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Abstract

Forward-backward sweep method (FBSM) is an indirect numerical method
used for solving optimal control problems, in which the differential equation
arising from this method is solved by the Pontryagin’s maximum principle.
In this paper, a set of hybrid methods based on explicit 6th-order Runge–
Kutta method is presented for the FBSM solution of optimal control prob-
lems. Order of truncation error, stability region, and numerical results of
the new hybrid methods were compared with those of the 6th-order Runge–
Kutta method. Numerical results show that new hybrid methods are more
accurate than the 6th-order Runge–Kutta method and that their stability
regions are also wider than that of the 6th-order Runge–Kutta method.
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1 Introduction

Numerical methods used for solving optimal control problems (OCPs) are
generally divided into two categories, direct and indirect methods. Indirect
methods solve an OCP numerically based on the Pontryagin’s maximum
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principle. The Pontryagin’s maximum principle was proposed in 1954 by
Pontryagin, a Russian mathematician. In the indirect method, an OCP is
converted into a two-point boundary-value problem (TPBVP). The forward-
backward sweep method (FBSM) is one of indirect numerical methods, which
was first proposed in 2007 in a book entitled as “Optimal Control Applied
to Biological Models” written by Lenhart and Workman [13]. In 2009, Sil-
veira et al. [23] suggested six methods for classifying skin lesions in medical
images and concluded that the FBSM performs better than the other meth-
ods. In 2012, McAsey, Moua, and Han [16] proved the convergence of the
FBSM. In 2015, Moualeu et al. [17] used the FBSM to treat and control a
type of tuberculosis with unknown cases in Comeroon. In 2015, Rose in his
thesis [20] reported that the FBSM is more accurate than the direct shooting
method and optimization method of MATLAB . In 2015, Sana et al. [22] used
trapezoidal and Euler methods, instead of Runge–Kutta method through the
FBSM to solve an OCP, compared them with the 4th-order Runge–Kutta
method and concluded that trapezoidal and Runge–Kutta methods have the
same performance in solving the OCP. Indeed, the performance of these
two methods was improved by increasing step length compared to the Euler
method; see [21]. In 2017, Lhous et al. [15] proposed a discrete mathematical
model and optimal control to reduce the divorce rate. They used the Pon-
tryagin’s maximum principle and FBSM. They informed the people of the
community about advantages of marriage and disadvantages of divorce, and
in this way, they were able to reduce the divorce rate. In 2018, Kheiri and
Jafari [11] proposed a general formulation for a fractional optimal control
problem (FOCP), in which state and co-state equations are given in terms
of left fractional derivatives. They used an improved FBSM, by the Adams-
type method to solve the FOCP . In 2019, Duran, Candelo, and Ortiz [3]
used a modified FBSM for reconfiguring unbalanced distribution systems. In
2019, Kongjeen et al. [12] proposed a modified FBSM for analyzing electrical
charge of microgrids. In 2020, Ameen, Hidan, and Mostefaoui [1] proposed a
mathematical model for studying the relationship between fish consumption
and the prevalence of chronic heart disease (CHD). They used an improved
FBSM based on a predictor-corrector method and concluded that eating fish
reduces the risk of CHD and its mortality. In 2020, Bhih et al. [2] pro-
posed a new model of rumor on social media and determined three optimal
controls theoretically minimizing the number of spreader users, fake pages,
and related costs. They used the FBSM to solve their optimization system
in a duplicate process. In 2021, Ebadi et al. [9, 8] presented hybrid meth-
ods to numerically solve the OCP by the FBSM. They concluded that their
proposed methods are more accurate than the FBSM in the presence of the
explicit Runge–Kutta methods.

In this work, we present new hybrid methods for the FBSM solution of
OCP. The paper is organized as follows: In Section 2, new methods and their
order of truncation errors are presented. Stability analysis of the methods
discussed in Section 3. We review the OCP, FBSM, and its convergence in
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Sections 4− 6. The results and final conclusions are presented in Sections 7
and 8, respectively.

2 Hybrid methods and order of truncation errors

Hybrid methods used for solving stiff differential equations are mostly effi-
cient and have better response than other numerical methods. Consider the
following initial value problem (IVP):

x′ = f(t, x) , x ∈ Rn , x(t0) = x0 , t0 ≤ t ≤ tf , (1)

where f : [t0, tf ] × Rn → Rn. There are several explicit and implicit meth-
ods for solving such problems, but hybrid methods are more accurate than
Runge–Kutta and backward differential formulas methods and have a wide
range of stability; see [7, 5, 6, 4, 10]. Let us consider IVP in the form of (1).
Linear k-step methods of the following form have 2k+1 arbitrary parameter:

xn+1 = α1xn+α2xn−1+· · ·+αkxn−k+1+h{β0fn+1+β1fn+· · ·+βkfn−k+1},
(2)

