
Iranian Journal of Numerical Analysis and Optimization
Vol. 12, No. 2, pp 277–300
DOI: 10.22067/ijnao.2021.72366.1058
https://ijnao.um.ac.ir/

How to cite this article
Research Article

Sixth-order compact finite difference
method for solving KDV-Burger equation

in the application of wave propagations

K. Aliyi Koroche* and H. Muleta Chemeda

Abstract

Sixth-order compact finite difference method is presented for solving the
one-dimensional KdV-Burger equation. First, the given solution domain
is discretized using a uniform discretization grid point in a spatial direc-
tion. Then, using the Taylor series expansion, we obtain a higher-order
finite difference discretization of the KdV-Burger equation involving spa-
tial variables and produce a system of nonlinear ordinary differential equa-
tions. Then, the obtained system of a differential equation is solved by
using the fourth-order Runge–Kutta method. To validate the applicability
of proposed techniques, four model examples are considered. The stabil-
ity and convergent analysis of the present method is worked by using von
Neumann stability analysis techniques by supporting the theoretical and
mathematical statements in order to verify the accuracy of the present so-
lution. The quality of the attending method has been shown in the sense
of root mean square error L2 and point-wise maximum absolute error L∞.
This is used to show, how the present method approximates the exact so-
lution very well and how it is quite efficient and practically well suited for
solving the KdV-Burger equation. Numerical results of considered exam-
ples are presented in terms of L2 and L∞ in tables. The graph of obtained
present numerical and its exact solution are also presented in this paper.
The present approximate numeric solvent in the table and graph shows
that the numerical solutions are in good agreement with the exact solution
of the given model problem. Hence the technique is reliable and capable
for solving the one-dimensional KdV-Burger equation.
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1 Introduction

Partial differential equations (PDEs) are the mathematical equations that
are significant in modeling physical phenomena that occur in nature. Ap-
plications of PDEs can be found in physics, engineering, mathematics, and
finance. Examples include modeling mechanical vibration, heat, sound vi-
bration, elasticity, and fluid dynamics [4]. Some applications in real life
phenomena appear as nonlinear fractional order of PDEs. The fractional
nonlinear PDE describes a variety of important physical phenomena, acous-
tics, elector-chemistry, materials science, fluid dynamics[2], optics, and visco-
elasticity [1]. The other type of nonlinear PDEs is also Korteweg-de Vries
Burgers’ equation. Korteweg-de Vries Burgers’ equation is a model mathe-
matical statement for a wide class of nonlinear wave models of fluid in an
elastic tube, liquid with small bubbles and turbulence [21]. This Burgers-
Korteweg-de Vries (Burgers-KdV) equation has wide applications in physics,
engineering, and fluid mechanics. The Poincaré phase plane analysis reveals
that the Burgers-KdV equation has neither nontrivial bell-profile travelling
solitary waves nor periodic waves [9].

The Burgers-KdV equation is the simplest form of the wave equation
containing the nonlinearity, in which dispersion and the dissipation term
occur [9]. It arises from many physical contexts, for example, the propagation
of glandular bores in shallow water [5, 18], the flow of liquids containing
gas bubbles [13], the propagation of waves in an elastic tube filled with a
viscous fluid [36], weakly nonlinear plasma waves with certain dissipate effects
[13, 16], and the cascading down the process of turbulence. It is also widely
used as a nonlinear governing model in the crystal lattice theory, the nonlinear
circuit hypothesis, and atmospheric dynamics [10].

Travelling waves or solitons as solutions to the Korteweg-de Vries equation
(KdV), which is a nonlinear partial differential of mathematical statement
four-third-order, have been of interest already for 150 years [37]. The Kdv
equation was discovered in 1895 by Korteweg and de Vries [23], but this
equation was forgotten for a long time. So that, the KdV equation is widely
recognized as a paradigm for the description of weakly nonlinear long waves
in many branches of physics and engineering. It describes how waves evolve
under the competing but comparable effects of weak nonlinearity and dy-
namic dispersion [37]. Random waves are an important subject of haphazard
PDEs [11]. The nonlinear problems are solved easily and elegantly without
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converting to linear form the problem by using the Adomian decomposition
method [22]. A feature common to all the traditional methods is that they
are using the transformations to reduce the equation into a more simple
mathematical statement and then solve it. Unlike classical techniques, the
nonlinear equations are solved easily and elegantly without transforming the
equation by using the Adomian decomposition method [21]. This wonder-
ful technique has many advantages over classical techniques [22]. Mainly, it
avoids the process of converting linear form and perturbation to find solutions
to a given nonlinear equation. It provides an efficient explicit solution with
high accuracy, minimal calculation, and avoidance of physically unrealistic
assumptions [21].

