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Abstract

Detecting the Pareto optimal solutions on the Pareto frontier is one of
the most important topics in multiobjective optimal control problems. In
real-world control systems, there is needed for the decision-maker to apply
their own opinion to find the preferred solution from a large list of Pareto
optimal solutions. This paper presents a class of axial preferred solutions for
multiobjective optimal control problems in contexts in which partial informa-
tion on preference weights of objectives is available. These solutions combine
both the idea of improvement axis and Pareto optimality with respect to
preference information. The axial preferred solution, in addition to taking
considerations of decision-makers, provides continuous functions for control-
ling chemical processes. Numerical results are presented for two problems of
chemical processes with two different preferential situations.
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1 Introduction

Multiobjective optimal control problem (MOCP) is concerned with a method-
ology that can treat complex problems encountered in (bio) chemical engi-
neering, optimal robot paths in mechanical engineering, and optimal rocket
trajectories in aerospace engineering, where optimal decisions need to be
taken in the presence of trade-offs between several conflicting objectives; see
[13, 16, 17].

In single-objective optimal control problem, the determination of the opti-
mum solution among a set of given solutions is clear. However, in the absence
of preference information, in multiobjective optimal control, there does not
exist a way to determine if a solution is better than other, but, instead, we
produce a set of them called the Pareto optimal set [8].

To solve multiobjective optimal control problems, multiobjective opti-
mization methods are used as basic methods. Multiobjective optimization
methods depending on how the decision-maker (DM) articulates their pref-
erences divided into four classes: methods that involve a priori articulation
of preferences, methods with a posteriori articulation of preferences, meth-
ods that require no articulation of preferences are addressed, and interactive
methods [6].

In a priori method, preference information is first asked from the DM
before running the optimization algorithm, and then a solution best satisfying
these preferences is found. In a posteriori method, a representative set of
Pareto optimal solutions is first found, and then DM must choose a single
solution from a set of solutions. In no preference methods, often the DM
cannot concretely define what he or she prefers, but solutions are identified
without preference information. In interactive methods, the DM is allowed
to search for the most preferred solution iteratively. In each iteration of the
interactive method, the DM shows Pareto optimal solutions and describes
how the solutions can be improved [5].

Well-known examples of priori methods include the weighted sum method
that consists of assigning each objective function a weight coefficient and then
optimizing the function obtained by summing up all the objective functions
scaled by their weight coefficients that only one solution can be rendered
accordingly. With different weights, different Pareto optimal solutions are
produced [6]. Though computationally more expensive, this approach gives
an idea of the shape of the Pareto front and provides the user with more
information about the trade-off among the objectives [22].

Usually it is not economical to generate the entire Pareto surface, due to
the high computational cost for function evaluations. Moreover, it may be
hard for the DM to choose from a large list. To mitigate these problems,
with applying the DM’s preferences, it is possible to create situations in
which realistic solutions can be obtained that are acceptable to the DM. Since
incorporation of the preference information of the DMs and the elicitation
of the weights of the objectives are essential problems in multiple objective
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optimal control problems, in this paper, we introduce an approach that partly
deals with these difficulties. We consider a situation that partial information
on the objectives importance is available, that is, the values of these weights
are not precisely stated.

There are many methods in literature, in which objective function coeffi-
cients or preferential weight coefficients are not exactly specified, but given as
intervals or by means of linear relations (see, for instance, [19, 15, 7]). Since
these methods focus on the sensitivity of a given solution to feasible changes
in the parameters, in this paper, we introduce specific solutions, for multiple
objective optimal control problems. These solutions, in addition to taking
considerations of DMs, provide continuous functions for controlling chemical
processes. When using axial preferred solutions, a weighted sum of the ob-
jectives also directs the search for the results. We assume that preferences
are originally additive, however, consider an additional element in the form
of an improvement axis to better representation. Applying an improvement
axis, the different objectives are not treated equally even when the preference
information does not different between them.

The main idea of this paper is to incorporate partial information of the
DMs on the preference weights of objectives in order to achieve optimal so-
lutions on the Pareto frontier that are acceptable and realistic for the DM
according to their information considerations. In order to achieve this aim,
we have to introduce a new concept of solutions, axial preferred solutions,
for multiobjective optimal control. These solutions combine both the idea of
improvement axis and Pareto optimality with respect to preference informa-
tion.

