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Hopf bifurcation analysis of a delayed
five-neuron BAM neural network with

two neurons in the X-layer

E. Javidmanesh and Z. Afsharnezhad

Abstract

In this paper, a bidirectional associative memory (BAM) neural network,

which consists of two neurons in the X-layer and three neurons in the Y-
layer, with two time delays will be studied. We conclude that under some
assumptions, Hopf bifurcation occurs when the sum of two delays passes
through a critical value. A numerical example is presented to support our

theoretical results.

Keywords: Neural network; Hopf bifurcation; Characteristic equation; Time
delay.

1 Introduction

The attention of many scientists (eg., mathematicians, physicists, computer
scientists, engineers and so on) have been attracted toward the dynami-
cal characteristics of artificial neural networks since Hopfield constructed
a simplified neural network (NN) model [1]. As time delays always oc-
cur in the signal transmission, Marcus and Westervelt proposed an NN
model with delay [2]. Many dynamical behaviours such as periodic phe-
nomenon, bifurcation and chaos have been discussed on these systems (e.g.
[3, 4, 5, 6, 7, 8, 9, 2, 10]).

The bidirectional associative memory (BAM) networks were first intro-
duced by Kasko (e.g. [11, 12]). The properties of periodic solutions are
significant in many applications. It is well known that BAM NNs are able
to store multiple patterns, but most of NNs have only one storage pattern
or memory pattern. BAM NNs have practical applications in storing paired
patterns or memories and have the ability of searching the desired patterns
through both forward and backward directions.
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The delayed BAM neural network is described by the following system:{
ẋi(t) = −µixi(t) +

∑m
j=1 cjifi(yj(t− τji)) + Ii (i = 1, 2, . . . , n)

ẏj(t) = −υjyj(t) +
∑n
i=1 dijgj(xi(t− σij)) + Jj (j = 1, 2, . . . ,m)

(1)

where cji and dij are the connection weights through the neurons in two
layers: the X-layer and the Y-layer. The stability of internal neuron processes
on the X-layer and Y-layer are described by µi and υj , respectively. On the
X-layer, the neurons whose states are denoted by xi(t) receive the input
Ii and the inputs outputted by those neurons in the Y-layer via activation
function fi, while the similar process happens on the Y-layer. Also, τji and
σij correspond to the finite time delays of neural processing and delivery of
signals. For further details, we refer to [12, 11].

Since a great number of periodic solutions indicate multiple memory pat-
terns, the study of Hopf bifurcation is very important for the design and
application of BAM NNs. In fact, various local periodic solutions can arise
from the different equilibrium points of BAM NNs by applying Hopf bifur-
cation technique. But the exhaustive analysis of the dynamics of such a
large system is complicated, so some authors have studied the dynamical
behaviours of simplified systems. For example, the simplified three-neuron,
four-neuron, five-neuron and six-neuron BAM NNs with multiple delays have
been studied in [13, 14, 6, 15, 8, 9, 16, 17, 10, 18, 19, 20]. It should be noted
that in the above papers, the systems which have been considered, just con-
sist of one neuron in the X-layer and other neurons in the Y-layer. This way
of choosing the systems simplifies the analysis. Also, [20] studied the stability
and local Hopf bifurcation of a five-neuron ring neural network with delays
and self connection. However, there are many other forms of BAM NNs that
have not been studied.

Motivated by the above, in this paper, we consider the following five-
neuron BAM neural network. We should point out that in [21], the following
system has been studied through center manifold theory, but here, we study
this system according to the distribution of roots. In [14], a more simplified
form of (2) with some assumptions has been considered, but they have stated
some results of synchronization.

