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genetic algorithm (GA) and

Nelder–Mead (NM) for solving
nonlinear inverse parabolic problems
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Abstract

In this paper a hybrid algorithm based on genetic algorithm (GA) and
Nelder–Mead (NM) simplex search method is combined with least squares

method for the determination of temperature in some nonlinear inverse
parabolic problems (NIPP). The performance of hybrid algorithm is estab-
lished with some examples of NIPP. Results show that hybrid algorithm is
better than GA and NM separately. Numerical results are obtained by im-

plementation expressed algorithms on 2.20GHz clock speed CPU.

Keywords: Hybrid; NIPP; Nonlinear inverse parabolic problem; Genetic
algorithm; Nelder–Mead; The least squares method.

1 Introduction

Most phenomena in real world are described through nonlinear equations,
and these type of equations have attracted lots of attention among scientists.
For example, consider that the sun shines in a room, and it begins to warm
up. Apparently, the physical property here is the temperature, which is a
function of the time and space, and the governing equations that represent
the temperature variations, are a nonlinear parabolic problem (NPP) [1].
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In linear and nonlinear parabolic problems, we are usually facing a prob-
lem, where problem conditions, initial conditions, and boundary conditions
are identified and in the main equation only the equation main function is
unknown. In fact, there is just one unknown factor at the problem. These
problems are called direct problems.

On the contrary there is another category of problems. In this category,
in addition to the main equation of the problem, there are another unknown
parts such as boundary conditions. This type of problems are called inverse
problems [12].

In the present paper, we consider nonlinear inverse parabolic problems as
the following form:

Ut = ϕ(x, t, U, Ux, Uxx), (x, t) ∈ (0, 1)× (0, tm), (1a)

with the initial condition

U(x, 0) = f(x), x ∈ [0, 1], (1b)

and the boundary conditions

U(0, t) = p(t), t ∈ [0, tm], (1c)

U(1, t) = q(t), t ∈ [0, tm], (1d)

and the overspecified condition

U(α, t) = s(t), t ∈ [0, tm], 0 < α < 1, (1e)

where ϕ is some nonlinear expression in terms of U , Ux, Uxx, and f(x) is a
continuous known function. p(t) and q(t) are infinitely differentiable known
functions, and tM represents the final existence time for the time evolution of
the problem, while function q(t) is unknown, which remains to be determined
from some interior temperature measurements (overspecified condition).

In this paper we present a hybrid algorithm based on Nelder–Mead sim-
plex search method and genetic algorithm for solving NIPPs. Genetic algo-
rithm is one of the basic heuristics to solve various types of problems. In
recent years, this algorithm has been applied on some linear and nonlinear
partial differential equation to find unknown term in these equations. On the
other hand, there are some hybrid algorithms, which use local search method
as an inner subroutine to reduce the likelihood of the premature convergence
and to expedite convergence rate of genetic algorithms. These algorithms are
called “Memetic Algorithms” or “Hybrid Algorithms”. In this study, to expi-
ate convergence rate of genetic algorithm and increase accuracy of solutions,
we add Nelder–Mead method to the algorithm as a local search method. The
Nelder–Mead method is a commonly applied numerical method used to find
the minimum or maximum of an objective function in a multidimensional
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space. It is successfully applied to nonlinear optimization problems for which
derivatives may not be known. However, the Nelder–Mead technique is a
heuristic search method that can converge to nonstationary points [16] on
problems that can be solved by alternative methods.

Our main purpose is to find an unknown boundary condition in NIPPs
using our proposed hybrid method. Because by having this unknown bound-
ary condition, problem becomes a direct NPP and fortunately, many methods
have been reported to solve direct NPPs. In this paper we use finite difference
method for solving direct NPPs.

