
Iranian Journal of Numerical Analysis and Optimization
Vol. 13, No. 1, 2023, pp 80–101
https://doi.org/10.22067/ijnao.2022.69731.1023
https://ijnao.um.ac.ir/

How to cite this article
Research Article

Generalization of equitable efficiency in
multiobjective optimization problems by
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Abstract

We suggest an a priori method by introducing the concept of AP -
equitable efficiency. The preferences matrix AP , which is based on the
partition P of the index set of the objective functions, is given by the
decision-maker. We state the certain conditions on the matrix AP that
guarantee the preference relation ⪯eAP

to satisfy the strict monotonicity
and strict P -transfer principle axioms.

A problem most frequently encountered in multiobjective optimization
is that the set of Pareto optimal solutions provided by the optimization pro-
cess is a large set. Hence, the decision-making based on selecting a unique
preferred solution becomes difficult. Considering models with Ar

P -equitable
efficiency and A∞

P -equitable efficiency can help the decision-maker for over-
coming this difficulty, by shrinking the solution set.
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1 Introduction

A problem that sometimes occurs in classical multiobjective optimization is
that the set of efficient solutions is a large set. By using a priori methods,
we can generate finite sets of Pareto optimal solutions, which can help the
decision-maker in the task of selecting the most appropriate solution. A priori
methods are based on the preferences matrix, which evaluates how to com-
bine the objective functions by the decision-maker to introduce a preference
function. Note that in a priori methods, the preferences are expressed by
the decision-maker before the solution process (e.g., setting goals or weights
to the objective functions). The criticism about a priori methods is that it
is very difficult for the decision-maker to beforehand define and accurately
quantify his preferences; see [4].

The concept of equitable efficiency is a specific refinement of the Pareto
efficiency. While the Pareto efficiency assumes that the criteria are uncom-
parable (not measured on a common scale), the equitability is based on the
assumption that the criteria are comparable, impartial (anonymous), and
that the Pigou–Dalton principle of transfer holds. The impartiality axiom
makes the distribution of outcomes among the criteria more important than
the assignment of outcomes to specific criteria. Therefore models are the
equitable allocation of resources.

The equitable preference was first known as the generalized Lorenz dom-
inance [8, 10]. Kostreva and Ogryczak [6] and Kostreva, Ogryczak, and
Wierzbicki [7] are the first ones who introduced the concept of equitabil-
ity into multiobjective programming. They analyzed solution properties and
approaches to generating equitably efficient solutions. A complete prefer-
ence structure of equitability is derived by Bataar and Wiecek [1]. Further-
more, the concept of equitability in multiobjective programming is general-
ized within a framework of convex cones by Mut and Wiecek [11]. They
introduced the concept of A-equitable efficiency for solving the multiobjec-
tive optimization problems, where A is an arbitrary matrix with nonnegative
entries, and they also showed that the preference relation ⪯eA satisfies the
axioms of reflexivity, transitivity, and impartiality while the weak principle
of transfer requires a condition on the matrix A. Because the preference
relation ⪯eA does not satisfy the strict monotonicity and strict principle of
transfer axioms in general, the set of A-equitably efficient solutions does not
contain within the set of equitably efficient solutions and the set of Pareto
optimal solutions for the same problem. Foroutannia and Merati [3] stated
new conditions on the matrix A that guarantee to hold these axioms by the
preference relation ⪯eA.

Let the partition P of the index set of objective functions be given by
the decision-maker according to the importance of the objective functions.
The equitable rational preference relation is extended to P -equitable rational
preference relations by Mahmodinejad and Foroutannia [9]. They showed
that the concept of P -equitably efficient solutions is a specific refinement
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of Pareto optimality by adding the P -impartiality and P -transfer axioms.
Moreover, they obtained the P -equitably efficient solutions by decomposing
the original problem into a collection of smaller subproblems and then solved
the subproblems by the concept of equitable efficiency.

The equitable optimization method is applied to problems such as portfo-
lio, location, telecommunications, and resource allocation [12, 13, 14, 15, 16].
It should be noted that some authors have used the term “fair” rather than
“equitable”.

In this paper, we investigate a priori technique for attaining the decision-
maker preferences by introducing the concept of AP -equitable efficiency,
where the preferences matrix AP is based on the partition P of the index
set of objective functions given by the decision-maker. The current study is
an extension of some results obtained in [3, 9, 11].

The paper is organized as follows. Terminology and basic concepts are
presented in Section 2. In Section 3, we introduce the concept of AP -equitable
efficiency and give some conditions that ensure that the preference relation
⪯eAP

is a P -equitable rational preference relation. In Section 4, the concept
of Ar

P -equitably efficiency is examined to generate a subset of Pareto optimal
solutions, for r = 1, 2, . . .. In addition, a numerical example is provided to
confirm the efficiency of this method. Finally, Section 5 concludes the paper.

2 Terminology and review of the equitable preference

Let Rm be the Euclidean vector space and let y′, y′′ ∈ Rm. Then y′ ≦ y′′

means y′i ≤ y′′i for i = 1, . . . ,m and y′ < y′′ means y′i < y′′i for i = 1, . . . ,m,
and also y′ ≤ y′′ stands for y′ ≦ y′′ but y′ ̸= y′′.

Consider a decision problem defined as an optimization problem with m
objective functions. For simplification, we assume, without loss of general-
ity, that the objective functions are to be minimized. The problem can be
formulated as follows:

min (f1(x), f2(x), . . . , fm(x)) ,

subject to x ∈ X, (1)

where x denotes the vector of decision variables in the feasible set X and
f(x) = (f1(x), f2(x), . . . , fm(x)) is the vector function that maps the feasible
set X into the objective (criterion) space Rm. We refer to the elements of the
objective space as outcome vectors. An outcome vector y is attainable if it
expresses outcomes of a feasible solution, that is, y = f(x) for some x ∈ X.
The set of all attainable outcome vectors is denoted by Y = f(X).

In the single objective minimization problems, we compare the objective
values at different feasible decisions to select the best decision. Decisions are
ranked according to the objective values of those decisions, and any decision
with the smallest objective value is called an optimal solution. Similarly, to
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make the multiobjective optimization model operational, one needs to assume
some solution concepts specifying what it means to minimize multiobjective
functions. The solution concepts are defined by the properties of the corre-
sponding preference model. We assume that solution concepts depend only
on the evaluation of the outcome vectors while not taking into account any
other solution properties not represented within the outcome vectors. Thus,
we can limit our considerations to the preferred model in the objective space
Y .