ẋ1(t) = −µ1x1(t) + c11f1(y1(t− τ2)) + c21f1(y2(t− τ2))
+c31f1(y3(t− τ2))

ẋ2(t) = −µ2x2(t) + c12f2(y1(t− τ2)) + c22f2(y2(t− τ2))
+c32f2(y3(t− τ2))

ẏ1(t) = −υ1y1(t) + d11g1(x1(t− τ1)) + d21g1(x2(t− τ1))
ẏ2(t) = −υ2y2(t) + d12g2(x1(t− τ1)) + d22g2(x2(t− τ1))
ẏ3(t) = −υ3y3(t) + d13g3(x1(t− τ1)) + d23g3(x2(t− τ1))

(2)

where µi > 0(i = 1, 2), υj > 0(j = 1, 2, 3), cj1, cj2(j = 1, 2, 3) and
di1, di2, di3(i = 1, 2) are real constants. The time delay from the X-layer
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to another Y-layer is τ1, while the time delay from the Y-layer back to the
X-layer is τ2, and there are two neurons in the X-layer and three neurons in
the Y-layer. First, we take the sum of the delays τ = τ1+τ2 as parameter and
we will show that the zero solution loses its stability and Hopf bifurcation
occurs when τ passes through a critical value.

This paper is organized in four sections. In section 2, we will analyze the
stability and Hopf bifurcation. To illustrate the results, numerical simulation
is presented in section 3. Finally, in section 4, some main conclusions are
stated.

2 Stability analysis and Hopf bifurcation

First, we need to explain some transformations stated in [21]. Letting u1(t) =
x1(t− τ1), u2(t) = x2(t− τ1), u3(t) = y1(t), u4(t) = y2(t), u5(t) = y3(t) and
τ = τ1 + τ2, system (2) can be rewritten as the following equivalent system:

u̇1(t) = −µ1u1(t) + c11f1(u3(t− τ)) + c21f1(u4(t− τ))
+c31f1(u5(t− τ))

u̇2(t) = −µ2u2(t) + c12f2(u3(t− τ)) + c22f2(u4(t− τ))
+c32f2(u5(t− τ))

u̇3(t) = −υ1u3(t) + d11g1(u1(t)) + d21g1(u2(t))
u̇4(t) = −υ2u4(t) + d12g2(u1(t)) + d22g2(u2(t))
u̇5(t) = −υ3u5(t) + d13g3(u1(t)) + d23g3(u2(t))

(3)

To establish the main results for system (3), it is necessary to make the
following assumption:

(H1) fi, gj ∈ C1, fi(0) = gj(0) = 0, (i = 1, 2; j = 1, 2, 3).

Note that the above assumption is necessary for linearization. It is easily
seen that the origin (0, 0, 0, 0, 0) is an equilibrium point of (3). Under the
hypothesis (H1), the linearization of (3) at (0, 0, 0, 0, 0) is

u̇1(t) = −µ1u1(t) + α31u3(t− τ) + α41u4(t− τ) + α51u5(t− τ)
u̇2(t) = −µ2u2(t) + α32u3(t− τ) + α42u4(t− τ) + α52u5(t− τ)
u̇3(t) = −υ1u3(t) + α13u1(t) + α23u2(t)
u̇4(t) = −υ2u4(t) + α14u1(t) + α24u2(t)
u̇5(t) = −υ3u5(t) + α15u1(t) + α25u2(t)

(4)

where αmi = ckif
′
i(0), αim = dikg

′
k(0) for m = 3, 4, 5, k = m − 2, i = 1, 2.

Then the associated characteristic equation of (4) is
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det


λ+ µ1 0 −α31e

−λτ −α41e
−λτ −α51e

−λτ

0 λ+ µ2 −α32e
−λτ −α42e

−λτ −α52e
−λτ

−α13 −α23 λ+ υ1 0 0
−α14 −α24 0 λ+ υ2 0
−α15 −α25 0 0 λ+ υ3

 = 0,

i.e.,

λ5 + aλ4 + bλ3 + cλ2 + dλ+ e+ (a1λ
3 + b1λ

2 + c1λ+ d1)e
−λτ

+ (a2λ+ b2)e
−2λτ = 0, (5)