Many authors studied the exact and numerical solutions of the KdV equa-
tion. Wadati [34] first introduced and studied the stochastic KdV equations
and gave the diffusion of solutions to the KdV equation under Gaussian noise.
Xie firstly studied research on Wick-type stochastic KdV equation on white
noise spaces and showed the auto-Backlund transformation and the exact
white noise functional solutions in [16]. Furthermore, Chen and Xie [6, 8] and
Xie [7, 38] worked on some Wick-type stochastic wave equations using the
white noise analysis method. Recently, Ũgurlu and Kaya [14] gave the tanh
function method, Wazzan [35] showed the modified tanh-coth techniques,
and these methods have been applied to derive nonlinear transformations
and exact solutions of nonlinear PDEs in mathematical physics [18]. In those
driving analytical methods, there is time consumed and very tired because it
requires long computational time. To save our time and obtain an accurate
approximate solution of the KdV equation, we use numerical methods.

Different numeral techniques give accurate denotative solutions for the
KdV equation. To obtain the numerical solution of the KdV equations, the
same researcher was used the traditionally, mesh-dependent methods such
as the finite-difference method, finite element techniques, and boundary el-
ements method. However, these methods have a slow rate of convergence,
instability, low accuracy, and difficulty of implementation in complex ge-
ometries [4]. Even though the accuracy of the aforementioned methods is
promising, they require large memory and long computational time. Besides
funding, the methods are not suitable for higher-dimensional and problems
involving complex geometries. Hence, the treatment of mesh-size presents
several difficulties that have to be addressed to ensure the accuracy of the
solution, and efficiency of the method applied [4]. Indeed scientists in the
field of computational mathematics have been trying to develop numerical
techniques by using computers for further application of different model prob-
lems. From those techniques, higher-order difference schemes and differential
quadrature methods are more powerful techniques.

In many application areas, such as aeroacoustics [26] and electromagnetic
[29], the propagation of acoustic and magnetic force waves needs to be accu-
rately simulated over very long periods of time and far distances. Especially,
the nonlinear partial differential equation is derived that plays a role in a
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normal form, that is, in the first approximation, it determines the behavior
of all solutions for the original boundary value problem with initial condi-
tions from a sufficiently small neighborhood of equilibrium [20]. Therefore, in
order to reduce the accumulation of errors during this process, the numerical
algorithm must be highly accurate. To accomplish this goal, high-order com-
pact finite difference schemes have been developed for simulating the solution
of applications to wave propagation like [31, 32] and surface water modeling
[27, 28]. The investigation of numerical solutions for nonlinear partial differ-
ential equations plays an important role in mathematics, physics, and other
applied science areas.

High-order finite difference schemes can be classified into two main cate-
gories: explicit schemes and Pade-type or compact schemes. These hardcore
techniques compute the numerical derivatives directly at each grid by us-
ing large stencils, while compact schemes obtain all the numerical derivatives
along a grid line using smaller stencils for solving linear and nonlinear systems
of equations. Experience has shown that compact schemes are much more
accurate than the corresponding explicit scheme of the same order. Hence
motivating this performance of implicit (Pade-type) scheme, this paper aims
to construct an efficient and accurate sixth-order compact finite difference
numerical method for solving a one-dimensional KdV-Burger equation in the
application of wave propagation.

Statement of the problem

Consider a homogeneous KdV-Burger equations considered in [24] given by

Ut + aUUx + vUxxx = 0, (x, t) ∈ (0, b)× (0, T ), (1)

with initial and boundary conditions, respectively,

U(x, 0) = U0(x), 0 ≤ x ≤ b, (2)

U(0, t) = Uo(t), U(b, t) = Ub(t), 0 ≤ x ≤ T, (3)

where Uo(t) are Ub(t) are periodic smooth functions and 0 ⩽ T < ∞. Now
we define a mesh size h and 4t as constant grid points. They are defined
by drawing distant horizontal and vertical lines of distance “h” and “4t”,
respectively, in “x” and “t” directions. These lines are called grid lines, and
the point at which they interact is known as the mesh point. This fabric
topology point that lies at end of the domains, is called the boundary point.
Points that lie inside the region are called interior points. The goal is to
find the approximate solution of “U(x, t)” at the interior mesh points and to
investigate how it converges too. Thus to do this, first, we discretized the
solution domain concerning spatial direction as
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0 = x0 < x1 < x2 < · · · < xM = b,

where xj+1 = xj + h and j = 1(1)M . Moreover, M is the maximum number
of grid points in the x-direction. Thus, to accomplish our work, the present
paper is organized as follows. Section 2 is a description of numerical methods.
Sections 3 is stability, consistence, and convergence analysis. Section 4 is the
results of numerical experiments. Sections 5 is the discussion, and Section 6
is the Conclusion.