In the rest of the section, some basic concepts and definitions of preference
relations are reviewed from [3, 6, 9, 11]. Preferences are represented by a weak
preference relation with the notation, ⪯, which allows us to compare pairs
of outcome vectors y′ and y′′ in the objective space Y . We say y′ ⪯ y′′ if
and only if “y′ is at least as good as y′′” or “y′ is weakly preferred to y′′”. In
other words, y′ ⪯ y′′ means that the decision-maker thinks that the outcome
vector y′ is at least as good as the outcome vector y′′. From ⪯, we can derive
two other important relations on Y .

Definition 1. Let y′, y′′ ∈ Rm and let ⪯ be a relation of weak preference
defined on Rm × Rm. The strict preference relation, ≺, is defined by

y′ ≺ y′′ ⇔ (y′ ⪯ y′′and not y′′ ⪯ y′), (2)

and read y′ is strictly preferred to y′′. Also the indifference relation, ≃, is
defined by

y′ ≃ y′′ ⇔ (y′ ⪯ y′′and y′′ ⪯ y′), (3)

and read y′ is indifferent to y′′.

Definition 2. Preference relations satisfying the following axioms are called
equitable rational preference relations:

1. Reflexivity: for all y ∈ Rm, y ⪯ y.

2. Transitivity: for all y′, y′′, y′′′ ∈ Rm, y′ ⪯ y′′ and y′′ ⪯ y′′′ ⇒ y′ ⪯ y′′′.

3. Strict monotonicity: for all y ∈ Rm, y − ϵei ≺ y for all ϵ > 0, where ei
denotes the ith unit vector in Rm, for all i ∈ {1, 2, . . . ,m}.

4. Impartial: for all y ∈ Rm

(y1, y2, . . . , ym) ≃ (yτ(1), yτ(2), . . . , yτ(m)),

where τ stands for an arbitrary permutation of components of y.

5. Strict transfer principle: for all y ∈ Rm and for all i, j ∈ {1, 2, . . . ,m}

yi > yj ⇒ y − ϵei + ϵej ≺ y,

where 0 < ϵ < yi − yj .
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A preference relation with the axioms reflexivity, transitivity, and strict
monotonicity is called rational preference relation. For y′, y′′ ∈ Y , we say
that y′ rationally dominates y′′, and denote by y′ ≺r y′′ if and only if y′ ≺ y′′

for all rational preference relations ⪯. An outcome vector y is rationally
nondominated if and only if there exist no other outcome vector y′ such
that y′ rationally dominates y. Analogously, a feasible solution x ∈ X is
an efficient or Pareto optimal solution to the multiobjective problem (1) if
and only if y = f(x) is rationally nondominated. It has been shown in [6]
that y′ ≺r y′′ if and only if y′ ≤ y′′. As a consequence, we can state that
a feasible solution x ∈ X is a Pareto optimal solution to the multiobjective
problem (1) if and only if there exist no x′ ∈ X such that fi(x′) ≤ fi(x) for
i = 1, 2, . . . ,m, where at least one strict inequality holds.

The set of all Pareto optimal solutions x ∈ X is denoted by XE and called
the efficient set. The set of all rationally nondominated points y = f(x) ∈ Y ,
where x ∈ XE , is denoted by YN and called the nondominated set.

The equitable rational preference relations allow us to define the concept
of equitably efficient solution.

Definition 3. Let y′, y′′ ∈ Y . We say that y′ equitably dominates y′′, and
denote by y′ ≺e y

′′ if and only if y′ ≺ y′′ for all equitable rational preference
relations ⪯. An outcome vector y is equitably nondominated if and only if
there exist no other outcome vector y′ such that y′ equitably dominates y.
Analogously, a feasible solution x is called an equitably efficient solution of the
multiobjective problem (1) if and only if y = f(x) is equitably nondominated.

The set of all equitably efficient solutions x ∈ X is denoted by XeE and
called the equitably efficient set. The set of all equitably nondominated points
y = f(x) ∈ Y , where x ∈ XeE , is denoted by YeN and called the equitably
nondominated set.

Definition 4. Let y ∈ Rm.

1. The function θ : Rm → Rm is called an ordering map if and only if
θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) in
which θi(y) = yτ(i) for i = 1, 2, . . . ,m, and τ is a permutation of the
set {1, 2, . . . ,m}.

2. The function θ : Rm → Rm is called a cumulative ordering map if and
only if θ(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)), where θ̄i(y) =

∑i
j=1 θj(y) for

i = 1, 2, . . . ,m and the ordering map θ is given by part (1).

Note that θ(y) = ∆θ(y), where

∆ =


1 0 0 . . . 0
1 1 0 . . . 0
...
...
... . . .

...
1 1 1 . . . 1

 .
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is an m×m lower-triangular matrix and relates it to the equitable preference.
A relationship between the weak equitable preference relation ⪯e and the

Pareto relation has been established in [6]. The following proposition shows
finding nondominated points with respect to the weak equitable preference
relation ⪯e can be done by means of Pareto preference.

Proposition 1. [6, Proposition 2.3] For any two vectors y′, y′′ ∈ Y , we have

y′ ⪯e y
′′ ⇔ θ(y′) ≦ θ(y′′) ⇔ ∆θ(y′) ≦ ∆θ(y′′),

where the ordering map θ and the cumulative ordering map θ are given by
Definition 2.

Now, we review the concept equitably with respect to any matrix A, which
was introduced by Mut and Wiecek [11]. Assume that A = (aij) is an m×m
matrix with real entries. Then the cumulative map A(θ) : Rm → Rm is
defined by

A(θ(y)) =

 m∑
j=1

a1jθj(y),

p∑
j=1

a2jθj(y), . . . ,

m∑
j=1

apjθj(y)

 .

Definition 5. Let y′, y′′ ∈ Y . We say that y′ A-equitably dominates y′′, and
denote by y′ ≺eA y′′ if and only if A(θ(y′)) ≤ A(θ(y′′)). An outcome vector y
isA-equitably nondominated if and only if there exist no other outcome vector
y′ such that y′ A-equitably dominates y. Analogously, a feasible solution x
is called an A-equitably efficient solution of the multiobjective problem (1) if
and only if y = f(x) is A-equitably nondominated.

The set of all A-equitably efficient solutions x ∈ X is denoted by XeAE

and called the A-equitably efficient set. The set of all A-equitably nondomi-
nated points y = f(x) ∈ Y , where x ∈ XeAE , is denoted by YeAN and called
the A-equitably nondominated set.

Mut and Wiecek [11, Section 5] examined relationships between cone rep-
resentations and the axioms of preference relation ⪯eA. They showed that
the relation ⪯eA satisfies the axioms of reflexivity, transitivity, and impar-
tiality while the weak principle of transfer requires the following condition
on the matrix A.