where
a = υ1 + υ2 + υ3 + µ2 + µ1,
b = υ1υ2 + µ2υ1 + µ2υ2 + υ3µ1 + υ1υ3 + υ2υ3 + υ3µ2 + υ1µ1 + υ2µ1 + µ1µ2,
c = µ2υ1υ2+υ1υ3µ1+υ2υ3µ1+µ2υ3µ1+υ1υ2υ3+υ1υ3µ2+υ2υ3µ2+υ1υ2µ1+
µ2υ1µ1 + µ2υ2µ1,
d = µ2υ1υ2υ3 + µ2υ1υ2µ1 + υ1υ2υ3µ1 + µ2υ1υ3µ1 + µ2υ2υ3µ1,
e = υ3µ1µ2υ1υ2,
a1 = −α52α25 − α24α42 − α32α23 − α31α13 − α41α14 − α51α15,
b1 = −α52α25(υ1 + υ2 +µ1)−α24α42(υ1 + υ3 +µ1)−α32α23(υ3 + υ2 +µ1)−
α31α13(υ3 + υ2 + µ2)− α41α14(υ1 + υ3 + µ2)− α51α15(υ1 + υ2 + µ2),
c1 = −α52α25(υ1υ2+µ1υ2+µ1υ1)−α24α42(υ1υ3+µ1υ3+µ1υ1)−α32α23(υ3υ2+
µ1υ2 + µ1υ3)− α31α13(υ3υ2 + µ2υ3 + µ2υ2)− α41α14(υ1υ3 + µ2υ3 + µ2υ1)−
α51α15(υ1υ2 + µ2υ1 + µ2υ2),
d1 = −α52α25µ1υ1υ2 − α24α42µ1υ1υ3 − α32α23µ1υ2υ3 − α31α13µ2υ2υ3 −
α41α14µ2υ3υ1 − α51α15µ2υ1υ2,

a2 = α31α13α52α25 + α31α13α24α42 − α31α14α42α23−
α31α15α52α23 − α41α13α32α24 + α41α14α52α25+

α41α14α23α32 − α41α15α52α42 − α51α13α32α25−
α14α42α25α51 + α51α15α42α24 + α51α15α23α32,

b2 = α31α13α52α25υ2 + α31α13α24α42υ3 − α31α14α42α23υ3

− α31α15α52α23υ2 − α41α13α32α24υ3 + α41α14α52α25υ1

+ α41α14α23α32υ3 − α41α15α52α42υ1 − α51α13α32α25υ2

− α14α42α25α51υ1 + α51α15α42α24υ1 + α51α15α23α32υ2.

To study the distribution of the roots of (5), we make the following assump-
tion: (If we assume that a2 = b2 = 0 instead of (H2), the results in this case
can be obtained from [19] analogously.)

(H2) a1 = b1 = c1 = d1 = 0.
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Then Eq. (5) reduces to

λ5 + aλ4 + bλ3 + cλ2 + dλ+ e+ (a2λ+ b2)e
−2λτ = 0. (6)

Obviously, iω(ω > 0) is a root of Eq. (6) if and only if ω satisfies (the real
and imaginary parts have been separated){

−b2cos(2ωτ)− a2ωsin(2ωτ) = aω4 − cω2 + e,
−a2ωcos(2ωτ) + b2sin(2ωτ) = ω5 − bω3 + dω.

(7)

Taking square on the both sides of the equations of (7) and summing them
up, we obtain

ω10+(a2−2b)ω8+(b2+2d−2ac)ω6+(c2+2ae−2bd)ω4+(d2−2ce−a22)ω2

+ e2 − b22 = 0. (8)

Let z = ω2 and for convenience, denote

p = a2−2b, q = b2+2d−2ac, r = c2+2ae−2bd, v = e2−b22, s = d2−2ce−a22.

Then Eq. (8) becomes

z5 + pz4 + qz3 + rz2 + sz + v = 0. (9)

Suppose that
h(z) = z5 + pz4 + qz3 + rz2 + sz + v.

The fact that Eq. (9) has positive roots is a necessary condition for the
existence of pure imaginary roots of (6). The following four lemmas, which
have been proved in [20], are going to be used to establish the distribution
of positive real roots of Eq. (9). We should mention that the coefficients of
Eq. (9) are different from those in Lemmas 2.1-2.4 in [20], but they have not
changed the results of the lemmas. Hence, we can prove the following four
lemmas analogously. So, we do not state the proofs.

