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Transformation to a fixed domain in
LP modelling for a class of optimal
shape design problems

H.H. Mehne* and M.H. Farahi

Abstract

A class of optimal shape design problems is studied in this paper. The
boundary shape of a domain is determined such that the solution of the
underlying partial differential equation matches, as well as possible, a given
desired state. In the original optimal shape design problem, the variable
domain is parameterized by a class of functions in such a way that the optimal
design problem is changed to an optimal control problem on a fixed domain.
Then, the resulting distributed control problem is embedded in a measure
theoretical form, in fact, an infinite-dimensional linear programming problem.
The optimal measure representing the optimal shape is approximated by a
solution of a finite-dimensional linear programming problem. The method is
evaluated via a numerical example.

Keywords: Approximation; Optimal shape design; Linear programming;
Measure theory.

1 Introduction

An optimal shape design (OSD) problem is concerned with the optimization
of a performance index depending on the shape of some region. Many-faceted
problems naturally arise in engineering applications with the goal of designing
a specific structure in an optimal sense. Typical applications are design of a
nozzle [12], airfoil boundary [4,10], and spacecraft shape [6] with respect to
specific optimality conditions.

*Corresponding author

Received 16 February 2016; revised 3 July 2016; accepted 11 November 2017
H.H. Mehne

Acrospace Research Institute, Tehran, 14665-834, Iran. e-mail: hmehne@ari.ac.ir

M.H. Farahi
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi Univer-
sity of Mashhad, Mashhad, Iran. e-mail: farahi@math.um.ac.ir



2 H.H. Mehne and M.H. Farahi

There are several methods for a numerical solution of an OSD problem,
for example, gradient based methods [2], the Newton method [9,15], sequen-
tial quadratic method [19], and fictitious domain method [8]. In the above
mentioned methods, computation of solution is a time-consuming task, be-
cause they need to solve many boundary value problems. Moreover, these
methods are iterative and they need to have an initial guess for solution.

The main focus of this article is to find an appropriate formulation of
the optimal shape design problem that is attractive for consistent numerical
computation. The advantages of the proposed method lie in the fact that the
method is not iterative, that it is self-starting, and that it does not need to
solve the corresponding boundary value problem. Moreover, in the model-
ing of the OSD problem, differentiability of the cost function being a limiting
condition in the above mentioned methods, is reduced to a measurability con-
dition. In the methods of [9], the control and state functions are discretized
and the linearity of variational forms is an inherent condition, while it is not
a restrictive condition in the proposed method, where a general variational
form is studied.

In the present work, the variable domain is first parameterized by a class of
functions in such a way that the OSD problem changes to an optimal control
problem accompanied with partial differential equations on a fixed domain.
The converted problem can be solved by extending the measure theoretical
method proposed by Rubio [16]. The methods of this type were frequently
and successfully applied to different OSD problems. In [3] the problem of
finding the upper wall of a nozzle was discussed where the goal is to match
the velocity of flow to a constant prescribed value in a given subregion near
exit. It also includes details about the measure theoretical approach to solve
OSD problems. The same problem for pressure of the flow was given in [12]
with more numerical simulations to study the sensitivity analysis and stability
of the method. In [4] the problem of finding the optimum shape for a low
speed airfoil has been solved by the method. A problem concerning with the
control of thermoelastic deformation was also presented in [13], where the
extension of the method of [3] has been used to solve it.

The main difference of the present work with the above mentioned re-
searches is that the optimization occurs in a completely unknown two-
dimensional area and that there is no restriction to any special form of the
problem. Such a generalization of the domain is also presented in [7], which
is based on the domain discretization, while in the present paper, the trans-
formation of domain is used.

2 The optimal shape design problem

The set of admissible shapes in the definition of an OSD problem is the set of
all possible shapes in which we seek for the best. In our problem definition, let
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consider a class of OSD problems where the admissible shapes are described
by two-dimensional domains with a free boundary:

Q={3=(31,3)" €R? | 32 €1, 71 € (0,u(i2))},

where I = (0,1). The set of admissible shapes is usually parameterized or
discretized in order to reduce the search process from the class of admissi-
ble shapes to a set of admissible functions. So, we parameterize the above
domains by a function u € U4, where

du , _

ua,d = {U S Cl(I) | U(O) = u(l) = 1, u(iz) S [[31,[32], d_i‘g(m2) S [al,ag]},

where 81 > 0, 82, a1, and as are given.

