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Abstract

The purpose of this research is to present a matrix method for solving

system of linear Fredholm integro-differential equations(FIDEs) of the second
kind on unbounded domain with degenerate kernels in terms of generalized
Laguerre polynomials(GLPs). The method is based on the approximation of
the truncated generalized Laguerre series. Then the system of (FIDEs) along

with initial conditions are transformed into the matrix equations, which cor-
responds to a system of linear algebraic equations with the unknown gen-
eralized Laguerre coefficients. Combining these matrix equations and then
solving the system yields the generalized Laguerre coefficients of the solution

function. In addition, several numerical examples are given to demonstrate
the validity, efficiency and applicability of the technique.

Keywords: Systems of linear Fredholm integro-differential equations; Un-
bounded domain; Generalized Laguerre polynomials; Operational matrix of
integration.

1 Introduction

The main object of this paper is to approximate the solution system of Fred-
holm integro-differential equations of the second kind on a semi-infinite do-
main of the following form:

U ′(x) = F (x) + ρ

∫ ∞

0

w(t)K(x, t)U(t)dt, x ∈ R+, (1)

along with initial condition U(0) = A, where ρ ∈ R, and
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U(x) = [u1(x), u2(x), ..., um(x)]T ,

F (x) = [f1(x), f2(x), ..., fm(x)]T ,

K(x, t) = [kij ], i, j = 1, 2, ...,m,

A = [a1, a2, ..., am]T . (2)

In system (1), w(t) = tαe−t(α > −1) and K(x, t) a function of two vari-
ables x and t, is called the kernel that might have singularity in the region
D = {(x, t) : 0 ≤ x, t < ∞} and F (x) is continuous function and A is fixed
constant vector, and U(x) is the unknown vector function of the solution that
will be determined. The considered equation arises in a number of important
problem of elasticity theory, neutron transport, particle scattering and the
theory of mixed-type equations [11,13,17]. System of linear Fredholm integro-
differential equations of the second kind on unbounded domain can not be
analytically solved easily. Therefore, it is required to obtain the approxi-
mate solutions. It’s the reason of great interest for solving these equations.
But numerical methods includes Quadrature, Petrov-Galerkin, Nystrom and
Galerkin methods with Laguerre polynomial as a bases function for solving
infinite boundary integral and integro-differential equations are used ago that
their analysis may be found in [1, 7, 9, 10, 12, 16]. On the other hand, there
are several numerical techniques for solving fractional differential equations
(FDEs) on the half line using generalized Laguerre polynomials [2–6]. How-
ever, method of solution for equation (1) is too rear in the literature. In
the present work, we are going to use the operational matrix of generalized
Laguerre polynomials to find the approximate solutions for the system of
FIDEs on the half-line. Next sections of this paper are organized as follows:
In Section 2, we describe some necessary definitions and give some relevant
properties of the GPLs which is required for our subsequent development.
Section 3, is devoted to the approximation of the function f(x) and also the
kernel function k(x, t) by using GPLs basis. Also the upper bound of the
approximation error is presented. In Section 4, we obtain the operational
matrix of integration by GPLs. In Section 5, we implemented the matrix
method on the system of linear Fredholm integral-differential equations on
unbounded domain and convert them to a linear algebraic system of equa-
tions. In Section 6, presented numerical examples that shows the efficiency
and accuracy of the proposed method. Also a tall conclusion is given in
Section 7.

2 Preliminaries and basic definitions

In this part, for the reader’s convenience, we give some basic definitions and
properties of the generalized Laguerre polynomials, which are used further in
this article.
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Let R+ := Λ = [0,∞) and w(α)(x) = xαe−x be a weight function on Λ in the
usual sense. We define the following:

L2
w(α)(Λ) = {v : v is measurable on Λ and ∥v∥w(α) <∞}, (3)

equipped with the following inner product and norm:

(u, v)w(α) =

∫
Λ

u(x)v(x)w(α)(x)dx, ∥v∥w(α) = (v, v)
1
2

w(α) . (4)

