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Abstract

In numerical analysis, the process of fitting a function via given data is
called interpolation. Interpolation has many applications in engineering
and science. There are several formal kinds of interpolation, including
linear interpolation, polynomial interpolation, piecewise constant interpo-
lation, trigonometric interpolation, and so on. In this article, by using
Sigmoid functions, a new type of interpolation formula is presented. To il-
lustrate the efficiency of the proposed new interpolation formulas, some ap-
plications in quadrature formulas (in both open and closed types), numer-
ical integration for double integral, and numerical solution of an ordinary
differential equation are included. The advantage of this new approach is
shown in the numerical applications section.
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1 Introduction

Interpolation is the process of finding a function via given data. Interpolation
has many applications in engineering and science. There are several formal
kinds of interpolation, including linear interpolation, polynomial interpola-
tion, piecewise constant interpolation, trigonometric interpolation, and so

on. For example, consider the polynomial interpolation. Let fo, f1,..., fx
be known values for an arbitrary function f : R — R at points z = x;,
1=0,1,...,n. Then the Lagrange basis functions are defined as
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2 (x — x) .
L, (x) = ——, i=0,1,...,n. (1)
g

kA

Then the interpolating polynomial of degree n is defined as
px) =Y Lni(x)fi. (2)

Clearly, p(z) satisfies p(z;) = f; for i = 0,1,...,n. Moreover, for any f €
C"*a,b], we have

y £
flz) = Zan(x)fz +(x—x0)(z — 1) (2 — x")m(gl)’

=0

Nz € [a,b].

(3)
Using relation (2), the classical Newton—Cotes quadrature formulas are ob-
tained [2, 3, 6, 7, 8, 9]. In this article, by using Sigmoid functions [1, 4, 5],
new types of interpolation formulas are presented. These new types of in-
terpolation result in new integration formulas and new formulas for solving
ordinary differential equations.

Sigmoid functions are mathematical functions with S-shaped curves or
sigmoid curves. These functions are bounded and monotone and have the first
derivative that is bell shapes. Additionally, these functions are constrained
by a pair of horizontal asymptotes as x — Fo0o. Some of them are listed
below.

a. Logistic function is defined by the formula

1

T lqes (@)

¢(x)

b. Hyperbolic tangent function is defined by the formula

e — e
=tanh(z) = ——.
8(a) = tanh(e) = S (5)
¢. Arctangent function is defined by
¢(x) = arctan(z). (6)

d. Gudermannian function is defined by

o(x) = gd(x) = /Oz L dx = 2arctan(tanh(§)). (7

cosh x

e. Error function is defined as
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o(x) =erf(z) = %/0 e dt. (8)
f. Generalised logistic function is defined as
plr)=(1+e %)% a>0. 9)

g. Some algebraic functions, for example,

P(z) = i (10)

h. Smoothstep function is defined for N > 1 as

¢(Z‘) = { (fol(l - u2)Ndu)_1 fom(l - u2)Ndu7 |x| <1 (11)

sgn(x), |z > 1.

I. The integral of any continuous, nonnegative, and “bump-shaped” function
will be sigmoid function; therefore the cumulative distribution functions for
many common probability distributions are sigmoid functions.

This article is organized as follows. In section 2, new methods of inter-
polation are introduced. In section 3, some applications of the proposed new
interpolation formulas are provided. Finally, in section 4, conclusions are
presented.

2 Main results

In this section, the new types of interpolation formulas for one- and two-
dimensional cases by using Sigmoid functions are obtained.