The rest of the paper is organized as follows. In Section 2, mathematical
formulations of general multiobjective optimal control problem are briefly in-
troduced. Section 3 is devoted to the representation of preference structures
and the corresponding definition of efficiency. Also in this section, the idea
of improvement axis is described. The axial preferred solutions for multiob-
jective optimal control problem are introduced in Section 4. In Section 5,
two problems are presented with two different preferential situations. Lastly,
section 6 outlines the conclusion.

2 Multiobjective optimal control problem

A general multiobjective optimal control problem consists of optimizing a
vector of functions is defined as below:

Opt (J(x,u) = (J1(z,u), Jo(x,u), ..., Jn(z,u)))

subject to:
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z(t) = (:E u, t),
9(x,u,t) >
"/’(mO»vathtf) 0,
t e [to,tf]

where J; are functions of the state variable x : [to,tf] = R", control variable
u € L*, and time t. For each individual cost function, let us here consider
the following formulation:

tf
Ji=o(zg.ty) +/ Li(z,u,t)dt.

to

The objective functions are J; : R"T2x RP x [to, tf] — R. The objective vector
is subject to a set of dynamic constraints with f : R" x RP x [tg,t;] — R",
algebraic constraints g : R™ x RP X [tg,tf] — R®, and boundary conditions
R?"+2 5 R4, The admissible set P C R™ x RP x [tg, 1] is defined to be the
set of all feasible pairs state and control (z, ) that satisfy in (2-5).

In MOCPs, usually objectives conflict with each other, so it is not easy
to have an admissible pair (2*, u*) that optimizes all the objectives simulta-
neously. Therefore, the concept of Pareto optimality is used. The concept
of optimality in a single objective is not directly applicable in multiobjective
optimization problems. For this reason, a classification of the solutions is in-
troduced in terms of Pareto optimality, according to the following definitions
(see [23, 18]) in terms of minimization of objective functions:

Definition 1. It is said that a pair («*,u*) € P dominates another pair
(xz,u) € P (denoted by (z*,u*) > (x,u)) if the pair (z*,u*) is no worse than
the pair (z,u) in all objectives and the pair (z*,u*) is strictly better than
(z,u) in at least one objective. If there is no solution that dominates (x*, u*),
then it is nondominated.

Definition 2. A pair (z*,u*) € P is a Pareto optimal solution of the MOCP
if and only if there is no other pair (z,«) € P that dominates (x*,u*).

Definition 3. The set of nondominated pairs (z*,u*) € P such that
{(z*,u*) € P|=3(z,u) € P: (z,u) = (z*,u*)} is said to be a Pareto set.
Also, the set of vectors in the objective space that are images of a Pareto set,
is said to be a Pareto frontier.

3 Partial preference information and improvement axis

If a unique vector of weights is available, then the preferred solution is ob-
tained. When several decision makings have to solve a MOP, but do not
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agree on the weight of objectives, each DM will propose a different vector
of weights for objectives. In this case, we have a partial information on the
importance of the objectives. The contribution of this paper is not the elic-
itation of the weights, instead we want to obtain the whole set of weights
considered appropriate by the DM. In fact, we consider a situation in which
the weights are not exactly specified, but only partial information about im-
portance of objectives is available. Here, the partial information is denoted
by @ C A™~1 where A™™! = {w € R[>, w” =1}. In particular, we
consider situations in which €2 is a polyhedron and whose extreme points are

wl,w?, .. wk.

Definition 4. Suppose that (z*,u*),(z,u) € P. Then it is said that a
vector J(z*,u*) dominates another pair J(x,u) with respect to Q C A™~1!
(denote this relationship by J(z*,u*) =q J(z,u)) if w.J(z*,u*) < w.J(x,u)
for all w € .

Definition 5. Suppose that (z*,u*), (z,u) € P. Then it is said that a vector
J(z*,u*) weakly dominates another pair J(z,u) with respect to Q C A™~ 1,
denoted by J(z*,u*) =q J(x,u), if w.J(x*, u*) < w.J(z,u) for all w € Q.

