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A parametric iteration method for
solving Lane-Emden type equations

R. Chaharpashlou

Abstract

In this paper, an analytical method called the parametric iteration method
(PIM) is presented for solving the second-order singular IVPs of Lane-Emden
type, and its local convergence is discussed. Since it is often useful to have

an approximate analytical solution to describe the Lane-Emden type equa-
tions, especially for ones where the closed-form solutions do not exist at all,
therefore, an effective improvement of the PIM is further proposed that is ca-
pable of obtaining an approximate analytical solution. The improved PIM is

finally treated as an algorithm in a sequence of intervals for finding accurate
approximate solutions of the nonlinear Lane-Emden type equations. Also,
we show how to identify an approximate optimal value of the convergence

accelerating parameter within the frame of the method. Some examples are
given to demonstrate the efficiency and accuracy of the proposed method.

Keywords: Piecewise-truncated parametric iteration method; Truncated
parametric iteration method; Parametric iteration method; Nonlinear Lane-
Emden type equations.

1 Introduction

Recently, a lot of attention has been focused on the study of singular initial
value problems (IVPs) in the second-order ordinary differential equations
(ODEs). Many problems in mathematical physics and astrophysics can be
modelled by the so-called IVPs of the Lane-Emden type equation [2, 4, 14]:y

′′
+

2

x
y

′
+ f(x, y) = g(x), x > 0,

y(0) = a, y
′
(0) = b,

(1)
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where a and b are constants, f(x, y) is a continuous real valued function, and
g(x) ∈ C[0,∞]. When f(x, y) = K(y) , g(x) = 0 , Equation(1) reduces to
the classical Lane-Emden equation which, with specified K(y), was used to
model several phenomena in mathematical physics and astrophysics such as
the theory of stellar structure, the thermal behavior of a spherical cloud of
gas, isothermal gas sphere and theory of thermionic currents [2, 4, 14].

Since, the Lane-Emden type equations have significant applications in
many fields of scientific and technical world, a variety of forms of f(x, y)
and g(x) have been investigated by many researchers (e.g., [3, 16, 17]). A
discussion of the formulation of these models and the physical structure of
the solutions can be found in the literature. Though the numerical solution of
the Lane-Emden Equation (1), as well as other various linear and nonlinear
singular IVPs in quantum mechanics and astrophysics [9], is numerically
challenging because of the singularity behavior at the origin x = 0, but
analytical solutions are much needed for physical understanding. Recently,
many analytical methods were used to solve the Lane-Emden equation [7, 8,
10, 18]. Those methods are based on either series solutions or perturbation
techniques [1, 11–13]. However, the convergence region of the corresponding
results is rather small.

The strategy that will be pursued in this work rests mainly on establishing
useful algorithms based on the parametric iteration method (PIM) [5, 6, 15]
for finding highly accurate solution of the Lane-Emden type equations that
they

• Overcome the main difficulty arising in the singularity of the equation
at x = 0.

• Provide us with a convenient way to modify the convergence region and
rate of the solution.

• Are simple to implement, accurate when applied to the Lane-Emden
type equations and avoid tedious computational works.

The examples analyzed in the present paper reveal that the newly developed
algorithms are easy, effective and accurate to solve the singular IVPs of Lane-
Emden type equation.

2 Analysis of methods

In this section, the PIM is described for solving Equation(1). This method
provides the solution of Equation(1) as a sequence of iterations. The method
gives rapidly convergent successive approximations of the exact solution if
such a solution exists, otherwise approximations can be used for numerical
purposes. The idea of the PIM is very simple and straightforward. To explain
the basic idea of the PIM, we first consider Equation(1) as follows:
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L[y(x)] +N [y(x)] = g(x), (2)

with

L[y(x)] = y
′′
(x) +

2

x
y

′
(x), N [y(x)] = f(x, y), (3)

where L denotes the so-called auxiliary linear operator with respect to y and
N is a nonlinear operator with respect to y. The basic character of the PIM
is to construct a family of iterative processes for Equation(1) as follows [15]:

yn+1(x) = yn(x) + h

∫ x

0

(
t− t2

x

){
y

′′

n(t) +
2

t
y

′

n(t) + f(t, yn(t))− g(t)

}
dt,

(4)

where y0(x) is the initial guess and the subscript n denotes the n-th iteration,
and h ̸= 0 denotes the so-called auxiliary parameter which can be identified
easily and efficiently by the technique proposed in this paper. Accordingly,
the successive approximations yn(x) , n ≥ 0 of the PIM in the auxiliary
parameter will be readily obtained by selecting the initial approximation.
Consequently, the exact solution can be obtained by using

y(x) = lim
n→∞

yn(x). (5)

It is interesting to note that for the linear Lane-Emden type equations, its
exact solution can be obtained easily by only one iteration step due to the
fact that the multiplier can be suitably identified, as will be shown in this
paper later.
Now we will have the following proposition for the iteration formula (4).

