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Abstract

This essay considers an optimal control problem (OCP) governed by a
system of Fredholm integral equations (FIE). In this paper, collocation
approach with utilizing Lagrange polynomials is introduced to transform
the OCP into a nonlinear programming problem (NLP). An efficient op-
timization method in Mathematica software is utilized to solve NLP. The
convergence analysis is discussed, which show the theoretical structure
behind the propounded technique under some assumptions. In this es-
say, computational outcomes are given to demonstrate the adaptability,
forthrightness, and relationship of the calculations manufactured. A prac-
tical real-world problem involving hanging chain in classical mechanic is
also dissolved utilizing the approach proposed.
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1 Introduction

The mathematical formulations of most physical and mechanical engineering
models lead to FIE. FIEs occur in different real world models like the mass
dispensation of polymers in polymeric melt, linear forward modeling, signal
processes etc [7, 26]. The OCPs inclusive integral equations are a different
class of OCPs that have a substantial role in population dynamics, econ-
omy, heat conduction, continuum mechanics, electrical power centers, water
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resource management, and mass transport [13, 19]. In particular, optimal
control of systems managed by FIE is significant in usages like the OCP
regarding the Ornstein-Uhlenbeck process which arises from statistical com-
munication theory [18]. In recent years, many methods for solving OCPs of
FIE, whether direct or indirect, have been proposed. One can read about
this subject in references [2, 1, 8, 10, 16, 20, 24].
ProblemB: Determine the optimal control vector u∗ and the correspond-
ing optimal state vector x∗ for a category of OCPs governed by a system of
nonlinear FIEs described as follows:

min J(x, u) =

∫ T

0

F (t, x1(t), · · · , xn(t), u1(t), · · · , um(t))dt, (1)

subject to

xj(t) = yj(t)+

∫ T

0

Kj(t, s, x1(s), · · · , xn(s), u1(s), · · · , um(s))ds, j = 1, · · · , n,

(2)
where x = [x1, x2, · · · , xn]T ∈ ℜn, u = [u1, u2, · · · , um]T ∈ ℜm, F ∈
C([0, T ],ℜn,ℜm) and Kj ∈ C([0, T ], [0, T ],ℜn,ℜm).
Many researchers have been solved and carefully examined non-linear system
of FIEs by utilizing orthogonal basis functions. For example, see the refer-
ences [3, 4, 21, 22]. The orthogonal nature causes the solution of the prelimi-
nary problem to transmute into an algebraic system of equations. More ever,
by utilizing an operational matrix of integral or derivative of these functions,
the computational convolution of the problem is substantially diminished.

For dissolving the mentioned problem, the Lagrange polynomials and
Gauss–-Legendre (GL) quadrature rule are used. A robust direct approach
is established to transform the problem B into a NLP. This method is based
on the expansion of control and state functions with Lagrange polynomials
together with the GL integration method. We have utilized Wolfram Math-
ematica 12 for obtaining the solution of the NLP. Convergence analysis and
related theorems are discussed in details. The reliability of the approach is
investigated numerically by dissolving some illustrative examples. The OCP,
which modeled the problem of classical mechanics for power lines are also
described and solved by propounded approach.

The remaining structure of our article is given as follows: In Section
2, by using approximation of control and state variables, we obtain a NLP
corresponding to problem B and also discuss about the method of solving
the resulted NLP. Convergence analysis is given in Section 3. In Section 4,
we demonstrate the efficiency of the propounded method to several examples
and show the computational results of the method. Finally, in Section 5,
concluding comments and future extensions are summarized.
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2 Proposed method

Consider the problem B in equations (1) and (2). In this section, by utilizing
the properties of Lagrange polynomials and GL integration, the considered
OCP is changed to a NLP, then the function NMinimze in Wolfram Mathe-
matica software is used to solve the resulted NLP.