Definition 6. The point J(z*,u*) € J(P) is said to be Q-nondominated, if
there is no J(z,u) € J(P) such that J(z,u) =q J(z*,u*). A pair (z*,u*) € P
is an -Pareto optimal if J(z*, u*) is Q-nondominated.

If there is no information about the weight of the objectives, then all the
weights will be possible and, as a result, {-Pareto optimal reduces to Pareto-
optimality. On the other hand, the highest level of information is available,
when a unique vector of weight is provided. The more the partial information,
the smaller the set of 2-Pareto optimal solutions. However, there may still
be many Pareto optimal solutions, and more criteria are needed in order to
identify the preferred solutions. For this purpose, we combine the idea of Q-
Pareto optimality and improvement axis, which provides a direction in which
the improvement of the objective value, and then introduce axial preferred
solutions to finding most preferred solution. The existence of a direction to
reach the Pareto frontier is the idea behind proportional solutions [9]. We
define these solutions in the context of multiobjective optimal control prob-
lems as follows.

Definition 7. We say that a pair (z,u) € P is a proportional solu-
tion for MOCP if there is a strictly positive constant p € R™ such that
J(z*,u*) = h*p, where h* = min{h € R.|3(z,u) € P, J(x,u) = hp} and is
denoted by (x*,u*) = P(P, J).

Proportional solutions are not necessarily Pareto optimal, and they not
only do not incorporate the preference information, but may also produce
results that are unacceptable to DMs (when their preferences incorporated).
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For this purpose, here we introduce the solutions that incorporate preferential
information and use the idea of improvement axis.

4 Axial preferred solutions for multiobjective optimal
control problems

In this section, a multiobjective optimal control problem with partial infor-
mation is denoted by (P, J,2). To define the axial preferred solutions, we use
both the idea of 2-Pareto optimality and improvement axis. If the partial
information contains rules outside the set of the proportional results, then
the axial preferred solution will consist of those results that the decision mak-
ing considers equivalent to a point in the improvement axis with the highest
possible level.

Definition 1. We say that a pair (z,u) € P is an axial preferred solution for
MOCP with partial information if there is an improvement axis p € R such
that J(z,u) =q h*p, where h* = min{h € Ry |3(z,u) € P,J(z,u) =q hp}
and is denoted by (z*,u*) = A(P, J, Q).

Theorem 1. The axial preferred solutions are a subset of the Q-Pareto
optimal solutions.

Proof. Let (z,u) € A(P,J, ), and suppose on the contrary that the pair
(z,u) is not an -Pareto optimal solution, this means that J(z,u) is domi-
nated with respect to . Then, there exists a pair (z,u) € P such that

w" J(Z,u) <w".J(z,u) <w'h*p forallr=1,...,m.

Since p € R4, for each w € Q, we have w.p > 0 and there is small enough
€ > 0, such that

ew".p>w'(J(Z,u) — h'p),
and so we have
w'(e+ h*)p >w"J(Z,u), forallr=1,...,m,

and this contradicts to h* = min{h € R|3(x,u) € P, J(x,u) =q h.p}. O

The following theorem shows that axial preferred solutions are depend
both on the extreme points of the set of information and on the axis.

Theorem 2. Suppose that w!,w?,...,w™ are the extreme points of the
partial information set, and that p € R" is the improvement axis. Then
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A(P,J,Q) = arg min Mq(J(z,u)),

(z,u)EP

where

Mq(J(z,u)) = max { wh J(z,u) w?.J(w,u) w™.J(z,u) } . (1)

wlyp 7 wip 777 wmp
Proof. Given the definition of the preference relations, we have
h* = min{h € R4|3

= min{h € R, |3

= min{h € R, |3
=min{h € R, |3

€ P,J(x,u) =q h.p}

eP,w  J(z,u) <w'.hp, r=1,...,m}
eP,(w".J(z,u))/(w'.p) <h,r=1,...,m}
€ P, Mq(J(x,u)) = h}.

T, U
T, U

T, U

—~ T~
~— — ~— ~—

T, U

The following corollary states that results obtained with axial preferred
solutions for a multiobjective optimal control problem can be computed by
solving a scalar equivalent optimal control problem.