Proposition 1. If y(x) ∈ C2[0, T ], then, for x ≤ T ,∫ x

0

(
t− t2

x

){
y

′′
(t) +

2

t
y

′
(t)

}
dt = y(x)− y(0). (6)

Proof. Simple integration by parts.

In the light of (4) and (6), we will have the following simple iteration
formula:

yn+1(x) = (1 + h)yn(x)− hy0 + h

∫ x

0

(
t− t2

x

)
[f(t, yn(t))− g(t)]dt, (7)

where y0 = y(0).
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Note that the expressions (4) and (7) demonstrate that the variational
iteration method (VIM) [7] is a special case of the PIM when h = −1. The
fact that the PIM solves the Lane-Emden type equations without correction
functional and restricted variation can be considered as an advantage of this
method over the VIM.

The PIM (7) makes a recurrence sequence {yn(x)}. Obviously, the limit
of this sequence will be the solution of Equation (1) if this sequence is con-
vergent.
In order to prove the sequence {yn(x)} is convergent, we construct a series

y0(x) + [y1(x)− y0(x)] + · · ·+ [yn(x)− yn−1(x)] + · · · (8)

Noticing that

Sn+1 = y0(x) + [y1(x)− y0(x)] + · · ·+ [yn(x)− yn−1(x)] = yn(x), (9)

the sequence {yn(x)} will be convergent if the series is convergent.

Theorem 1. If N [y] = f(x, y) is Lipschitz-continuous in [0, T ] and
g(x) ∈ C[0, T ] then the series of (8) is convergent, i.e., the sequence {yn(x)}
is convergent for x ∈ [0, T ].

Proof. According to (7), note that

|y1(x)− y0(x)| =

∣∣∣∣∣h
∫ x

0

(
t− t2

x

)
{N [y0(t)]− g(t)}dt

∣∣∣∣∣ ≤ |h|MNx, (10)

where

M = max
0≤t≤x≤T

∣∣∣∣∣t− t2

x

∣∣∣∣∣ = T

2
, N = max

0≤t≤x≤T
|N [y0(t)]− g(t)| (11)

From (7) and (10), and the assumption that |N [yn]−N [yn−1]| ≤ L|yn−yn−1|
where L denotes the Lipschitz constant of N [y(x)], it follows that

|y2(x)− y1(x)| = |1 + h||y1(x)− y0(x)|+ |h|ML

∫ x

0

|y1(t)− y0(t)|dt

≤ N

L

[
|1 + h| (|h|MLx)

1!
+

(|h|MLx)2

2!

]
(12)

=
N

L

1∑
k=0

(
1

k

)
|1 + h|1−k (|h|MLx)k+1

(k + 1)!
,
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|y3(x)− y2(x)| ≤
N

L

2∑
k=0

(
2

k

)
|1 + h|2−k (|h|MLx)k+1

(k + 1)!
, (13)

|yn+1(x)− yn(x)| ≤
N

L

n∑
k=0

(
n

k

)
|1 + h|n−k [|h|MLx]k+1

(k + 1)!
, (14)

In view of (14), the convergence of the series (8) can be concluded for the
solution domain x < T and |1 + h| < 1 with the help of the mathematical
software such as Maple. Therefore the series of (8) is absolute convergence,
i.e., the sequence {yn(x)} is convergent for x ∈ [0, T ].

3 A piecewise-truncated PIM

The successive iterations of the PIM may be very complex, so that the re-
sulting integrals in the relation (4) may not be performed analytically. Also,
the implementation of the PIM generally leads to calculation of unneeded
terms, which more time is consumed in repeated calculations for series solu-
tions. Here, an effective modification of the PIM is introduced to eliminate
these repeated calculations. To completely stop these repeats in each step,
provided that the integrand of (4) in each of iterations is expanded in mul-
tivariate Taylor series around x = 0. We propose the following improvement
of the PIM (4), which is called the truncated PIM (TP):

yn+1(x) = yn(x) + h

∫ x

0

Fn(x, t)dt, n ≥ 0, (15)

where(
t−

t2

x

){
y
′′
n (t) +

2

t
y
′
n(t) + f(t, yn(t))− g(t)

}
= Fn(x, t) +O(xn+1) +O(tn+1). (16)

It is noteworthy to point out that the TP formula (15) can cancel all the
repeated calculations and terms that are not needed as will be shown below.
Furthermore, it can reduce the size of calculations. Most importantly, how-
ever it is the fact that the TP algorithm (15) solves a Lane-Emden differential
equation exactly if its solution is an algebraic polynomial up to some degree.