2 Some nonlinear inverse parabolic problems

In this section, we consider three NIPPs. The first equation is formulated as
follows [1]:

Ut(x, t) + U(x, t)Ux(x, t) = Uxx(x, t), 0 < x < 1, 0 < t < tM , (2a)

U(x, 0) = f(x), 0 ≤ x ≤ 1, (2b)

U(0, t) = p(t), 0 ≤ t ≤ tM , (2c)

U(1, t) = q(t), 0 ≤ t ≤ tM , (2d)

and the overspecified condition

U(α, t) = s(t), 0 ≤ t ≤ tM , 0 < α < 1, (2e)

The second equation is formulated as follows:

Ut(x, t)−U(x, t)(1− U(x, t)) = Uxx(x, t), 0 < x < 1, 0 < t < tM , (3a)

U(x, 0) = f(x), 0 ≤ x ≤ 1, (3b)

U(0, t) = p(t), 0 ≤ t ≤ tM , (3c)

U(1, t) = q(t), 0 ≤ t ≤ tM , (3d)

and the overspecified condition

U(α, t) = s(t), 0 ≤ t ≤ tM , 0 < α < 1, (3e)

and the third equation is formulated as follows:

Ut(x, t) = a(t)Uxx(x, t), 0 < x < 1, 0 < t < tM , (4a)

U(x, 0) = f(x), 0 ≤ x ≤ 1, (4b)

U(0, t) = p(t), 0 ≤ t ≤ tM , (4c)

U(1, t) = q(t), 0 ≤ t ≤ tM , (4d)
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and the overspecified condition

U(α, t) = s(t), 0 ≤ t ≤ tM , 0 < α < 1, (4e)

where f(x) is a continuous known function, p(t), a(t), and s(t) are infinitely
differentiable known functions and tM represents the final existence time for
the time evolution of the problem. In these equations, if q(t) is unknown,
then we are facing nonlinear inverse parabolic problems. In this case, un-
known q(t) must be determined from some interior temperature measure-
ments(Overspecified condition).

Remark 1. In this study we use implicit finite difference approximation
(Crank–Nicolson method) for discretizing above equations.

Therefore we have the following discretization for the first equation:

−r1Ui−1,j+1 + (2 + 2r1)Ui,j+1 − r1Ui+1,j+1

=r1Ui−1,j + (2− 2r1)Ui,j + r1Ui+1,j

+ 2r2(Ui,j
2 − Ui,jUi+1,j), i = 1, . . . , N − 1, j = 0, . . . , N − 1,

(5)

Ui,0 = f(ih), j = 0, i = 1, . . . , N − 1,

U0,j = p(jk), i = 0, j = 0, 1, . . . , N − 1,

UN,j = q(jk), i = N, j = 0, 1, . . . , N − 1,

where xi = ih , tj = jk, r1 = k/h2, and r2 = k/h.

Using equation (5), we obtain the following linear algebraic system of
equations:

2 + 2r1 −r1 0 0 0 0 0
−r1 2 + 2r1 −r1 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 −r1 2 + 2r1 −r1
0 0 0 0 0 −r1 2 + 2r1





U1,j+1

U2,j+1

.

.

.
UN−2,j+1

UN−1,j+1



=



2− 2r1 r1 0 0 0 0 0
r1 2− 2r1 r1 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 r1 2− 2r1 r1
0 0 0 0 0 r1 2− 2r1





U1,j

U2,j

.

.

.
UN−2,j

UN−1,j


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+r1



U0,j + U0,j+1

0
.
.
.
0

UN,j + UN,j+1


+ 2r2



U1,j
2 − U1,jU2,i

U2,j
2 − U2,jU3,i

.

.

.
UN−2,j

2 − UN−2,jUN−1,i

UN−1,j
2 − UN−1,jUN,i


(6)

Linear system (6) gives (N −1) unknown pivotal values along the bound-
ary x = 1.
We have the following discretization for the second equation:

−rUi−1,j+1 + (2 + 2r)Ui,j+1 − rUi+1,j+1

= rUi−1,j + (2− 2r)Ui,j

+ rUi+1,j + 2k(Ui,j − Ui,j
2), i = 1, . . . , N − 1, j = 0, . . . , N − 1,

(7a)

Ui,0 = f(ih), j = 0, i = 1, . . . , N − 1, (7b)

U0,j = p(jk), i = 0, j = 0, 1, . . . , N − 1, (7c)

UN,j = q(jk), i = N, j = 0, 1, . . . , N − 1, (7d)

where xi = ih , tj = jk and r = k/h2.

Using equation (7), we obtain the following linear algebraic system of
equations:

2 + 2r −r 0 0 0 0 0
−r 2 + 2r −r 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 −r 2 + 2r −r
0 0 0 0 0 −r 2 + 2r





U1,j+1

U2,j+1

.

.