where fn+1 = f(tn + h, xn+1), fn−m = f(tn −mh, xn−m) and fn = f(tn, xn)
for m = 1, 2, . . . , k− 1. For increasing order of k-step methods in the form of
(2), a linear combination of the slopes is used at several points between tn
and tn+1, where tn+1 = tn +h in which h is the step length on [t0, tf ]. Then,
the modified form of (2) with m slopes is given by

xn+1 =

k∑
j=1

αjxn−j+1 + h

k∑
j=0

βjfn−j+1 + h

m∑
j=1

µjfn+vj , (3)

where αj , βj , and µj are 2k+m+1 arbitrary parameters; see [10]. Methods
of form (3) with m off-step points are called hybrid methods, where

0 < vj < 1, vj ∈ R, j = 1, 2, . . . ,m,

and herein, we set k = 1 and m = 4. Hence, we write (3) as

xn+1 =α1xn (4)
+ h{β0fn+1 + β1fn}+ h{µ1fn+v1 + µ2fn+v2 + µ3fn+v3 + µ4fn+v4},

where α1, α2, β0, β1, and vis are arbitrary parameters and vi is not equal to
0 or 1 for i = 1, 2, 3, 4. Expanding each term in (4), in Taylor’s series about
tn, we can obtain a family of the 6th-order methods if the equations
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Table 1: Values of vis in cases No. 1, 2, 3, 4, and 5 of new proposed methods
vi case 1 case 2 case 3 case 4 case 5
v1 2.020e+00 2.020e+00 2.020e+00 2.020e+00 2.020e+00
v2 4.000e-01 2.000e-01 4.000e-01 4.000e-01 1.000e-01
v3 -2.000e-01 -3.000e-01 -2.000e-01 -2.000e-01 -2.000e-01
v4 -1.840e+00 -1.540e+00 -1.440e+00 -1.140e+00 -1.840e+00

Table 2: Values of vis in cases No. 6, 7, 8, 9, and 10 of new proposed methods
vi case 6 case 7 case 8 case 9 case 10
v1 2.020e+00 2.090e+00 2.020e+00 2.020e+00 2.020e+00
v2 4.000e-01 4.000e-01 3.000e-01 3.000e-01 4.000e-01
v3 -2.000e-01 -5.000e-01 -3.000e-01 -2.000e-01 -2.0000e-01
v4 -1.840e+00 -1.840e+00 -1.840e+00 -9.540e-02 -5.240e-01

α1 = 1,
β0 + β1 + c1 + c2 + c3 + c4 = 1,
β0 + c1v1 + c2v2 + c3v3 + c4v4 = 1

2 ,
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2
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1
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1
6 (β0 + c1v

3
1 + c2v
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3
4) =

1
24 ,

1
24 (β0 + c1v

4
1 + c2v

4
2 + c3v

4
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4
4) =

1
120 ,

1
120 (β0 + c1v

5
1 + c2v

5
2 + c3v

5
3 + c4v

5
4) =

1
720 ,

1
720 (β0 + c1v

6
1 + c2v

6
2 + c3v

6
3 + c4v

6
4) =

1
5040 ,

are satisfied, where the principal term of the truncation error is

1

7!
c7h

7x(7)(tn) + o(h8), c7 = 1− 7(β0 + c1v
7
1 + c2v

7
2 + c3v

7
3 + c4v

7
4).

In this paper, the coefficients of (4) are proposed and obtained by searching
and using coefficients that are more stable than the explicit Runge–Kutta
methods. Values of vi are determined with a wide stability region by searching
for the interval of [−2.5, 2.5]. The vi values are presented in ten cases as shown
in Tables 1 and 2. They are called as the new proposed methods in this
paper:

xn+1 = xn+h{β1fn+µ1fn+v1+µ2fn+v2+µ3fn+v3+µ4fn+v4+β0fn+1}, (5)

where fn+1 = f(tn+h, xn+1), fn+vi = f(tn+vih, xn+vi), and fn = f(tn, xn)
for i = 1, 2, 3, 4. Note that xn+1, xn+vi , and xn are numerical approximations
according to the exact values of the solution x(t) at tn+1 = tn + h, tn+vi =
tn + vih. For converting (5) into explicit methods at each step, the values of
xn+1 and xn+vi are predicted and used on right-hand side of the proposed
methods using the 6th-order explicit Runge–Kutta (RK6) method, respec-
tively, as follows:
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xn+1 = xn + h
180 (9k1 + 64k3 + 49k5 + 49k6 + 9k7),

k1 = hf(xn, yn),
k2 = hf(xn + h, yn + k1),
k3 = hf(xn + 1

2h, yn + 1
8 (3k1 + k2),

k4 = hf(xn + 2
3h, yn + 1

27 (8k1 + 2k2 + 8k3),

k5 = hf(xn + h
14 (7−

2
√
21), yn + k5h),

k5h = 1
392 (3(3

2
√
21− 7)k1 − 8(7− 2

√
21)k2 + 48(7− 2

√
21)k3)