2.1 Discretization of problem B

Firstly, we approximate the control function u(t) and corresponding state
function x(t) over the interval [0, T ] by the following linear combination of
the Lagrange polynomials

xj(t) ≈ xjN (t) =

N∑
i=0

xjiQi(t) = Xj
TQ(t), j = 1, · · · , n, (3)

and

uk(t) ≈ ukN (t) =

N∑
i=0

ukiQi(t) = Uk
TQ(t), k = 1, · · · ,m, (4)

where Q(t) = [Q0(t), Q1(t), · · · , QN (t)]T , Xj = [xj0, xj1, xj2, · · · , xjN ]T and
Uk = [uk0, uk1, uk2, · · · , ukN ]T , in which xji and uki for i = 0, 1, · · · , N ,
j = 1, · · · , n and k = 1, · · · ,m are the unknown coefficients and, Qi(t) are
the Lagrange polynomials which are defined as follows:

Qi(t) =
∏

0 ≤ s ≤ N
s ̸= i

t− ts
ti − ts

=
w(t)

(t− ti)w′(ti)
, (5)

where w(t) =
∏N
s=0(t − ts) and ti, for i = 0, 1, 2, · · · , N , are the zeros of

Legendre polynomials [11] transformed to the interval [0, T ]. The transfer is
done according to the interval in which the problem is defined. By discritizing
the FIE given in Eq (2) by using (3) and (4) and collocation nodes tq ,we
obtain for j = 1, · · · , n and q = 0, · · · , N

xjN (tq) = y(tq) +

∫ T

0

Kj(tq, s, x1N (s), · · · , xnN (s), u1N (s), · · · , umN (s))ds.

(6)
For using GL quadrature formula, a simple linear transmutation must be
produced with the following form

s =
T

2
(µ+ 1), (7)
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Then, the dynamical system (2) is converted to

xjN (tq) = y(tq) +
T

2

∫ 1

−1

Kj(tq,
T

2
(µ+ 1), x1N (

T

2
(µ+ 1)), · · · , xnN (

T

2
(µ+ 1)),

u1N (
T

2
(µ+ 1)), · · · , umN (

T

2
(µ+ 1)))dµ.

(8)

We apply the GL quadrature for approximating the integral given in Eq (8)

xj(tq) = y(tq) +
T

2

N∑
l=0

wlKj(tq,
T

2
(µl + 1), x1N (

T

2
(µl + 1)), · · · , xnN (

T

2
(µl + 1)),

u1N (
T

2
(µl + 1)), · · · , umN (

T

2
(µl + 1))),

(9)

where wl is defined as follows:

wl =
2

(1− (µl)2)(P
′
N+1(µl))

,

in which PN+1 is the Legendre polynomial of order N +1 [11]. By using GL
quadrature and equations (3) and (4), we can approximate the cost functional
in equation (1) as follows:

J(x, u) =

∫ T

0

F (t, x1(t), · · · , xn(t), u1(t), · · · , um(t)) dt ≈ T

2
(10)

∫ 1

−1

F

(
T

2
(µ+ 1), x1N

(
T

2
(µ+ 1)

)
, · · · , xnN

(
T

2
(µ+ 1)

)
, u1N

(
T

2
(µ+ 1)

)
, · · · , umN

(
T

2
(µ+ 1)

))
dµ ≈ T

2

N∑
l=0

wlF

(
T

2
(µl + 1), x1N

(
T

2
(µl + 1)

)
,

, · · · , xnN
(
T

2
(µl + 1)

)
, u1N

(
T

2
(µl + 1)

)
, · · · , umN

(
T

2
(µl + 1)

))
.

Eventually, the OCP governed by a system of FIE in problem B has been
reduced to a NLP by (10) as objective functional and (9) as constraints. We
call this NLP as problem BN .
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2.2 Optimization algorithm

In this paper, for solving NLP, which we call as problem BN , given in equa-
tions (9) and (10), the Nminimize function in Wolfram Mathematica has
been utilized. Nminimize find global optimum numerically. This function
implement several algorithms for solving optimization problems according to
the kind of optimization problem. Now by solving this NLP and determining
the vectors Xj and Uk for j = 1, · · · , n and k = 1, · · · ,m, we can find a
numerical solution of problem B given in equations (1) and (2).