2 Description of proposed numerical method

2.1 Spatial discretization

In the high-order compact finite difference methods, the spatial derivatives
in the governing PDEs are not approximated directly by some finite differ-
ences. They are evaluated by some compact difference schemes. We assume
that U(x, t) is a sufficiently smooth function and has continuous higher-order
partial derivative on its domain. For the sake of simplicity, let U(xj , t) = Uj

and let ∂ρU(xj , t)

∂xρ
= ∂ρ

xUj in which ρ ≥ 1, be ρth-order partial derivative
of U(x, t) concerning with spatial variable x. By using the Taylor series
expansion, we have

Uj+1 = Uj + h∂Uj +
h2

2!
∂2
xUj +

h3

3!
∂3
xUj +

h4

4!
∂4
xUj + · · · , (4)

Uj−1 = Uj − h∂uj +
h2

2!
∂2
xUj −

h3

3!
∂3
xUj +

h4

4!
∂4
xUj − · · · , (5)

Uj+2 = Uj + 2h∂Uj +
4h2

2!
∂2
xUj +

8h3

3!
∂3
xUj +

16h4

4!
∂4
xUj + · · · , (6)

Uj−2 = Uj − 2h∂Uj +
4h2

2!
∂2
xUi −

8h3

3!
∂3
xUj +

16h4

4!
∂4
xUj − · · · . (7)

Now subtracting (7) from (11), we obtain

∂Uj =
Uj+1 − Uj−1

2h
− h2

6
∂3
xUj −

h4

120
∂5
xUj − · · · . (8)

Hence from (10), we obtain the second-order central finite difference equation
for the first-order partial derivative of U(x, t) concerning spatial variable x
given by

δ(1)cx Uj =
Uj+1 − Uj−1

2h
+ T1, (9)
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where T1 = −h2

6
∂3
xUj =

h2

6
∂3
xU(xj , t) is its local truncation error. Again

subtracting (9) from (8), we obtain

8h3

3
∂3
xUj = Uj+2 − Uj−2 − 4h∂Uj −

32h5

120
∂5
xUj −

128h7

5040
∂7
xUj − · · · . (10)

Now substituting (10) into (10), we obtain

8h3

3
∂3
xUj = Uj+2−Uj−2−4h

(
Uj+1 − Uj−1

2h
− h2

6
∂3
xUj − · · ·

)
−32h5

120
∂5
xUj−· · · .

Collecting like terms in the above difference equation, we obtain

∂3
xUj =

Uj+2 − 2(Uj+1 − Uj−1)− Uj−2

2h3
− 7h2

60
∂5
xUj −

31h4

2520
∂7
xUj −· · · . (11)

Hence from (14), we obtain the second-order central finite difference equation
for third-order partial derivative of U(x, t) concerning spatial variable x, given
by

∂3
xUj =

Uj+2 − 2(Uj+1 − Uj−1)− Uj−2

2h3
+ T2, (12)

where T2 = −7h2

60
∂5
xUj is their local truncation error. Again substituting

(11) and (7) into (9), we obtain

δ(1)cx Uj =

(
Uj + h∂xUj +

h2

2!
∂2
xUj +

h3

3!
∂3
xUj + · · ·

)
2h

−

(
Uj − h∂Uj +

h2

2!
∂2
xUj −

h3

3!
∂3
xUj − · · ·

)
2h

+ T1,

δ(1)cx Uj =∂xUj +
h2

6
∂3
xUj +

h4

120
∂5
xUj +

h6

5040
∂7
xUj +

h8

362880
∂8
xUj + · · · ,

δ(1)cx Uj =∂xUj +
h2

6
∂3
xUj +

h4

120
∂5
xUj + T3, (13)

where T3 =
h6

5040
∂7
xUj is their principal local traction error. Again substitut-

ing (11)-(9) into (15), we obtain

δ(2)cx Uj =
(Uj + 2h∂xUj + · · · )− 2 ((Uj + h∂xUj + · · · )− (Uj − h∂Uj − · · · ))

2h3

− (Uj + h∂xUj + · · · )
2h3

+ T2

IJNAO, Vol. 12, No. 2, pp 277–300



Sixth-order compact finite difference method for solving KDV-Burger ... 283

δ(2)cx Uj = ∂3
xUj +

31h2

120
∂5
xUj +

8h4

315
∂7
xUj +

51h6

72576
∂9
xUj + · · · .

Thus from this, we obtain the second-order difference equation given by

δ(2)cx Uj = ∂3
xUj +

31h2

120
∂5
xUj +

8h4

315
∂7
xUj + T4, (14)

where T4 =
51h6

72576
∂9
xUj is its principal local truncation error. Now using (2)

and applying the successive derivative on it in terms of spatial variable x,
we obtain the fifth- and sixth-order central difference scheme, and they are
given by

∂5
xUj = δ(3)cx

(
δ(2)cx Uj

)
, (15)

∂7
xUj = δ(3)cx

(
δ(3)cx

(
δ(1)cx Uj

))
. (16)

Now substituting (15) into (13), we obtain

δ(1)cx Uj = ∂xUj +
h2

6
∂3
xUj +

h4

120
δ(3)cx

(
δ(2)cx Uj

)
+ T3,

δ(1)cx Uj = ∂xUj +
h2

6
δ(3)cx Uj +

h4

120
δ(3)cx

(
δ(2)cx Uj

)
+ T3,

∂Uj

∂x
= δ(1)cx Uj −

h2

6
δ(3)cx Uj −

h4

120
δ(3)cx

(
δ(2)cx Uj

)
− T3. (17)