Weak transfer principle: For all y ∈ Rm and for all i, j ∈ {1, 2, . . . ,m}

yi > yj ⇒ y − ϵei + ϵej ⪯ y,

where 0 ≤ ϵ ≤ yi − yj .

Proposition 2. [11, Corollary 5.11] Let A = [a1, a2, . . . , ap], where ai’s are
the columns of the matrix A, i = 1, . . . , p. The weak principle of trans-
fer axiom for the generalized equitable preference ⪯eA is equivalent to the
condition
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a1 ≧ a2 ≧ · · · ≧ ap,

on the matrix A.

The preference relation ⪯eA does not satisfy the strict monotonicity and
strict principle of transfer axioms in general. Therefore the set of A-equitably
efficient solutions is not contained within the set of equitably efficient solu-
tions and the set of Pareto optimal solutions for the same problem. Foroutan-
nia and Merati extended the work done by Mut and Wiecek and stated new
conditions on the matrix A that guarantee to satisfy these axioms by the
preference relation ⪯eA. They showed that the preference relation ⪯eA is an
equitable rational preference relation if and only if

a1 ≥ a2 ≥ · · · ≥ am ≥ 0,

where ai is the ith column of the matrix A.
The concept of P -equitable rational preference relation has been intro-

duced by Mahmodinejad and Foroutannia [9]. They studied some theoretical
and practical aspects of the P -equitably efficient solutions and showed that
the set of P -equitably efficient solutions is contained within the set of efficient
solutions for the same problem.

Definition 6. Let M = {1, 2, . . . ,m} be the index set of objective functions
f = (f1, f2, . . . , fm) and let n be a positive integer such that n ⩽ m. A
collection P = {Pk ⊆ M : k = 1, 2, . . . , n} is called a decomposition of M ,
and also it is said a partition of M if

⋃n
k=1 Pk = M, and Pi ∩ Pj = ∅ for all

i ̸= j, where i, j ∈ {1, 2, . . . , n} and Pk is index set of objective functions in
class k.

Definition 7. Rational preference relations satisfying the following axioms
are called P -equitable rational preference relations:

1. P -impartiality: yPk
≃ yτPk

for any permutation τ of components of
yPk

, k = 1, . . . , n.

2. Strict P -transfer principle:

yi > yj ⇒ y − ϵei + ϵej ≺ y,

where 0 < ϵ < yi − yj and i, j ∈ Pk for k = 1, . . . , n.

When n = 1, that is, P1 = {1, . . . ,m}, each P -equitable rational pref-
erence relation becomes an equitable rational preference relation. For more
details on the P -equitable rational preference relation, the reader may refer
to [9].

Definition 8. Let y′, y′′ ∈ Y . We say that y′ P -equitably dominates y′′,
and denote by y′ ≺Pe y′′ if and only if θ̄(y′Pk

) ≦ θ̄(y′′Pk
) for k = 1, . . . , n and

θ̄(y′Pk
) ≤ θ̄(y′′Pk

) for some k ∈ {1, . . . , n}. An outcome vector y is P -equitably
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nondominated if and only if there exist no other outcome vector y′ such that
y′ P -equitably dominates y. Analogously, a feasible solution x is called an
P -equitably efficient solution of the multiobjective problem (1) if and only if
y = f(x) is P -equitably nondominated.

The set of all P -equitably efficient solutions x ∈ X is denoted by XPE and
called the P -equitably efficient set. The set of all P -equitably nondominated
points y = f(x) ∈ Y , where x ∈ XPE , is denoted by YPN and called the
P -equitably nondominated set.

3 The concept of AP -equitable efficiency

In this section, we suggest an a priori method that is based on the pref-
erences matrix. The idea behind this is that the decision-maker classi-
fies the objective functions in different classes and determines a partition
P = {Pk ⊆ M : k = 1, 2, . . . , n} of {1, 2, . . . ,m} according to the importance
of objective functions. The decision-maker should give a preferences matrix
Ak for objective functions in class Pk for k = 1, 2, . . . , n. We introduce the
matrix AP = A1 ⊕ A2 ⊕ · · · ⊕ An, which is the direct sum of the matrices
A1, A2, . . . , An, that is,

AP =


A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . An

 .

The pairwise comparison matrix and its decompositions are one of the ways
which the decision-maker can use to provide a preference matrix Ak for objec-
tive functions in the class Pk (k = 1, 2, . . . , n). A pairwise comparison matrix
is used to compute for relative priorities of objective functions. The entry
(i, j) of a pairwise comparison matrix expresses the degree of the preference
of the ith objective over the jth objective. For more details, the reader is
referred to [5].

By the matrix AP , the cumulative map AP (θ) : Rm → Rm is defined as

AP (θ(y)) = (A1(θ(yP1)), A2(θ(yP2)), . . . , An(θ(yPn))),

for y ∈ Y , where yPk
= (yj)j∈Pk

for k = 1, 2, . . . , n. Note that Ak is a
|Pk| × |Pk| matrix and |Pk| is the cardinal of the set Pk.

Suppose that y′, y′′ ∈ Y are two outcome vectors. Throughout this paper,
the following notations is used:

AP (θ(y
′)) ≦ AP (θ(y

′′)) ⇔ Ak(θ(y
′
Pk
)) ≦ Ak(θ(y

′′
Pk
)) (k = 1, 2, . . . , n),
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AP (θ(y′)) ≤ AP (θ(y′′)) ⇔ (AP (θ(y′)) ≦ AP (θ(y′′)) and not AP (θ(y′′)) ≦ AP (θ(y′))),

and also

AP (θ(y′)) = AP (θ(y′′)) ⇔ (AP (θ(y′)) ≦ AP (θ(y′′)) and AP (θ(y′′)) ≦ AP (θ(y′))).

The following definitions are necessary for the solution concepts of this
paper.

Definition 9. Suppose that y′, y′′ ∈ Y are two outcome vectors. We say
that y′ AP -equitably dominates y′′ if and only if AP (θ(y

′)) ≤ AP (θ(y
′′)),

and that is denoted by y′ ≺eAP
y′′. Also we say that y is an AP -equitably

nondominated point if and only if there exit no y′ such that y′ ≺eAP
y. A

feasible solution x ∈ X is an AP -equitably efficient solution to the multiob-
jective problem (1) if and only if y = f(x) is an AP -equitably nondominated
point.

The set of all AP -equitably efficient solutions x ∈ X is denoted by XeAPE

and called the AP -equitably efficient set. The set of all AP -equitably non-
dominated points is denoted by YeAPN and called the AP -equitably nondom-
inated set.