Next, suppose L
(α)
n (x) be the generalized Laguerre polynomials of degree n,

defined by the following:

L(α)
n (x) =

1

n!
x−αex∂nx

(
e−xxn+α

)
, n = 0, 1, .... (5)

L
(α)
n (x)(generalized Laguerre polynomials) are the nth eigenfunction of the

Sturm-Liouville problem:

x−αex
(
xα+1e−x

(
L(α)
n (x)

)′)′

+ λnL
(α)
n (x) = 0, x ∈ Λ, (6)

with the eigenvalues λn = n [8, 14].
Generalized Laguerre polynomials are orthogonal in L2

w(α)(Λ) Hilbert space

with the weight function w(α)(x) = xαe−x satisfy in the following relation∫ ∞

0

xαe−xL(α)
n (x)L(α)

m (x)dx = γαnδn,m, ∀n,m ≥ 0, (7)

where δn,m is the Kronecher delta function and γαn = Γ(n+α+1)
Γ(n+1) . The explicit

form of these polynomials is in the form

L(α)
n (x) =

n∑
i=0

Eα
i x

i, (8)

where

Eα
i =

(
n+ α
n− i

)
(−1)i

i!
. (9)

These polynomials are satisfied in the following recurrence formula

L
(α)
0 (x) = 1, L

(α)
1 (x) = 1 + α− x,

L
(α)
n+1(x) =

1

n+ 1

[
(2n+ α+ 1− x)L(α)

n (x)− (n+ α)L
(α)
n−1(x)

]
, n = 1, 2, ....

(10)
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The case α = 0 leads to the classical Laguerre polynomials, which are used
most frequently in practice and will simply be denoted by Ln(x). An im-
portant property of the Laguerre polynomials is the following derivative re-
lation [10]: (

L(α)
n (x)

)′
=

n−1∑
i=0

L
(α)
i (x). (11)

Further,
(
L
(α)
i (x)

)(k)
are orthogonal with respect to the weight function

w(α+k)(x). i.e.∫ ∞

0

(L
(α)
i )(k)(x)(L

(α)
j )(k)(x)w(α+k)(x)dx = γα+k

n−k δi,j , ∀i, j ≥ 0, (12)

where γα+k
n−k is defined in (7).

3 Approximation of functions by using GLPs

An arbitrary function f(x) ∈ L2
w(α)(Λ) may be expanded into generalized

Laguerre polynomials as:

f(x) =

∞∑
i=0

f
(α)
i L

(α)
i (x), (13)

where the generalized Laguerre coefficients f
(α)
i are given by

f
(α)
i =

∫ ∞

0

L
(α)
i (x)(
i+ α
i

) · xαe−x

Γ(α+ 1)
· f(x)dx, i = 0, 1, .... (14)

The series converges in the associated Hilbert space L2
w(α)(Λ), iff

∥f∥2L2 :=

∫ ∞

0

xαe−x

Γ(α+ 1)
|f(x)|2dx =

∞∑
i=0

(
i+ α
i

)
|f (α)i |2 <∞. (15)

In practice, only the first (n+ 1) terms of generalized Laguerre polynomials
are considered. Then we have

f(x) ≃
n∑

i=0

f
(α)
i L

(α)
i (x) = FTLx, (16)

where the generalized Laguerre coefficient vector F and generalized Laguerre
vector Lx are given by as follows:
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F = [f
(α)
0 , f

(α)
1 , . . . , f (α)n ]T , Lx = [L

(α)
0 (x), L

(α)
1 (x), . . . , L(α)

n (x)]T . (17)

Now in the following lemma we present an upper bound to estimate the error.

Lemma 1. Suppose that the function f : Λ → R is n+ 1 times continuously

differentiable (i.e. f ∈ Cn+1(Λ)), and Y = Span{L(α)
0 (x), L

(α)
1 (x), . . . , L

(α)
n (x)}.

If FTLx be the best approximation f out of Y then mean error bound is pre-
sented as follows:

∥f − FTLx∥L2

w(α)
(Λ) ≤

N
√
(2n+ α+ 2)!