Corollary 1. Suppose that w!,w?,...,w™ are the extreme points of the
partial information set, and that p € R! is the improvement axis, Then
(z*,u*) € A(P,J,Q), if and only if there exists h* such that (h*, x*, u*) is
an optimal solution to the following problem:

min h (2)
st.: whJ(zu) <hw".p, r=1,...,m,
(z,u) € P.

5 Numerical examples

In this section, we illustrate the performance of the proposed method on two
numerical example problems, one involving Fed-Batch bioreactor in Section
5.1 and the other, catalyst mixing problem, in a tubular reactor in Section 5.2.
It is a common practice to approximate the state and control variables over a
partition of the time horizon in optimal control problems, a process referred
to as discretization to obtain an approximate solution (see, for instance, [1,
2, 3, 10, 11]). In this section, a discretized version of problems is solved by
using the Ipopt [21]. We use the AMPL [4] as an optimization modeling
language, which employs the Ipopt as a solver.
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5.1 Fed-Batch Bioreactor

The first MOCP is based on the fed-batch lysine fermentation process inves-
tigated by Ohno, Nakanishi, and Takamatsu [17]. The aim is to determine
an optimal feeding profile and batch length with respect to conflicting yield
and productivity objectives as described by Logist et al. [13].

dxy To

=1 = (012522 ) 24,

dt ( :L‘4) 1

dJIQ 0.1251’2

B 2.

dt (0.135:1:4) o1+ 2.8,

dzr 29\ 2 x
k- A [384 <0.125"2> + 134 <0.125“2>] 1,
dt T4 g
dea _

dat

with the time ¢[h] as the independent variable. The state variables are x1][g],
the biomass, x2[g|, the substrate, x3[g], the product (lysine), and x4[L], the
fermenter volume. The control u[L/h] is the volumetric rate of the feed
stream, and the initial conditions are specified as

[21(0), 22(0), z5(0), z4(0)] = [0.1, 14, 0, 5].

The goal is to derive a feeding strategy and batch duration that maximize the
productivity, that is, the ratio between the product formed and the process
duration

7= Talts)
ty

b

while maximizing the yield, that is, the mass of product is added over the
mass of substrate during the operation

_ w3(ty)
2.8(z4(ts) — 24(0))

To cast these maximization problems into a minimization framework, the
objective functions are defined as the negative productivity and yield that
Ji = —J4 and J» = —Jp. Note that clearly t; is free, but it is subject to
the constraint 20 < ¢ty < 40. Constraints are also imposed on the fermenter
volume, the feed rate, and the amount of substrate to be added, respectively,
as follows:

JB
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5 < a4(t) < 20,
0<u(t) <2,
20 < 2.8(z4(t) — 5) < 42.

The objective functionals, constraints, and the process equations as given in
[12] yield the following biobjective optimal control problem.

min (7)) a3(ty)
( tf ’ 2.8(11)4(7ff) — 1,4(0))) ’ (3)

d
st 0L (().125“) a1,
T4

dt

d.’L‘Q 0125.1,2

i 2.

dt <0.135x4> %1+ 280,

dz 29\ ? T
== [384 <0.1252> +134 (0.1252” 21,
dt X4 o

doa _

a

[$1(0)7$2(0)ax3(0)7$4(0)] = [017 14 Oa 5]a
20 < t; <40, 5<au(t) <20,
0<u(t) <2, 20<28(xalty)—5) < 42.

In this problem, suppose that the DM considers the ratio two to one be-
tween the objectives Jy(z,u) and Ja(z,u), respectively (p = (2,1)). Here,
we consider two situations, in which the preferences information of DMs
are different. In the first situation, the preferences of the DM are repre-
sented by the set of information Q1 = {w € Allw; > wq, 3wy > wi}.
This means that the importance of Ji(x,u) is no less than the importance
of Jo(z,u), and no more than three times the importance of Jy(z,u). The
extreme points of € are (1,1) and (2,1). An alternative interpretation of
this set of information in terms of group decision making is as follows: There
are two DMs, one of them considers the first objective three times more
important than the second objective, while the other one considers both ob-
jectives equally important. In the second situation, the set of information
is Q2 = {w € Allws > w1, 2w1 > ws}, extreme points of Qy are (3, 3)
and (%, %) and the interpretation is analogous. We have the optimal con-
trol problems (2) and (3) by applying preferential weights and improving the
axis. According to Corollary 1, for this problem with the first and second

situations, respectively, we have
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min h

subject to  the same constraints as in (1) and

_mg(tf) _ z3(ts)
ly 2.8(a(ty) — 24(0)) < 3h,
_gslty) _ ws(ty) .

