
..

G
al
le
y
P
ro
of

Iranian Journal of Numerical Analysis and Optimization
Vol. 7, No. 2, (2017), pp 65–85
DOI:10.22067/ijnao.v7i2.60552

The state of the art in Dynamic
Relaxation methods for structural

mechanics
Part 1: Formulations

M. Rezaiee-pajand∗, J. Alamatian, and H. Rezaee

Abstract

In the last sixty years, the dynamic relaxation (DR) methods have evolved

significantly. These explicit and iterative procedures are frequently used to
solve the linear or nonlinear response of governing equations resulted from
structural analyses. In the first part of this study, the common DR formula-
tions are reviewed. Mathematical bases and also physical concepts of these

solvers are explained briefly. All the DR parameters, i.e. fictitious mass,
fictitious damping, fictitious time step and initial guess are described, as
well. Furthermore, solutions of structural problems along with kinetic and
viscous damping formulations are discussed. Analyses of the existing studies

and suggestions for future research trends are presented. In the second part,
the applications of dynamic relaxation method in engineering practices are
reviewed.
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Symbols

An+1
1 ,An+1

2 , An+1
3 ,α,β formulation parameters

c fictitious damping factor
[C]

n
artificial damping matrix in nth iteration

{D} vector of displacement{
Ḋ
}n

artificial velocity vector in nth iteration{
D̈
}n

artificial acceleration vector in nth iteration

{f} vector of internal forces
{fI} fictitious inertia force vector
{fD} fictitious damping force vector{
ḟ
}

vector of internal force increment

[I] unit matrix
L Laplace operator
[M ]

n
artificial mass matrix in nth iteration

MFT modified fictitious time step
OFT optimum fictitious time step
{P} vector of external loads

{P}k+1
EQ equivalent load vector at k + 1th

step of numerical dynamic integration
q number of degrees of freedom
{R} vector of un-balance force
ℜ rectangular region
[S] stiffness matrix

[S]k+1
EQ equivalent stiffness matrix at k + 1th

step of numerical dynamic integration
Uk kinetic energy of fictitious dynamic system
UEF un-balance energy function
UFF un-balance force function
ρ fictitious mass factor
τ fictitious time step
ωmin the lowest natural frequency of

artificial dynamic system
Superscripts k increment’s number of dynamic analysis
n iteration number of DR method
Subscripts i each degree of freedom of structure

1 Introduction

Final stage of any structural analysis leads to the solution of a simultaneous
system of equations. In other words, the responses of structures can be
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computed by solving the following equations, concluding from finite element
or finite difference schemes:

[S] {D} = {f} = {P} (1)

where [S] is structural stiffness matrix, {D}, {f} and {P} are displacement,
internal force and external load vectors, respectively. In nonlinear analyses,
such as geometrical, material or contact nonlinearity, internal force vector is
a nonlinear function of displacement, i.e. the elements of the stiffness matrix
are not constant. The analytical and iterative procedures can be used for
solving Eq. (1). In the solution of linear systems, the direct or analytical
methods, such as Gaussian elimination technique, Cholesky factorization and
other similar procedures, are generally more effective and economic than
the iterative strategies. However, these approaches cannot be utilized for
nonlinear cases individually, so that they should be combined with other
corrective processes to present the exact answer. It is worth emphasizing that
such corrective procedures belong to the iterative methods in which nonlinear
step is divided and traced by several linear domains. This approach causes
some numerical errors and reduces the efficiency of the analysis. As a result,
the most suitable and effective ways of solving Eq. (1), especially in the
nonlinear analysis, are iterative procedures.

The first major numerical effort to utilize the finite difference method
in conjunction with a relaxation scheme was performed by Allen and South-
well [5]. These researchers solved the elastic-plastic problems of a continuum.
In iterative schemes, an estimation of the answer is corrected by repeating
some cycles. These techniques can be classified as implicit or explicit schemes,
as acknowledged by Felippa [14] and Frankel [15]. Explicit techniques use
residual force to get an answer, so that all calculations are performed by vec-
tor operations. Simplicity and high efficiency in the nonlinear analysis are
the main specifications of the explicit techniques. On the other hand, implicit
procedures are formulated based on residual force derivatives (stiffness ma-
trix). Because of using matrix operations, calculations of implicit strategies
are complex and time consuming. For example, snap-through or snap-back
points, in which stiffness matrix is zero or undefined, cause some difficulties.
However, the convergence rate of implicit methods is greater than the explicit
schemes.