Again substituting (15) and(16) into (14), we obtain

δ(2)cx Uj = ∂3
xUj +

31h2

120
δ(3)cx

(
δ(2)cx Uj

)
+

8h4

315
δ(3)cx

(
δ(3)cx

(
δ(1)cx Uj

))
+ T4,

∂3
xUj = δ(2)cx Uj −

31h2

120
δ(3)cx

(
δ(2)cx Uj

)
− 8h4

315
δ(3)cx

(
δ(3)cx

(
δ(1)cx Uj

))
− T4. (18)

Now substituting (17) and (18) into (2), we obtain semi-discretization of
the given governing PDE and the obtained nonlinear system of ordinary
differential equation (ODE) is

dUj

dt
+ aUj

(
δ(1)cx Uj −

h2

6
δ(3)cx Uj −

h4

120
δ(3)cx

(
δ(2)cx Uj

)
− T3

)
+ v

(
δ(2)cx Uj −

31h2

120
δ(3)cx

(
δ(2)cx Uj

)
− 8h4

315
δ(3)cx

(
δ(3)cx

(
δ(1)cx Uj

))
− T4

)
= 0.

This implies that

dUj

dt
=aUj

(
h2

6
δ
(3)
cx Uj +

h4

120
δ
(3)
cx

(
δ
(2)
cx Uj

)
− δ

(1)
cx Uj

)
(19)
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+ v

(
31h2

120
δ
(3)
cx

(
δ
(2)
cx Uj

)
+

8h4

315
δ
(3)
cx

(
δ
(3)
cx

(
δ
(1)
cx Uj

))
− δ

(2)
cx Uj

)
+ Tj ,

where Tj =

(
aUj

5040
∂7
x +

51v

72576
∂9
x

)
h6Uj is the jth terms of principal local

truncation errors with order of accuracy O
(
h6

)
. Hence by truncating this

local truncation error, our proposed scheme is

dUj

dt
=aUj

(
h2

6
δ
(3)
cx Uj +

h4

120
δ
(3)
cx

(
δ
(2)
cx Uj

)
− δ

(1)
cx Uj

)
+ v

(
31h2

20
δ
(3)
cx

(
δ
(2)
cx Uj

)
+

16h4

105
δ
(3)
cx

(
δ
(3)
cx

(
δ
(1)
cx Uj

))
− 6δ

(2)
cx Uj

)
,

dUj

dt
=
ah2Uj

6

(
Uj+2 − 2Uj+1 + 2Uj−1 − Uj−2

2h3

)
+

vh4

120

(
Uj+3 − 4Uj+2 + 5Uj+1 − 5Uj−1 + 4Uj−2 − Uj−3

2h3

)
− a

(
Uj+1 − Uj−1

2h

)
+ v

31h4

20

(
Uj+3 − 4Uj+2 + 5Uj+1 − 5Uj−1 + 4Uj−2 − Uj−3

2h3

)
− 6v

(
Uj+2 − 2Uj+1 + 2Uj−1 − Uj−2

2h3

)
+

128vh4

840

( 1

8h7
(Uj+5 − 4Uj+4 + 3Uj+3 + 8Uj+2 − 14Uj+1

+14Uj−1 − 4Uj−2 − 3Uj−3 + 4Uj−4 − Uj+5)
)
.

This implies that
dUj

dt
=

aUj

480h
(Uj+3 + 36Uj+2 − 315Uj+1 + 315Uj−1 − 36Uj−2 − Uj−3)

+
v

6720h3
(Uj+5 − 4(Uj+4 − Uj−4) + 2607(Uj+3 − Uj−3))

+ (−30568(Uj+2 − Uj−2) + 53326(Uj+1 − Uj−1)− Uj−5) ,

which implies that

dUj

dt
=
3aUj

160h
(0.1(Uj+3 − Uj−3) + 36(Uj+2 − Uj−2)− 315(Uj+1 − Uj−1))

+
0.5v

3360h3
(Uj+5 − Uj+5)

− v

3360h3
(2(Uj+4 − Uj−4) + 1303.5(Uj+3 − Uj−3))

− v

3360h3
(15284(Uj+2 − Uj−2) + 26663(Uj+1 − Uj−1)) ,

(20)

where j = 0, 1, 2, 3, . . . ,M − 1. From (20), the nonlinear system of the ODE
is given in the form of
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dU0

dt
=
3aU0

160h
(0.1(U3 − U−3) + 36(U2 − U−2)− 315(U1 − 315U−1))

+
0.5v

3360h3
(U5 − U−5)

− v

3360h3
(2(U4 − U−4) + 1303.5(U3 − U−3)− 15284(U2 − U−2)

+ 26663(U1 − U−1))

dU1

dt
=
3aU1

160h
(0.1(U4 − U−2) + 36(U3 − U−1)− 315(U2 − 315U−0))

+
0.5v

3360h3
(U6 − U−4)