+ 1
392 (−3(21− 2

√
21)k4),

k6 = hf(xn + h
14 (7 +

2
√
21), yn + 1

1960 (−5(231 + 5 2
√
21)k1

−40(7 + 2
√
21)k2 + k6h)

k6h = −320( 2
√
21)k3 + 3(21 + 121 2

√
21)k4 + 392(6 + 2

√
21)k5),

k7 = hf(xn + h, yn + 1
180 (15(22 + 7 2

√
21)k1 + 120k2

+40(7 2
√
21− 5)k3 + k7h),

k7h = −63(3 2
√
21− 2)k4 − 14(49 + 9 2

√
21)k5 + 70(7− 2

√
21)k6.

(6)

−
xn+1 = xn +

h

180
(9k1 + 64k3 + 49k5 + 49k6 + 9k7), (7)

−
xn+vi

= xn +
vih

180
(9k1 + 64k3i + 49k5i + 49k6i + 9k7i), i = 1, 2, 3, 4.

xn+1 = xn+h{β1fn+µ1

−
fn+v1+µ2

−
fn+v2+µ3

−
fn+v3+µ4

−
fn+v4+β0

−
fn+1}, (8)

where k3i, k5i, k6i, k7i, i = 1, 2, 3, 4, can be obtained by using the method 6
in which h is replaced by vih and

fn+1 = f(tn + h, xn+1), fn+vi = f(tn + vih, xn+vi), fn = f(tn, xn).

Now suppose that the order of (8) is 6 similar to (6). Thus, the difference
between exact and numerical solutions would be as follows:

x(tn+m)− xn+m = C7h
7x(p1)(tn) +O(h8). (9)

The difference operator associated with the 6th-order (8) can be written as

x(tn+1)− xn+1 = Ch7x(7)(tn) +O(h8),

where C is the error constant of (8). Therefore, we have the following theo-
rem.

Theorem 1. Given that (8) is of order p, then, p is equal to 6.

Proof. Suppose that i = 1, 2, 3, 4 and that xn is exact. According to (7) and
(8), one can write
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x(tn+1)− xn+1 =h

4∑
i=1

µi[f(tn+vi , x(tn+vi))− f(tn+vi , xn+vi)]

+ hβ0[f(tn+1, x(tn+1))− f(tn+1, xn+1)]

+ Chpx(p)(tn) +O(hp+1).

Considering the properties of the IVPs in (1), some values such as ηvi and
η1 belong to intervals of (xn+vi , x(tn+vi)) and (xn+1, x(tn+1)), respectively.
Thus, we can write

f(tn+vi , x(tn+vi))− f(tn+vi , xn+vi) =
∂f
∂x (tn+vi , ηn+vi

)(x(tn+vi)− xn+m),

f(tn+1, x(tn+1))− f(tn+1, xn+1) =
∂f
∂x (tn+1, ηn+1)(x(tn+1)− xn+1).

Therefore, using (9), we have

x(tn+1)− xn+1 =h

4∑
i=1

µi

[
∂f
∂x (tn+vi , ηn+vi)(x(tn+vi)− xn+vi)

]
+ hβ0

[
∂f
∂x (tn+1, ηn+1)(x(tn+1)− xn+1)

]
+ Chpx(p)(tn) +O(hp+1).

Applying (9) to this, we have

x(tn+1)− xn+1 =h

4∑
i=1

µi

[
∂f
∂x (tn+vi

, ηn+vi)Cvih
6x(6)(tn) +O(h6+1)

]
+ hβ0

[
∂f
∂x (tn+1, ηn+1)C1h

6x(6)(tn) +O(hp1+1)
]

+ Chpx(p)(tn) +O(hp+1)

=h6

{
4∑

i=1

µi

[
∂f
∂y (tn+vi , ηn+vi)Cvih

6−p+1x(p1)(tn)
]}

+ h6
{
β0

[
∂f
∂x (tn+1, ηn+1)C1h

6−p+1x(p1)(tn)
]

+Cx(7)(tn)
}
+O(h8).

Thus, it can be concluded that the order of (8) is 6.

3 Stability analysis of the new methods

In this section, stability analysis is done on new methods. Dahlquist test
problem is considered to investigate stability region of the methods presented
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in this study. Applying the Dahlquist test problem to (5) and inserting p = 6,
the following equations can be obtained:

−
xn+m =

(
1 +mh̄+

(mh̄)2

2!
+

(mh̄)3

3!
+

(mh̄)4

4!
+

(mh̄)5

5!
+

(mh̄)6

6!