Note that the relation ≺eAP
becomes the equitable relation when A1 =

∆ and P1 = {1, 2, . . . ,m}. Moreover, if A is an arbitrary matrix and
P1 = {1, 2, . . . ,m}, then Definition 5 holds. Also for Ak = ∆|Pk|×|Pk|
(k = 1, 2, . . . , n), Definition 8 holds.

Similar to the relation of AP -equitable dominance, we can define the
relation of AP -equitable indifference, ≃eAP

, and the relation of AP -equitable
weak dominance, ⪯eAP

. We say that y′ ≃eAP
y′′ if and only if AP (θ(y

′)) =
AP (θ(y

′′)), and also that y′ ⪯eAP
y′′ if and only if AP (θ(y

′)) ≦ AP (θ(y
′′)).

It is clear that the preference relation ⪯eAP
satisfies the reflexivity, tran-

sitivity, and P -impartiality axioms. In continue, we express some conditions
that guarantee the relation ⪯eAP

is a P -equitable rational preference rela-
tion. Throughout this section, we assume that eki ∈ Rk is the unit vector
with the ith component equal to one and the remaining ones equal to zero,
where k = 1, 2, . . . and i ∈ {1, 2, . . . , k}.

Theorem 1. The strict monotonicity axiom for the preference ⪯eAP
is equiv-

alent to the condition

aki ≥ 0 (i = 1, 2, . . . , |Pk|), (4)

where aki is the ith column of the matrix Ak and k = 1, 2, . . . , n.

Proof. We first prove that if the matrix Ap satisfies condition (4), then
the strict monotonicity axiom holds for the preference ⪯eAP

. Let y ∈ Y ,
i ∈ {1, 2, . . . ,m} and y′ = y − ϵemi , for ϵ > 0. We show that y′ ≺eAP

y, this
means that Aj(θ(y

′
Pj
)) ≦ Aj(θ(yPj

)) for j = 1, 2, . . . , n and Aj(θ(y
′
Pj
)) ≤

Aj(θ(yPj )), for some j ∈ {1, 2, . . . , n}. There exists an index k ∈ {1, 2, . . . , n}
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such that i ∈ Pk. For j ∈ {1, 2, . . . , n} − {k}, we have y′Pj
= yPj

, so
Aj(θ(y

′
Pj
)) = Aj(θ(yPj )). Since y′Pk

= yPk
− ϵe

|Pk|
i , we have y′Pk

≤ yPk
.

Hence

θ(y′Pk
) ≤ θ(yPk

).

Because akj ≥ 0 for j = 1, 2, . . . , |Pk|, we obtain

|Pk|∑
j=1

akijθj(y
′
Pk
) ⩽

|Pk|∑
j=1

akijθj(yPk
) (i = 1, 2, . . . , |Pk|),

and there is i′ ∈ {1, 2, . . . , |Pk|} such that

|Pk|∑
j=1

aki′jθj(y
′
Pk
) <

|Pk|∑
j=1

aki′jθj(yPk
).

So, Ak(θ(y
′
Pk
)) ≤ Ak(θ(yPk

)) and the proof is complete.
Conversely, suppose that the strict monotonicity axiom holds for the pref-

erence ⪯eAP
. For any k ∈ {1, 2, . . . , n}, we define the vector yj ∈ Rm such

that

yjPi
=

{
e
|Pi|
1 + · · ·+ e

|Pi|
j for j ⩽ |Pi|

0 otherwise,

for j = 1, 2, . . . ,maxk=1,2,...,n |Pk| and i = 1, 2, . . . , n. Let e ∈ Rm be defined
as ePk

= e
|Pk|
1 , for k = 1, 2, . . . , n. The strict monotonicity property implies

that

yj − e ≺eAP
yj , (j = 1, 2, . . . , max

k=1,2,...,n
|Pk|),

which concludes that akj ≥ 0 for j = 1, 2, . . . , |Pk| and k = 1, 2, . . . , n. Hence,
the matrix AP fulfills condition (4).

Remark 1. If n = 1 and P1 = {1, 2, . . . ,m}, then Theorem 3.1 in [3] holds.

To establish the strict P -transfer principle for the preference ⪯eAP
, we

need the following statement.

Proposition 3. [3, Proposition 3.1] Let x = (x1, x2, . . . , xm) and y =
(y1, y2, . . . , ym) be two vectors in Rm such that

i∑
j=1

xj ≤
i∑

j=1

yj (i = 1, 2, . . . ,m),
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where the strict inequality holds at least once. Also letW =
[
w1, w2, . . . , wm

]
be a matrix m × m and let wis be the columns of the matrix W for i =
1, . . . ,m. If

w1 ≥ w2 ≥ · · · ≥ wm ≥ 0, (5)

then
m∑
j=1

wijxj ≤
m∑
j=1

wijyj , (i = 1, 2, . . . ,m),

where the strict inequality holds at least once.

Corollary 1. Let x and y be vectors in Rm. If w1 ≥ w2 ≥ · · · ≥ wm ≥ 0
and

n∑
i=1

xi ≤
n∑

i=1

yi (n = 1, 2, . . . ,m),

then
m∑
i=1

wixi ≤
m∑
i=1

wiyi.

Proof. Let the matrix W = (wij) be defined by w1j = wj for j = 1, 2, . . . ,m
and wij = 0 for i = 2, . . . ,m. Using Proposition 3, the proof is obvious.

Theorem 2. The strict P -transfer principle for the preference ⪯eAP
is equiv-

alent to the following condition:

ak1 ≥ ak2 ≥ · · · ≥ ak|Pk|, (6)

where aki ’s are the columns of the matrix Ak, for i = 1, 2, . . . , |Pk| and k =
1, . . . , n.