− v

3360h3
(2(U5 − U−3) + 1303.5(U4 − U−2)− 15284(U3 − U−1)

+ 26663(U1 − U−0))

...
dUM−1

dt
=
3aUM−1

160h
(0.1(UM+4 − UM−6) + 36(UM+3 − UM−1)

− 315(UM+2 − 315UM ))

+
0.5v

3360h3
(UM+6 − UM−4)

− 1

3360h3
(2(UM+5 − UM−3) + 1303.5(UM + 4− UM−2))

+
1

3360h3
(15284(UM+3 − UM−1)− 26663(UM+1 − UM )) . (21)

Now by introducing the vectors U(t) = [U1(t), U2(t), U3(t), . . . , UM (t)]t in
(21), we can rewrite the system of equation in the matrix form given by

dU(t)

dt
= AH (U(t)) (22)

subject to discretized initial and nondiscretized boundary conditions given
by

U(xj , 0) = U0(xj), 0 ≤ xj ≤ b,

U(0, t) = U0(t), U(b, 0) = Ub(t), 0 ≤ t ≤ T, (23)

and where H is a nonlinear function of U which contains the entries hj give
by H(Uj) = hj(U1, U2, . . . , UM−1).

IJNAO, Vol. 12, No. 2, pp 277–300



286 K. Aliyi Koroche and H. Muleta Chemeda

2.2 Temporary discretization

Consider the discretization of time domain [0, T ] by using the equidistant
mesh-size with time step 4t given as

Dn = {tn+1 = tn +4t} , (24)

where 4t = T/N and n = 1(1)N , in which N is the Maximum number of
grid points in temporary (time) direction. Then the resulting system of Odes
in (22) can now be solved by using the classical fourth-order Runge–Kutta
method. This Runge–Kutta techniques integrate the value of U from n to
n+ 1 by using the operator given by

U0 = U(xj , t0), K1 = 4tAH(U0),

U1 = U0 + 1/2K0, K2 = 4tAH(U1),

U2 = U0 + 1/2K1, K3 = 4tAH(U2),

U3 = U0 + 1/2K2, K4 = 4tAH(U2),

Un+1 = Un + 1/6 (K1 + 2K2 + 2K3 +K4) , (25)

with both discretized initial and boundary conditions given by

U(xj , 0) = U0(xj), 0 ≤ xj ≤ b,

U(0, tn) = U0(tn), U(b, 0) = Ub(tn), 0 ≤ tn ≤ T,

where j = 1(1)M − 1 and n = 1(1)N − 1.

3 Stability, consistency, and convergence method

3.1 Stability of scheme

The stability of the proposed numerical method is investigated by using von
Neumann stability analysis. To do this, we assume that the nonlinear term
UUx of partial differential equation in (2) as linear by taking γ = Uj , where
γ is constant. Then without loss of generality, we obtain the linear system
of ODEs. Assume that γ = maxj(Uj) in (20), and we can inquire about
the eigenvalues of the M by M system of ODEs in (20). To obtain this
eigenvalue, as [3, 12, 22, 25] takes, we assume that a trial solution is

U(x, t) = φ(t)ϕ(x). (26)

Furthermore to investigate the stability of the proposed method by von Neu-
mann techniques, we assume that the trial function is defined by
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ϕ(x) = eiKP xj = eijhKP , (27)

where i =
√
−1 and KP = Pπ, P = 1, 2, 3, . . . ,M . Moreover, K is a Fourier

number or amplification factor. Now substituting (26) and (27) into (20), we
obtain

dφ(t)eijhKP

dt

=
3aγφ(t)

160h

(
0.1(eihKp(j+3) − eihKP (j−3)) + 4(eihkP (j+2) − eihKp(j−2))

)
−

3aγφ(t)

160h

(
15(eihKP (j+1) − eihKP (j−1))

)
+

0.5v

3360h3
(eihKp(j+5) − eihKp(j−5))

−
vφ(t)

3360h3

(
2(eihKp(j+4) − eihKp(j−4)) + 1303.5(eihKp(j+3) − eihKp(j−3))

)
−

vφ(t)

3360h3

(
15284(eihKp(j+2) − eihkp(j−2)) + 26663(eihkp(j+1) − eihkp(j−1))

)
.

Dividing both sides by eijhkp , this implies that

dφ(t)

dt
=
3aγφ(t)

160h

(
0.1(e3ihKp − e−3ihKp) + 4(e2ihKp − e−2ihKp)

)
− 3aγφ(t)

160h

(
15(eihKp − e−ihKp)

)
+

0.5v

3360h3
(e5ihKp − e−5ihKp)

− vφ(t)

3360h3

(
2(e4ihKp − e−4ihKa) + 1303.5(e3ihKp − e−3ihKp)

)
− vφ(t)

3360h3

(
15284(e2ihKp − e−2ihKp) + 26663(eihKp − e−ihKp)

)
.(28)

Since for any differentiable function φ(t), the Eigen-value problem of φ(t) is

dφ(t)/dt = λpφ(t)

for p = 1(1)M . Hence substituting this into (28), we obtain

λpφ(t) =
3aγφ(t)

160h

(
0.1(e3ihKp − e−3ihKp) + 4(e2ihKp − e−2ihKp)

)
− 3aγφ(t)

160h

(
15(eihKp − e−ihKp)

)
+

0.5v

3360h3
(e5ihKp − e−5ihKp)

− vφ(t)

3360h3

(
2(e4ihKp − e−4ihKp) + 1303.5(e3ihKp − e−3ihKp)

)
− vφ(t)

3360h3

(
15284(e2ihKp − e−2ihKp) + 26663(eihKp − e−ihKp)

)
.