More than six decades have been passed since the dawn of the Dynamic
Relaxation (DR) methods. A lot of efforts and considerable investigations
have been directed toward the formulations and applications of these powerful
approaches up to now. Unfortunately, a comprehensive survey related to
these solution techniques has not been published so far. The purpose of this
study is to report the state of the art on different aspects of the DR schemes.
This literature review will be beneficial to researchers who are interested
in the field of Dynamic Relaxation method. It will provide them with an
insight on how this technique was developed, how it has progressed over
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the years and how it has been implemented in solving different problems.
In the first part of this study, the common DR formulations are reviewed.
Mathematical bases and also physical concepts of the Dynamic Relaxation are
presented. These foundations are discussed to clarify the main specifications
of the solvers. All the DR parameters, such as fictitious mass, fictitious
damping, fictitious time step and initial guess are described. The required
relationships to solve the structural problems are given. Both kinetic and
viscous damping formulations are discussed. Finally, numerical steps require
to take advantage of the presented formulas will be explained. In the second
part, the applications of DR methods in engineering practices are reviewed.

2 Mathematical Basis

Since the development of high-speed computers, the various iterative proce-
dures such as, the Southwell relaxation method has been successfully applied
for solving partial differential equations. As it was reported by Frankel,
solving the Laplace equations in a rectangular region is one of the first appli-
cations of these techniques which use finite difference approximations [15];

Lϕ(x,y) = 0, x, y ∈ ℜ, (2)

In this relationship, ℜ is a rectangular region. The values of ϕ(x,y)are calcu-
lated from the iterative process so that Eq. (2) is satisfied. To simplify the
operations, the finite difference is used to expand Eq. (2) in the region ℜ.
This procedure is started by a first initial guess and other successive approx-
imations are calculated based on steps of the algorithm. One of the most
elementary ways of the relaxation schemes is the Richardson method. In this
technique, the correction process has the following formula [15]:

ϕn+1
(x,y) = ϕn

(x,y) + αLϕn
(x,y), x, y ∈ ℜ, (3)

where α is a coefficient, which verifies the convergence criteria. It can be
proven that the Richardson technique is formally equivalent to the solution
of the subsequent partial differential equation, with respect to the fictitious
time variable:

∂ϕ

∂t
= Lϕ(x,y), x, y ∈ ℜ, (4)

In the last relation, t is a fictitious time. The values of ϕ(x,y) are calculated in
each fictitious time. If the solution being carried to a sufficiently great t, so
that the rate of change with respect to τ is negligible

(
∂ϕ
∂τ = 0

)
, the answer

is obtained. Some other strategies, such as the Liebmann scheme, have a
similar basis. These approaches are categorized as the first-order Richardson
techniques. It should be added that the second- order Richardson methods
have also been formulated to solve differential equations. Using these pro-
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cedures for solving Laplace’s equations (Eq. 2), is formally equivalent to
the solution of the following second order partial differential equation, which
contains the derivatives with respect to the fictitious time [15];

∂2ϕ

∂τ2
+ β

∂ϕ

∂τ
= Lϕ(x,y), x, y ∈ ℜ, (5)

In the former relationship, β controls the stability and convergence rate. The
values of ϕ(x,y)are calculated in each time. The answer is obtained when the
first and second derivatives of ϕ(x,y) , with respect to t, come near to zero(
∂2ϕ
∂τ2 = 0, ∂ϕ

∂τ = 0
)
.

From mathematical point of view, the DR method is based on the second-
order Richardson rule. The first use of Dynamic Relaxation topic in scientific
literatures has been performed by Otter or Day [12, 18]. In this process,
simulations system of equations (Eq. 1) is transferred to the second-order
differential system of equations. This differential system of equations, in
terms of the fictitious time, has the following form:

∂2 ([S] {D} − {P})
∂τ2

+ β
∂ ([S] {D} − {P})

∂τ
= [S] {D} − {P} (6)

Once again, it is clear that the answer is obtained when the first and second
derivatives with respect to the fictitious time become zero.