(n+ 1)!
, (18)

where N = maxx∈Λ |f (n+1)(x)|.

Proof. We know that the power basis {1, x, ..., xn} forms a basis for the space
of all polynomials of degree less than or equal to n. Therefore, we define

y1(x) = f(0) + xf ′(0) + x2

2! f
′′(0) + · · · + xn

n! f
(n)(0). From Taylor expansion

we have

|f(x)− y1(x)| ≤ |f (n+1)(ηx)
xn+1

(n+ 1)!
|, (19)

where ηx ∈ (0,∞). Since FTLx is the best approximation f out of Y , y1 ∈ Y
and using (19) we have

∥f − FTLx∥2L2

w(α)
(Λ) ≤ ∥f − y1∥2L2

w(α)
(Λ) ≤

N2(2n+ α+ 2)!

(n+ 1)!2
. (20)

Then, by taking square roots we have the above bound.

This Lemma shows that the error vanishes as n→ ∞.
We can also approximate the function of two variables, k(x, t) ∈ L2

w(α)(Λ
2)

as follows:

k(x, t) ≃
n∑

i=0

n∑
j=0

L
(α)
i (x)k

(α)
ij L

(α)
j (t) = LT

xKLt. (21)

Here the entries of matrix K = [k
(α)
ij ](n+1)×(n+1) will be obtained by

k
(α)
ij =

(L
(α)
i (x), (k(x, t), L

(α)
j (t)))

(L
(α)
i (x), L

(α)
i (x))(L

(α)
j (t), L

(α)
j (t))

, for i, j = 0, 1, ..., n, (22)

so that, (., .) denotes the inner product.
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4 Operational matrix of integration, development and
applications

The main objective of this part is to obtain the operational matrix of the
integration by GPLs.

Theorem 1. Suppose Lx be the generalized Laguerre vector defined in (17)
then, ∫ x

0

Ltdt ≃ PLx, (23)

where P is the (n+1)× (n+1) operational matrix for integration as follows:

P =



Ω(0, 0, α) Ω(0, 1, α) Ω(0, 2, α) · · · Ω(0, n, α)
Ω(1, 0, α) Ω(1, 1, α) Ω(1, 2, α) · · · Ω(1, n, α)

...
...

...
. . .

...
Ω(i, 0, α) Ω(i, 1, α) Ω(i, 2, α) · · · Ω(i, n, α)

...
...

...
. . .

...
Ω(n, 0, α) Ω(n, 1, α) Ω(n, 2, α) · · · Ω(n, n, α)


, (24)

where

Ω(i, j, α) =
i∑

k=0

j∑
r=0

(−1)k+rj!Γ(i+ α+ 1)Γ(k + α+ r + 2)

(i− k)!(j − r)!(k + 1)!r!Γ(k + α+ 1)Γ(r + α+ 1)
. (25)

Proof. (See [4]).

Also, we can see the extent of this theorem for solving fractional differen-
tial equations. For example, see [2, 5, 6].

5 Implementation of the matrix method

In this section, we solve the system of linear Fredholm integro-differential
equations of the second kind on unbounded domain (1). To this end, we
consider the ith equation of (1) as follows:

u′i(x) = fi(x)+ρ

∫ ∞

0

tαe−t
m∑
j=1

kij(x, t)uj(t)dt, ui(0) = ai, i = 1, ...,m, (26)

where fi ∈ L2
w(α)(Λ), kij ∈ L2

w(α)(Λ
2), and u′i(x) represents the first order

derivative of ui(x) with respect to x, ai are constants that give the initial con-
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ditions and ui is an unknown function. In order to approximate the solution
of equation (26), we approximate functions fi(x), ui(x) and kij(x, t) with
respect to generalized Laguerre polynomials as mentioned in the previous
section as follows:

fi(x) ≃ FT
i Lx, u′i(x) ≃ C ′T

i Lx, ui(0) ≃ CT
i0Lx, kij(x, t) ≃ LT

xKijLt, (27)