2.1 One-dimensional case

Theorem 1. Let ¢ be an arbitrary Sigmoid function and let

lim ¢(z) =a,
“lim ¢(z) = b (12)
r—r+00 ’
Let fo, f1,--., fn be known values for an arbitrary function at points zg <

1 <+ - < Ty,and let z;41 —x; = h; for i =0,1,2,...,n. Then

S@) =Y (2, ) Flola — )~ dlava b)) (13

b—a
i=0
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is the interpolation formula for the above data points. Moreover, a; for

B
i=0,1,2,...,n+ 1 are positive and big enough numbers, — = z; — 51 for
a;
b h;
1=0,1,2,...,n, and ntl =z, + —.
An+41 2

Proof. According to the properties of the Sigmoid functions, 0 < ¢(a;x —
b;) — ¢(ai+1x — bir1) < b— a. Therefore, for positive and big enough a;, in a

neighborhood of = = ﬁ, the function [¢(a;x —b;) — p(a;+12 — biy1)] changes

K2

from zero to b —a (for i = 0,1,...,n). Similarly, at z = ZH_l, the function
i+1
[¢(aix —b;) — p(aj+12 — bi+1)] changes from b — a to zero (for i =0,1,...,n).
bi b;
Therefore, for the interior points in intervals [Z, il ], fori=0,1,...,n,
ai  Giy1

S(z) is equal to f;. In a neighborhood of z = b (for i = 1,2,...,n),
@

S(z) is changed from f;_; to f;. In the same Wayj in a neighborhood of

b
z =L (for i =0,1,...,n— 1), S(z) is transformed from f; to fi;1. In
Ait+1
b
addition, in a neighborhood of z = —0, S(z) is changed from zero to fy, and
ao
b
in a neighborhood of z = n+1, S(z) is changed from f,, to zero. Speed
an+41
of changing can be increased by increasing a; (for ¢ = 0,1,...,n+ 1). In
other words, a; and —i, 1 =20,1,...,n+ 1, define the speed and locations
a:

of the changes. Thelrelfore7 S(x) is the interpolation formula for aforesaid
points. ]

2.2 Two-dimensional case

By using the above idea for two-dimensional problems, a new type of two-
dimensional interpolation formulas can be obtained.

Theorem 2. Let F(z;,y;) =z ; fori =0,1,2,...,nand j =0,1,2,...,m.
Let ¢ and 9 be two arbitrary Sigmoid functions and let

wggloo ¢($) =% wEIPoow(m) =6
{1 i () = b { lim () = d. (14)

Let zp < x1 < -+- < ap and yo < y1 < -+ < Y (i€, Ti41 — a3 = hy, for
i=0,1,...,n—1,and y;11 —y; =k; for j=0,1,...,m —1). Then
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sen =33 () (7)) = (15)

i=0 j=0

/

[p(aix — bi) — p(aiy17 — bit1)] [¢(a;y - b;) - w(a;Hy —bj11)

is the interpolation formula for the above data points. Moreover, a; for
i=0,1,2,...,n+1and a; for j =0,1,2,...,m + 1 are positive and big
enough numbers. In addition

ﬁ:xi—ﬁ, 1=0,1,2,...,n and bn+1=xn+hi,
a; 2 Ap+1 2
b k. b L ko (16)
%:yj_ijﬂ j:071727"'7m and t’ﬂ-‘r :ym"_i
a; 2 Ay 2
Proof. By using relation (13) two times, relation (15) is obtained. O

In the next section, some numerical applications in interpolation, numer-
ical integration, and numerical solution of ordinary differential equations are
included.

3 Numerical applications

In this section, some applications of formula (13) in one-dimensional interpo-
lation, numerical integration, and numerical solving of ordinary differential
equations by using the Hyperbolic tangent function are given. Other formu-
las (i.e., (4)—(11)) can easily be applied. Also, in Example 6, formula (15) by
using the Hyperbolic tangent function is applied.