.
UN−2,j+1

UN−1,j+1



=



2− 2r r 0 0 0 0 0
r 2− 2r r 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 r 2− 2r r
0 0 0 0 0 r 2− 2r





U1,j

U2,j

.

.

.
UN−2,j

UN−1,j


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+r



U0,j + U0,j+1

0
.
.
.
0

UN,j + UN,j+1


+ 2k



U1,j − U1,j
2

U2,j − U2,j
2

.

.

.
UN−2,j − UN−2,j

2

UN−1,j − U2
N−1,j


(8)

Linear system (8) gives (N −1) unknown pivotal values along the bound-
ary x = 1.
Finally, following discretization is described for the third equation:

−rajUi−1,j+1 + (2 + 2raj)Ui,j+1 − rajUi+1,j+1

= rajUi−1,j + (2− 2raj)Ui,j

+ rajUi+1,j , i = 1, . . . , N − 1, j = 0, . . . , N − 1, (9a)

Ui,0 = f(ih), j = 0, i = 1, . . . , N − 1, (9b)

U0,j = p(jk), i = 0, j = 0, 1, . . . , N − 1, (9c)

UN,j = q(jk), i = N, j = 0, 1, . . . , N − 1, (9d)

aj = a(jk), (9e)

where xi = ih , tj = jk and r = k/h2.

Using equation (9), we obtain the following linear algebraic system of
equations:

2 + 2raj −raj 0 0 0 0 0
−raj 2 + 2raj −raj 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 −raj 2 + 2raj −raj
0 0 0 0 0 −raj 2 + 2raj





U1,j+1

U2,j+1

.

.

.
UN−2,j+1

UN−1,j+1



=



2− 2raj raj 0 0 0 0 0
raj 2− 2raj raj 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 raj 2− 2raj raj
0 0 0 0 0 raj 2− 2raj





U1,j

U2,j

.

.

.
UN−2,j

UN−1,j


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+raj



U0,j + U0,j+1

0
.
.
.
0

UN,j + UN,j+1


(10)

Linear system (10) gives (N−1) unknown pivotal values along the bound-
ary x = 1.

Problems (2), (3), and (4) can be solved in least-square sense, and a
cost function can be defined as a sum of squared differences between mea-
sured temperatures and calculated values of U(x, t) by considering guesses
estimated values of q(t).

f(Guesses estimated values of q(t)) =
N∑
j=1

(U(a, tj)− sj)
2, (11)

where U(a, tj) are calculated by solving the direct parabolic problem. To
do this, we consider prior guess for q(t). Also sj = s(tj) are measured
temperatures at x = α. To find optimal solution of q(t), the equation (11)
must be minimum.

3 Genetic algorithm (GA) for solving NIPP

Genetic algorithms, primarily developed by Holland [5], have been success-
fully applied to various optimization problems. It is essentially a searching
method based on the Darwinian principles of biological evolution. Genetic
algorithm is a stochastic optimization algorithm, which employs a population
of chromosomes; each of them represents a possible solution. By applying
genetic operators, each successive incremental improvement in a chromosome
becomes the basis for the next generation. The process continues until the
desired number of generations has been completed or the predefined fitness
value has been reached [8].

The genetic algorithms differ from other methods of search and optimiza-
tion in a number of ways. (a) Genetic algorithms search from a population
of possible solutions instead of a single one. (b) The fitness or cost func-
tion used to resolve the redundancy has no requirement for continuity in the
derivatives; so virtually any fitness function can be selected for optimizing.
(c) Genetic algorithms use random operators throughout the process includ-
ing reproduction, crossover, and mutation. (d) Genetic algorithms are blind,
since no specified information about the intended problem is needed to obtain
the final solution [8].
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In this study a GA is considered for solving IPP. Consider chromosomes
Gi = {gi,1, gi,2, gi,3, . . . , gi,m}, i = 1, 2, 3, . . . , n and each gi,j ∈ [−M,M ]
(In this work M is one). Each chromosome estimates values of q(t) at
tj , j = 1, 2, 3, . . . , n. Solve then parabolic problem by expressed discretiza-
tion in previous section. In this work, equation (11) is considered as fitness
function than must be minimum. Finally for determining unknown q(t), we
find interpolation of m-points of the best chromosome at the end of algo-
rithm. In this study an additional step is added to algorithm after step 4.
We named this step repair operator. After applying crossover and mutation,
some entries of chromosomes may exceed from [−M,M ]; so repair operator
returns those entries to the interval. The steps of GA for determining q(t)
can be divided into the following steps:

1. Generate randomly an initial population of chromosomes.

2. Evaluate the fitness of each chromosome in the population.

3. Choose by tournament selection pairs of chromosome for combination.
By applying N-point crossover create offspring of this selected parents.