where Fi, C
′
i for i = 1, ...,m are known (n + 1) × 1 vectors and Kij for

i, j = 1, 2, ...,m are known (n+ 1)× (n+ 1) matrices. Then, for i = 1, ...,m,
we have:

ui(x) =

∫ x

0

u′i(t)dt+ ui(0) ≃
∫ x

0

C ′T
i Ltdt+CT

i0Lx ≃ (C ′T
i P +CT

i0)Lx, (28)

where P is a (n+1)× (n+1) operational matrix of integration given in (23).
By substituting the approximations (27) and (28) into equation (26), we get
the following:

LT
xC

′
i = LT

xFi + ρ

∫ ∞

0

tαe−t
m∑
j=1

LT
xKijLtL

T
t (p

TC ′
j + Cj0)dt

= LT
xFi + ρLT

x

m∑
j=1

Kij{
∫ ∞

0

tαe−tLtL
T
t dt}(pTC ′

j + Cj0)

= LT
xFi + ρLT

x

m∑
j=1

KijQ(pTC ′
j + Cj0). (29)

Then we have following system of linear equations:

C ′
i = Fi + ρ

m∑
j=1

KijQ(PTC ′
j + Cj0), i = 1, ...,m, (30)

where

Q =

∫ ∞

0

tαe−tLtL
T
t dt = [q

(α)
ij ], i, j = 0, 1, ..., n, (31)

and Q is a (n+ 1)× (n+ 1) matrix with elements

q
(α)
ij =

∫ ∞

0

tαe−tL
(α)
i (t)L

(α)
j (t)dt, i, j = 0, 1, ..., n. (32)

By solving the linear system of algebraic equations (30), we can achieve the
vector C ′

i for i = 1, ...,m, then we will have

CT
i = C ′T

i P + CT
i0 =⇒ ui(x) ≃ CT

i Lx, i = 1, ...,m. (33)

That are the approximate solution for our system of (1).
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6 Numerical Examples

In this section, we give several illustrative examples for demonstrate the
efficiency of our proposed method to approximate the solutions system of
Fredholm integro-differential equations of the second kind along with initial
condition on a semi-infinite domain. For each example, we find the approx-
imate solutions using different degree of generalized Laguerre polynomials.
The results obtained by the present method reveal that the proposed method
is very effective and convenient for system (1) on the half line. In all exam-
ples, the package of Matlab (2013) has been used to solve the test problems
considered in this paper.

Example 1. For the first example, consider the following of Fredholm
integral-differential equation on unbounded domain (constructed):

u′(x) = −247131410303000045

36028797018963968
x2 − 38903199231847830919

144115188075855872

+

∫ ∞

0

t
1
2 e−t(x2 + t2)u(t)dt, u(0) = 1. (34)

Exact solution of this problem is u(x) = x3−2x+1. If we apply the tech-
nique described in the section 5, with α = 1

2 and n = 3, then the approximate
solution can be expanded as follows:

u(x) ≃
3∑

i=0

c
(α)
i L

(α)
i (x) = CTLx, (35)

where
C = [c

(α)
0 , c

(α)
1 , c

(α)
2 , c

(α)
3 ]T . (36)

Hence, from Eqs. (16), (21), (23), and (31), we find the matrices

F =


−125363/424
17011/496
−6434/469

0

 , K =


15/2 −5 2 0
−5 0 0 0
2 0 0 0
0 0 0 0

 , P =


3/2 −1 0 0
3/8 1 −1 0
5/16 0 1 −1
35/128 0 0 1

 ,

Q =


148/167 0 0 0

0 222/167 0 0
0 0 555/334 0
0 0 0 2053/1059

 .
Next, we substitute these matrices into equation (30) and then simplify to
obtain
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c
(α)′

0

c
(α)′

1

c
(α)′

2

c
(α)′

3

 =


−119/5475 −19/7262 −574/2251 −865/5409
161/2349 347/1578 93/632 −247/3501
−181/6602 552/1769 1487/1580 193/6839