In general, by using the TP formula (15), we obtain a series solution,
which in practice is a truncated series solution. This series solution gives a
good approximation to the exact solution in a small region of x. An easy
and reliable way of ensuring validity of the approximations (15) for large x,
i.e. Ii = [xi, xi+1] where ∆x = xi+1 − xi, i = 0, 1, 2, · · · , N − 1, with x0 = 0
and xN = T . According to the relation (15), therefore, we can construct
the following piecewise TP approximations (PTP) in the subintervals Ii. On
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[x0, x1], let

y1,m+1(x) = y1,m(x) + h
∫ x

x0
F1,m(x, t)dt, m = 0, 1, · · · , n1 − 1, x ∈ [x0, x1],

y1,0(x) = y(0) + y
′
(0)(x− x0) = c0 + c

′

0(x− x0),(
t− t2

x

){
y

′′

1,m(t) + 2
t y

′

1,m(t) + f(t, y1,m(t))− g(t)

}
=

F1,m(x, t) +O[(x− x0)
m+1] +O[(t− x0)

m+1].

(17)

Then one can obtain the n1-order approximation y1,n1
(x) on [x0, x1].

On [x1, x2] , let

y2,m+1(x) = y2,m(x) + h
∫ x

x1
F2,m(x, t)dt, m = 0, 1, · · · , n2 − 1, x ∈ [x1, x2],

y2,0(x) = y1,n1(x1) + y
′

1,n1
(x1)(x− x1) = c1 + c

′

1(x− x1),(
t− t2

x

){
y

′′

2,m(t) + 2
t y

′

2,m(t) + f(t, y2,m(t))− g(t)

}
= F2,m(x, t)

+O[(x− x1)
m+1] +O[(t− x1)

m+1].

(18)

Also the n2-order approximation y2,n2(x) on [x1, x2] can be obtained
In a similar way, on [xi, xi+1], i = 2, · · · , N − 1, let

yi+1,m+1(x) = yi+1,m(x) + h
∫ x

xi
Fi+1,m(x, t)dt, m = 0, 1, · · · , ni+1 − 1,

x ∈ [xi, xi+1],

yi+1,0(x) = yi,ni(xi) + y
′

i,ni
(x− xi) = ci + c

′

0(x− xi),(
t− t2

x

){
y

′′

i+1,m(t) + 2
t y

′

i+1,m(t) + f(t, yi+1,m(t))− g(t)

}
= Fi+1,m(x, t)

+O[(x− xi)
m+1] +O[(t− xi)

m+1].

(19)

Hence this implies the ni+1-order approximation yi+1,ni+1(x) on [xi, xi+1].
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Therefore, according to (17)-(19), the approximation of Equation (1) on
the entire interval [0, T ] will be calculated. It should be emphasized that
the PIM and TF algorithms provide analytical solutions on [0, T ], while the
PTP technique provides analytical solutions in [xi, xi+1], which are continu-
ous at the end points of each interval, i.e., yi,ni(xi) = ci = yi+1,ni+1(xi) and

y
′

i,ni
(xi) = c

′

i = y
′

i+1,ni+1
(xi), i = 1, 2, · · · , N − 1.

Remark 1. In the case of failure of convergence of the PIM, the presence
of the parameter could play a very important role in the frame of the PIM.
Although, we can find a valid region for every physical problem by plotting
the solution or its derivatives versus the parameter in some points [6,15], but
an approximate optimal value of the convergence accelerating parameter h
can be determined at the order of approximation by residual error:

Re s(h) =

∫ xf

x0

{L[yn(t)] +N [yn(t)]− g(t)}2dt, (20)

One can easily minimize (20) by imposing the requirement
dRes(h)

dh
= 0.

4 Implementations

To give a clear overview of the content of this study, the several Lane-Emden
type equations will be studied. These equations will be tested by the above-
mentioned algorithms, which will ultimately show the usefulness and accuracy
of these methods. Moreover, the numerical results indicate that the approach
is easy to implement. All the results here are calculated by using the sym-
bolic calculus software Maple 17.