4. Apply bitwise mutation on offspring.

5. Apply repair operator.

6. Evaluate fitness of offspring.

7. Update population and copy the offspring by α probability.

8. Repeat step 3 to step 7, until finding acceptable fitness.

4 Nelder–Mead simplex search method for solving NIPP

This simplex search method, first proposed by Spendley, Hext, and Himsworth
[14] and later refined by Nelder and Mead [9]. Their methods is one of the
most efficient pattern search method currently available. This method is a
derivative-free line search method that was particularly designed for tradi-
tional unconstrained minimization scenarios, such as the problems of non-
linear least squares, nonlinear simultaneous equations, and other types of
function minimization [10]. In this method for N vertices of an initial sim-
plex, evaluate cost function for each vertex at the first. Then the worth vertex
replace by newly reflected and better point, which can be approximately lo-
cated in the negative gradient direction. In the minimization problem with
three initial simplex vertices, the method can be mention as follows [6, 17]:
xh: Vertex with highest cost function value.
xs: Vertex with the second highest cost function value.
xl: Vertex with lowest cost function value.
xc: The centroid of vertices except xh.
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1. Reflection. Reflect xh (Figure1) and find x0 such that

x0 = 2xc − xh.

Figure 1: Reflection xh toward x0

2. If f(xl) < f(x0) < f(xs), replace xh by x0 and return to step 1.

3. Expansion. If f(x0) < f(xl), then expansion operation makes x00 (Fig-
ure2). We replace xh by x0 or x00 depending on which function value
is lower and return to step 1.

x00 = 2x0 − xc.

Figure 2: Expansion

4. Contraction. If f(x0) > f(xs), then contraction operation makes x00

by consider two cases:
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(a) If f(x0) < f(xh), find x00 such that (Figure 3)

x00 =
1

2
x0 −

1

2
xc.

Figure 3: Contraction operator when f(x0) < f(xh)

(b) If f(x0) ≥ f(xh), find x00 such that (Figure 4)

x00 =
1

2
xh −

1

2
xc.

Figure 4: Contraction operator when f(x0) ≥ f(xh)

(c) If f(x00) < f(xh) and f(x00) < f(x0), then replace xh by x00 and
return to step 1.

(d) If f(x00) ≥ f(xh) or f(x00) > f(x0), then reduce size of simplex
by halving distances from xl and return to step 1.

The process terminates when either the number of iterations has exceeded a
preset amount or the simplex size is smaller than a given value.

In this work, we consider the vectors, which are estimated q(t), as the
vertices of the simplex and equation (11) as the cost function. Initial vertices
generate randomly. To find unknown q(t), we interpolate the final vertex at
the end of NM simplex search method.
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5 hybrid algorithm for solving NIPP

GA and NM discussed separately; we now present a hybrid algorithm based
on GA and NM. In this algorithm the population size is considered 10. In
each iteration we sort the population by fitness of particles. Then top three
particles are considered as vertices of NM and lead to NM subroutine, and
other seven particles lead to GA subroutine. After applying these subrou-
tines, all of particles are considered as entire of next iteration. The process
terminates when pre certain number of iteration done [6]. In this algorithm
each particle estimates unknown q(t); also the initial population is generated
randomly, and the cost function is considered equation (11). Finally for de-
termining q(t) we find interpolation of m-points of the best particle at the
end of algorithm. The steps of hybrid algorithm for determining unknown
q(t) can be divided into the following steps:

1. Generate randomly a 10 dimension initial population of particles.

2. Sort population by fitness of particles.

3. Top three particles are lead to NM subroutine.

4. Next seven particles is lead to GA subroutine.

5. Repeat step 2 to step 4, until terminate criteria is not satisfied.

6 Convergence study

The convergence of the Genetic Algorithm and the Nelder–Mead simplex
search method have been studied in [13, 15]. Since our presented hybrid
method in Section 5 uses the Nelder–Mead simplex search method as a inner
subroutine in the Genetic Algorithm, the general convergence is depend on
the convergence of the genetic algorithm. Therefore, The hybrid method used
in this work converges to optimal solution.