By measuring the desirability of admissible shapes, let J be a cost function
depending on a function y and its gradient as follows:

J= /Q 73, V§)dz. (1)

where f is a nonlinear real-valued measurable function and ¢ is defined by
the solution of a second order elliptic boundary value problem on Q. The
boundaries of the feasible domains are divided into the moving boundary
part

M = {(#1,22)T € R? | & = u(Zy) for all &y € I},

and the fixed boundary part T'F with Q0 = T™ UTF and TM NTF = 0.

Now, the OSD problem is defined by

in J
Jnin (u),
with the equality constraint
/ a(y,n)dz = / I(7)dT for all 7 € V,
Q o9

which is a variational form of the underlying PDE, V c H'(Q) is the space
of corresponding test functions, and H'(Q) is a Sobolev space of square
integrable functions with square integrable first derivatives on Q. Functions
@ and [ are assumed to be nonlinear in general. We use the notations of [9]
in our article.
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Figure 1: Transformation of the domain.

3 Transformation to a fixed domain

To cope with the variation of the domain, we transform the optimal shape
design problem into an optimal control problem on a fixed domain. This
routine approach has been used in literature before, for example [9,13].

As sketched in Figure 1, the transformation defined by

T-1.Q = Q ) .
(Z1,%2)t > (21,22)t = <%m2) (2)

maps the moving domain € to the fixed reference area Q2 = I x I.
So, we consider the problem over a fixed domain

Join J(u,y),
with the equality constraint
du
/ a(yﬂh U, —)d.%’ = qu for all n e V, (3)
Q dzo

where [, is a function depending only on the test function 7. Here, a includes
all terms depending on y, 1, u, and f—;;.

By this transformation, the unknown geometrical factors are transformed
from boundary to equations, that is, the equations must be solved on a fixed
known domain while they contain unknown parameters. It will be shown in
the next sections that this type of problems may be solved by the described
method.

The transformation will also changes the integrand of functional (1) as a

function f dependent on y, Vy, u and (fw—';:
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du

J = /Q f(uv Y, Vyv d_.l'g)dx (4)

Now, we choose the derivative of u(z2) as a control variable w in order to
obtain the following control system:

du
dzo
u(0) = u(l) =1. (6)

= w, ae. X2 €1, (5)

The differential form of this control system should be changed as a variational
form counsistent to (3). To do this, let define an admissible pair for (5)—(6).

Definition 1. The pair p = (w,u) is said admissible if the control function
w : I — [o1, ] is measurable and u € Uyq is the response of the system
(5)—(6) to w.

As unknown factors in (3)-(4) are depending to u, then for a given admis-
sible pair p = (w, u), there exists a solution for (3) with a cost measured by
(4). So, the problem will be finding optimal admissible pair in the set of all
admissible pairs which is assumed nonempty and is denoted by P. However
to find the best admissible pair we have to determine characteristic properties
of an admissible pair.

Let T = Q X [81,82] x [a1,02] x A, where A C R? is the set that
(y(x1,m2), Vy(x1,22)) gets its values in it. Moreover, assume that B is an
open ball in R? containing [31, 32] x I, and let C*(B) be the space of all
real-valued continuous differentiable functions with continuous first partial
derivatives on B. For p € C*(B) and p = (w,u) € P, define p* € C(T) as
follows:

(w1, w2, u(x2), w(x2), ¥, Vy) = p1(u(w2), 2)w(w2) + 2 (u(z2), 32). (7)
In (7), ¢1, p2 denote the first partial derivatives of ¢ with respect to its
variables. Admissibility of p = (w, u) implies:

1
/ @w(xl,asg,u(xg),w(azg),y,Vy)dwz
0

- /0 {1 (u(2), 22)w(2) + o), 2)
= (1), 1) — p(u(0),0) = A,

for all ¢ € C*(B), where p(u(1),1) and p(u(0),0) are known. Integrating
the above equation with respect to z3 on I, the integral form of (5)—(6) can
be written as

/ Y (z1, 2, u(z2), w(x2), y, Vy)dz = A, for all p € C*(B). (8)
Q
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Therefore, the optimal control formulation of the OSD problem may be in-
terpreted as the minimization of (4) over variational constraints (3) and (8).