Eexample 1. As a first example, let consider the following linear, the non-
homogeneous Lane-Emden equation, i.e., Equation (1) with f(x, y) = y and
g(x) = x2e−x :

y
′′
+

2

x
y

′
+ y = x2e−x, (21)

subject to conditions

y(0) = 1, y
′
(0) = 0. (22)

The PIM has a very simple approach. Its concepts begin with dividing the
left hand (21) into two parts, i.e., the auxiliary linear operator L and the
nonlinear operator N as:
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L[y(x)] = y
′′
(x) +

2

x
y

′
(x) + y(x) and N [y(x)] ≡ 0. (23)

This will allow us to construct a family of iterative processes for Eq.(21) as
follows [14]:

yn+1(x) = yn(x) + h

∫ x

0

[
t

x
sin(x− t)

]{
y

′′

n(t) +
2

t
y

′

n(t)− t2e−t

}
dt. (24)

Using simple integration by parts, similar to Proposition 1, implies that∫ x

0

[
t

x
sin(t− x)

]
{y

′′
(t) +

2

t
y

′
(t) + y(t)dt = y(x)− sin(x)

x
y(0), (25)

In the light of (24) and (25), the following PIM is:

yn+1(x) = (1 + h)yn(x)− hy0
sin(x)

x
− h

∫ x

0

[
t

x
sin(t− x)

]
(t2e−t)dt, (26)

where y0 = y(0) and y0(x) = y(0) + y
′
(0)(x). According to (26), therefore

the following approximations with starting the initial guess y0(x) = 1 are:

y1(x) =
(2 + 2h)x+ h sin(x)− hx(3 + 3x+ x2)e−x

2x
, (27)

y2(x) =
(2 + 4h+ 2h2)x+ (2h+ h2) sin(x)− hx(6x+ 2x2 + 6 + 3hx+ hx2 + 3h)e−x

2x
,

(28)

...

which the exact solution of Equation(21) yields for h = −1 , i.e.,

y(x) =
x(3 + 3x+ x2)e−x − sin(x)

2x
. (29)

Example 2. As other example, we consider the nonlinear and non-homogeneous
Lane-Emden equation, i.e., Equation (1) with f(x, y) = y3 and g(x) = 6+x6

[10]:

y
′′
+

2

x
y

′
+ y3 = 6 + x6, (30)

subject to conditions

y(0) = 0, y
′
(0) = 0. (31)
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Now, our aim is to solve the equation (30) by means of the TP algorithm
(15). According to (15), it is easily to obtain the following approximations
of the TP with starting the initial approximation y0(x) = 0:

y1(x) = 0, (32)

y2(x) = −hx2, (33)

yn(x) = [1− (1 + h)n−1]x2, n ≥ 3. (34)

If we choose h = −1, then the TP algorithm yields the exact solution

y(x) = x2. (35)

It is interesting to note that the TP algorithm (15) can solve a Lane-Emden
type equation exactly if its solution is an algebraic polynomial up to some
degree.

Example 3. As final example, we consider the nonlinear, homogeneous
Lane-Emden-type equation, i.e., Equation(1) with f(x, y) = 4(2ey + e

y
2 ) and

g(x) = 0:

y
′′
+

2

x
y

′
+ 4(2ey + e

y
2 ) = 0, (36)

subject to conditions

y(0) = 0, y
′
(0) = 0. (37)

Here, the aim to solve the equation (36) by means of the above-proposed
methods. Since the integration of the nonlinear term 4(2ey + e

y
2 ) in Equa-

tion (36) is not easily evaluated, thus the PIM requires a large amount of
computational work to obtain few iterations of the solution (we can replace
the nonlinear term with a series of finite components). However, one can
used the modified PIM method, i.e., the TP algorithm (15). According to
(15), it is easily to obtain the following approximations of (36) with starting
the initial approximation y0(x) = 0:

y1(x) = 0, (38)

y2(x) = 2hx2, (39)

y3(x) = (4h+ 2h2)x2, (40)

y4(x) = (6h+ 6h2 + 2h3)x2 + (2h2 + h3)x4, (41)

and so on. To investigate the influence of h on the convergence of the solution

obtained via the truncated PIM, here we plot the curves of y
′′

20(0) and y
(4)
20

, as shown in Figure 1. According to these curves, it is easy to discover the
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valid region h , which corresponds to the horizontal line segments. Now, in
the light of (20), an approximate optimal value of h can be determined by
the following residual error:

Res(h) =

∫ 1

0

{y
′′

20(t) +
2

t
y

′

20(t) + 4(2ey20(t) + e
y20(t)

2 )}2dt. (42)

By imposing the requirement dRes(h)/dh = 0 and solving the resulting equa-
tion, we can obtain the approximate optimal value for h = −1. Fig. 2 shows
a comparison of approximation obtained using the 20th-order TP algorithm
for h = −1 with the exact solution of Eq.(36), i.e., y(x) = −2 ln(1 + x2).