Lemma 1. If v < 0, then Eq. (9) has at least one positive root.

Now, to study the distribution of positive roots of (9) when v ≥ 0, consider
the following equation that comes from h′(z) = 0:

5z4 + 4pz3 + 3qz2 + 2rz + s = 0. (10)

Substituting z = y − p
5 in Eq. (10), we have

y4 + p1y
2 + q1y + r1 = 0, (11)

where p1 = − 6
25p

2 + 3
5q, q1 = 8

125p
3 + 6

25pq +
2
5r, r1 = − 3

625p
4 + 3

125p
2q −

2
25pr+

1
5s. If q1 = 0, then it is very easy to obtain the four roots of Eq. (11)
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as follows:

y1 =

√
−p1 +

√
∆0

2
, y2 = −

√
−p1 +

√
∆0

2
,

y3 =

√
−p1 −

√
∆0

2
, y4 = −

√
−p1 −

√
∆0

2
.

where ∆0 = p21 − 4r1.

Lemma 2. Assume that v ≥ 0 and q1 = 0.
(I) If ∆0 < 0, then Eq. (9) has no positive real roots.
(II) If ∆0 ≥ 0, p1 ≥ 0 and r1 > 0, then Eq. (9) has no positive real roots.
(III) If (I) and (II) are not satisfied, then Eq. (9) has positive real roots if
and only if there exists at least one z∗ ∈ {z1, z2, z3, z4} such that z∗ > 0 and
h(z∗) ≤ 0, where zi = yi − p

5 (i = 1, 2, 3, 4).

Denote p2 = − 1
3p

2
1 − 4r1, q2 = − 2

27p
3
1 +

8
3p1r1 − q21 , ∆1 = 1

27p
3
2 +

1
4q

2
2 ,

s∗ = 3

√
−q2

2
+
√
∆1 +

3

√
−q2

2
−
√
∆1 +

1

3
p1, ∆2 = −s∗ − p1 +

2q1√
s∗ − p1

and ∆3 = −s∗ − p1 − 2q1√
s∗−p1

.

Lemma 3. Suppose that v ≥ 0, q1 ̸= 0 and s∗ > p1.
(I) If ∆2 < 0 and ∆3 < 0, then Eq. (9) has no positive real roots.
(II) If (I) is not satisfied, then Eq. (9) has positive real roots if and only if
there exists at least one z∗ ∈ {z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0,

where y1 = −
√
s∗−p1+

√
∆2

2 , y2 = −
√
s∗−p1−

√
∆2

2 , y3 =
√
s∗−p1+

√
∆3

2 , y4 =
√
s∗−p1−

√
∆3

2 and zi = yi − p
5 (i = 1, 2, 3, 4).

Lemma 4. Assume that v ≥ 0, q1 ̸= 0 and s∗ < p1, then Eq. (9) has positive

real roots if and only if
q21

4(p1−s∗)2 + s∗
2 = 0, z̄ > 0 and h(z̄) ≤ 0, where

z̄ = q1
2(p1−s∗) −

1
5p.

Suppose that Eq. (9) has positive roots and without loss of generality, we
assume that it has five positive roots, denoted by z∗k, k = 1, 2, 3, 4, 5. Then
Eq. (8) has five positive roots ωk =

√
z∗k, k = 1, 2, 3, 4, 5.

By Eq. (7), we have:

cos(2ωkτ) =
a2ω

6
k + (ab2 − a2b)ω

4
k + (da2 − cb2)ω

2
k + eb2

−b22 − a22ω
2
k

,

sin(2ωkτ) =
(b2 − aa2)ω

5
k + (ca2 − bb2)ω

3
k + (db2 − ea2)ωk

a22ω
2
k + b22

.
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Thus, we get the corresponding τ
(j)
k > 0 such that the characteristic equa-

tion (6) has purely imaginary roots.