Proof. Let y ∈ Y , i, j ∈ Pk, yi > yj , and y′ = y − ϵemi + ϵemj , where 0 < ϵ <
yi − yj . We show that y′ ≺eAP

y. This means that Al(θ(y
′
Pl
)) ≦ Al(θ(yPl

))
for l = 1, 2, . . . , n and Al(θ(y

′
Pl
)) ≤ Al(θ(yPl

)), for some l ∈ {1, 2, . . . , n}. If
l ∈ {1, 2, . . . , n} − {k}, then y′Pl

= yPl
, so Al(θ(y

′
Pl
)) = Al(θ(yPl

)).
Let α ∈ R be such that

ak1 + α ≥ ak2 + α ≥ · · · ≥ ak|Pk| + α ≥ 0. (7)

Since y′Pk
= yPk

− ϵe
|Pk|
i + ϵe

|Pk|
j and the equitable preference ⪯e satisfies the

strict transfer principle, we have θ̄(y′Pk
) ≤ θ̄(yPk

). Hence, by Proposition 3
and (7), we have

|Pk|∑
t=1

(akst + α)θt(y
′
Pk
) ⩽

|Pk|∑
t=1

(akst + α)θt(yPk
) (s = 1, 2, . . . , |Pk|),
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where the strict inequality holds at least s. On other hand,
∑|Pk|

t=1 θt(y
′
Pk
) =∑|Pk|

t=1 θt(yPk
) implies that

|Pk|∑
t=1

akstθt(y
′
Pk
) ⩽

|Pk|∑
t=1

akstθt(yPk
) (s = 1, 2, . . . , |Pk|),

where the strict inequality holds at least s. Hence, we have the desired result.
Conversely, suppose that the strict P -transfer axiom holds for the prefer-

ence ⪯eAP
. We define the vector yj ∈ Rm such that

yjPi
=

{
2e

|Pi|
1 + · · ·+ 2e

|Pi|
j for j ⩽ |Pi| − 1

0 otherwise,

for j = 1, 2, . . . ,maxi=1,2,...,n |Pi| and i = 1, 2, . . . , n.
Let ej ∈ Rm be defined as ejPi

= e
|Pi|
j for i = 1, 2, . . . , n and j =

1, 2, . . . ,maxi=1,2,...,n |Pi|. The strict P -transfer property implies that

yj − ej + ej+1 ≺eAP
yj , (j = 1, 2, . . . , max

i=1,2,...,n
|Pi|),

which conclude the desired result.

Remark 2. If n = 1 and P1 = {1, 2, . . . ,m}, then Theorem 3.2 in [3] and
Corollary 5.11 in [11] hold.

Theorems 1 and 2 imply that the preference relation ⪯eAP
is a P -equitable

rational preference relation if and only if the matrix AP fulfills conditions (4)
and (6), that is,

ak1 ≥ ak2 ≥ · · · ≥ ak|Pk| ≥ 0, (8)

for k = 1, . . . , n.

Theorem 3. Suppose that the matrix AP = A1 ⊕ A2 ⊕ · · · ⊕ An satisfies
condition (8). If x ∈ X is an AP -equitably efficient solution of multiobjec-
tive problem (1), then it is a P -equitably efficient solution of multiobjective
problem (1). Moreover, YeAPN ⊂ YPN .

Proof. Suppose that x is an AP -equitably efficient solution to (1). If x is not
a P -equitable efficient solution to (1), then a feasible solution x′ must exist
such that the outcome vectors y = f(x) and y′ = f(x′) satisfy y′ ≺P y, so
θ̄(y′Pk

) ≤ θ̄(yPk
) for k = 1, . . . , n. Using Proposition 3, we deduce that

|Pk|∑
j=1

akijθj(y
′
Pk
) ⩽

|Pk|∑
j=1

akijθj(yPk
) (i = 1, 2, . . . , |Pk|),
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where the strict inequality holds at least once. Hence y′ ≺eAP
y, which

contradicts the equitable AP -efficiency of x.

Remark 3. If n = 1 and P1 = {1, 2, . . . ,m}, then Theorem 3.3 in [3] holds.
Since the P -equitably efficient set is contained within the efficient set,

by applying Theorem 3, we can conclude XeAPE ⊂ XPE ⊂ XE , and hence
YeAPN ⊂ YPN ⊂ YN .

In general, the preference relation ⪯eAP
does not satisfy the strict mono-

tonicity and the strict P -transfer axioms. Also condition (8) is necessary
in Theorem 3. The truth of these statements is examined by the following
example.
Example 1. Let

X = Y =
{
(y1, y2) : y

2
1 + y22 ⩽ 1 and y2 ⩾ y1

}
.

If n = 1, AP =

[
0 1
−1 0

]
, a y =

[
−1/2
1/2

]
, and ϵ = 1/2, then y − 1

2e2 ⪯̸eAP
y

and y − 1
2e2 + 1

2e1 ⪯̸eAP
y. Hence, the preference relation ⪯eAP

does not
necessarily satisfy the strict monotonicity and the strict P -transfer axioms.
Also, we have

YN =

{
(y1, y2) : y

2
1 + y22 = 1,−1 ⩽ y1 ⩽ −1√

2
,
−1√
2
⩽ y2 ⩽ 0

}
,

YeAN =
{
(y1, y2) : y

2
1 + y22 = 1,−1 ⩽ y1 ⩽ 0, 0 ⩽ y2 ⩽ 1

}
.

Moreover YPN = {(−1√
2
, −1√

2
)}. Hence, YeAPN ⊈ YPN and YeAPN ⊈ YN .

Note that Definition 9 permits one to express AP -equitable efficiency for
problem (1) in terms of the standard efficiency for the multiobjective problem
with objectives Ak(θ(fPk(x))):

min{AP (θ(f(x))) : x ∈ X}. (9)

Theorem 4. A feasible solution x ∈ X is an AP -equitably efficient solution
to the multiobjective problem (1) if and only if it is an efficient solution to
the multiobjective problem (9).
Proof. The proof is trivial by Definition 9.

Remark 4. If n = 1 and P1 = {1, 2, . . . ,m}, then [11, Corollary 5.3] holds.
Also, if Ak = ∆|Pk|×|Pk| for all k = 1, 2, . . . , n, then [9, Theorem 3.2] holds.

4 The concept of A∞
P -equitably efficiency

In this section, we investigate the inclusion relations among Ar
P -equitably

efficient set, P -equitably efficient set, and efficient set. Then, we introduce
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the concept of A∞
P -equitable efficient to generate a subset of efficient solu-

tions, which aims to offer a limited number of representative solutions to the
decision-maker.

Let AP = A1⊕A2⊕· · ·⊕An and BP = B1⊕B2⊕· · ·⊕Bn be two m×m
matrices. The combined cumulative map (AP ◦BP )(θ) : Rm → Rm is defined
by

(AP ◦BP )(θ(y)) = AP (θ(BP (θ(y)))) ,

for y ∈ Y . If y′, y′′ ∈ Y , using the combined cumulative map, then we can
say that y′ (AP ◦BP )-equitably dominates y′′ if and only if

AP (θ(BP (θ(y
′)))) ≤ AP (θ(BP (θ(y

′′)))) ,

and that is denoted by y′ ≺e(AP ◦BP ) y′′. Also we say that y is an (AP ◦
BP )-equitably nondominated point if and only if there exit no y′ such that
y′ ≺e(AP ◦BP ) y. A feasible solution x ∈ X is an (AP ◦BP )-equitably efficient
solution to the multiobjective problem (1) if and only if y = f(x) is an
(AP ◦BP )-equitably nondominated point.