4 Measure theoretical approach

By Definition 1, each shape corresponds to exactly one admissible pair p =
(w,u) € P. This is an injection between U,y and P. So, the minimization
of (1) over the class of shapes is equivalent to the minimization of (4) over
P. Now, we transfer the problem of minimization of (4) over P into another
nonclassical problem. Let us define the following mapping:

Ay, F— / F(z1, 22, u(z2), w(x2),y, Vy)dz, F e (),
Q

where C(T) is the space of all continuous real-valued functions defined on
Y. As an injection, the transformation p — A, provides us to describe
the set of all admissible pairs P as a subset of the set of all linear continuous
mappings on C(T). Moreover, by the Riesz representation theorem (see [18]),
corresponding to A,, there is a positive Borel measure y on T such that

Ap(F) = p(F), for all F € C(T).

Now, the problem of minimization of the functional (4) over P is enlarged
to the minimization of

T p—p(f) 9)

over the set of all measures p satisfying

w(Fy) =1, forallnp eV, (10)

w(Gy) = Ay, for all p € C'(B), (11)
where Fy, (21, 2, u(z2), w(z2),y, Vy) = aly, n,u, j—;g) and G, = ¢". In other
words, (10) and (11) are a measure theoretical interpretation of (3) and (8)
respectively.

We denote the set of all positive Borel measures on T satisfying (10)—(11)
as Q. We also assume that M™(T) is the set of all positive Borel measures
on Y. If we consider the space M (T) with weak*-topology, it can be seen
from [16], that @ is compact. In the sense of this topology, the functional
Z : Q — R defined by (9) is a linear continuous functional on the compact
set @, thus it attains its minimum on @ (see [16, Theorem III.1]), and then
the measure-theoretical problem, which consists of finding the minimum of
the functional (9) over a subset of M™(T), possesses a minimizing solution,

say p*, in Q.
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The minimization problem of (9)—(11) is an infinite-dimensional LP prob-
lem, and we are mainly interested in approximating it. It is possible to
approximate the solution of the problem (9)—(11) by the solution of a finite-
dimensional linear program of sufficiently large dimension.

We first consider the minimization of (9) not only over the set @ but over
a subset of it defined by requiring that only a finite number of constraints
(10)—(11) are satisfied.

Consider equalities (10)—(11), let the sets of functions {n;, i =1,2,3,...}
and {¢;, j = 1,2,3,...} have dense linear combinations in V" and C'(B),
respectively. Now we can prove the following.

Proposition 1. Let Q(My, Ms) be a subset of MT(T) consisting of all mea-
sures satisfying

:U’(Eh) :l'r]ia i:1,2,...,]\41,
w(Gy,) =Dy, G=1,2....,M,.

If 0(My, Ma) = infg(ar, ar,) u(f) and 0 = infq u(f), then 0(My, M2) — 0 as
Ml,Mg — 00.

Proof. See the proof of [3, Proposition 2]. O

The first stage of approximation is completed successfully. As the second
stage, it is possible to develop a finite-dimensional linear program whose
solution can be used to construct the solution of the infinite-dimensional
linear program of minimizing (9) subject to (10)—(11). From [16, Theorem
A.5], we can characterize a measure, say p*, in the set Q(My, M) at which
the function g — p(f) attains its minimum.

Proposition 2. The measure p* in the set Q(M, Ms) in which the function
w— p(f) attains its minimum has the form

M1 +Ma

w= S gz (12)

k=1
with 2z, € T and o, >0,k =1,2,..., My + Ms.
Here 0(2) is the atomic measure concentrated at z, characterized by

=) 1153

for all S C Y; see [17]. This also implies that 6(z)(H) = H(z), where
H € C(Y) and z € Y. Now, the measure theoretical optimization prob-
lem is equivalent to a nonlinear optimization problem, in which unknowns
are coefficients o} and supports zj,fork = 1,2,..., My + M,. It would be
convenient if we could minimize the function u — u(f) only with respect
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to the coefficients of,fork = 1,2,..., M; + M>, in (12), which would be a
linear programming problem. However, we do not know the support of the
optimal measure. The answer lies in the approximation of this support by
introducing a dense set in T.