τ
(j)
k =

1

2ωk
[cos−1(−a2ω

6
k + (ab2 − a2b)ω

4
k + (da2 − cb2)ω

2
k + eb2

b22 + a22ω
2
k

) + 2jπ],

(12)
where k = 1, 2, 3, 4, 5 and j = 0, 1, 2, . . ., then ±iωk is a pair of purely imag-

inary roots of Eq. (6) with τ = τ
(j)
k . Clearly, the sequence {τ (j)k }+∞

j=0 is

increasing, and limj→+∞τ
(j)
k = +∞, k = 1, 2, 3, 4, 5.

Therefore, we can define

τ0 = τ
(0)
k0

= mink∈{1,...,5}{τ
(0)
k }, ω0 = ωk0 , z0 = z∗k0 . (13)

For convenience, we make the following hypotheses:

(H3) a > 0, ab− c > 0, c(ab− c) + a(e+ b2 − a(d+ a2)) > 0, e+ b2 > 0

(ab− c)[c(d+ a2)− b(e+ b2)]− [a(d+ a2)− e− b2]
2 > 0.

We also need the following result from Ruan and Wei [22].

Lemma 5. Consider the exponential polynomial

P (λ, e−λτ1 , . . . , e−λτm) = λn + p
(0)
1 λn−1 + . . .+ p

(0)
n−1λ+ p(0)n

+ [p
(1)
1 λn−1 + . . .+ p

(1)
n−1λ+ p(1)n ]e−λτ1 + . . .

+ [p
(m)
1 λn−1 + . . .+ p

(m)
n−1λ+ p(m)

n ]e−λτm ,

where τi ≥ 0 (i = 1, 2, . . . ,m) and p
(i)
j (i = 0, 1, 2, . . . ,m; j = 1, 2, . . . , n) are

constants. As (τ1, τ2, . . . , τm) vary, the sum of the orders of the zeros of
P (λ, e−λτ1 , . . . , e−λτm) on the open right half plane can change only if a zero
appears on or crosses the imaginary axis.

Proof. See [22].

Using Lemmas 1-5, we can easily obtain the following results on the dis-
tribution of roots of the Eq. (6).

Lemma 6. Assume that (H3) holds.
(I) If one of the following conditions holds:
(a) v < 0;
(b) v ≥ 0, q1 = 0, ∆0 ≥ 0 and p1 < 0 or r1 ≤ 0 and there exists z∗ ∈
{z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0;
(c) v ≥ 0, q1 ̸= 0, s∗ > p1, ∆2 ≥ 0 or ∆3 ≥ 0 and there exists z∗ ∈
{z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0;

(d) v ≥ 0, q1 ̸= 0, s∗ < p1,
q21

4(p1−s∗)2 + 1
2s∗ = 0, z̄ > 0 and h(z̄) ≤ 0,

then all roots of Eq. (6) have negative real parts when τ ∈ [0, τ0).
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(II) If none of the conditions (a)-(d) of (I) is satisfied, then all roots of Eq. (6)
have negative real parts for all τ ≥ 0.

Proof. When τ = 0, Eq. (6) becomes

λ5 + aλ4 + bλ3 + cλ2 + (d+ a2)λ+ e+ b2 = 0. (14)

By the Routh-Hurwitz criterion, all roots of Eq. (14) have negative real parts
if and only if (H3) holds. From Lemmas 1-4, we know that if (a)-(d) of (I)
are not satisfied, then Eq. (6) has no roots with zero real part for all τ ≥ 0.

If one of (a)-(d) holds, when τ ̸= τ
(j)
k , k = 1, . . . , 5; j = 0, 1, . . ., Eq. (6) has

no roots with zero real part and τ0 is the minimum value of τ so that Eq. (6)
has purely imaginary roots. Applying Lemma 5, we obtain the conclusion of
the lemma.

Let
λ(τ) = α(τ) + iω(τ) (15)

be the root of Eq. (6) satisfying α(τ0) = 0, ω(τ0) = ω0. Then we have the
following lemma:

Lemma 7. Suppose that z0 = ω2
0, h

′(z0) ̸= 0 and a2ω0 ̸= 0 (or b2 ̸= 0).
Then, at τ = τ0, ±iω0 is a pair of simple purely imaginary roots of Eq. (6).
Moreover,

dRe(λ(τ0))

dτ
̸= 0,

also, dRe(λ(τ0))dτ and h′(z0) have the same sign.