7 Numerical results

In this section we are going to demonstrate numerically, some results for the
unknown function q(t) in the NIPPs of Section 2. The aim of this section is to
show the applicability of the presented hybrid algorithm for solving NIPPs.
To show utility of this algorithm, we solved three examples using GA, NM,
and hybrid algorithm separately and compared them with each other. Now,
we give the following examples in 0 < x < 1, 0 < t < 1.
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Example 1.

Ut(x, t) + U(x, t)Ux(x, t) = Uxx(x, t), 0 < x < 1, 0 < t < tM , (12a)

U(x, 0) =
1

2
− 1

2
tanh(

x

4
), 0 ≤ x ≤ 1, (12b)

U(0, t) =
1

2
− 1

2
tanh(− t

8
), 0 ≤ t ≤ tM ,

U(1, t) = q(t), 0 ≤ t ≤ tM ,

and the overspecified condition

s(tj) = U(0.5, tj), tj = 0.05× j, j = 0, 1, 2, . . . , 20.

Here the exact U(x, t) and q(t) are ( 12 −
1
2 tanh(

1
4 (x −

t
2 ))) and ( 12 −

1
2 tanh(

1
4 (1−

t
2 ))), respectively.

Example 2.

Ut(x, t)− U(x, t)(1− U(x, t)) = Uxx(x, t), 0 < x < 1, 0 < t < tM ,

(13a)

U(x, 0) =
1

4
(1− tanh(

1

2
√
6
x))2, 0 ≤ x ≤ 1,

U(0, t) =
1

4
(1− tanh(− 5t

24
))2, 0 ≤ t ≤ tM ,

U(1, t) = q(t), 0 ≤ t ≤ tM ,

and the overspecified condition

s(tj) = U(0.5, tj), tj = 0.05× j, j = 0, 1, 2, . . . , 20.

Here the exact U(x, t) and q(t) are ( 14 (1 − tanh( 1
2
√
6
(x − 5t

2
√
6
)))2) and

( 14 (1− tanh( 1
2
√
6
(1− 5t

2
√
6
)))2), respectively.

Example 3.

Ut(x, t) =
2t

t2 + 1
Uxx(x, t), 0 < x < 1, 0 < t < tM , (14a)

U(x, 0) =
1

3
e−x, 0 ≤ x ≤ 1, (14b)

U(0, t) =
t2 + 1

3
, 0 ≤ t ≤ tM , (14c)

U(1, t) = q(t), 0 ≤ t ≤ tM , (14d)
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and the overspecified condition

s(tj) = U(0.9, tj) + σR, j = 1, 2, 3, · · · , 9, (14e)

where tj ’s are the sinc times nodes.

(14f)

Here the exact U(x, t) and q(t) are e−x(
t2 + 1

3
) and e−1(

t2 + 1

3
), respectively.

Remark 2. In a NIPP there are two sources of error in the estimation.
The first source is the unavoidable bias deviation (or deterministic error).
The second source of error is the variance due to the amplification of mea-
surement errors (stochastic error). The global effect of deterministic and
stochastic errors are considered in terms of the mean squared error or total
error, [2].

S =
[ 1

N − 1

N∑
j=1

(q̂j − qj)
2
] 1

2

, (15)

where N is the total number of estimated values, q̂i are calculated values from
interpolated equation, and qi are exact values of q(t). We use from value of
total error to compare methods.

7.1 Solving examples by genetic algorithm

In this subsection, at first, we use genetic algorithm for solving examples.
Table 1 presents parameters of the proposed genetic algorithm.

In this algorithm, a population of 10 chromosomes of 20 genes is used
as the initial guess for numerical results. The gens estimate 20 values of
q(tj) at tj = j × 0.05, j = 1, 2, 3, . . . , 20. To determine unknown q(t), the
best chromosome is interpolated at the end of algorithm. Tables 2–4 present
results of implementation of the proposed genetic algorithm to determine
unknown q(t) at Examples 1–3, respectively.
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Table 1: Parameters of the proposed genetic algorithm

Representation Real valued vectors
Length of chromosomes 20

Recombination N point crossover
Recombination probability 100%

Mutation Swap
Mutation probability 1/n

Parent selection Best of 2 out of random 4
Survivor selection Replace random
Population size 10

Number of offspring 1
Initialization Random.