Therefore this implies that
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λp =
3aγφ(t)

160h

(
0.1(e3ihKp − e−3ihKp) + 4(e2ihKp − e−2ihKp)

)
− 3aγ

160h

(
15(eihKp − e−ihKp)

)
+

0.5v

3360h3
(e5ihKp − e−5ihKp)

− v

3360h3

(
2(e4ihKp − e−4ihKa) + 1303.5(e3ihKp − e−3ihKp)

)
− v

3360h3

(
15284(e2ihKp − e−2ihKp) + 26663(eihKp − e−ihKp)

)
.(29)

From (29), using the Euler expiration into trigonometric form, we obtain

λp =
ia

1680h3

(
0.5 sin(5hKp)− 2 sin(4hKp) + (6.3γh2 + 1303.5) sin(3hKp)

)
+

iv

1680h3

(
(252γh2 − 15284) sin(2hKp) + (945γh2 − 26663) sin(hKp)

)
.

(30)

Hence from (30), we obtain the required Eigen-value. Real part of all Eigen-
values is zero. This shows that strictly Real(λp) ≤ 0 and so that, we have
|λp| < 1 for all values of variable ”p”. Thus the required condition is satisfied.
Therefore the obtained system of equation in (20) is stable.
Theorem 1. The difference mathematical statement given in (20) is sta-
bilized equation if and only if all eigenvalues of coefficient matrix of ob-
tained system of difference equation are simultaneously satisfy condition
Real(λa) ≤ 0.
Proof. The proof of this theorem is briefly given in [22].

3.2 Consistency of the scheme

Round-off errors and truncation errors occur when mathematical equations
are solved numerically. Rounding errors originate from the fact that com-
puters can only represent numbers (approximate solution) by using a fixed
and limited number of significant figures. Therefore, such numbers cannot
be represented exactly in different computer memories. The error introduced
by this limitation is called a round-off error. Truncation errors in numerical
investigation arise when approximations are used to estimate by using the
finite term for infinite quantity by truncating certain terms from the bound-
less series term. Note that in numerical computation, if we work to minimize
round-off error, then the truncation error is increased. Therefore it is diffi-
cult to avoid these errors in numerical computation. So that, in our work,
we must find the balancing (equilibrium) points and minimize both of them
simultaneously.

Generally, in all proposed numerical difference schemes, the accuracy of
solution for a given mathematical problem obtained by those methods de-
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pends on how small we make the step size, h, and time step 4t. Therefore, if
the local truncation error produced in a numerical scheme is near to zero for
which both h and 4t simultaneously approach to zero, then this numerical
method is called consistent.

Hence we have in-minding this, from our present proposed scheme in (20),
that the principal part of local truncation error (the derived local shortening
error) is

lim
j→∞

Tj = lim
j→∞

(
Uj

5040
∂7
x +

51

12096
∂9
x

)
h6Uj = 0.

Therefore from the above equation and the proposed theoretical-bounds of
truncation error, we have maxj ||Tj || ≤ O (h6). Hence this implies that
maxj ||Tj || 7−→ 0 as h 7→ 0. So that, our scheme is consistent with the order
of accuracy O (h6).

3.3 Convergence analysis

Stability plus consistency of the proposed scheme leads to the convergence of
the method. Hence our present system is both consistent and stable. So that,
the outline present method is convergent with six-order of convergence in the
spatial direction. To test the performance of this convergent and accuracy
of the proposed method, we use the maximum point-wise absolute error, L2

and L∞ norms. Theses norms are calculated by
L∞ = maxj |U(xj , tn)− Uj,n| and L2 =

√
1/M

∑M
j=0 |U(xj , tn)− Uj,n|,

where M is the maximum number of grid points, U(tj , tn) is exact and Uj,n

is an approximation solution of the KdV-Burger equation in (2) at the grid
point (xj , tn). If the exact solution of the model problem does not exist, then
we take the approximate solution U2j,2n ≊ U(xj , tn) obtained at (xj , tn) by
taking double number of grid-point as an exact result, and we can compare
the error between them at specified grid points.

4 Results of numerical experiments

To test the validity of proposed method, we have considered the following
model problem.