i 2.8(z4(ty) — 4(0))

min h

subject to  the same constraints as in (1) and

Cxs(ty) x3(ty)

by 28(aalty) — ma(0) =
_zs(ty) 223(ty)

b 28y —aa0) =

The optimal solution of problems (2) and (3) are (J5, J3) = (—17.148, —18.401)
and (J7,J3) = (—=19.971, —17.062), respectively. The optimal control and the
optimal state profiles are shown in Figures 1 and 2, respectively. When pro-
ductivity is preferred, the initial max part is presented in order to stimulate
the biomass growth and hence the lysine production. However, when the
focus shifts towards yield optimization, more lysine can be produced with
the same amount of substrate but at the expense of longer process times.

Feeding rate (L)

Tirne (h)

Figure 1: Optimal profile obtained for the control with the first and second situations
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Figure 2: Optimal profiles obtained for the states with the first and second situations

5.2 Catalyst mixing problem in a tubular reactor

The second MOCP considers a steady-state plug flow reactor of fixed length
t¢. The reactor is packed with two catalysts. These catalysts are required to
stimulate a series of reactions (one reversible and one irreversible S < Sy —

S3). A dynamic model reported by Logist et al. [14] is as follows:

dx

ditl = —u(z; — 10x2),

d

% = u(z1 — 10z3) — (1 — u)xa,

where 7 and x5 are the concentrations of S; and S and u is the fraction
of catalyst A. The original problem, which was introduced by Vassiliadis,
Balsa-Canto, and Banga [20], considers the optimal mixing policy of the two
catalysts in order to maximize the production at the reactor outlet

Ji=—Jda=(1—x(ty) —xa2(ty)),

where the reactor has a length ¢ equal to 1. To this end the optimal catalyst
mixing profiles u(t) and (1 —wu(t)) along the reactor must be determined. The
fraction of catalyst A is bounded: 0 < w(t) < 1, which directly also bounds
the fraction of catalyst B: 0 < 1 — u(t) < 1. To introduce a multiobjective
nature, the minimization of the amount of the most expensive catalyst (i.e.,
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catalyst A) is added as an objective

t
o = Jp = / u(t)dt,
0

for given initial conditions
z(0) = [1,0]%.

In this problem, suppose that the DM considers the ratio three to one between
the objectives Jy(x,u) and Ja(x,u), respectively (p = (3,1)). As in the
previous example, we consider two situations. The preferences of the DM are
represented by the set of information Q; = {w € Aljw; > wa, 3wy > w1}
and Qo = {w € Al|lwy > wy, 2wy > wy}. By modeling and solving the
problem, we obtain (Jf, J5) = (—0.047,0.216) and (J, J5) = (—0.015,0.033)
for the first and second situations.

Figure 3 shows the optimal profiles for mixing u, concentrations of x; and 9
with the first and second situations. When the focus is put on limiting the use
of catalyst A, it is seen that the control consists of one minimum arc, meaning
that only catalyst B will be used. However, when the production of species S3
does play a role, the catalyst profiles exhibit a maximum-singular-minimum
type arc structure. The more the focus shifts towards the production of Ss,
the larger the maximum and singular arc become and the higher the values
are during the singular interval.

I
sk 1 I
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catalyst A fraction u [-]
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Figure 3: Optimal profiles for mixing u (top), concentrations of 1 (middle) and x2
(bottom) with the first and second situations
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6 Conclusion

In this paper, we used both the idea of improvement axis and Pareto opti-
mality with respect to preference information and introduced a class of axial
preferred solutions for multiobjective optimal control problems in contexts in
which partial information on preference weights of objectives is available. It
was shown that the axial preferred solutions are a subset of the Pareto opti-
mal solutions. Numerical results were presented for two problems of chemical
processes with two different preferential situations. It has been seen that dif-
ferent preferential situations lead to different optimal solutions.
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