheme as

LNε Yi ≡ ε
Yi+1 − 2Yi + Yi−1

Ψ2
i

+ ai
Yi+1 − Yi

h
− biYi = fi. (11)

This can be written as three term recurrence relation as

EiYi−1 + FiYi +GiYi+1 = Hi, i = 1, 2, . . . , N − 1, (12)

where Ei =
ε
Ψ2

i
, Fi = −2ε

ψ2
i
− ai

h − bi, Gi = ε
Ψ2

i
+ ai

h , and Hi = fi.
To treat the boundary condition, we use the forward finite difference formula
for i = 0 and the backward difference formula for i = N , respectively, for the
first derivative term.
That is, for i = 0, from (2), we have α1y(0)−β1εy

′
0 = p implies α1y0−β1εy

′
0 =

p, which yields
(α1 +

β1ε

h
)y0 −

β1ε

h
y1 = p, (13)

Similarly, for i = N , from (2), we have α2y(N) + β2y
′
N = q implies α2yN +

β2y
′
N = q, which yields

(α2 +
β2

h
)yN − β2

h
yN−1 = q. (14)

Therefore, Equation (1) with the given boundary conditions (2), can be solved
using the schemes in (12), (13), and (14) which gives the N × N system of
algebraic equations.
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5 Uniform convergence analysis

In this section, we need to show that the discrete scheme in (12) satisfies
the discrete minimum principle and uniform convergence. Let us define the
forward, backward, and second-order central finite difference operators as

D+Yj =
Yj+1 − Yj

h
, D−Yj =

Yj − Yj−1

h
, δ2Yj = D+D−Yj =

D+Yj −D−Yj
h

.

Lemma 5 (Discrete Minimum principle). Let Vi be any mush function that
satisfies v0 ≥ 0, vN ≥ 0, and Lhvi ≤ 0, i = 1, 2, . . . , N − 1. Then vi ≥
0, i = 1, 2, . . . , N .

Proof. The proof is obtained by contradiction. Let j be such that Vj =
minVi, and suppose that Vj < 0. Clearly, j /∈ {0, N}, Vj+1 − Vj ≥ 0, and
Vj − Vj−1 ≤ 0. Therefore,

LhVj =
ε

Ψ2
i

(Vj+1 − 2Vj + Vj−1) +
aj
h
(Vj+1 − Vj)− bVj

=
ε

Ψ2
j

[(Vj+1 − Vj)− (Vj − Vj−1)] +
ai
h
(Vj+1 − Vj)− bVj

≥0,

where the strict inequality holds if Vj+1−Vj > 0. This is a contradiction and
therefore Vj ≥ 0. Since j is arbitrary, we have Vi ≥ 0, i = 1, 2, . . . , N .

We proved above that the discrete operator Lh satisfies the minimum
principle. Next, we analyze the uniform convergence analysis.

Using the Taylor series expansion, the bound for y(xi−1) and y(xi+1) at
xi are as{

y(xi−1) = y(xi)− hy′(xi) +
h2

2! y
′′(xi)− h3

3! y
(3)(xi) +

h4

4! y
(4)(xi) +O(h5),

y(xi+1) = y(xi) + hy′(xi) +
h2

2! y
′′(xi) +

h3

3! y
(3)(xi) +

h4

4! y
(4)(xi) +O(h5).

We obtain the bound for{
|D+D−y(xi)| ≤ C|y′′(xi)|,
|y′′(xi)−D+D−y(xi)| ≤ Ch2|y(4)(xi)|.

(15)

Similarly, for the first derivative term, we have

|y′(xi)−D+y(xi)| ≤ Ch|y(2)(xi)|, (16)

where |y(k)(xi)| = supxi∈(x0,xN ) |y(k)(xi)|, k = 2, 3, 4.

Theorem 1. Let the coefficients functions a(x) and the source function f(x)
in (1)–(2) of the domain Ω be sufficiently smooth, so that y(x) ∈ C4[0, 1].
Then, the discrete solution Yi satisfies



Title Suppressed Due to Excessive Length 357

|LN (yi − Yi)| ≤ Ch

(
1 + sup

x∈(0,1)

(
exp(−axi

ε )

ε3

))
.