Example 1. Consider that one-dimensional KdV equation given by

Ut + α
(
U2

)
x
+ βUxxx = 0

with periodic boundary conditions and the following initial condition:

(A) U0(x) = 3 a sech(G(x− c)) + 3 b sech2(P (x− d))
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a = 0.3, b = 0.1, c = 0.5, 0 ≤ x ≤ 2, 0 ≤ t ≤ 4,

β = 5.84× 10−4, α = 0.5, G = α
√
a/β, P = α

√
b/β,

(B) U0(x) = 3 a sech(G(x− c)),

a = 0.3, c = 0.5, 0 ≤ x ≤ 1, 0 ≤ t ≤ 4,

β = 10−4, G = 1/2
√
a/β,

(C) U0(x) =
2

3
a sech2(

(x− 1)√
108β

),

a = 0.5, 0 ≤ x ≤ 3, 0 ≤ t ≤ 4,

β = 10−4,

Example 2. Consider the one-dimensional KdV equation considered in [37]
given by

Ut + 6UUx + Uxxx = 0.

With analytical solution obtained in [37] given by

U(x, t) =
c

2
sech2(

√
c

2
(x− ct−D)),

where D is a constant of integration.

Example 3. Consider the KdV equation considered in [30] given by

Ut + (α+ βU)UUx + γUxx − δUxxx = 0,

where initial condition of this equation for γ = 0 and δ = −1 is given by

U(x, 0) = −α

β

(
1 + tanh

(
α

2
√
−6β

x

))
.

In [30], by letting β = 0, α = 2, γ = −5, and δ = −3, its analytical solution
is given by

U(x, t) =
1

3

(
sech2(

θ

2
) + 2 tanh(

θ

2
) + 2

)
,

where θ = − 1
3x+ 2

3 t.

Example 4. Consider that fractional KdV equation considered in [1] given
by

∂αU

∂tα
+ U

∂U

∂x
+

∂3U

∂x3
= F (x, t), (x, t) ∈ (0, 1).

Analytical solution obtained in [1] is given by

U(x, t) = tex,
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by assuming α = 0.9.

Table 1: Point-wise absolute error and root mean square error, for Example 1 (A) if
M = 61

provided grid points estimated error at provided grid point
x t L∞ L2

0.66667 3.9333 4.7839E − 03 1.1526E − 04
1.6667 3.9833 4.4147E − 05 3.1165E − 06
1.9667 3.9983 3.5070E − 05 2.300E − 06

2 4 2.4568E − 06 2.300E − 06

Figure 1: Graph of the physical behavior of the solution when β = 4.25 × 10−04 and
M = 61 with high-frequency oscillations for Example 1 (A).

5 Discussions

In this paper, sixth-order compact finite difference method is presented for
solving a one-dimensional KdV-Burger equation. At first stage, we discretized
the solution interval for concerning spatial variable. Next by applying the
Taylor series expansion, we discretization partial derivative of the model prob-
lem in (2) involving spatial variable, we obtain sixth-order finite difference
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Table 2: Point-wise absolute error and root mean square error, for Example 1 (B) if
M = 61

provided grid points estimated error at provided grid point
x t L∞ L2

0.333 3.967 4.7E − 04 1.3838E − 05
0.8333 3.9917 3.600E − 05 32.2569E − 06
0.9833 3.9992 3.532E − 06 1.3216E − 07

1 4 2.473E − 07 3.2814E − 08

Table 3: Point-wise absolute error and root mean square error, for Example 1 (C) if
M = 61

provided grid points estimated error at provided grid point
x t L∞ L2

1.333 3.8667 7.2E − 04 3.6786E − 05
3.333 3.9677 9.7E − 05 4.0591E − 06
3.9333 3.9967 6.25E − 07 5.1082E − 07

4 4 3.348E − 07 3.126E − 08

Table 4: Point-wise absolute error and root mean square error obtained by the present
method, for Example 2 using different step sizes h and time step
provided step size and time step Estimated Error at provided grid point

h 4t L∞ L2

0.1 0.5 8.128E − 04 2.1526E − 05
0.05 0.5 5.9148E − 05 7.6374E − 06
0.02 0.1 4.1139E − 05 5.2931E − 06
0.01 0.1 3.8425E − 06 9.2631E − 07

Table 5: Point-wise absolute error and root mean square error obtained by the present
method, for Example 3 with different step sizes h and time step
provided dance step size and time step Estimated Error at provided grid point

h 4t L∞ L2

0.1 0.04 1.3298E − 06 6.3691E − 07
0.1 0.03 5.1653E − 07 4.6334E − 07
0.1 0.02 4.623E − 07 4.211E − 07
0.1 0.01 1.975E − 07 8.091E − 08
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Figure 2: Graph of the physical behavior of the solution when β = 4 × 10−04 and
M = 61 with high-frequency oscillations for Example 1 (B).