0 0 0 1

·

−13873/48
4211/141
−6427/538

0

 .
(37)

By solving the linear system (37), we have the following:

c
(α)′

0 =
37

4
, c

(α)′

1 = −15, c
(α)′

2 = 6, c
(α)′

3 = 0. (38)

By substituting the obtained coefficients in (33) the solution of (34) becomes

u(x) ≃ 89

8
L
(α)
0 (x)− 97

4
L
(α)
1 (x) + 21L

(α)
2 (x)− 6L

(α)
3 (x), (39)

or briefly
u(x) ≃ x3 − 2x+ 1, (40)

which is the exact solution. Also, if we choose n ≥ 4, we get the same ap-
proximate solution as obtained in equation (40). Numerical results will not
be presented since the exact solution is obtained.

Example 2. As the second example, we consider the following system of
linear Fredholm integro-differential equations on unbounded domain (con-
structed):

u′1(x) = f1(x) +

∫ ∞

0

t
1
2 e−t(2x+ t2)(u1(t) + u2(t))dt,

u′2(x) = f2(x) +

∫ ∞

0

t
1
2 e−t(t− x2)(u1(t)− u2(t))dt, (41)

where f1(x) = 3x2 − 87307746120759955
2251799813685248 x− 6631788499575074881

18014398509481984 and

f2(x) =
98782478468059837
9007199254740992 x

2 + 2x− 853121404951425865
18014398509481984 .

Subject to the initial conditions u1(0) = 1 and u2(0) = 1. The exact
solutions of this problem are u1(x) = x3 + 2x + 1 and u2(x) = x2 + 1. If
we apply the technique described in this paper and solve equation (41) with
α = 1

2 and n = 3. For this system we get:

u1(x) =
137

8
L
(α)
0 (x)− 113

4
L
(α)
1 (x) + 21L

(α)
2 (x)− 6L

(α)
3 (x) = x3 + 2x+ 1,

u2(x) =
19

4
L
(α)
0 (x)− 5L

(α)
1 (x) + 2L

(α)
2 (x) + (0)L

(α)
3 (x) = x2 + 1, (42)

which is the exact solution. Also, if we choose n ≥ 4, we get the same ap-
proximate solution as obtained in equation (42). Numerical results will not
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be presented since the exact solution is obtained.

Example 3. As the third example, consider the following system of linear
Fredholm integro-differential equations on unbounded domain (constructed):

u′1(x) = f1(x) +

∫ ∞

0

te−t−x(sin(t− x)u1(t) + tu2(t))dt,

u′2(x) = f2(x) +

∫ ∞

0

te−t(xtu1(t)− e−xu2(t))dt, (43)

with f1(x) = 1 − 1
4 (1 + 2sinx + 2cosx)e−x and f2(x) = −6x − 5

4e
−x and

with the exact solutions u1(x) = x, u2(x) = e−x and boundary conditions
u1(0) = 0 and u2(0) = 1. We apply the generalized Laguerre series ap-
proach and solve equation (43). Table 1 shows the absolute values of error
|e| = |u2(x)− u2(x)|, where u2(x) is the exact solution of equation (43) and
u2(x) is the approximate of u2(x) for n = 20, and n = 30 with α = 1 using
the described method in equally divided interval [0, 1]. Note that absolute

Table 1: Absolute errors for Example 3

i xi n = 20 n = 30
0 0.0 5.4836e− 006 7.6834e− 009
1 0.1 1.2376e− 006 3.6294e− 010
2 0.2 4.7027e− 007 1.1165e− 009
3 0.3 8.2669e− 007 5.9280e− 010
4 0.4 5.7470e− 007 1.8341e− 010
5 0.5 1.4911e− 007 5.9768e− 010
6 0.6 2.2241e− 007 5.8849e− 010
7 0.7 4.4523e− 007 3.0976e− 010
8 0.8 5.0477e− 007 4.8167e− 011
9 0.9 4.2952e− 007 3.3937e− 010
10 1.0 2.6633e− 007 4.8646e− 010

errors for u1(x) is zero.
Corollary: If the exact solution of the system (1) be a polynomial, then the
proposed method will obtain the real solution.