3 Convergence analysis

We suppose that the finite set, PN , consists of all Lagrange polynomials from
degree less than or equal to N . The set of PN is linearly independent and
a basis of the vector space for polynomials of degree at most equal to N . If
F(t) is a function in L2[0, T ], F(t) has a best estimation F0 ∈ PN , so we
possess [17]

∀ g ∈ L2[0, T ] : ||F − F0||2 ≤ ||F − g||2. (11)

Suppose Sn ∈ PN , then there is coefficients sl, l = 0, 1, · · · , N , whereas

Sn =

N∑
i=0

slQl(t) = STQ(t), (12)

where S = [s0, s1, · · · , sN ], and Q(t) = [Q0(t), Q1(t), · · · , QN (t)].

Theorem 1. Let F ∈ L2[0, 1] be estimated by Lagrange polynomials {Qi}Ni=0

that is, FN :=
∑N
i=0 CiQi(t). If eN is absolutely error of FN , then ||F −

FN ||2 ≤ L
(N+2)! and limN→∞ eN = 0 and by increasing N ; the errors quickly

tends to zero. L is a constant.

Proof. The proof is given in [23].

Theorem 1 indicates the accuracy estimation of Lagrange polynomials.

Definition 1. The vectors x(t) ∈ ℜn and u(t) ∈ ℜm are called admissible,
if they satisfy in equation (2). The set of admissible pairs {(x, u)}, for j =
1, · · · , n, is defined as follows:

ψ = {(x(t), u(t))
∣∣∣xj(t) = yj(t) +

∫ T

0

Kj(t, s, x1(s), · · · ,

xn(s), u1(s), · · · , um(s))ds}. (13)

Define U as the admissible control functions. Let

xN = (x1N , x2N , · · · , xnN ), uN = (u1N , u2N , · · · , umN ), (14)
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then we have

xjN (t) = XT
j Q(t), j = 1, · · · , n; uiN (t) = UTi Q(t), i = 1, · · · ,m, (15)

and

ψN =
{
(xN (t), uN (t))

∣∣∣xjN (t) = y(t) +

∫ T

0

Kj(t, s, x1N (s),

· · · , xnN (s), u1N (s), · · · , umN (s))ds
}
. (16)

The proof of the following theorem is given by utilizing of the same argument
in [25], but some revisions are given according to the problem of our paper.

Theorem 2. Assume J∗
i = infψi

J and J∗ = infψ J and J∗ is finite and
unique, then the following relation is hold.

J∗
1 ≥ J∗

2 ≥ · · · J∗
r ≥ · · · ≥ J∗ = infψJ(x, t). (17)

Proof. From the definition of ψi, the following relation is hold

ψ1 ⊂ ψ2 ⊂ ψ3 · · · ⊂ ψN ⊂ · · · ⊂ ψ. (18)

According to (18), {J∗
i } is a non-increasing sequence that is bounded from

below, so it is convergent to J∗.

Remark 1. The computational distance can be transmuted from [0, T ] to
any ideal interval via an affine alteration.

Lemma 1. Suppose that ti and wi for 1 ≤ i ≤ N are GL nodes and weights
respectively, Let f(t) be Rimann integrable. Then [9]∫ 1

−1

f(t)dt = lim
N→∞

N∑
i=1

f(ti)wi. (19)

Theorem 3. Assume that x∗ ∈ ℜn is exact state solution of equation (2)
with u∗ ∈ ℜm as exact control functions, let x∗N and u∗N be numerical solu-
tions of

xjN (tq) = y(tq) +

∫ T

0

K(tq, s, x1N (s) · · · , xnN (s), u1N , · · · , umN ))ds. (20)

Also assume that the function K(t, s, x1(s), · · · , xn(s), u1(s), · · · , um(s)) sat-
isfies Lipschitz condition with respect to variables x and u as follows:

||K(t, s, x1(s), · · · , xn(s), u1(s), · · · , um(s))

−K(t, s, x′1(s), · · · , x′n(s), u′1(s), · · · , u′m(s))||2
≤ LK{||x1(s)− x′1(s)||2 + · · ·+ ||xn(s)− x′n(s)||2 + ||u1(s)− u′1(s)||2
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+ · · ·+ ||un(s)− u′m(s)||2}, (21)

where LK is Lipschitz constant. Then we have:

||x∗(tp)− x∗N (tp)||2 ≤
(

A
(N + 1)!

)
, (22)

where A is a constant which is non-dependent to N .