Figure 3: Graph of the physical behavior of the solution when β = 10−04 and M = 61

with high-frequency oscillations for Example 1 (C).
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a) Surface of exact solution

b) Above-ground of approximation result

Figure 4: Graph of the physical behavior of the surface of the present numerical solution
with mesh sizes h = 0.01 and k = 0.01 for Example 2 which we compare it with the
surface of exact solution in [37]

scheme. Then, by rearranging these semi-discretized schemes and combin-
ing them into the remaining part of partial derivative in the model problem
concerning temporal variable without linearizing it. We obtain a system of
nonlinear ODEs. Then, we solve the obtained system by using the fourth-
order Runge–Kutta method. To demonstrate the competence of playacting
(to identify the applicability and validity of the present proposed scheme),
four model examples are solved by taking different values for step sizes h
and dispersion coefficients v, α, and β in the different solution domains. To
further verify this validity of the proposed method, the norm of errors be-
tween the numerical results for model problem in Example 1 subjected to
three different initial conditions associated with numerical results obtained
by dabbling mesh size (2M, 2N) taking as the exact solution, is summarized
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Figure 5: Graph of the physical behavior of the surface of the present numerical solution
with mesh sizes h = 0.05 and k = 0.01 for Example 3, which we compare it with the
solution in [30]

Table 6: Comparison of point-wise absolute error and root mean square error, for
Example 4 using different step sizes h and time step △t

provided step size and time step
result by present method Estimated Error at provided grid point

h 4t L∞ L2

1/10 1/20 4.5349E − 05 8.3691E − 06
1/30 1/20 5.1653E − 06 5.6334E − 06
1/50 1/20 3.5283E − 06 9.4184E − 07

Result by Method in [1]
1/10 1/20 1.5678E − 04 6.1032E − 04
1/30 1/20 7.8531E − 05 3.9868E − 05
1/50 1/20 1.6579E − 05 7.1991E − 06

in Tables 1–3 and Figures 1–3 for different disparate parameters and its so-
lution domain.

As it can be seen from these tables, the point-wise maximum absolute
errors (L∞) and root mean square error (L2) are rapidly decreases as the
value of x and t increase. This indicates that the vibration of the solution
line has to become overlapping and that the dispersion of the travelling wave
is equal. From those figures, also we can understand that, for different values
of β and initial conditions, we obtain differences in diametrical travelling
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Figure 6: Graph of the physical behavior and surface of the present numerical solution
with mesh sizes h = 0.01 and △t = 0.1 for Example 4, which we compare it with the
surface of exact solution in [1]

wave, and at a certain point in the assorted domain, the vibration line of the
travelling wave is overlapping. Hence, in this case, a numerical approximation
of Example 1 for different values of β, initial conditions, and the solution
interval is very well, and it gives different behaviors of the solution. From
Table 4 and Figure 4, we conclude that the present numerical resolution for
Example 2 is accurate than the quantitative result in [37]. Thus this not only
shows the solution given by the graphical form, but also as we saw from Table
4, if mesh-size decreases, both roots mean square error and point-wise error
of the present numerical result are rapidly decreased. So that, this shows
that the accuracy of the present acting method is increased and proves the
preexisting accuracy. Hence the approximate solution by the present method
for Example 2 is very well. Also, as we saw from Table 5 and Figure 5 that
the present numerical solution of Example 3 is accurate than the numeric
resolution in [30]. Because of, as it can be seen from the obtained error
norm of numerical results specified in Table 5, both roots mean square error
and maximum point-wise error are decreased. This shows the correcting and
proving the preexisting results in [30]. Hence our result is more accurate
than the event that exists in the literature. In addition to this, the present
techniques are also used to solve a fractional order KdV-Burger equation. As
it can be seen from the comparison of accuracy through the error norm for
numerical results given in Table 6, the quality of the present method is more
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superstar than the truth of solution in [1] for α = 0.9. Because of both L∞
and L2 rapidly decrease as h decreases to zero with a fixed time step 4t.

Therefore, depending on all accuracy of the present numerical results, the
proposed method validates and improves the accuracy of preexisting meth-
ods described in the literature. Also in this paper, both the theoretical and
numerical error bounds have been established. The obtained quantitative
results listed in the tables and graphs are also confirmed our established com-
putational rate of convergence and theoretical estimates of the error bound.

6 Conclusion

In this study, a new approach, which was called sixth-order compact finite
difference method, was presented to solve a one-dimensional KdV-Burger
equation. The comparison of results obtained by the present method acting
was more convenient, reliable, and effective than some methods listed in the
literature. An error analysis based on the von Neumann stability investigat-
ing was also developed for the present study. So that, as it can be seen from
both graphs and tables, the accuracy of the present method has improved
the inaccuracy of preexisting techniques in literature by decreasing the value
of h and 4t. As a summary, the accuracy of numerical results given in terms
of tables and graphs indicated that as the values of h and 4t decrease, the
errors drop-off more rapidly. Generally, this technique is a reliable acting
method and ables solving the one-dimensional KdV-Burger equation. Based
on the findings, this method is well approximate and gives better accuracy
of the numerical solution with both decreasing or some fixed step sizes h and
time step 4t. Therefore this method is a suitable technique to approximate
the exact solution of PDE very well.
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