Proposition 3. Let E be a countable dense subset of Y. Given € > 0, a
measure A € M™T(Y) can be found such that

(" =N <e
|(iu’*_>\)<FT7z)|§E i:1727°"7M17
|(1U‘* - A)(Gt%” < €, .]: s 4y 7M27
and the measure \ has the form
Mi+M>
A= Z 010(2k),
k=1

where the coefficients o}, are the same as in the optimal measure (12) and
zp € F.

Proof. See the proof of [16, Proposition I11.3 |]. O

Thus, the infinite-dimensional linear programming (9) with restrictions
defined by (10)—(11) can be approximated by another LP problem in which
zk, for kK = 1,2,..., N, belongs to the known dense subset of T. To
construct such a subset, we grid entire of T into N >> M; + M> nodes
2, = (of, 25 uF wk y*, VyF). This gird may be generated by dividing €,
[B1, B2], [a1, 2], and A separately and rearranging nodes from 1 to N. For

example, one could divide [0, 1] for z; to n; points: x11, %12, .., %1y, which
repeat in arrangement of z;’s.
Now, we have the following LP problem with o1, 02, . .., on as nonnegative

decision variables:
N
Minimize Z orf(zk)
k=1

subject to

WE

Qk’Fm(Zk):lm i:1727"'7M17
1

M= 7

Qk’GAP](Zk') :AAP]W 7 = 1727"'»M2a

ol
Il
-

The solution of this LP problem determines nodes that make the optimal
measure and finally the optimal shape. As the solution may be trivial (zero),
it is necessary to prevent from trivial situation. To do this, we benefit from
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Figure 2: A typical grid on Q.

theoretical properties of measure. Let consider a simple example in which
Q is covered with 48 nodes as given in Figure 2. If H is the characteristic
function on the gray area in the picture, then the measure of H will be the
area of band. On the other hand, this measure is equal to > gi, where the
summation is on the set of all points with 2% equaling to 1. So, we have a
new constraint preventing the measure to be zero on this area:

E Ok = T12 — 211

{k:a¥=w11}

This constraint forces the solution to be nonzero and preserving the properties
of measure in the mentioned vertical band. We have to add similar constraints
for all vertical and horizontal bands of this picture.

4.1 Extraction of optimal control

After solving the LP problem, we will find the optimal values for decision
variables. The form of measure given in (12) is a combination of coefficients
or and support points zi. This tel us that, if a coefficient is zero, then the
corresponding support does not have a role in the optimal measure. There-
fore, nonzero variables will make the optimal measure in a fashion which we
discuss here. In fact, we use the effect of this optimal measure to find the
approximate solution for the control function. First, define 79 = 0 and

m = Z Ok

ke A
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1 k
w; = w,
| Ay 2

keA;

where
Ay ={k:ox >0, 2% =y}, 1=1,2,...,n1.

Now the approximation for optimal control function w(.) is a piecewise con-
stant function that equals w; on each interval [y;,_1,7]. The trajectory is
then simply found by solving the differential equation (5) with the initial
condition u(0) = 1. The resulting solution is a piecewise linear function.

We may also use numerical methods such as interpolation or fitting meth-
ods to make a smooth shape. Choosing the convenient method depends on
design purposes. A numerical treatment is also given in [12] which may be
useful in this connection; see also [1] for numerical smoothing and approxi-
mation methods.

5 Numerical example

In this section, a problem with applications in aerodynamic shape optimiza-
tion is studied to validate the presented method from the computational
standpoint.

The velocity ©(Z) at a point # € € in a nonviscous incompressible poten-
tial flow (such as for air or water at moderate speed) may be approximated
by ~

() = Vy(z), T e,

where § satisfies the second order partial differential equation on
Ay =0. (13)

This type of potential flow occurs mainly in design of low speed airfoils, wings,
and blades. The variational form of the above PDE is as follows (see [14]):

/ Vi§Vidi = / iVg.adr, foralljeV, (14)
Q o0

where 7 is the outward normal vector to I' = 9€).

We also assume the following Dirichlet condition on the fixed boundary
part

So, the above variational form is changed to

1
/ ViVidi = / i1y, forall 7€V,
Q 0
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where V = {n € HY(Q) : n|zr = 0}.
Now, the specific transformation (2) can be used on the variable domain.
This leads to the following transformed bilinear form

1 23w?
(a + " YY1 — T1wYe — T1wyin2 + uyenz | d
Q

1
= / 77(17 962)?;1(1, $2)\/].'|'—U)2d.’[32.
0

The above integral is now defined on the fixed domain 2, where coefficient
functions depend on the parameter function u € U,q and its derivative w.