Figure 1: The valid region of h for Example 3 by using the 20th-order TP algorithm (15)

Figure 2: Approximate solution for Example 3 using the TP algorithm where the dotted-
line: the 20th-order TP algorithm when h = −1 and symbol: the exact solution

As observed, the TP algorithm (15) in solving Equation (36) gives good
approximations to the exact solution in a small region of x. In order to
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enlarge the convergence region and rate of the series solution, here we im-
plement the PTP (19) proposed in the section 3. According to (19), taking
N = 1000 and ni+1 = 3, ni+1 = 5, i = 0, 1, · · ·N − 1, we can obtain the
approximations of (36) on [0, 100 . Figure 3 shows the absolute errors (the
differences between the approximate values and the exact values) of the PTP
solution for ni+1 = 3, ni+1 = 4 , ∆x = 0.1 and the approximate optimal
value h = −1. From Figure 3, it is easily to found that the present approxi-
mations are efficient for a larger interval.

Figure 3: Shows the absolute errors (Ek(x) = |µExact(x) − µk(x)|, k = 4, 5) of the
PTP solution with ∆x = 0 for Example 3 where left: the Abs. Err. of the 4th-order

PTP solution for the approximate optimal value h = −1 and right: the Abs. Err. of the
5th-order PTP solution for the approximate optimal value h = −1

In closing our analysis, we point out that three concreted modeling equa-
tions of second-order singular IVPs of the Lane-Emden type equation were
investigated by using the algorithms proposed. The obtained results have
shown noteworthy performance.

5 Conclusions

Application of the methods based on the PIM presented in this paper to the
three Lane-Emden type equations indicates that for the linear Lane-Emden
type equations, its exact solution, if such a solution exists, can be obtained
easily by only one iteration step due to the fact that the multiplier can
be suitably identified, that the TP algorithm can solve a nonlinear Lane-
Emden differential equation exactly if its solution is an algebraic polynomial
up to some degree, and that for nonlinear Lane-Emden type equations can
be useful in general. The numerical results demonstrate that the PIM is a
useful analytic tool for solving the Lane-Emden type equations.
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Lane-Emden نوع معادلات حل برای بهینه پارامتریک تکرار روش

چهارپاشلو رضا

پایه علوم دانشکده شاهپور، جندی صنعتی دانشگاه دزفول،

١٣٩۵ مرداد ٢ مقاله پذیرش ،١٣٩۴ مهر ٢٧ شده اصلاح مقاله دریافت ،١٣٩٣ شهریور ٢۶ مقاله دریافت

های IVP حل منظور به (PIM) پارامتریک تکرار روش نام به ای تحلیلی روش مقاله این در : چکیده
است. گرفته قرار بحث مورد اش داخلی همگرایی و است شده ارائه Lane-Emden نوع دوم درجه منفرد
برای بویژه Lane-Emden نوع معادلات توصیف برای تقریبی تحلیلی حل راه بودن دارا که آنجایی از
موثر (پیشرفت) اصلاح یک بنابراین، است مفید نیست، موجود شان برای دقیقی های حل راه که مواردی
PIM نهایت، آورد.در بدست را ای تقریبی تحلیلی حل راه است قادر که است شده پیشنهاد نیز PIM
غیرخطی معادلات دقیق تقریبی حل راه یافتن برای فواصل ی دنباله در الگوریتمی عنوان به شده اصلاح
ی بهینه میزان یک چگونه که دهیم می نشان همچنین گیرد. می قرار توجه مورد Lane-Emden نوع
تا است شده ارائه هایی مثال کنیم. می شناسایی روش این چارچوب در را همگرایی افزایش پارامتر تقریبی

دهد. نشان را پیشنهادی روش درستی و کارایی

truncated پارامتریک تکرار روش ؛ piecewise-truncated پارامتری تکرار روش : کلیدی کلمات
. Lane-Emdeb نوع غیرخطی معادلات پارامتریک؛ تکرار روش (برشی)؛