In order to make calculations easier, we present a condition on the matrix
BP whereby the vector BP (θ(y)) is decreasing for every outcome vector y ∈
Y .
Proposition 4. The condition

rBk
ij ⩾ rBk

(i+1)j (j = 1, 2, . . . , |Pk|), (10)

where rBk
ij =

∑j
t=1 b

k
it for i = 1, 2, . . . , |Pk| − 1 and k = 1, 2, . . . , n, is equiva-

lent to the statement that Bk(θ(yPk
)) is decreasing for all y ∈ Rm.

Proof. Put θ|Pk|+1(yPk
) = 0, by the Abel summation

|Pk|∑
j=1

bkijθj(yPk
) =

|Pk|∑
j=1

rBk
ij (θj(yPk

)− θj+1(yPk
)),

we obtain the desired result.

By the above proposition, we conclude that θ(BP (θ(y))) = BP (θ(y)) and

(AP ◦BP )(θ(y)) = AP (θ(BP (θ(y)))) = (APBP )(θ(y)),

where APBP is the product of the matrices AP and Bp, and also

APBP = A1B1 ⊕A2B2 ⊕ · · · ⊕ AnBn. (11)

It follows from what has been said above that the relation ⪯e(AP ◦BP ) is
equivalent to the relation ⪯eAPBP

, when the matrix BP satisfies condition
(10).
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In continue, we study the relationship between AP -equitably efficient so-
lutions and (AP ◦ BP )-equitably efficient solutions. To do this, we require
the following statements.

Proposition 5. Let A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bm) be two
m×m matrices, where aj and bj are the jth column of the matrices A and
B, respectively. If D = AB = (d1, d2, . . . , dm), where dj is the jth column of
the matrix D, then the following statements hold:

(i) If aj ≥ 0 and bj ≥ 0 for all j = 1, 2, . . . ,m, then dj ≥ 0 for all
j = 1, 2, . . . ,m.

(ii) If aj ≥ 0 for j = 1, 2, . . . ,m and bj ≥ bj+1 for j = 1, 2, . . . ,m− 1, then
dj ≥ dj+1 for j = 1, 2, . . . ,m− 1.

(iii) If rAi,j =
∑j

k=1 aik and rBi,j =
∑j

k=1 bik are decreasing with respect to
i for all j = 1, 2, . . . ,m, and also if rAi,j ⩾ 0 for i, j = 1, 2, . . . ,m, then
rDi,j =

∑j
k=1 dik is decreasing with respect to i for all j = 1, 2, . . . ,m.

Proof. (i) We have

dj =

(
m∑

k=1

aikbkj

)m

i=1

.

The condition bj ≥ 0 implies that bkj ⩾ 0 for all k = 1, 2, . . . ,m and bk′j > 0
for some k′ ∈ {1, 2, . . . ,m}. Also, ak′ ≥ 0 concludes that aik′ ⩾ 0 for any
i = 1, 2, . . . ,m and ai′k′ > 0 for some i′ ∈ {1, 2, . . . ,m}. Thus aikbkj ⩾ 0 for
any i, k = 1, 2, . . . ,m and ai′k′bk′j > 0, which means that dj ≥ 0.

(ii) The condition bj ≥ bj+1 implies that bkj − bk(j+1) ⩾ 0 for all k =
1, 2, . . . ,m and bk′j − bk′(j+1) > 0 for some k′ ∈ {1, 2, . . . ,m}. Also, ak′ ≥
0 concludes that aik′ ⩾ 0 for any i = 1, 2, . . . ,m and ai′k′ > 0 for some
i′ ∈ {1, 2, . . . ,m}. Thus aik(bkj − bk(j+1)) ⩾ 0 for i, k = 1, 2, . . . ,m and
ai′k′(bk′j − bk′(j+1)) > 0, which means that

m∑
k=1

aikbkj ⩾
m∑

k=1

aikbk(j+1) (i = 1, 2, . . . ,m),

and the strict inequality holds when i = i′. Hence dj ≥ dj+1 for j =
1, 2, . . . ,m− 1.

(iii) Since rBi,j is decreasing with respect to i for j = 1, 2, . . . ,m, we obtain

n∑
t=1

bit ⩾
n∑

t=1

b(i+1)t (n = 1, 2, . . . ,m).

For all j ∈ {1, 2, . . . ,m}, we set wt =
∑j

k=1 atk = rAtj . Using Corollary 1, we
see that
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m∑
t=1

j∑
k=1

atkbit ⩾
m∑
t=1

j∑
k=1

atkb(i+1)t.

Therefore
j∑

k=1

m∑
t=1

atkbit ⩾
j∑

k=1

m∑
t=1

atkb(i+1)t,

and
j∑

k=1

dik ⩾
j∑

k=1

d(i+1)k,

for all j = 1, 2, . . . ,m. This completes the proof of part (iii).

Theorem 5. Let AP = A1 ⊕ A2 ⊕ · · · ⊕ An and BP = B1 ⊕ B2 ⊕ · · · ⊕ Bn

be two m×m matrices. We have the following statements.

(i) If the matrix AP satisfies condition (4) and the matrix BP satisfies
condition (8), then the matrix APBP fulfills condition (8). Thus, the
preference relation ⪯e(APBP ) is a P -equitable rational preference re-
lation. Moreover, if the matrix BP satisfies condition (10), then the
preference relation ⪯e(AP ◦BP ) is a P -equitable rational preference rela-
tion.

(ii) If the matrices AP and BP satisfy condition (10) and also if the matrix
AP fulfills condition (4), then the matrix APBP satisfies condition (10).

Proof. By using relation (11) and Proposition 5, we obtain the desired results.

Theorem 6. Let AP = A1 ⊕ A2 ⊕ · · · ⊕ An and BP = B1 ⊕ B2 ⊕ · · · ⊕ Bn

be two m×m matrices. Also let the matrix AP satisfy condition (4) and the
matrix BP satisfy condition (8). If y′ and y′′ are two outcome vectors, then

y′ ≺eBP
y′′ =⇒ y′ ≺e(APBP ) y

′′,

y′ ⪯eBP
y′′ =⇒ y′ ⪯e(APBP ) y

′′.

Hence Ye(APBP )N ⊂ YeBPN , which implies that Xe(APBP )E ⊂ XeBPE . More-
over if the matrix BP satisfies condition (10), then Ye(AP ◦BP )N ⊂ YeBPN and
Xe(AP ◦BP )E ⊂ XeBPE .