3 Physical Concepts

The DR method can be simply demonstrated by the physical rules. From this
viewpoint, the structural dynamics theories are utilized to clarify the validity
of DR basis. It is well-known that the dynamic response of each structure
has two discrete portions; i. e. transient response and steady-state response.
If the structure has damping effect, the transient response will be zero after
passing some periods of time. By damping the transient response, the steady-
state response remains. When the structure is excited by a dynamic load,
which is variable with respect to the time, the steady-state response is a
function of time. If the external load is constant during analysis time, such
as the static behavior of structure, the steady-state response is equal to the
answer of static analysis. The viscous DR method is based on a similar
idea. In other words, the DR procedure, which is known as Viscous Dynamic
Relaxation, presents the steady-state response of a fictitious dynamic system
which is excited by static loads. Based on this discussion, the steady-state
response of such a system is equal to the static response. To start DR process,
the static system (Eq. 1) is transferred to the dynamic space by adding
fictitious inertia and damping forces, as follows:
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{fI}+ {fD}+ [S] {D} = {P} (7)

Here, {fI} and {fD} are vectors of fictitious inertia and damping forces,
respectively. These quantities are defined by the subsequent relationships:

{fI} = [M ]
{
D̈
}

(8)

{fD} = [C]
{
Ḋ
}

(9)

where [M ] and [C] are diagonal fictitious mass and fictitious damping matri-
ces, respectively. In the last equations, the dots denote the derivatives with
respect to the fictitious time.

On the other hand, there is the Kinetic DR method which has been pro-
posed on a different and interesting physical idea. Based on this concept,
the total energy of each structure, which combines from the potential and
kinetic energies, is constant. In the static equilibrium state, the potential
energy is minimized, and hence the kinetic energy should be maximum. The
kinetic Dynamic Relaxation method utilizes this idea and traces some succes-
sive peak in the kinetic energy of structure, which finally leads to the static
equilibrium. The fundamental relationships of kinetic DR approach are very
similar to the viscous version. The main difference is that kinetic DR iter-
ations trace the un-damped vibrations of the dynamic system. The related
fictitious dynamic equation has the following form:

{fI}+ [S] {D} = {P} (10)

In the last relationship, inertia force vector is defined by Eq. (8). As dis-
cussed earlier, there are two general types of damping, which can be utilized
in DR process: Kinetic damping and Viscous damping. The DR formulation
depends on the type of damping model. In other words, the different funda-
mental DR relations can be obtained based on two types of damping model.
Each of these methods has a different specification with many interesting per-
formances. In the following sections, the fundamental DR formulations for
kinetic damping and viscous damping are reviewed. All of these approaches
utilize the explicit iterative relationships.

3.1 Viscous Damping Formulation

Several common DR algorithms, such as Papadrakakis [19], Underwood [33],
are based on the viscous damping process. This kind of modeling is closer
to the real dynamic system than the kinetic damping one. To establish the
related equation, damping force is defined by utilizing the viscous damping
theory, as it was shown in Eq. (9). By this definition, DR procedure leads to
a common dynamic problem, which can be solved by numerical integrations.



..

G
al
le
y
P
ro
of

The state of the art in Dynamic Relaxation methods ... 71

To take advantage of the vector operations’ simplicity, explicit integrations
are utilized to derive DR iterative relationships [16]. The main required
assumption to fulfill this goal is the diagonal property of the fictitious mass
and damping matrices, which are used in Eqs. (8) and (9). As a result, Eq.
(7) can be simplified as follows [34]:

miiD̈
n
i + ciiḊ

n
i + fn

i = pi, i = 1, 2, · · · , q (11)

It is assumed that the structure has q degrees of freedom and mii and cii
are ith diagonal elements of the fictitious mass and damping matrices, re-
spectively. To perform numerical integration, the most common approach
utilizes the standard central finite difference expressions. For this purpose,
Brew and Brotton developed DR formulations so that a vector form was
achieved [8]. This approach is the most common formulation for iterative
DR procedure. In fact, the derivatives of displacement, with respect to the
fictitious time, are determined by the succeeding relationships [7, 8]:

{D}n+1
= {D}n + τn+1

{
Ḋ
}n+ 1

2

(12)

{
D̈
}n

=

{
Ḋ
}n+ 1

2 −
{
Ḋ
}n− 1

2

τn
(13)

where τn is the fictitious time step in nth increment of numerical time inte-
gration. Furthermore, the velocity of nth time step is estimated, as follows:

{
Ḋ
}n

=

{
Ḋ
}n+ 1

2

+
{
Ḋ
}n− 1

2

2
(14)

Substituting Eqs. (14) and (13) into (11) prepares the velocity of the next
time step [33]:

Ḋ
n+ 1

2
i =

2mii − τncii
2mii + τncii

Ḋ
n− 1

2
i +

2τn

2mii + τncii
rni , i = 1, 2, · · · , q (15)

In the last relation, rni is the residual force of the ith degree of freedom, i.e.,
{R}n in the nth iteration:

{R}n = [M ]
{
D̈
}n

+ [C]
{
Ḋ
}n

= {P} − {f}n (16)