)
xn,

(10)
m = 1, v1, v2, v3, v4,

where h̄ = hλ and µj ∈ R. Now, let us consider the new hybrid method
presented in this work:

xn+1 = xn+h{β1fn+β0

−
f n+1+µ1

−
f n+v1+µ2

−
f n+v2

+µ3

−
f n+v3+µ4

−
f n+v4}.

(11)
Substituting (10) into (11), the following equation is obtained:

xn+1 =xn + h̄

{
β1xn + β0xn

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!
+

(h̄)4

4!
+

(h̄)5

5!
+

(h̄)6

6!

)}
+ h̄

{
xn

4∑
i=1

µi

(
1 + (vih̄) +

(vih̄)
2

2!
+

(vih̄)
3

3!
+

(vih̄)
4

4!

+
(vih̄)

5

5!
+

(vih̄)
6

6!

)}
,

Inserting xn = rn into (11) and dividing it by rn, we can obtain

rn+1 = rn
{
1 + a1h̄+ a2h̄

2 + a3h̄
3 + a4h̄

4 + a5h̄
5 + a6h̄

6 + a7h̄
7
}
.

⇒ r = 1 + a1h̄+ a2h̄
2 + a3h̄

3 + a4h̄
4 + a5h̄

5 + a6h̄
6 + a7h̄

7,

a1 = β1 + β0 +

4∑
i=1

µi, a2 = β0 +

4∑
i=1

(viµi),

a3 =
1

2
(β0 +

4∑
i=1

(v2i µi)), a4 =
1

6
(β0 +

4∑
i=1

(v3i µi)),

a5 =
1

24
(β0 +

4∑
i=1

(v4i µi)), a6 =
1

120
(β0 +

4∑
i=1

(v5i µi)),

a7 =
1

720
(β0 +

4∑
i=1

(v6i µi)),

which is a stability polynomial of (11). Figure 1 compares the stability
region of methods 1 and 2 with that of the 6th-order Runge–Kutta (RK6)
method (note that method i means that the new method related to the case
i, i = 1, 2, 3, 4). As can be clearly seen, the stability region of the proposed
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Figure 1: (a) Stability region of the method 1 and RK6 method. (b) Stability region
of the method 2 and RK6 method.
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Figure 2: (a) Stability region of the method 3 and RK6 method. (b) Stability region
of the method 4 and RK6 method.

methods 1 and 2 is much wider than that of the RK6 method. Stability region
of the proposed methods 3 and 4 is presented in Figure 2 and is compared with
that of the RK6 method. According to Figure 2, methods 3 and 4 presented
in this paper have a wider range of stability than the RK6 method, showing
the efficiency of the proposed methods. Methods 5 and 6 are compared with
RK6 method in terms of stability region in Figure 3. As demonstrated in
Figure 3, the proposed methods 5 and 6 have a wider stability region than
the RK6 method, showing that the efficiency of the proposed methods is
higher than the RK6 method.
Figure 4 compares the stability region of methods 7 and 8 with that of the

RK6 method. As can be seen, methods 7 and 8 have a wider range of stability
than the RK6 method. Figure 5 also shows the superiority of the methods
proposed in this paper over the RK6 method. As depicted in Figure 5, the
width of stability region of methods 9 and 10 is higher compared to the RK6
method.
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Figure 3: (a) Stability region of the method 5 and RK6 method. (b) Stability region
of the method 6 and RK6 method.
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Figure 4: (a) Stability region of the method 7 and RK6 method. (b) Stability region
of the method 8 and RK6 method.
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Figure 5: (a) Stability region of the method 9 and RK6 method. (b) Stability region
of the method 10 and RK6 method.
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4 Optimal control problems

An OCP includes a cost function J(x, u), a set of state variables, x ∈ X,
and a set of control variables, u ∈ U. An OCP is solved to find a piecewise
continuous control u(t), t0 ≤ t ≤ tf , and the associated continuous state
variable x(t), in order to minimize the given objective function. For more
explanation, we need a few definitions.

Definition 1 (Lagrange and Bolza problems). The basic problem in La-
grange form is

J(x, u) =

∫ tf

t0

g(t, x(t), u(t))dt. (12)

Adding another term to functional (12), the Bolza problem is obtained:

J(x, u) = h(tf , x(tf )) +

∫ tf

t0

g(t, x(t), u(t))dt.

An OCP is
max
u

J =

∫ tf

t0

g(t, x(t), u(t))dt, (13)

x′(t) = f(t, x(t), u(t)),

x(t0) = x0.

Note that min{J} = −max{−J}; see [19].

Definition 2 (Hamiltonian). Consider the OCP (13). The function H(t, x, u, λ)
is called as the Hamiltonian function and is equal to

H(t, x, u, λ) = g(t, x, u) + λf(t, x, u)

where λ is an adjoint variable.