Proof. Let y′, y′′ ∈ Y and y′ ≺eBP
y′′. Then Bk(θ(y

′
Pk
)) ≦ Bk(θ(y

′′
Pk
)) for

k = 1, 2, . . . , n and Bk′(θ(y′Pk′ )) ≤ Bk′(θ(y′′Pk′ )) for some k′ ∈ {1, 2, . . . , n}.
Hence
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|Pk|∑
j=1

bkijθj(y
′
Pk
) ⩽

|Pk|∑
j=1

bkijθj(y
′′
Pk
) (i = 1, 2, . . . , |Pk| and k = 1, 2, . . . , n),

and there exists i′ ∈ {1, 2, . . . , |Pk′ |} such that

|Pk′ |∑
j=1

bk
′

i′jθj(y
′
Pk′ ) <

|Pk′ |∑
j=1

bk
′

i′jθj(y
′′
Pk′ ).

Now according to condition (4), we have akti ⩾ 0 for i = 1, 2, . . . , |Pk| and
k = 1, 2, . . . , n, and there exists t′ ∈ {1, 2, . . . , |Pk′ |} such that ak′

t′i′ > 0. This
implies that

|Pk|∑
j=1

(AkBk)tjθj(y
′
Pk
) ⩽

|Pk|∑
j=1

(AkBk)tjθj(y
′′
Pk
)

(t = 1, 2, . . . , |Pk| and k = 1, 2, . . . , n),

and the strict inequality holds when k = k′ and t = t′. Therefore y′ ≺e(APBP )

y′′. Moreover, suppose that the matrix BP fulfills condition (10). Since the
preference relations ≺e(APBP ) and ≺e(AP ◦BP ) are equivalent, the proof is
complete.

Let AP = A1 ⊕ A2 ⊕ · · · ⊕ An be an m ×m matrix and let r = 1, 2, . . ..
The cumulative map Ar

P (θ) : Rm → Rm is defined as

Ar
P (θ(y)) = (AP ◦AP ◦ · · · ◦ AP︸ ︷︷ ︸

r−times

)(θ(y)),

for y ∈ Y . If conditions (10) and (4) are satisfied by the matrix AP , then

Ar
P (θ(y)) = (APAP . . . AP︸ ︷︷ ︸

r−times

)(θ(y)).

The following statement states the relationship among Ar
P -equitable effi-

cient solutions, P -equitable efficient solutions, and efficient solutions to mul-
tiobjective problem (1).

Corollary 2. Suppose that the matrix AP satisfies conditions (8) and (10).
Then YeAr+1

P N ⊂ YeAr
PN ⊂ YPN ⊂ YN . Moreover, XeAr+1

P E ⊂ XeAr
PE ⊂

XPE ⊂ XE .

Proof. The first inclusion follows by replacing Ar
P instead of BP , in Theorem

6. Also, by applying Theorem 3, we deduce the second inclusion.

By using Corollary 2, we conclude the following statement for P1 =
{1, 2, . . . ,m}.
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Corollary 3. Suppose that the matrixA satisfies conditions (8) and (10).Then
YeAr+1N ⊂ YeArN ⊂ YeN ⊂ YN . Moreover, XeAr+1E ⊂ XeArE ⊂ XeE ⊂ XE .

Condition (8) in the above results are necessary. To investigate this fact,
we give the following example.

Example 2. Let Y and AP be defined as in Example 1. Although condition
(10) holds, condition (8) does not hold, and we have

YA4reN = YN =

{
(y1, y2) : y

2
1 + y22 = 1,−1 ⩽ y1 ⩽ −1√

2
,
−1√
2
⩽ y2 ⩽ 0

}
,

YA4r+1eN =
{
(y1, y2) : y

2
1 + y22 = 1,−1 ⩽ y1 ⩽ 0, 0 ⩽ y2 ⩽ 1

}
,

YeA4r+2N =

{
(y1, y2) : y

2
1 + y22 = 1, 0 ⩽ y1 ⩽ 1√

2
, 0 ⩽ y2 ⩽ 1

}
,

YA4r+3eN =
{
(y1,−y1) : y

2
1 + y22 = 1, y2 = y1

}
,

for r = 0, 1, 2, . . .. We observe that Corollary 2 does not hold.

According to Corollary 2, we offer an algorithm to compute the Ar
P -

equitably efficient solutions to the multiobjective problem (1).

Algorithm 1
Input: Consider the feasible solution X and the objective functions f as in
problem (1). Determine a partition P = {P1, P2, . . . , Pn} of {1, 2, . . . ,m}, a
matrix AP , and an integer r ∈ {1, 2, . . .}, according to the decision-maker.
Step 1: Put X1 = X and k = 1.
Step 2: Solve the following multiobjective problem

min{Ak
P (θ(f(x))) : x ∈ Xk}. (12)

Step 3: If k = r, stop. Otherwise, put Xk+1 = XeAk
PE and k = k + 1, go to

Step 2.
Output: The set Xr is Ar

P -equitably efficient set.

In the first iteration of Algorithm 1, the AP -equitably efficient solutions
to the multiobjective problem (1) are computed. Then these solutions are
gradually reduced in the next iterations. Finally, the Ar

P -equitably efficient
solutions are obtained in the last iteration.

In the following example, we investigate Corollary 2 and Algorithm 1
and show that Ar

P -equitably efficient sets are reducing when r is increasing.
For this purpose, a large number of random solutions are generated for the
scalable test function. From this large set of solutions, efficient solutions,
P -equitably efficient solutions, and Ar

P -equitably efficient solutions are cal-
culated for r = 1, 2, 3.

Example 3. The test problem considered is the F1 (see [2])
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Figure 1: The efficient solutions, P -equitably efficient solutions and ArP -
equitably efficient solutions of the F1 problem (2 variables and 6 objectives)
for r = 1, 2, 3.

19

Figure 1: Efficient solutions, P -equitably efficient solutions, and Ar
P -equitably efficient

solutions of the F1 problem (2 variables and 6 objectives) for r = 1, 2, 3.

min
x∈R2

y = {f1(x), f2(x), f3(x), f4(x), f5(x), f6(x)}

f1(x) = x2
1 + (x2 + 1)2

f2(x) = (x1 − 0.5)2 + (x2 + 0.5)2

f3(x) = (x1 − 1)2 + x2
2

f4(x) = (x1 + 1)2 + x2
2

f5(x) = (x1 − 0.5)2 + (x2 − 0.5)2

f6(x) = x2
1 + (x2 − 1)2

x1, x2 ∈ [−1, 1].