In the following lines, the next estimation of the displacement can be calcu-
lated from Eq. (12). The viscous DR procedure is performed by iterating
Eqs. (15) and (12), successively, until convergence criterions are satisfied.
At this stage, the residual force or kinetic energy is vanished. In addition to
this common formulation, Rezaiee-Pajand and Taghavian-Hakkak proposed
a new iterative formula for displacement by use of Taylor’s series [23], as
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follows:

{D}n+1
= {D}n + τn

{
Ḋ
}n

+
(τ

n
)2

2

{
D̈
}n

(17)

Acceleration vector is found from Eq. (16) and replaced in Eq. (17). Then,
the following iterative relation is obtained:

{D}n+1
= {D}n +

(
τn − c(τn)2

2

){
Ḋ
}n

+
(τ

n
)2

2
[M ]

−1 {R}n (18)

In each step, the velocity vector is calculated from next equation:{
Ḋ
}n

=
{D}n − {D}n−1

τn
(19)

It should be noted that the DR iterations are usually unstable because of
using numerical time integrations to solve the differential equations of motion.
To overcome this drawback, the fictitious parameters, such as time step and
diagonal mass and damping matrices, are determined so that the stability
conditions are satisfied. It should be added that the slow convergence rate
of the viscous DR method has always been a critical issue.

The most common way to study the stability and convergence rate of a
viscous DR algorithm is an error analysis between two successive iterations.
One of the first classified error analyses was performed by Papadrakakis [19].
He utilized the following assumptions:

[M ] = ρ[D] (20)

[C] = c[D] (21)

In the former relations, [D], ρ and c, are the main diagonal terms of stiff-
ness matrix, fictitious mass and damping factors, respectively. The optimum
values of mass and damping factors are formulated based on maximum and
minimum eigen-value of the fictitious dynamic system. The estimation of
these eigen-values is mostly calculated from Gerschgrin’s circle theory. On
the other hand, one of the famous error analyses for viscous DR iterations
was performed by Underwood [33]. He assumed a linear reduction for dis-
placement error between two successive iterations. This analysis leads to
following inequality for fictitious mass:

mii ≥
(τ

n
)2

4

q∑
j=1

|sij | , i = 1, 2, · · · , q (22)

In another study, Rezaiee-Pajand and Alamatian revised the error analysis of
the viscous DR method. Two discrete regions were considered for eigen-value
in Gerschgörin’s theory by these researchers. The related formulation led to
a simple and effective way of calculating the fictitious mass, as follows [21]:
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mii =
(τn)

2

4
max

[
2sii,

q∑
j=1

|sij |
]
, i = 1, 2, · · · , q (23)

Fictitious damping is another parameter in viscous DR iterations. This factor
has a great effect on convergence rate of DR procedure. The reason for this
subject can be found in physical basis of the DR method, which tries to
obtain the steady-state answer of a fictitious dynamic system. Based on the
structural dynamics theories, the critical damping causes rapid convergence
rate to the steady-state response. This concept is commonly used to calculate
the fictitious damping. By utilizing the critical damping theory, Zhang et al.
presented an estimation of the critical damping for viscous DR iterations, as
follows [37]:

cii = 2miiωmin, i = 1, 2, ..., q (24)

In the last relationship, ωmin is the lowest natural frequency of a structure
in the free vibration case. This factor can be calculated from the following
Rayleigh’s principle [37]:

ω2
min ≈

({D}n)T {f}n

({D}n)T [M ]
n {D}n

(25)

In the former equation, Rayleigh’s principle was applied to the whole struc-
ture. Another way of finding the lowest natural frequency was proposed, in
which this can separately be calculated for each node [36]. This approach
leads to succeeding result:

(ω
i
min)

2 ≈
({

Di
}n)T {

f i
}n(

{Di}n
)T

[M i]
n {Di}n

, i = 1, 2, ..., q (26)

where ωi
min,

{
Di
}n

,
{
f i
}n

and
[
M i
]n

are the lowest frequency, displacement,
internal force vector and fictitious mass matrix of the ith node, respectively.
The parameter h indicates the total number of nodes of the structure. It
should be added that Rezaiee-Pajand and Alamatian proposed a modified
relationship for fictitious damping, as follows [21]:

cii = mii

√
4ω2

min − ω4
min, i = 1, 2, · · · , q (27)

It is evident, when the lowest natural frequency approaches zero, Eq. (27)
reduces to Eq. (24). All the previous methods lack accuracy, because they
exploit the Rayleigh principle to estimate the lowest natural frequency and
eventually to find the fictitious damping. To overcome this drawback, the
structural dynamics schemes can be utilized so that the lowest natural fre-
quency of the fictitious dynamic system is calculated with suitable accuracy.
The Stodela iterative process is a technique which has been successfully ap-
plied in DR iterations to calculate ωmin [24]. In addition, Rezaiee-Pajand
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and Sarafrazi combined the power iteration method with DR algorithm and
obtained a more accurate value for the lowest eigen-value. They utilized
one step of power iterative scheme for matrix [M−1S − aI] in each step of
DR procedure [27]. Here, factor a stand for the upper bound of the highest
eigen-value, which can be set to 4.