Theorem 2 (Pontryagin Maximum Principle). Consider the OCP (13). Sup-
pose that g(t, x, u) and f(t, x, u) are both continuously differentiable func-
tions in their three arguments and concave in x and u. If u∗ is a control with
associated state x∗ and λ is a piecewise differentiable function such that u∗,
x∗, and λ together are satisfied

gu + λfu = 0 ⇔ ∂H

∂u
= 0,

λ′ = −(gx + λfx) ⇔ λ′ = −∂H

∂x
,

λ(tf ) = 0,

λ(t) ≥ 0,
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on t0 ≤ t ≤ tf , then
J(x∗, u∗) ≥ J(x, u),

for any admissible pair (x, u).

Proof. We refer readers to [13].

Theorem 3. [13]. Let the set of controls for problem (13), be Lebesgue
integrable functions and let t0 ≤ t ≤ tf in R. Suppose that f(t, x, u) is
concave in u and there exist constants c1, c2, c3 > 0, c4 and β > 1, such that

f(t, x, u) = α(t, x) + β(t, x)u,

|f(t, x, u)| ≤ c1(1 + |x|+ |u|),
|f(t, x1, u)− f(t, x, u)| ≤ c2|x1 − x|(1 + |u|),

g(t, x, u) ≤ c3|u|β − c4,

for all t with t0 ≤ t ≤ tf , x1, x2, u ∈ R.
Then there exists an optimal pair (x∗, u∗) maximizing J, with finite J(x∗, u∗).

5 Forward-backward sweep method

For numerically solving the OCP (13) using the indirect method, an algorithm
is introduced according to the literature [13]. For solving such problems
numerically first, an algorithm that generates an approximation to an optimal
piecewise continuous control u∗, must divide the time interval of [t0, tf ] into
pieces with specific points of interest t0 = b1, b2, . . . , bN , bN+1 = tf ; and
these points will usually be equally spaced. Approximation will be a vector
−→u = (u1, u2, . . . , uN+1), where ui ≈ u(bi). Any solution to the above OCP
must also be satisfied:

x′(t) = f(t, x(t), u(t)), x(t0) = x0,

λ′ = −∂H

∂x
, λ(tf ) = 0,

∂H

∂u
= 0 at u∗.

The third equation, namely, optimality condition, can usually be manipu-
lated to find a representation of u∗ in terms of t, x, and λ. Then, the first
two equations form a TPBVP. The generalized problem can be solved us-
ing indirect methods, which are numerical techniques used for solving. The
FBSM is one of these methods. A rough outline of the algorithm is given
below.
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Here, −→x = (x1, x2, . . . , xN+1) and −→
λ = (λ1, λ2, . . . , λN+1) are the vector

approximations for the state and adjoint.
1. Make an initial guess for −→u over the interval.

2. Using the initial condition x1 = x(t0) = a and the value for −→u , solve −→x
forward in time according to its differential equation in the optimality
system.

3. Using the transversality condition λN+1 = λ(tf ) = 0 and the values
for −→u and −→x , solve −→

λ backward in time according to its differential
equation in optimality system.

4. Update −→u by entering the new −→x and −→
λ values into the characteriza-

tion of the optimal control.

5. Check convergence. If values of variables in this iteration and the last
iteration are negligibly close, then the current values are considered as
output solutions. If values are not close, then return to Step 2.

6 Convergence of FBSM

For notational simplicity, we express the problem as finding (x(t), λ(t), u(t))
such that

x′(t) = f(t, x(t), u(t)), x(t0) = x0,

λ′(t) = k1(t, x(t), u(t)) + λ(t)k2(t, x(t), u(t)), λ(tf ) = 0,

u(t) = k3(t, x(t), u(t)).

Here, x0 ∈ Rn and t0 < tf are the given real numbers. For a convergence
analysis of the FBSM, we will make the following assumptions:
(T ) The functions of f, k1, k2, and k3 are Lipschitz continuous with re-
spect to their second and third arguments, with Lipschitz constants of
Lf , Lk1

, Lk2
, Lk3

. Moreover, Λ = ∥λ∥∞ and H = ∥k2∥∞ < ∞.
Theorem 4. Under the assumptions (T ), if

c0 ≡Lk3
{[exp(Lf (tf − t0))− 1]}+ Lk3

{(Lk1
+ ΛLk2

)

1

H
[exp(H(tf − t0))− 1][exp(Lf (tf − t0)) + 1]

}
< 1,

then the FBSM is convergent, that is, as n → ∞,

max
t0≤t≤tf

|x(t)− x(n)(t)|+ max
t0≤t≤tf

|λ(t)− λ(n)(t)|+ max
t0≤t≤tf

|u(t)− u(n)(t)| → 0.

Proof. We refer the reader to [16].