Proof. We have for j = 1, · · · , n,

||x∗j (t)− x∗jN (t)|| ≤ ||
∫ T

0

K (t, s, x∗1(s), · · · , x∗n(t), u∗1(s), · · · , u∗m(s)) ds

−
∫ T

0

K (t, s, x∗1N (s), · · · , x∗nN (s), u∗1N (s), · · · , u∗mN (s)) ds||2

≤
∫ T

0

||K (t, s, x∗1(s), · · · , x∗n(t), u∗1(s), · · · , u∗m(s)) ds

−K (t, s, x∗1N (s), · · · , x∗nN (s), u∗1N (s), · · · , u∗mN (s)) ds||2

≤ LK

∫ T

0

||x∗1(s)− x∗1N (s)||2 + · · ·+ ||x∗n(s)− x∗nN (s)||2

+ ||u∗1(s)− u∗1N (s)||2 + · · ·+, ||u∗m(s)− u∗mN (s)||2ds

= LK

n∑
i=1

∫ T

0

||x∗i (s)− x∗iN (s)||2ds

+ LK

m∑
i=1

∫ T

0

||u∗i (s)− u∗iN (s)||2ds

(23)

≤ LKT

n∑
i=1

||x∗i (s)− x∗iN (s)||2 + LKT

m∑
i=1

||u∗i (s)− u∗iN (s)||2

(24)

≤ 2LKT

(∑n
i=1 Li

(N + 1)!

)
+ 2LKT

(∑m
i=1 L

′

i

(N + 1)!

)

≤ 2LKT

(N + 1)!

(
n∑
i=1

Li +

m∑
i=1

L
′

i

)
≤ A

(N + 1)!
.

(25)

In (25) A = 2LKT
(∑n

i=1 Li +
∑m
i=1 L

′

i

)
, so by increasing N for j =

1, 2, · · · , n, ||x∗j (t)− x∗jN (t)|| goes to zero.
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4 Numerical experiments

In this section, the proficiency of the proposed technique is shown by applying
to some given numerical examples of OCP for systems governed by FIE.

Example 1. Observe the following OCP

min J(x(t), u(t)) =

∫ 1

0

(x(t)− 0.8182− 2.7273t2)2 + (u(t)− t2)2dt, (26)

subject to

x(t) = t2 +

∫ 1

0

(t2 + u(s))x(s)ds, (27)

with the exact solutions, u∗(t) = t2 and x∗(t) = 0.8182 + 2.7273t2.

By exerting the propounding method, the approximate solutions are
approximately x∗(t) = 0.8182 − 8.78094 ∗ 10−15t + 2.7273t2 and u∗(t) =
1.47439 ∗ 10−6 + 1.t2. The optimal value of J∗ for N = 2 is 1.20133 ∗ 10−11.

Example 2. Investigate the following minimization problem

J(x1(t), x2(t), u(t)) =

∫ 1

−1

(x1(t)−t2+1)2+(x2(t)−1+t2)2+(u(t)−sin(t))2dt,

(28)
subject to FIE system

x1(t) = t2 − 1 +

∫ 1

−1

t3u(s) (x1(s) + x2(s)) ds,

x2(t) = 1− t2 +

∫ 1

−1

(s− u(s))(x1(s) + x2(s))ds.

The precise optimal solutions of this OCP are x∗1(t) = t2 − 1, x∗2(t) = 1− t2

and u∗(t) = sin(t).

After dissolving with the propounded approach, we obtain the following
result

x1
∗(t) = −1 + 5.55112× 10−17t+ t2,

x2
∗(t) = 1 + 5.55112× 10−17 − 1t2

u∗(t) = −1.50469× 10−24 + 0.902957t− 1.11022× 10−16t2,

which approximates the exact functions with good approximation. The
Maclaurin series of sine function is sin(x) = x− x3

3! +
x5

5! − · · · . As we can see
in the approximate control function u∗(t) = −1.50469× 10−24 +0.902957t−
1.11022 × 10−16t2, the constant sentence and the coefficient of sentence in-
cludes x2 is approximately equal to zero. The optimal value of objective
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function for different value of N is given in Table 1. The numerical results
of this example with sinc wavelet for k = 5 and N = 10, 20 given in [16]
are reported in Table 1, which is comparable with our method. The value of
the objective function for N = 2 is more accurate than its value for N = 3,
because for N = 2, the quadratic functions of the state are approximated
with better accuracy. The plot of approximate function u∗(t) for N = 3 is
given in Figure 1. The plots of the absolute error of state functions x1 and
x2 for N = 3 are demonstrated in Figures 2 and 3.