Example 1 (Interpolation problem). Let f(0) = 1, f(1) = 2, f(2) = 4,
f(8)=17, f(4) =5, and f(5) = 6. Then using formula (13), the interpolation
function is obtained as

5
S(z) = (;) Z f(z;) [tanh(a;x — b;) — tanh(a; 412 — biy1)]

=0

2
+2 X [tanh(ayz — by
+4 x [tanh(agz — by
[tanh(
[

= <1> (1 x [tanh(agz — by) — tanh(a;z — by)]

— tanh(asx — by

(
— tanh(asz — bs
(

— — — ~—

)
)
— tanh(asx — by)
— tanh(asz — bs)

]
]
]
]
+ 6 x [tanh(asz — bs) — tanh(agz — bg)]) - (17)
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This interpolation function in two cases (i.e., ap = a1 =--- =ag = 5 and
ap = a; = --- = ag = 10) is plotted in Figures 1 and 2.

-2 2 4

o
e

Figure 1: Interpolation function with a; =5 for i =0, 1,...,6.

Figure 2: Interpolation function with a; = 10 for i =0, 1,...,6.

Example 2 (Interpolation problem (Runge’s function)). Consider the poly-
nomial interpolation of Runge’s function defined as (see [9])

1

The polynomial interpolating with N = 15 equidistant nodes is plotted in
Figure 3. Also, using formula (13), the new interpolation is obtained. This
interpolation function is plotted in Figure 4. The error function of polynomial
interpolation is plotted in Figure 5. As you can see, the error at nonnodal
points does not decrease with the increase of nodes; see [3, 9]. Also, the error

function of the new interpolation is plotted in Figure 6.
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Figure 3: Polynomial interpolation function of Runge’s function with N = 15 equidis-

tant nodes in [—1,1].

Figure 4: The new interpolation function of Runge’s function with N = 15 equidistant

nodes in [—1,1] and a[i] = 100 for ¢ =0,1,2,...,15.
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Figure 5: Error function of the polynomial interpolation function for Runge’s function

with N = 15 equidistant nodes in [—1,1].
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Figure 6: Error function of the new interpolation formula for Runge’s function with
N = 15 equidistant nodes in [—1,1] and a[{] = 100 for ¢ = 0,1,2,...,15.

Example 3 (Numerical integration (closed type)). Quadrature formula of
Newton—Cotes on the finite interval [a, b] is defined as (see [7, 8])

b n
/ fl@)de =" wif(x:) + Ru(f), (19)
a 1=0

b—a

where z; are equidistantly distributed with the step size and x; = a+1ih,

n
1 =0,1,...,n. In addition, R,(f) = 0 whenever f € P,,_1, where P,,_; is
the space of all algebraic polynomials of degree at most n — 1. Now, using
relation (13) for ¢(x) = tanh(z) results in

/abf(x)d:z: ~ /ab S(z)dx

b n 1
@ i=0

Therefore, relation (20) is simplified as

n

/ab f(z)dr ~ Z [(2;) [In(cosh(a;b — b;)) — In(cosh(a;a — b;)] (21)

=0

1
— ( ) [ln(cosh(aH_lb — bi+1)) — 1H(COSh(ai+1CL — b¢+1)] fz
2a;4+1

As it is mentioned above, explicit forms of quadrature formulas based on this
new interpolation formula can be directly obtained. As an example, consider
the following integral:
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Table 1: Absolute error of quadrature formula (21) for n = 5(5)30 and f(z) = exp(z?).

n | Absolute error
5 1.8(-2)
10 4.5(-3)
15 2.0(-3)
20 1.0(-3)
25 4.0(-4)
30 1.2(-4)
1
/ exp(z?)dz ~ 1.46265174590718. (22)
0

The absolute error of formula (21) to approximate the above integral, for
a; = 100,7 =0,1,...,n, is presented in Table 1.