Proof. Differentiating Eq. (6) with respect to τ , we can easily obtain:

[
dλ

dτ
]−1 =

(5λ4 + 4aλ3 + 3bλ2 + 2cλ+ d)e2λτ + a2
2a2λ2 + 2b2λ

− τ

λ
.

Then, we get

[
dRe(λ(τ0))

dτ
]−1 =

z0
K
h′(z0),

where K = 4a22ω
4
0 + 4b22ω

2
0 . Thus, we obtain

sign{dRe(λ(τ0))
dτ

} = sign{[dRe(λ(τ0))
dτ

]−1} = sign{z0
K
h′(z0)} ̸= 0.

Since K, z0 > 0, we conclude that the sign of dRe(λ(τ0))dτ is determined by the
sign of h′(z0).

Now, we state the main theorem:

Theorem 1. Suppose that (H1), (H2) and (H3) hold.
(I) If the conditions (a)-(d) of Lemma 6 are all not satisfied, then the zero
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solution of system (3) is asymptotically stable for all τ ≥ 0.
(II) If one of the conditions (a)-(d) of Lemma 6 is satisfied, then the zero
solution of system (3) is asymptotically stable for all τ ∈ [0, τ0).
(III) If all the conditions as stated in (II) hold and h′(z0) ̸= 0, then system
(3) undergoes a Hopf bifurcation at the zero solution as τ passes through τ0.

Proof. By applying Lemmas 6, 7 and bifurcation theory, all parts can be
easily proved.

(For more information about bifurcation theory and Hopf bifurcation, see
[23].)

3 Numerical simulation

In this section, we give a numerical simulation to support our theoretical
analysis. We consider the following system

ẋ1(t) = −0.5x1(t) + tanh(y1(t− τ2))
−tanh(y2(t− τ2)) + 2tanh(y3(t− τ2))

ẋ2(t) = −x2(t) + tanh(y1(t− τ2))
+tanh(y2(t− τ2)) + tanh(y3(t− τ2))

ẏ1(t) = −2y1(t) + tanh(x1(t− τ1))− tanh(x2(t− τ1))
ẏ2(t) = −0.5y2(t) + tanh(x1(t− τ1)) + tanh(x2(t− τ1))
ẏ3(t) = −0.5y3(t) + tanh(x1(t− τ1))− tanh(x2(t− τ1))

(16)

which has (0, 0, 0, 0, 0) as an equilibrium point. From section 2, by (5) and
(8), we can compute p = 9, q = 27.375, r = 32.3125, s = −24.43359375 and
v = −0.984375. Then Eq. (9) has a unique positive real root z0 = 0.5308.

Its easy to show that τ0 = 0.885959203, h′(z0) > 0 and sign{d(Reλ(τ0))dτ } = 1.
Here, we have chosen τ1 = 0.3 and τ2 = 0.4, Figure 1 shows that the origin
is asymptotically stable. When τ passes through the critical value τ0, a Hopf
bifurcation occurs and a family of stable periodic solutions bifurcates from
the origin. In Figure 2, the bifurcating periodic solutions are presented by
choosing τ1 = 0.4 and τ2 = 0.5.

4 Conclusions

In this paper, we discussed the dynamics of a class of BAM neural network
with two neurons in the X-layer, three neurons in the Y-layer and two time
delays. We have proved that the zero solution loses its stability and Hopf
bifurcation occurs. In fact, a family of periodic solutions bifurcate from
the zero solution when τ passes through a critical value. Also, in the main
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Figure 1: When τ1 = 0.3 and τ2 = 0.4, the origin is asymptotically stable.

Figure 2: When τ1 = 0.4 and τ2 = 0.5, a family of periodic solutions bifur-
cates from the origin.
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theorem, we resulted asymptotically stability of the zero solution in system
(3) under some conditions. Finally, the results have been illustrated through
numerical simulations.

At the end, for further research, we would like to point out that we dis-
cussed the dynamics of a special class of BAM neural network, but the com-
plexity found in this case might be carried out to larger networks under some
conditions.
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