Table 1: Optimal value of J∗ for Example 2

N 2 3
J∗ 8.55969× 10−33 1.07179× 10−31

N [16] 10 20
J∗ 6.88× 10−12 6.88× 10−12

Figure 1: The approximate function of u∗ in Example 2

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 243–261
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Figure 2: The absolute error of x∗
1 in Example 2

Figure 3: The absolute error of x∗
2 in Example 2

Example 3. Consider the following OCP governed by FIE systems

min
∫ 1

0

(x1(t)− t) +
(
x2(t)− t2

)
+
(
u(t)− e−t

)
subject to

x1(t) = t− e−t

4
+

∫ 1

0

u(t)x1(s)x2(s)ds,

x2(t) = t2 − e−t

5
+

∫ 1

0

u(t)x1
2(s)x2(s)ds

The exact solution of this OCP is x1∗(t) = t, x2∗(t) = t2 and u∗(t) = e−t.
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The approximate and exact optimal control and state functions for N = 2
are shown in Figure 4, 5 and 6, respectively. The optimal values of J∗ for
different values of N are given in the Table 2.

Figure 4: The exact and approximate optimal control for N = 2 in Example 3

Figure 5: The exact and approximate optimal state x1(t) for N = 2 in Example 3
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Figure 6: The exact and approximate optimal state x2(t) for N = 2 in Example 3

Table 2: Optimal value of J∗ for Example 3

N 2 3 4
J∗ 1.10430× 10−7 5.40995× 10−10 1.11407× 10−12

Example 4 (Hanging chain). In this example, we investigate a problem
from classical mechanics, which appears in power lines. If a flexible chain
is hung from two points, it forms a U shape that is called a catenary curve.
The resulting shape of the chain depends on the mass distribution along the
chain. Consider the following FIE from [14],

x(s) = g

∫ L

0

G(s, t)ϕ(t)dt, (29)

Here, x(s) and ϕ(s) are demonstrated the displacement of the chain and the
mass density of the chain respectively. g is the gravitational constant and

G(s, t) =

{
s(L−t)
T0L

0 ≤ s ≤ t
t(L−s)
T0L

t ≤ s ≤ L
(30)

In (30), T0 is the constant tension. In this example, we are looking for
the mass density distribution as the control function ϕ(t) that leads to a
prescribed shape x(t) as its corresponding state. Therefore, the OCP problem
is given as the minimization of the cost functional

J(x, u) =

∫ L

0

(
g(tL2 − t3)

6T0
− x(t)

)2

+ (ϕ(x)− x)
2
dx (31)
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subject to equation (29). The optimal control and state solutions are
ϕ∗(x) = x and x∗(t) = g(tL2−t3)

6T0
. In this example, we consider the following

parameters as L = 1, g = 9.8, T0 = 1. By applying the proposed algorithm
for N = 3, the graphs of the exact and approximate controls and trajectories
are given in figures 7 and 8. The optimal value of J∗ is 3.59596× 10−4. The
graph of error for control and state function is given in figures 9a and 9b.

Figure 7: The exact and approximate optimal control in Example 4

Figure 8: The exact and approximate optimal state in Example 4

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 243–261
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(a) The error of state function in Example 4

(b) The errors of control function in Example 4

Figure 9

Example 5. Find the optimal control u∗ and corresponding optimal state
x∗ that minimize objective function

min J =

∫ 1

0

(x1(t)− sin(t))2 +
(
x2(t)− e−3t

)2
+ (u(t)− t)

2
dt

subject to

x1(t) = h1(t)−
∫ 1

0

(
−t(u(s))2x1(s) + tu(s)x2(s)

)
ds,

x2(t) = h2(t)−
∫ 1

0

(t(u(s) + 1)x1(s) + t2u(s)x2(s))ds.