Example 4 (Numerical integration (open type)). In relation (19), if wy =
w, = 0, then the open type of Newton—Cotes formula is obtained. In this
case, R,(f) = 0 whenever f € P,_3. The new quadrature formula in this
case is as follows:

/a " Hayde ~ / ' S(2)da (23)
pn—1

= Z (;) fi [tanh(a;z — b;) — tanh(a; 412 — biy1)] dz.
@ =1

Therefore, relation (23) is simplified as

/ab fz)dz ~ nill [<22> [In(cosh(a;b — b;)) — In(cosh(a;a — b;)]

; %
i=

1
— ( ) [ln(cosh(aiﬂb — bi+1)> — hl(COSh(aH_lCL — bi+1)] fi-
2a;41

As an example, consider the following integral:
! 1
/ 2% sin <x) dz =~ 0.008384044187. (24)
0

The absolute error of formula (24) to approximate the above integral, for
a; = 100,7=0,1,...,n, is presented in Table 2.

Example 5 (Numerical methods for solving ordinary differential equation).
Consider the following ODE:
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Table 2: Absolute error of quadrature formula (24) for n = 5(5)30 and f(z) =
2100 sin(%).

n | Absolute error

5 8.38(-3)

10 8.33(-3)

15 8.32(-3)

20 8.12(-3)

25 7.79(-3)

30 7.39(-3)
dy
a Y (25)
y(0) =0,

with exact solution y(x) = exp(z) — x — 1. Integrating both sides of relation
(25) on interval [0, z] and using initial condition result in

y(z) = y(0) + AI(S +y)ds = %xQ + /01 yds. (26)

Now, using the new interpolation formula for y results in

Z (;> y(z;) [tanh(a;x — b;) — tanh(a;112 — biy1)] (27)

i=0

1 x
:fx2—|-/
2 0

Let Qi(z) = tanh(a;x — b;) — tanh(a; 412 — b;41) for i = 0,1,2,...,n. Then
relation (27) is simplified as

5= 1 [

1=

Z (;) y(x;) [tanh(a;s — b;) — tanh(a; 418 — bi‘*‘l)]] ds.

i=0

= %x2 + <;) Zy(%) Qi(s)ds. (28)

Finally, relation (28) is simplified as

gyw (@) -



Some applications of Sigmoid functions 231

By collocating (29) at x;, i = 1,2, ...,n, the unknown values of y(x;) are
obtained. For example, the error function on [0, 1] for n = 10, and z; = 1%,
1 =1,2,...,10, is plotted in Figure 7. Also, the error function on [0, 1] for

n=20and z; = 210, i=1,2,...,20, is plotted in Figure 8.

<
<
=]
—]
—

-0.04

Figure 7: The error function of Example 5, with n = 10 in [0, 1] and a[i] = 100 for
i=0,1,2,...,10.

eI
vvva\/U\}\jW

Figure 8: The error function of Example 5, with n = 20 in [0, 1] and a[i] = 100 for
i=0,1,2,...,20.

Example 6 (Numerical integration for double integral). Now using relation
(15) results in
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Table 3: Absolute error of quadrature formula (30) for n = 5(5)30 and F(z,y) =
exp(z”® +y?).

n | Absolute error
5 5.30(-2)
10 1.32(-2)
15 5.83(-3)
20 2.97(-3)
25 1.19(-3)
30 3.46(-4)

//nydyde//Sxydydx (30)
[ E% )=

x [tanh(a;x — b;) — tanh(a; 112 — bit1)]
[tanh(a 1y —b;) — tanh(a H_1y - bH_l)} dxdy.(31)

As an example, consider the following integral:

1
/ / exp(z? + y?)dydz = 2.139350130. (32)
0 0

The absolute error of formula (30) to approximate the above integral, for
a; = 100,7 =0,1,...,n, is presented in Table 3.

4 Conclusions

In this article, by using Sigmoid functions, the new types of interpolation
formulas were presented. To show the efficiency of the proposed new inter-
polation formulas, some applications in quadrature formulas (in both open
and closed types), numerical integration for double integral, and numerical
solution of ordinary differential equation were included. Numerical results
were obtained by using the Hyperbolic tangent function, which can be easily
changed by other Sigmoid functions.
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