Proof. We consider the truncation error discretization as

|LN (yi − Yi)| =|LNyi − LNYi|,

≤C|εy′′i + aiy
′
i − {εD

+D−h2

Ψ2
i

yi + aiD
+yi}|,

≤C|ε(y′′i − D+D−h2

Ψ2
i

yi) + ai(y
′
i −D+yi)|,

≤Cε|y′′i −D+D−yi|+ Cε|( h
2

Ψ2
i

− 1)D+D−yi|+ Ch|y′′i |,

≤Cεh2|y(4)i |+Ch|y′′i |+ Ch|y′′i |,

≤Cεh2|y(4)i |+ Ch|y′′i |.

We use the estimate ε| h
2

Ψ2 − 1| ≤ Ch, which can be derived from (10).

Indeed, define ρ =
aih

ε
, ρ ∈ (0,∞) .Then,

ε| h
2

Ψ2
− 1| = aih|

1

exp(ρ)− 1
− 1

ρ
| =: aihQ(ρ).

By simplifying and writing the above equation explicitly, we obtain

Q(ρ) =
exp(ρ)− ρ− 1

ρ(exp(ρ)− 1)
,

and we obtain that the limit is bounded as

lim
ρ−→0

Q(ρ) =
1

2
, lim

ρ−→∞
Q(ρ) = 0.

Hence, for all ρ ∈ (0,∞), we have Q(ρ) ⩽ C. So, the error estimate in the
discretization is bounded as

|LN (yi − Yi)| ⩽ Cεh2|y(4)i |+ Ch|y′′i |. (17)

From (17) and boundedness of derivatives of solution in Lemma 4, we obtain

|LN (y(xi)− Yi)| ≤Cεh2

∣∣∣∣ (1 + ε−4 exp

(
−axi
ε

)) ∣∣∣∣
+ Ch

∣∣∣∣ (1 + ε−2 exp

(
−axi
ε

)) ∣∣∣∣
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≤Ch2

∣∣∣∣ (ε+ ε−3 exp

(
−axi
ε

)) ∣∣∣∣
+ Ch

∣∣∣∣ (1 + ε−2 exp

(
−axi
ε

)) ∣∣∣∣
≤Ch

(
1 + sup

x∈(0,1)

(
exp(−axi

ε )

ε3

))
,

since ε−3 > ε−2.

Most of the time during analysis, one encounters with exponential terms
involving divided by the power function in ε, which are always the main
cause of worry. For their careful consideration while proving the ε-uniform
convergence, we prove the following lemma.

Lemma 6. For a fixed mesh and for ε → 0, it holds

lim
ε→0

max
1≤i≤N−1

(
exp(−axi

ε )

εm

)
= 0, m = 1, 2, 3, . . . ,

lim
ε→0

max
1≤i≤N−1

(
exp(−a(1−xi)

ε )

εm

)
= 0, m = 1, 2, 3, . . . ,

where xi = ih, h = 1
N , i = 1, 2, . . . , N − 1.

Proof. Consider the partition [0, 1] := {0 = x0 < x1 < · · · < xN−1 < xN =
1}. For the interior grid points, we have

max
1≤i≤N−1

exp

(
−axi
ε

)
εm

≤
exp

(
−ax1

ε

)
εm

=

exp

(
−ah

ε

)
εm

,

max
1≤i≤N−1

exp

(
−a(1− xi)

ε

)
εm

≤
exp

(
−a(1− xN−1)

ε

)
εm

=

exp

(
−ah

ε

)
εm

,

as x1 = 1− xN−1 = h.
Then, applying L’Hospital’s rule m times gives

lim
ε−→0

exp

(
−ah

ε

)
εm

= lim
r= 1

ε−→∞

rm

exp(ahr)
= lim
r= 1

ε−→∞

m!

(ah)m exp(ahr)
= 0.

Theorem 2. Under the hypothesis of boundedness of discrete solution (i.e.,
it satisfies the discrete minimum principle), Lemma 6, and Theorem 1, the
discrete solution satisfies the following bound:
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sup
0≤ε≤1

max
i

|yi − Yi|≤ CN−1. (18)

Proof. Results from boundedness of solution, Lemma 6, and Theorem 1 give
the required estimates.

6 Numerical examples and results

To validate the established theoretical results, we perform numerical experi-
ments using the model problems of the form in (1)–(2).