3.2 Kinetic damping formulation

It is not required to calculate the viscous damping terms in the kinetic for-
mulation. This technique needs only the time step and the fictitious nodal
masses. In fact, the number of necessary DR parameters is reduced. In this
way, time interval may be fixed [31]. As a result, the kinetic damping provides
an alternative approach for DR method. Cundall proposed this procedure
for application to unstable rock mechanism [11]. The high stability and rapid
convergence rate for structures with large displacement are the main specifi-
cation of the kinetic damping formulation. In such analyses, the un-damped
motion of a structure is traced until a local peak in total kinetic energy is
detected. After that, all current velocities are reset to zero and DR process
is restarted with current geometry and repeated through further peaks. This
procedure is generally decreasing until the energies of all modes of vibration
are dissipated, and the static equilibrium is reached. The method of kinetic
damping is found to be very stable and rapidly convergent when dealing with
large displacements [31]. The stability of this approach depends on the time-
mass relation [27]. One of the important applications of kinetic damping DR
algorithm is parallel processing in the finite element analysis [13, 32]. The
parallel DR scheme is undertaken in two stages. First, the overall mesh is
divided into a different number of sub domains corresponding to the number
of available processors. Then, DR strategy, usually based on kinetic damp-
ing algorithm, is used over the sub domains and converged results from each
sub domain are received and compiled to obtain the overall results for the
domain. In the case of the viscous damping factor in Eq. (15) is equal to
zero (cii = 0), the next fundamental iterative relationships of the kinetic DR
strategy could be obtained [13]:

Ḋ
n+ 1

2
i = Ḋ

n− 1
2

i +
τn

mii
rni , i = 1, 2, · · · , q (28)

Dn+1
i = Dn

i + τn+1Ḋ
n+ 1

2
i , i = 1, 2, · · · , q (29)

By exploiting Eqs. (28) and (29) successively, the total kinetic energy of un-
damped structure is traced during iterations. The position of structure with
maximum kinetic energy could represent the static equilibrium, because in
this condition, potential energy will be minimized. The kinetic DR algorithm
uses the aforementioned idea to approach the static equilibrium position. In
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each iteration, the total kinetic energy, Uk, is calculated by the following
relationship:

Uk =

q∑
i=1

mii

(
Ḋ

n+ 1
2

i

)2
(30)

It is worth emphasizing to mention that the DR iterations run sequentially,
until an energy peak is detected. At this stage, all current velocities are reset
to zero. This process should be continued through further peaks until the
convergence criterions are satisfied. To establish this algorithm, it is assumed
that peak of kinetic energy could occur between times τn and τn+1, i.e. a
fall in the total kinetic energy would be taking placed at time τn+1. As
described by Topping and Ivanyi [31], the displacement, which peak of the
kinetic energy belongs to it, is calculated from the following equation [13]:

∗
D

n
i = Dn+1

i − 3

2
τn+1Ḋ

n+ 1
2

i +
(τn)

2

2mii
rni , i = 1, 2, · · · , q (31)

here ∗
D

n
i , i = 1, 2, · · · , q is the displacement in which the kinetic energy

is maximized. The analysis can be restarted by ∗
D

n
i , i = 1, 2, · · · , q as the

initial displacement. For fully convergence, velocities of the first time-step
should be calculated at the mid point, as follows:

Ḋ
n+ 1

2
i =

τn

2mii
rni , i = 1, 2, · · · , q (32)

In the last relationship, rni is calculated from displacement’s components, pre-
sented by Eq. (31). Having this parameter, DR iterations can be restarted
from Eqs. (28) and (29). The mentioned process will be iterated for some
successive peaks of the kinetic energy until the convergence criteria are sat-
isfied. It should be noted that the diagonal elements of the mass matrix,
which control the stability of kinetic DR algorithm, are determined from the
subsequent formula [13]:

mii ≥
(τ

n
)
2

2

q∑
j=1

|sij | , i = 1, 2, · · · , q (33)

In the latest study, a new formulation was proposed for the fictitious mass
of the kinetic DR method. The transformed Gerschgörin theory was also
utilized in the mentioned research [3].