Example 4. Our last example is following of linear Fredholm integro-
differential equation on a semi infinite interval (constructed):

u′(x) = e−x − 7

4

√
x+

∫ ∞

0

t
1
2 e−t

√
xtu(t)dt, u(0) = 1. (44)
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With the exact solution u(x) = 2 − e−x. In Table 2, the numerical results
of the presented method at some selected nods for n = 10, and n = 12 are
displayed.

Table 2: Absolute errors for Example 4

i xi n = 10 n = 12
0 0.0 1.3000e− 003 3.6116e− 004
1 0.1 4.4620e− 004 9.3426e− 005
2 0.2 7.1845e− 005 4.5500e− 005
3 0.3 3.2705e− 004 9.9666e− 005
4 0.4 4.0407e− 004 1.0182e− 004
5 0.5 3.6812e− 004 7.5666e− 005
6 0.6 2.6834e− 004 3.7765e− 005
7 0.7 1.4076e− 004 8.8208e− 007
8 0.8 1.0787e− 005 3.3527e− 005
9 0.9 1.0468e− 004 5.6602e− 005
10 1.0 1.9540e− 004 6.8843e− 005

7 Conclusion

Obtaining the analytic solutions for system of linear Fredholm integro-
differential equations of the second kind, along with initial conditions on
unbounded domain are usually difficult. In many cases, it is required to ap-
proximate solutions. For this reason, a new matrix approach which is based
on the generalized Laguerre operational matrix of integration is proposed.
The solution procedure is very simple by means of generalized Laguerre poly-
nomials expansion and only in a few terms lead to high accurate solutions.
The main goal of the presented technique was deriving an approximation to
the solution system of linear Fredholm integro-differential equations on un-
bounded domain. To illustrate the method and its efficiency, four examples
were provided. In the first and second examples, we obtained the exact so-
lution. Another considerable advantage of the method is that the nth-order
approximation gives the exact solution when the solution is polynomial of
degree equal to or less than n. If the solution is not polynomial, generalized
Laguerre series approximation converges to the exact solution as n increases.
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ایهای چندجمله از استفاده با انتگرال-ديفرانسيل معادلات از سيستمی براي ماتريسی روش يك
يافته تعميم لاگر

فر رياحی عباس و فر متين ماشاءاله

رياضی گروه رياضی، علوم دانشكده مازندران، دانشگاه

١٣٩۴ اسفند ۵ مقاله پذیرش ،١٣٩۴ دی ١۶ شده اصلاح مقاله دریافت ،١٣٩٣ اسفند ٢۴ مقاله دریافت

انتگرال-ديفرانسيل معادلات از سيستمی حل براي ماتريسی روش يك ارائه مقاله، اين از هدف : چکیده
لاگر های ای چندجمله از جملاتی با پذير جدايی های هسته با كران بي دامنه روي دوم نوع از خطي فردهلم
معادلات سيستم است. يافته تعميم لاگر سری ی بوسيله تقريب بر مبتنی روش این باشد. می يافته تعميم
از سيستمی با متناظر كه شود می ماتريسی معادلاتی به تبديل اوليه شرايط با همراه انتگرال-ديفرانسيل
سپس و ماتريسی معادلات تركيب با است. يافته تعميم لاگر ضرايب از مجهولاتی با خطی جبری معادلات
به آید. می بدست جواب تابع لذا و یافت دست يافته تعميم لاگر ضرايب به توان می مذکور سيستم حل

است. گردیده ارائه روش كارايی و درستی دادن نشان براي عددی مثال چندين مقاله، این در علاوه

ای چندجمله كران؛ بی ی دامنه خطی؛ فردهلم انتگرال-ديفرانسيل معادلات سيستم : کلیدی کلمات
گيری. انتگرال عملياتی ماتريس يافته؛ تعميم لاگر های