Example 1. Consider the following problem:{
εy′′(x) + y′(x) = f(x), x ∈ Ω− ∪ Ω+,
y(0)− εy′(0) = 1, y(1)− y′(1) = −1,

where

f(x) =

{
0.7, 0 ≤ x ≤ 0.5,

−0.6, 0.5 < x ≤ 1.

Example 2. Consider the following problem:{
εy′′(x) + 1

1+xy
′(x) = f(x), x ∈ Ω− ∪ Ω+,

y(0)− εy′(0) = 1, y(1)− y′(1) = 1,

where

f(x) =

{
1 + x, 0 ≤ x ≤ 0.5,

4, 0.5 < x ≤ 1.

Having yj ≡ yNj (the approximated solution is obtained via the fitted operator
finite difference method) for different values of h and ε, the maximum errors.
Since the exact solution is not available, the maximum errors (denoted by
EN
ε ) are evaluated using the double mesh principle [6], for fitted operator

finite difference methods using the formula

EN
ε := max

0≤j≤n
|yNj − y2N2j |.

Furthermore, we will tabulate the ε-uniform error

EN = max
0<ε≤1

EN
ε .

The numerical rate of convergence is computed using the formula [6]

rNε :=
log(EN

ε )− log(E2N
ε )

log(2)
.
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and the ε-uniform rate of convergence is computed using

RN =
log(EN )− log(E2N )

log(2)
.

Table 1: Maximum absolute errors for different values of ε and number of mesh size,
N for Example 1.

ε N=32 N=64 N=128 N=256 N=512
10−4 2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03
10−8 2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03
10−12 2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03
10−16 2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03
10−20 2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03

EN 2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03
RN 1.0001 1.0000 1.0000 1.0001
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Figure 1: Behavior of numerical solution at ε = 2−5 and different values of N for
Examples 1 and 2, respectively.

Table 2: Comparison of maximum absolute errors and order of convergence for Example
1 at number of mesh points N .

ε N=64 N=128 N=256 N=512 N=1024
Present method

EN 1.0156e-02 5.0781e-03 2.5382e-03 1.2467e-03 5.5910e-04
RN 1.0000 1.0000 1.0257 1.0257

Method in [3]
EN 2.5658e-02 1.4128e-02 7.5359e-03 3.8225e-03 1.7536e-03
RN 0.8605 0.90671 0.9793 1.1242
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Table 3: Maximum absolute errors for different values of ε and number of mesh size,
N for Example 2.

ε N=32 N=64 N=128 N=256 N=512
10−4 8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03
10−8 8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03
10−12 8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03
10−16 8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03
10−20 8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03

EN 8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03
RN 0.9952 0.9976 0.9989 1.0032

Table 4: Comparison of maximum absolute errors and order of convergence for Example
2 at number of mesh points N .

ε N=64 N=128 N=256 N=512 N=1024
Present method

EN 4.1854e-02 2.0960e-02 1.0408e-02 4.7906e-03 2.0192e-03
RN 0.9977 1.0099 1.1194 1.2464

Method in [3]
EN 9.6698e-01 5.8056e-01 3.2795e-01 1.7313e-01 8.1501e-02
RN 0.7364 0.8239 0.0.9216 1.0870
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Figure 2: Pointwise absolute error plot at ε = 2−5 and different values of N for
Examples 1 and 2, respectively.

7 Discussion and conclusion

This study introduced a uniformly convergent numerical method based on
nonstandard finite difference method for solving singularly perturbed second-
order ordinary differential equations of Robin type boundary value problems
with discontinuous source term. Due to discontinuity in the source term,
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Figure 3: ε-uniform convergence with NSFDM in Log-Log scale for Examples 1 and 2,
respectively.

there is an interior layer occurring. To fit the interior and boundary layer, a
suitable nonstandard finite difference method on uniform mesh is constructed.
The numerical results are tabulated in terms of maximum absolute errors,
numerical rate of convergence, and uniform errors (see Tables 1–4) and com-
pared with the results of the previously developed numerical methods existing
in the literature (Tables 2 and 4). Furthermore, to see the position of the
boundary layer, we plot the behavior of the numerical solution (see Figure
1), as the number of mesh points increases, the maximum pointwise errors
decrease (see Figure 2) and the ε-uniform convergence of the method was
shown using the log-log plot (see Figure 3). Unlike other fitted operator fi-
nite difference methods constructed in standard ways, the method that we
presented in this paper is fairly simple to construct.
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