4 Other fictitious parameters

As it was discussed earlier, there are four groups of unknown parameters in
DR iterations; i. e. fictitious mass, fictitious damping, pseudo time step
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and initial guess of displacement. The most common approach to estimate
fictitious mass and damping matrices is based on error analysis and stability
verification of DR iterations. The general form of such procedure was pre-
sented in section 3. Before starting DR iterations, fictitious time step and
initial guess of displacement should be determined. The researchers have
presented various methods to determine these quantities. In the following
lines, these approaches are reviewed, separately.

4.1 Fictitious time step

One of the important parameters in the DR techniques is the fictitious time
step. This factor is utilized in the numerical integration of the fictitious
system. The subsequent sections explain several ways of calculating this
vital factor:

4.1.1 Constant time step

In the most common DR algorithms, the fictitious time step is kept constant
and equal to one. This assumption leads to the next simple relationship:

τn = 1.0 (34)

4.1.2 Minimum residual force

Minimization of the out-of-balance force helps to improve DR convergence
rate. In this scheme, the out-of-balance force function is defined as follows
[1, 4, 17,20]:

UFF =

q∑
i=1

(
rn+1
i

)2
(35)

where, UFF is the un-balance force function in the n+ 1th iteration of DR
method. By minimizing this function, the next modified fictitious time step
(MFT) is calculated:

∂ UFF

∂τn+1
= 0⇒ τ MFT =

∑ q
i=1 r

n
i ḟ

n+ 1
2

i∑ q
i=1

(
ḟ
n+ 1

2
i

)2 (36)

In this equation, ḟ
n+ 1

2
i is the rate of internal force of the ith degree of freedom.

It is possible to find this parameter by using the chain rule (differentiation),
as follows [1, 4, 17,20]:
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ḟ
n+ 1

2
i ≈

q∑
j=1

snijḊ
n+ 1

2
j , i = 1, 2, · · · , q (37)

By using the second derivative test, it can be proven mathematically that the
last time step minimizes the out-of-balance force function, in each iteration
of the DR algorithm. As a result, the convergence rate will increase, and the
analysis time will decrease.

4.1.3 Minimum residual energy

In the steady-state response of an artificial dynamic system, the kinetic en-
ergy is zero. Therefore, convergence to the steady-state response could be
increased by minimizing the energy function. This function can be defined
in the following form [2,25]:

UEF =

q∑
i=1

(
δDn+1

i rn+1
i

)2
(38)

In the last equation, UEF is the un-balance energy function in the n+ 1th

iteration of the DR process. If the out-of-balance force is minimized, the
succeeding optimum fictitious time step (OFT) can be obtained [2, 25]:

τn+1
OFT =

−An+1
2 ±

√
(A

n+1
2 )

2 − 4An+1
1 An+1

3

2An+1
1

(39)

where, An+1
1 , An+1

2 and An+1
3 are constant factors and defined as below:

An+1
1 = 2

q∑
i=1

(
v
n+ 1

2
i ḟ

n+ 1
2

i

)2
(40)

An+1
2 = −3

q∑
i=1

[(
v
n+ 1

2
i

)2
rni ḟ

n+ 1
2

i

]
(41)

An+1
3 =

q∑
i=1

(
v
n+ 1

2
i rni

)2
(42)

It is clear that minimization of the out-of-balance energy function will be a
conditional procedure. If Eq. (39) could not result in a real value for the
fictitious time step, the presented approach is useless.
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4.1.4 Zero damping method

In a published article, Rezaiee-Pajand and Sarafrazi set the damping factor
to zero and obtained below equation for the fictitious time step [28,30]:

τn+1 =
1

(1 + ωmin)2
τn (43)

4.1.5 Error analysis in kinetic damping method

The error between two consecutive steps in kinetic DR technique was calcu-
lated by Rezaiee-Pajand and Rezaee. It resulted in formulating a new time
step for this method. [24]:

τn+1 =
( 2
τn + τn ω2

min)−
√
( 2
τn + τn ω2

min)
2−4 ( 2

τn + τn ω2
min)

2

2( 1
τn − τn ω2

min)
2

(44)

4.2 Initial guess of displacement

The DR calculations are started by an initial guess of displacement. In the
iteration process, this quantity is corrected successively. The more suitable
guess of displacement leads to a more rapid convergence rate of the solver.
The following sections explain some approaches to estimate initial displace-
ment in the first iteration.