It is easy to check that § = sinh(7Z;) sin(7Z2) is a solution of the bound-
ary value problem (13), (15), or equivalently (14)—(15).

To make a comparison between exact and numerical solution, we follow
an inverse scheme to construct an OSD problem with known exact solution.
To do this, we choose a cost function as

[, 193 Vol
r

which leads to a velocity matching problem. In other words, we want to
find the moving boundary T'™ in such a way that the velocity of the flow
matches, as well as possible, a given velocity V4. For applications of this type
of matching OSD, we may address, for example, the pressure distribution
matching in airfoil section design (see [5]).

The above cost function finds the following format after transformation:

1
/ IVy — Vol V1 + w2dxs
0

or

/ IVy — Vol vV 1+ w?de. (16)
Q

In this example, for test functions of type 7, polynomials of z; and zo with
compact support on € of the following forms are chosen:

27 (1 —x2)®, x(l —x1)°, r,s=1,2,....

For test functions of type ¢, we use polynomials of u, functions depending
only on @3, and functions in C1(B) with compact support on I; see [3, Sec.5]
for more details about test functions.

To illustrate the scheme, two specific moving boundaries are implemented:

a: If the moving part of the boundary '™ is 7, =1, then the the above
solution gives a velocity vector as

Vy = (w cosh(n) sin(wZz), 7 sinh(n) cos(nZ2))
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Figure 3: Resulting control function, part a.

on TM. Now, if we let Vj = (m cosh(n) sin(miz), 7 sinh () cos(miz)), then
the OSD problem of minimizing (16) subject to (14)—(15) has the unique
solution 7 = 1 or equivalently v = 1. The solution of the corresponding
linear programming problem is used to construct the control function w as
shown in Figure 3. The corresponding optimal trajectory, u, is compared
with the exact solution in Figure 4. It is clear that the numerical solution
approximates the exact solution with a small error.

In this case, we choose N = 30625, 51 = 0.4, B2 = 1.3, a1 = —0.8,
as = 0.9, M; =1, and Mz = 12. The LP problem has been solved by two
phase revised simplex method, and the corresponding optimal objective was
found as 0.01194.

b: If the moving part of the boundary T'™ | is &) = 14 sin(7a), then the
above solution gives a velocity distribution on T'™ as

Vy = (wcosh(n(1 + sin(naz))) sin(w&z), 7 sinh(7(1 + sin(7z2))) cos(nZz)).
Now if we set
Vo = (7 cosh(n(1 + sin(ni2))) sin(nZz), 7 sinh (7 (1 + sin(wZsz))) cos(nEe)),

then the OSD problem of minimizing (16) over (14)—(15) has the unique solu-
tion u = 14 sin(7Z2). The solution of the corresponding linear programming
problem is used to construct the control function w as shown in Figure 5. To
enable a comparison, Figure 6 shows the resulting numerical shape and the
exact solution of the problem that indicates the accuracy of results.

In this part of the example, we chose N = 21875, 31 = 0.62, 82 = 1,
ap = —1.96, as = 1.96, My =1, and My = 12. The optimal objective of the
corresponding LP problem was found as 2.1275 x 10~%. Figure 7 shows the
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Figure 4: Numerical and exact solution for part a.

decreasing behavior of the objective function and the rate of convergence in

the second phase of LP solving.

3
2 .
1r i
2 o |
H
_1 - a
_2 - —
_3 | | | | | | | | |
0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
X

2

Figure 5: Resulting control function, part b.

6 Conclusions

The method of embedding admissible shapes into a subset of measures is
extended to an LP formulation for a class of optimal shape design prob-
lems resulting in a numerical solution scheme. Recent works on this subject
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Figure 6: Numerical and exact solution for, part b.

45
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. . .
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Figure 7: Objective function in iterations of the simplex method.

deal with optimization on a specified known part of the shape, while in the
present paper, the optimization takes place on entirely unknown domain. The
method is self starting by means that it does not need any initial guess of the
solution to be started. It is also independent from type of partial differential
equations and has been presented for a relatively general variational form of
equations. Numerical examples were used to interpret the implementation of
the method and to check its validity.
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