Termination condition Number of generation

Table 2: The results of 100 to 1000000 generations for determining q(t) at Example 1 by

implementing proposed genetic algorithm for a population of 10 chromosomes of 20 genes.

Generation Best fitness Time (s) S
100 0.027745 0.16 0.03165
1000 0.003935 1.01 0.00946
10000 0.000901 5.76 0.00685
100000 0.000097 58.42 0.00279
1000000 0.000051 563.14 0.00047

Table 3: The results of 100 to 1000000 generations for determining q(t) at Example 2 by

implementing proposed genetic algorithm for a population of 10 chromosomes of 20 genes.

Generation Best fitness Time (s) S
100 0.014947 0.51 0.29677
1000 0.009230 1.75 0.05083
10000 0.003019 7.19 0.00917
100000 0.000223 63.41 0.00231
1000000 0.000076 688.60 0.00048
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Table 4: The results of 100 to 1000000 generations for determining q(t) at Example 3 by

implementing proposed genetic algorithm for a population of 10 chromosomes of 20 genes

Generation Best fitness Time (s) S
100 0.010579 0.62 0.01337
1000 0.002323 1.36 0.00915
10000 0.000530 8.78 0.00411
100000 0.000021 59.46 0.00175
1000000 0.000018 480.67 0.00014

7.2 Solving examples by Nelder–Mead simplex search
method

To solve presented examples by NM simplex search method, three initial
vertices were generated randomly. Each vertex is considered a real valued
vector by 20 entries. So each vertex estimates unknown q(t), and each entry
of vertices estimates q(tj) at tj = j × 0.05,j = 1, 2, 3, . . . , 20. To determine
unknown q(t), the best vertex is interpolated at the end of algorithm. Tables
6–7 present results of implementation of NM for determine unknown q(t) at
Examples 1–3, respectively.

Table 5: The results of 100 to 1000000 iteration for determining q(t) at Example 1 by

implementing NM for three vertices

Iteration Best fitness Time (s) S
100 0.545731 1.07 0.25919
1000 0.526974 7.32 0.24156
10000 0.073689 23.87 0.08513
100000 0.041615 184.09 0.06720
1000000 0.036581 1942.50 0.06669
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Table 6: The results of 100 to 1000000 iteration for determining q(t) at Example 2 by

implementing NM for three vertices

Iteration Best fitness Time (s) S
100 0.156634 0.89 0.20997
1000 0.147336 2.87 0.13720
10000 0.099725 17.90 0.08711
100000 0.054095 153.17 0.08124
1000000 0.017139 1626.01 0.02814

Table 7: The results of 100 to 1000000 iteration for determining q(t) at Example 3 by

implementing NM for three vertices

Iteration Best fitness Time (s) S
100 0.115466 0.73 0.19575
1000 0.109927 1.98 0.12761
10000 0.080606 19.36 0.07540
100000 0.044853 113.71 0.07341
1000000 0.012802 1094.75 0.01937

7.3 Solving examples by hybrid algorithm

In this subsection, Examples 1–3 are solved by proposed hybrid algorithm
in Section 5. In this algorithm, a population of 10 vectors of 20 entries
is used as the initial guess for numerical results. Therefore, each vec-
tor estimates unknown q(t) and each entry of vectors estimates q(tj) at
tj = j × 0.05,j = 1, 2, 3, . . . , 20. At the each iteration of hybrid algorithm,
population is sorted by fitness. Then NM-subroutine is run for 10 iteration
on top of three individuals of population and GA-subroutine applies genetic
operations (recombination and mutation) on next seven individuals. To de-
termine unknown q(t), the best vertex is interpolated at the end of algorithm.
Tables 8–10 present results of implementation of hybrid algorithm for deter-
mine unknown q(t) at Examples 1–3, respectively. Figures 5–7 present exact
and numeric q(t) for 1000 iterations at Examples 1–3, respectively.
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Table 8: The results of 100 to 1000 iteration for determining q(t) at Example 1 by

implementing hybrid algorithm for ten vertices

hybrid iterations Best fitness Time (s) S
100 0.000077 49.51 0.00126
1000 0.000039 461.29 0.00041