4.2.1 Constant vector

The simplest approach to start DR process is using a constant vector for the
initial guess of displacement. In this case, the unit or null vectors are the
most common selection for the initial displacement. It should be added that
the convergence rate of such techniques may not be suitable.

4.2.2 Alwar’s approach

An exponential function was proposed by Alwar et al. to determine the
steady-state response [6]. For each degree of freedom of structure, the afore-
mentioned function is assumed for damped oscillation. The suggested func-
tion has the following form:

Di = αie
−βiτ (45)
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here αi and βi are unknown coefficients, which are determined by solving two
equations obtained from two successive maximum in the oscillation curve.
In this method, it is necessary to calculate two first successive maximum
domains of the oscillation curve of each degree of freedom.

4.2.3 Zhang’s method

In this strategy, the un-damped vibrations of structure are traced until first
minimum and maximum displacements of each degree of freedom are ob-
tained. After that, the initial displacement can be calculated by the next
formula [37]:

D0
i =

Dmax
i +Dmin

i

2
(46)

where Dmax
i and Dmin

i are the first maximum and minimum displacements of
ith degree of freedom in the un-damped vibration.

4.2.4 Modified Zhang’s method

This scheme is a modified version of Zhang’s approach and is based on the
concept of constant total energy of structure. In this way, the un-damped
vibrations are started with initial displacement and by obtaining first min-
imum or maximum. Then, the initial guess is corrected by the following
relationship [36]:

D0
i =

D0
i +Dmin

i

2
or D0

i =
D0

i +Dmax
i

2
(47)

In each cycle, the initial guess is corrected so that by iterating Eq. (46),
a suitable initial guess is obtained. It should be added that there are some
other papers, which deal with DR stability and its convergence rate [9,10,35].

5 DR algorithms

Dynamic Relaxation, which is an iterative method, can be performed by some
simple steps. As discussed in the previous sections, the basic foundation of
these steps is given by mathematical formulations. For better clarification,
the main algorithms of DR process are presented in this part. These al-
gorithms can be classified based on two DR formulations; i.e. Viscous and
Kinetic damping theories. It should be noted that there are several similar-
ities between these two main procedures. In the following, the viscous and
kinetic DR algorithms will be briefly explained.
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5.1 Viscous DR steps

The viscous DR method requires the following steps:

(a) Assume initial values for artificial velocity (null vector), displacement
(available methods presented in section 4.2 or null vector or convergence
displacement on the previous increment), fictitious time step (τ = 1)
and convergence criterion for out of balance force and kinetic energy
(eR = 1.0E − 6 and eK = 1.0E − 12).

(b) Construct the tangent stiffness matrix and internal force vector.

(c) Apply boundary conditions.

(d) Calculate out of balance (residual) force vector (Eq. 16).

(e) If
√∑q

i=1 (r
n
i )

2 ≤ eR, go to (m), otherwise, continue.

(f) Construct the artificial diagonal mass matrix (section 3.1).

(g) Form artificial damping matrix (section 3.1).

(h) Update artificial velocity vector using Eq. (15).

(i) If
∑q

i=1

(
Ḋ

n+ 1
2

i

)2
≤ eK , go to (m), otherwise, continue.

(j) Calculate fictitious time step (section 4.1)

(k) Update displacement vector using Eq. (12).

(l) Set n = n+ 1 and go to (b).

(m) Print results of the current increment.

(n) If increments are not complete, go to (a), otherwise, stop.

5.2 Kinetic DR steps

The subsequent steps are needed to obtain the solution by the kinetic DR
method:

(a) Assume values for initial fictitious velocity (null vector), initial dis-
placement (available methods presented in section 4.2 or null vector or
convergence displacement on the previous increment), fictitious time
step (1), initial kinetic energy (KE0 = 0) and a convergence criterion
for the out-of-balance force and the kinetic energy (eR = 1.0E − 6 and
eK = 1.0E − 12),
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(b) Construct the tangent stiffness matrix and internal force vector,

(c) Calculate the out-of-balance force vector using Eq. (16),

(d) If
√∑q

i=1 (r
n
i )

2 ≤ eR, go to (q), otherwise continue,

(e) Construct the fictitious diagonal mass matrix using (section 3.2),

(f) Update the fictitious velocity vector using Eq. (28),

(g) If
∑q

i=1

(
ḋ
n+ 1

2
i

)2
≤ eK , go to (q), otherwise, continue,

(h) Calculate the kinetic energy from Eq. (30),

(i) If KEn+1 ≤ KEn, go to (m), otherwise, continue,

(j) τn+1 = τn

(k) Update the displacement vector using Eq. (29),

(l) Go to (b),

(m) Calculate the initial displacements of the restarted analysis (section
3.2),

(n) Construct the tangent stiffness matrix and the internal force vector,

(o) Calculate the initial velocities of the restarted analysis (section 3.2),

(p) Go to (g)

(q) Print results of the current increment,

(r) If increments are not complete, go to (a), otherwise, stop.