New class of hybrid explicit methods for numerical solution of ... 295

7 Numerical results

In this section, examples of various types of OCPs are solved using the pro-
posed methods, and their numerical results are compared with those of the
FBSM using the RK method of order 6 (FBSM−RK6). One of the most
important OCPs is the linear regulator problem, which is generally defined
as follows.

Example 1. Let E, Q(t), and R(t) be symmetric and nonnegative definite
matrices of appropriate dimensions. The so-called linear regulator problem
(with a linear state-space description) involves a cost functional of the form

F (u) =
1

2
xT (tf )Ex(tf ) +

1

2

∫ tf

t0

[xTQ(t)x(t) + uT (t)R(t)u(t)]dt.

For example, we consider an OCP as follows [16]:

min
u

1

2

∫ 1

0

[x(t)2 + u(t)2]dt

s.t. x′(t) = −x(t) + u(t), x(0) = 1.

The Pontryagin’s maximum principle can be used to construct an analytic
solution

H(t, x, u, λ) =
1

2
(x(t)2 + u(t)2) + λ(−x(t) + u(t)),

∂H

∂u
= 0 at u∗ ⇒ u∗ + λ = 0 ⇒ u∗ = −λ,

λ′ = −∂H

∂x
= −x+ λ, λ(1) = 0.

Together with the state equation, the result will be the following linear dif-
ferential algebraic system:

x
′
(t) =− x(t) + u(t), x(0) = 1,

λ
′
(t) =λ(t)− x(t), λ(1) = 0, u(t) = −λ(t).

The solution is

x∗(t) =

√
2 cosh(

√
2(t− 1))− sinh(

√
2(t− 1))√

2 cosh(
√
2) + sinh(

√
2)

,

u∗(t) =
sinh(

√
2(t− 1))√

2 cosh(
√
2) + sinh(

√
2)

.

Optimal value of the objective functional is J = 0.1929092981. The final
values of the state and optimal are x(1) = 0.2819695346 and 0, respectively,
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Figure 6: (a) Optimal state and control values of Example 1 FBSM−RK6. (b) Optimal
state and control values of Example 1 (new proposed method)

and the initial value of the co-state is λ(0) = 0.3858185962. Numerical results
of the problem are shown in Figure 6 with h = 1

10 and in Tables 3 and 4.

Numerical results presented in Tables 3 and 4 indicate that each of new ten
suggested methods calculates the amount of control variable values much
more accurately than the FBSM−RK6 method. Figure 6 also indicates that
the new suggested method is exactly based on figure of analytical answer.
For avoiding overstatement in this paper, one of the diagrams was selected
and drawn. The rest of figures are similar to each other. Approximate
performance index is calculated for the proposed method, and the results
are presented in Tables 5 and 6. According to the results, the precision
of performance index of new proposed methods is more than that of the
FBSM−RK6 method by two digits. The Pontryagin’s Theorem is also used
to solve linear-quadratic problems.



New class of hybrid explicit methods for numerical solution of ... 297

Table 3: Error of control values in Example 1 for FBSM−RK6 and new proposed
Methods

t h FBSM_RK6 case 1 case 2 case 3 case 4 case 5
0.90 1

10
3.0520e-4 7.3292e-5 2.5423e-5 7.2638e-5 7.2172e-5 1.4836e-5

0.90 1
50

5.3457e-5 2.1141e-5 1.5067e-5 2.1006e-5 2.0916e-5 4.1655e-6
0.90 1

100
2.6278e-5 1.0962e-5 1.4606e-6 1.0895e-5 1.0850e-5 2.5154e-6

0.90 1
200

1.3036e-5 5.5876e-7 8.4673e-7 5.5537e-6 5.5314e-6 1.3740e-6

Table 4: Error of control values in Example 1 for FBSM−RK6 and new proposed
methods

t h FBSM_RK6 case 6 case 7 case 8 case 9 case 10
0.90 1

10
3.0520e-4 6.7372e-5 1.1476e-4 3.9201e-5 2.9350e-5 7.1123e-5

0.90 1
50

5.3457e-5 1.9984e-5 1.5321e-5 5.6249e-7 1.3363e-6 2.0701e-5
0.90 1

100
2.6278e-5 1.0386e-5 7.1974e-6 1.6043e-7 1.1054e-6 1.0742e-5

0.90 1
200

1.3036e-5 5.2998e-6 3.4747e-6 1.9879e-7 6.7022e-7 5.4774e-6

Table 5: Errors of the performance index approximation in Example1
h FBSM_RK6 case 1 case 2 case 3 case 4 case 5
1
50

4.0877e-4 2.8316e-5 4.7743e-5 2.7735e-5 2.7293e-5 4.3302e-5
1

100
1.9310e-4 6.8092e-6 3.0969e-5 6.5235e-6 6.3012e-6 2.8836e-5

1
200

9.2656e-5 4.877e-7 1.8338e-5 3.4612e-7 2.3451e-7 1.7294e-5
1

1000
1.8014e-5 2.6262e-7 4.0178e-6 2.9075e-7 3.1314e-7 3.8123e-6

Table 6: Errors of the performance index approximation in Example 1
h FBSM_RK6 case 6 case 7 case 8 case 9 case 10
1
50