Figure 5: Exact and numeric q(t) for 1000 iterations by implementing hybrid algorithm
at Example 1

Table 9: The results of 100 to 1000 iteration for determining q(t) at Example 2 by

implementing hybrid algorithm for ten vertices

Hybrid iterations Best fitness Time (s) S
100 0.000105 41.78 0.00212
1000 0.000028 436.22 0.00038

Table 10: The results of 100 to 1000 iteration for determining q(t) at Example 3 by

implementing hybrid algorithm for ten vertices

Hybrid iterations Best fitness Time (s) S
100 0.000063 37.19 0.00092
1000 0.000016 389.83 0.00038
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Figure 6: Exact and numeric q(t) for 1000 iterations by implementing hybrid algorithm
at Example 2

Figure 7: Exact and numeric q(t) for 1000 iterations by implementing hybrid algorithm
at Example 3

7.4 Comparison

In this paper, the genetic algorithms, Nelder–Mead simplex search method
and hybrid algorithm have explained for solving the nonlinear inverse parabolic
problem by some numerical examples. To examine the utility of solutions, we
compare the values of total error(s) and their execute times in the estimated
solutions. The unknown q(t) has estimated by the some different numbers of
iterations for each method. Results show that the accuracy of GA is better
than NM for 100 to 1000000 iterations. Figures 8–10 show the convergency
study for different iterations for GA and NM at first and second example,
respectively. Also execute time of GA is less than NM at both examples in
all iterations. But when GA and NM have combined and hybrid algorithm
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has created, exploitation of NM and exploration of GA caused that accuracy
improve. As total error of hybrid algorithm for 100 and 1000 iterations be-
came better in comparison with the NM and GA performance with almost
the same execute time.

Figure 8: Values of total error(S) for different numbers of iterations by implementing
NM and GA at Example 1

Figure 9: Values of total error(s) for different numbers of iterations by implementing NM
and GA at Example 2
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Figure 10: Values of total error(s) for different numbers of iterations by implementing
NM and GA at Example3

8 Conclusion

A numerical method to estimate unknown boundary condition is proposed
for these kinds of NIPPs, and the following results are obtained:

1. The present study successfully applies the numerical method to NIPPs.

2. To solve the NIPPs by GA, NM, and hybrid algorithm, the unknown
function will be guessed and we do not need the regularization. This
will improve the execution time.

3. This hybrid algorithm is able to combine whit every direct solution
methods.

4. This method does not need to powerful mathematic base.

5. Acceptable accuracy and execute time at the hybrid algorithm.
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مسائل حل برای مید نلدر- جستجوی روش و ژنتیک الگوریتم اساس بر کارا ترکیبی الگوریتم یک
غیرخطی سهموی معکوس

پورقلی رضا و مزرعه دانا حسن

کامپیوتر علوم و ریاضی دانشکده دامغان، دانشگاه

١٣٩٧ خرداد ٢٣ مقاله پذیرش ،١٣٩۶ آذر ۴ شده اصلاح مقاله دریافت ،١٣٩۶ اردیبهشت ١۵ مقاله دریافت

نلدر- سیمپلکس جستجوی روش و ژنتیک الگوریتم اساس بر ترکیبی الگوریتم یک مقاله، این در : چکیده
می شود. ترکیب خطی غیر معکوس سهموی مسایل در حرارت درجه تعیین برای مربعات کمترین روش با مید
نتایج گیرد. می قرار تایید مورد سهموی غیرخطی معکوس مسائل از مثال چند با ترکیبی الگوریتم کارایی
طور به مید نلدر- سیمپلکس جستجوی روش و ژنتیک الگوریتم از بهتر ترکیبی، روش این که می دهد نشان
سرعت با ای هسته تک پردازنده یک در شده مطرح های الگوریتم سازی پیاده با عددی نتایج است. جداگانه

است. آمده بدست GHz ٢٬٢٠

روش نلدر-مید؛ ژنتیک؛ الگوریتم سهموی؛ غیرخطی معکوس مسائل ؛ NIPP ترکیبی؛ : کلیدی کلمات
مربعات. کمترین
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