As it was demonstrated in the related steps, the kinetic and viscous DR
algorithms have many similarities. However, they use different relationships
for mass and damping matrices. Based on this fact, Rezaiee-Pajand and et al.
selected twelve well-known DR procedures in order to analyze the geometric
nonlinear behavior of several frames and trusses. They graded these methods
in terms of the number of iterations and the analysis time. In this way, the
five most efficient algorithms were introduced by these investigators [29].
Moreover, Rezaiee-Pajand and Estiri compared these different approaches
in the geometric nonlinear analysis of 3D frames and found the three most
efficient algorithms [22].
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6 Conclusion

In this paper, a comprehensive review of the Dynamic Relaxation (DR) meth-
ods was presented. At the first stage, the most common DR schemes, which
include the kinetic and viscous damping formulations, were briefly explained.
To utilize these techniques, several parameters are required. All the related
factors were also described. Simplicity, full explicit vector operations and no
sensitivity to nonlinear behaviors are the main specifications of the DR pro-
cedure. Moreover, solution methodologies for the structural problems were
presented. The strategies reported in this paper could be used to evaluate
the responses of different structures. It is worth emphasizing that DR tech-
niques have the great ability to be implemented in all branches of structural
analyses. They are very simple and also eliminate the round-off errors.

As it was mentioned by the researchers, the interest in obtaining more ac-
curate and efficient results, using a variety of DR strategies remains strong,
even in the presence of some simplifying assumptions. By analyzing the out-
comes of presented studies, it can be seen that several investigations on the
different aspects of these solvers are needed. For instance, no attempt has
been made for considering a broad comparison study, so far. Consequently,
no recommendations are made as to the most appropriate technique selection
for a particular problem. The principal concepts of the various DR formula-
tions can be summarized in two main categories, i.e. the numerical stability
and the convergence rate. In other words, researchers try to guarantee the
DR stability, especially in the case of intense non-linearity. From the future
research point of view, the DR formulation could be enhanced by modifica-
tion of its parameters. On the other hand, improving the convergence rate of
DR iterations may be one of the interesting topics for further studies. The
second part of the article will concentrate on the DR applications.
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مکانیکی های سازه در پویا رهایی های روش بر مروری
ها سازی رابطه : اول بخش

رضایی۳ حسینه و علامتیان۲ جواد پژند۱، رضایی محمد

عمران مهندسی گروه مهندسی، دانشکده مشهد، فردوسی دانشگاه ۱

عمران مهندسی گروه مشهد، واحد اسلامی، آزاد دانشگاه ۲

عمران مهندسی گروه مهندسی، دانشکده مشهد، فردوسی دانشگاه ۲

١٣٩۶ اردیبهشت ٣ مقاله پذیرش ،١٣٩۵ اسفند ٢٢ شده اصلاح مقاله دریافت ،١٣٩۵ آذر ۵ مقاله دریافت

ها، زمان بیشتر در اند. یافته فراوانی های تحول پویا رهایی های روش گذشته، سال شصت در : چکیده
می کار به ها سازه رفتار بر حاکم ناخطی و خطی های معادله حل برای تکراری و صریح های فرایند این
نیزمفهوم و ریاضی های پایه شوند. می مرور معمول های سازی رابطه مطالعه، این اول بخش در روند.
جرم مانند: پویا، رهایی های عامل ی همه شرح سپس، شد. خواهند داده شرح خلاصه طور به فیزیکی های
چگونگی به ها، این بر افزون آیند. می نخستین، حدس و ساختگی زمانی گام ساختگی، میرایی ساختگی،
و کنونی های روش سرانجام، شود. می پرداخته لزجی و جنبشی های شیوه با ها سازه های مساله حل
رشته در پویا رهایی های روش کاربردهای دوم، دربخش گردند. می واکاوی آیندگان پژوهش راستاهای
مهندسی های مساله حل در پویا رهایی فرایند بالای توانایی موضوع، این شد. خواهند مرور مهندسی های

سازد. می آشکار را

تکراری. های فن مرور؛ کننده؛ حل سازی؛ رابطه پویا؛ رهایی های روش : کلیدی کلمات