4.0877e-4 2.3141e-5 1.0728e-4 6.1400e-5 5.4438e-5 2.6399e-5
1

100
1.9310e-4 4.2415e-6 6.0399e-5 3.7814e-5 3.4359e-5 5.8643e-6

1
200

9.2656e-5 7.9113e-7 3.2969e-5 2.1765e-5 2.0043e-5 1.8678e-8
1

1000
1.8014e-5 5.1760e-7 6.9304e-6 4.7036e-6 4.3604e-6 3.5590e-7
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Table 7: Control values errors in Example 2 by using FBSM−RK6 and new proposed
methods

t h FBSM−RK6 case 1 case 2 case 3 case 4 case 5
0.70 1

10
8.2317e-3 1.3560e-4 3.7467e-4 1.3073e-4 1.3148e-4 3.1883e-4

0.70 1
50

8.1160e-4 3.7614e-5 6.5252e-5 3.6716e-5 3.6772e-5 5.6347e-5
0.70 1

100
4.0487e-4 1.9678e-5 3.1791e-5 1.9236e-5 1.9258e-5 2.7488e-5

0.70 1
200

1.0203e-4 1.0221e-5 1.5522e-5 1.0001e-5 1.0010e-5 1.3409-5

Example 2. Consider the following OCP [18]:

minu
∫ 1

0
5
8x(t)

2 + 1
2x(t)u(t) +

1
2u(t)

2dt
st. x′(t) = 1

2x(t) + u(t), x(0) = 1.

For solving the above example, using the FBSM and proposed methods, we
should apply the Pontryagin’s Theorem as follows:

H(t, x, u, λ) =
5

8
x(t)2 +

1

2
x(t)u(t) +

1

2
u(t)2 + λ(

1

2
x(t) + u(t)),

∂H

∂u
=0 at u∗ ⇒ u∗ = −λ− 1

2
x,

λ′ =− ∂H

∂x
= −10

8
x− 1

2
u− 1

2
λ, λ(1) = 0.

Analytical solutions are as follows [18]:

u∗(t) =− (tanh(1− t) + .5) cosh(1− t)

cosh(1)
,

x∗(t) =
cosh(1− t)

cosh(1)
.

The state variable at the end point is x(1) = 6.4805427366388e− 1. Variable
control endpoint is u(1) = −3.24027136831e − 1. Optimal value of the ob-
jective function is J∗ = 0.3807970779. The proposed methods of Example 2
were determined as follows in MATLAB environment:

Table 8: Control values errors in Example 2 by using FBSM−RK6 and new proposed
methods

t h FBSM−RK6 case 6 case 7 case 8 case 9 case 10
0.70 1

10
8.2317e-3 9.8758e-5 8.1761e-4 4.4379e-4 3.9543e-4 1.2035e-4

0.70 1
50

8.1160e-4 3.0223e-5 5.6542e-5 8.1127e-5 8.5984e-5 3.4750e-5
0.70 1

100
4.0487e-4 1.5985e-5 7.3752e-5 3.9860e-5 3.5044e-5 1.8260e-5

0.70 1
200

2.0203e-4 8.3745e-6 3.6430e-5 1.9590e-5 1.7183e-5 9.5155e-6
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Figure 7: (a) Optimal state and control values of Example 2 by using FBSM−RK6.
(b) Optimal state and control values of Example 2 by using new proposed method
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Table 9: Errors of the performance index approximation in Example 2
h FBSM−RK6 case 1 case 2 case 3 case 4 case 5
1
50

5.5920e-4 7.6989e-5 2.1442e-5 7.6139e-5 7.6159e-5 1.2794e-5
1

100
2.9187e-4 2.9588e-5 1.9712e-5 2.9168e-5 2.9173e-5 1.5522e-5

1
200

1.5038e-4 1.1235e-5 1.3437e-5 1.1026e-5 1.1027e-5 1.1376e-5
1

1000
3.0605e-5 1.8661e-6 3.0719e-6 1.8246e-6 1.8246e-6 2.6652e-6

Numerical results presented in Tables 7 and 8 indicate that each of the new
ten suggested methods calculates the amount of control variable values much
more accurately than the FBSM−RK6 method. Figure 7 also indicates that
the new proposed method is exactly based on figure of analytical answer. For
simplicity of reporting the results, one of diagrams was selected and drawn.
The rest of figures are similar to each other. Numerical results presented in
Tables 9 and 10 indicate that the estimated performance index of the new
methods is more precise than those of the FBSM−RK6 methods.