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 243–261
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where h1(t) = − sin(5t) − 23 cos(5)
125 t + 2 sin(5)

15 t + 107
1125 t −

4e−3

9 t and h2(t) =

e−3t+ 2cos(5)
5 t− sin(5)

25 t− t
5−

4e−3

9 t2+ t2

9 . The exact solutions are x∗1(t) = sin(t),
x∗2(t) = e−3t and u∗(t) = t. Figures 10, 11 and 12 are the graph of exact and
approximate solutions for N = 3 and N = 5, respectively.

Figure 10: The precise and proximate optimal control in Example 5

Figure 11: The accurate and proximate optimal state x1 in Example 5

Figure 12: The accurate and proximate optimal state x2 in Example 5
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Example 6. Find the optimal solutions that minimize objective function

min J =

∫ 1

0

(
x1(t)− (t+ et)

)2
+
(
x2(t)− et

)2
+ (x3(t)− (1 + cos(t)))2 +

(
u(t)− et

)2
dt

subject to

x1(t) +

∫ 1

0

3su(t)x2(s)ds = t+ 4et,

x2(t)−
∫ 1

0

6tesx1(s)− t2x3(s)ds = et − 3t(e2 + 1) + t2(sin(1) + 1)

x3(t)−
∫ 1

0

(4(x3(s)− 1) + x2(s)ds = cos(t)− (e+ 4 sin(1)) + 2

The exact solutions of this example are x∗1(t) = t + et, x∗2(t) = et, x∗3(t) =
1+cos(t) and u∗(t) = et. The absolute errors of u∗, x∗1, x∗2 and x∗3 for N = 3,
N = 4 and N = 5 are represented in Tables 3 and 4.

Table 3: Absolute errors of control and state functions in Example 6

N t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1
3 7.51115× 10−4 2.45764× 10−4 4.67421× 10−4 2.56842× 10−4 9.41652× 10−4

Ex1
4 3.99592× 10−5 7.55614× 10−6 5.88693× 10−7 9.47055× 10−6 486114× 10−5

5 1.83038× 10−6 9.19475× 10−7 8.9541× 10−7 9.96471× 10−7 2.13043× 10−6

3 4.91524× 10−4 2.60616× 10−4 5.32509× 10−4 3.01636× 10−4 5.72133× 10−4

Ex2
4 2.49372× 10−5 1.28883× 10−5 1.78345× 10−7 1.4376× 10−5 2.98331× 10−5

5 1.05009× 10−6 1.08341× 10−6 1.13318× 10−6 1.15422× 10−6 1.19212× 10−6

3 3.36834× 10−4 1.04755× 10−4 3.23772× 10−4 9.70093× 10−4 3.05991× 10−4

Ex3
4 6.42153× 10−6 3.47200× 10−6 9.92872× 10−6 4.26175× 10−6 8.97689× 10−6

5 6.20439× 10−7 6.10935× 10−7 5.82297× 10−7 5.87852× 10−7 5.74393× 10−7

3 4.34033× 10−4 2.24118× 10−4 6.13891× 10−4 2.32091× 10−4 5.65502× 10−4

Eu 4 1.93484× 10−5 1.40343× 10−5 7.62504× 10−7 1.68747× 10−5 2.46499× 10−5

5 8.13269× 10−7 1.17233× 10−6 1.16398× 10−6 1.27319× 10−6 9.68081× 10−7

Table 4: Absolute errors of objective functions in Example 6

N 3 4 5
J∗ 1.01824× 10−7 2.36092× 10−10 4.34198× 10−13

5 Conclusion

The FIEs have rich physical and Engineering backgrounds. These equations
got superior fondness across plenty of disciplines and broadly utilized in dy-
namical machinery with chaotic or quasi-chaotic treatment. In this article, a
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robust and efficient numerical approach based on Lagrange polynomials and
collocation approach is applied to obtain the solutions of OCP governed by
FIE system. At last, the prescribed problem is converted to a NLP. The re-
sulted NLP is solved by optimization algorithm. The preciseness of Lagrange
collocation approach can be readily concluded from the ameliorated results of
our presented approach. The propounded approach can be extended for the
approximation of solutions in OCPs involving FIE with fractional [5, 6, 12, 27]
and singular [15] kernels, however some modifications will be needed in the
method and convergence analysis.
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