In Figure 1 from 3000 random solutions, 1804 solutions (blue point) are
efficient. Let P1 = {1, 2, 3}, P2 = {4, 5, 6}, and

A1 =

 1 0 0
0.5 0.5 0
0.4 0.4 0.2

 , A2 =

 1 0 0
0.5 0.4 0
0.4 0.3 0.2

 ,

be given by the decision-maker. We obtain 230 P -equitably efficient solutions,
144 AP -equitably efficient solutions, 44 A2

P -equitably efficient solutions, and
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34 A3
P -equitably efficient solutions, which are shown by yellow plus sign, red

circles, green square, and cyan star, respectively, in Figure 1.
We assume that the matrix AP satisfies conditions (8) and (10). Using

the results above, we can define infinite order dominance as follows:

≺eA∞
P
=
⋃
r∈N

≺eAr
P
,

where N = {1, 2, . . .}. This means that,

y′ ≺eA∞
P

y′′ ⇔ y′ ≺eAr
P
y′′ (for some r ∈ N).

Definition 10. The outcome vector y is A∞
P -equitably nondominated if and

only if there exist no other outcome vector y′ such that y′ ≺eA∞
P

y. Anal-
ogously, a feasible solution x is called an A∞

P -equitably efficient solution to
the multiobjective problem (1) if and only if y = f(x) is A∞

P -equitably non-
dominated.

Corollary 4. If the matrix AP satisfies conditions (8) and (10), then
YeA∞

P N =
⋂

r∈N YeAr
PN and YeA∞

P N ⊂ YPN ⊂ YN . Moreover, XeA∞
P E ⊂

XPE ⊂ XE .

Proof. By applying Definition 10 and Corollary 2, the proof is trivial.

Corollary 4 indicates that to reduce Pareto optimal solutions and P -
equitably efficient solutions, we can use A∞

P -equitably efficient solutions.
For n = 1 and P1 = {1, 2, . . . ,m}, by applying Corollary 4, we conclude

the following statement.

Corollary 5. Suppose that the matrix A satisfies conditions (8) and (10).
Then YeA∞N =

⋂
r∈N YeArN and YeA∞N ⊂ YeN ⊂ YN . Moreover, XeA∞E ⊂

XeE ⊂ XE .

5 Conclusion

In this paper, we focused on a new concept of rational AP -equitable efficiency
for solving the multiobjective optimization problems, where the preferences
matrix AP is given by the decision-maker. This concept was obtained by
rational preference relations on the certain cumulative vector AP (θ(y)) for
y ∈ Y . We examined some conditions that ensure the preference relation
⪯eAP

is a P -equitable rational preference relation. Moreover, we expressed
the concept of Ar

P -equitable efficiency to generate a subset of Pareto optimal
solutions for r = 1, 2, . . .. Also, we proved that the Ar

P -equitably efficient
sets are decreasing with respect to r and that the intersection of these sets
is the A∞

P -equitably efficient set. Furthermore, an experiment was carried
out on randomly generated solutions in order to better compare the efficient
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solutions, the P -equitably efficient solutions, and the Ar
P -equitably efficient

solutions. This experiment indicated that the size of the Ar
P -equitably effi-

cient sets is considerably smaller than the size of the efficient set.

References

[1] Baatar, D. and Wiecek, M.M. Advancing equitability in multiobjective
programming, Comput. Math. Appl. 52(1-2) (2006), 225–234.

[2] Farina, M. and Amato, P. On the optimal solution definition for many
criteria optimization problems, In Proceedings of the NAFIPS-FLINT
International Conference (2002), 233–238.

[3] Foroutannia, D. and Merati, M. Generalisation of A-equitable preference
in multiobjective optimization problems, Optimization, 70(9) (2021),
1859–1874.

[4] Hwang, C.L. and Masud, A. Multiple objective decision making, methods
and applications: A state of the art survey, Lecture Notes in Economics
and Mathematical Systems, vol. 164, Springer-Verlag, Berlin, 1979.

[5] Jalao, E.R., Wu, T. and Shunk, D. An intelligent decomposition of pair-
wise comparison matrices for large-scale decisions, Eur. J. Oper. Res.
238(1) (2014), 270–280.

[6] Kostreva, M.M. and Ogryczak, W. Linear optimization with multiple
equitable criteria, RAIRO Oper. Res. 33(3) (1999), 275–297.

[7] Kostreva, M.M., Ogryczak, W. and Wierzbicki, A. equitable aggregations
in multiple criteria analysis, Eur. J. Oper. Res. 158(2) (2004), 362–377.

[8] Lorenz, M.O. Methods of measuring the concentration of wealth, Amer-
ican Statistical Association, New Series, 70 (1905), 209–219.

[9] Mahmodinejad, A. and Foroutannia, D. Piecewise equitable efficiency in
multiobjective programming, Oper. Res. Lett. 42 (2014), 522-526.

[10] Marshall, A.W. and Olkin, I. Inequalities: Theory of majorization and
its applications, Academic Press, New York, 1979.

[11] Mut, M. and Wiecek, M.M. Generalized equitable preference in multiob-
jective programming, Eur. J. Oper. Res. 212 (2011), 535–551.

[12] Ogryczak, W. Inequality measures and equitable approaches to location
problems, Eur. J. Oper. Res. 122(2) (2000), 374–391.

[13] Ogryczak, W. Multiple criteria linear programming model for portfolio
selection, Ann. Oper. Res. 97 (2000), 143–162.

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 80–101



101 Generalization of equitable efficiency in multiobjective optimization ...

[14] Ogryczak, W., Luss, H., Pioro, M. and Nace, D. A. Tomaszewski, Fair
optimization and networks: a survey, J. Appl. Math. 2014 (2014), Article
ID 612018, 25 pages.

[15] Ogryczak, W., Wierzbicki, A. and Milewski, M. A multi-criteria ap-
proach to fair and efficient bandwidth allocation, Omega, 36 (2008),
451–463.

[16] Ogryczak, W. and Zawadzki, M. Conditional median: a parametric solu-
tion concept for location problems, Ann. Oper. Res. 110 (2002), 167–181.

How to cite this article
Ahmadi, F., Salajegheh, A. R. and Foroutannia, D., Generalization of equi-
table efficiency in multiobjective optimization problems by the direct sum
of matrices. Iran. j. numer. anal. optim., 2023; 13(1): 80-101.
https://doi.org/10.22067/ijnao.2022.69731.1023.

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 80–101


	An improvised technique of quintic hermite splines to discretize generalized Burgers–Huxley type equations
	I. Kaur, S. Arora and I. Bala