Example 3. Consider the following OCP for a fixed T [14]:

min
u

∫ T

0

(

∫ t

0

x(η)dη + (u(t))2)dt

s.t. x′(t) = −x(t) + u(t), x(0) = a.

For converting the problem into the standard form, we can add another state
and obtain two-dimensional system as follows:

x1(t) = x(t),

x2(t) =

∫ t

0

x(η)dη,

We redefine x(t) := [x1(t), x2(t)]
T . Thus, we have an OCP of the form:

Table 10: Errors of the performance index approximation in Example 2

h FBSM−RK6 case 6 case 7 case 8 case 9 case 10
1
50

5.5920e-4 6.9979e-5 1.027e5-4 3.6537e-5 2.7287e-5 7.4275e-5
1

100
2.9187e-4 2.6081e-5 6.0153e-5 2.7391e-5 2.2764e-5 2.8242e-5

1
200

1.5038e-4 9.4814e-6 3.3603e-5 1.73105e-5 1.4995e-5 1.0565e-5
1

1000
3.0605e-5 1.5153e-6 7.0964e-6 3.8519e-6 3.3889e-6 1.7326e-6



New class of hybrid explicit methods for numerical solution of ... 301

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Rk6
exact

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

newrk6 method
exact

(b)

Figure 8: (a) Optimal state and control values of Example 3 using FBSM−RK6. (b)
Optimal state and control values of Example 3 using new proposed method

min
u

∫ T

0

(x2(t) + u(t)2)dt

s.t., x′
1(t) = −x(t) + u(t),

x′
2(t) = x1(t),

x(0) = [a, 0]T .

Analytical solution of the problem is

H =(x2 + u2) + λ1(−x1 + u) + λ2x1,

∂H

∂u
=2u+ λ1 = 0 at u∗ ⇒ u∗ = −1

2
λ1, λ1(T ) = λ2(T ) = 0,

⇒λ′
1 = − ∂H

∂x1
= λ1 − λ2, λ

′
2 = − ∂H

∂x2
= −1,

⇒λ1(t) = −(t− T )− 1 + e(t−T ),

u∗(t) = −1

2
λ1(t) =

1

2
(1 + t− T − e(t−T )).

Numerical results for Example 3 are obtained and shown in Figure 8 and
Tables 11 and 12.

Table 11: Control values errors in Example 3 using FBSM−RK6 and new proposed
method

t h FBSM−RK6 case 1 case 2 case 3 case 4 case 5
0.80 1

10
1.3027e-3 4.3609e-5 1.9320e-4 4.5033e-5 4.5546e-5 1.7794e-4

0.80 1
50

2.4376e-4 1.6351e-6 2.9366e-5 1.8584e-6 1.9768e-6 2.7439e-5
0.80 1

100
1.2086e-4 4.1195e-7 1.4147e-5 2.2016e-7 5.8037e-7 1.3244e-5

0.80 1
200

6.0174e-5 1.0924e-7 6.9448e-6 1.6251e-7 1.9287e-7 6.5116e-6
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Table 12: Control values errors in Example 3 by using FBSM−RK6 and new proposed
methods

t h FBSM−RK6 case 6 case 7 case 8 case 9 case 10
0.80 1

10
1.3027e-3 5.4085e-5 3.2411e-4 2.1473e-4 2.0072e-4 4.8041e-5

0.80 1
50

2.4376e-4 3.5454e-6 5.1626e-5 3.4084e-5 3.1524e-5 2.3610e-6
0.80 1

100
1.2086e-4 1.3566e-6 2.5050e-5 1.6529e-5 1.5263e-5 7.6572e-7

0.80 1
200

6.0174e-5 5.7899e-7 1.2340e-5 8.1415e-6 7.5122e-6 2.8398e-7

Numerical results presented in Tables 11 and 12 indicate that each of the
new ten suggested methods calculates the amount of control variable values
much more accurately than the FBSM−RK6 method. Figure 8 also indicates
that the figure of the new proposed method is quite matched on real answer
and is much better than the FBSM−RK6 method. For simplicity of reporting
the results, one of diagrams was selected and drawn. The rest of figures are
similar to each other.

8 Conclusion

A new class of the 6th-order explicit hybrid methods was presented for which
the 6th-order Runge–Kutta method is used as a predictor scheme to gain
whole method of the same order, and the order of truncation errors was in-
vestigated for the explicit hybrid Runge–Kutta methods. The stability of
the methods was discussed, and the results revealed that the stability re-
gions of the proposed methods are wider compared to the 6th-order explicit
Runge–Kutta method. Finally, three examples of OCPs were solved using
MATLAB, FBSM scheme, and the presented methods and numerical results
related to given examples were presented in Tables 3–12. According to the
findings, it can be concluded that the new explicit hybrid methods have a
good performance in accuracy and performance index approximation com-
pared to the RK6 method.
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