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Abstract

In this paper, we investigate stability analysis of fractional differential
systems equipped with the conformable fractional derivatives. Some stabil-
ity conditions of fractional differential systems are proposed by applying the
fractional exponential function and the fractional Laplace transform. More-

over, we check the stability of conformable fractional Lotka-Volterra system
with the multi-step homotopy perturbation method to demonstrate the effi-
ciency and effectiveness of the proposed procedure.

Keywords: Stability analysis; Asymptotical stability; Conformable frac-
tional derivative; Lotka-Volterra system.

1 Introduction

Fractional differential equations are generalizations of classical differential
equations of integer order that have recently proved to be valuable tools
for the modelling of many physical phenomena, and have been the focus of
many studies due to their frequent appearances in various applications, such
as physics, biology, finance and fractional dynamics, engineering, signal pro-
cessing and control theory [8, 12]. Finding solutions to fractional differential
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systems is rather complicated, consequently, the stability results of the frac-
tional differential systems have been the main goal of the previous studies.
For example, Matignon considers the stability of fractional differential sys-
tems in control processing [11], Deng has studied the stability of fractional
differential system with multiple time delays [6] and we have investigated the
stability of fractional differential systems with Hilfer derivatives [15]. More
novelty, authors in [3, 4, 14] studied stability analysis of distributed order
fractional differential equations with respect to the nonnegative density func-
tion. There are many definitions of fractional derivatives, such as Riemann-
Liouville, Grunwald-Letnikov and Caputo’s fractional derivatives [12], which
these fractional derivatives do not satisfy the product rule, the quotient rule
and the chain rule. In 2014, to overcome these and other difficulties, Khalil
et al. [7] introduced a new simple well-behaved definition of the fractional
derivative called conformable fractional derivative. This fractional deriva-
tive is theoretically very easier to handle and also obeys some conventional
properties that cannot be satisfied by the existing fractional derivatives, for
instance, the chain rule [1]. However this fractional derivative has a weak-
ness, which is the fractional derivative of any differentiable function at point
zero.

In this paper, we shall describe stability conditions for conformable frac-
tional differential systems. In particular our analysis covers the linear con-
formable fractional differential systems with commensurate order and in-
commensurate order and the nonlinear conformable fractional differential
system. At first, stability conditions will be established using fractional
exponential function for linear conformable fractional differential systems,
corresponding to this result we will derive asymptotic stability for the non-
linear conformable fractional system. Then, we produce sufficient conditions
for asymptotical stability of in-commensurate linear conformable fractional
differential system by of the fractional Laplace transform and the fractional
final value theorem. Finally, we present the multi-step homotopy perturba-
tion method for obtain approximate analytical solution and stability of the
conformable fractional Lotka-Volterra system to illustrate the validity of the
results.

2 Conformable fractional derivative

Here, some basic definitions and properties of the conformable fractional cal-
culus theory which can be found in [1, 2, 7] are presented.

Definition 1. Let f : (0,∞) → R, then, the conformable fractional deriva-
tive of f of order α is defined as [7]
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tTα (f) (t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
, (1)

for all t > 0, α ∈ (0, 1).
If f is α-differentiable in some (0, a), a > 0, and lim

t→0+
tTα (f) (t) exists, then

by definition

tTα (f) (0) = lim
t→0+

tTα (f) (t). (2)

The new definition satisfies the properties which are given in the following
theorem.

Theorem 1. Let α ∈ (0, 1], and f, g be α-differentiable at point t, then [7]

(i) tTα(af + bg) = a tTα(f) + b tTα(g), for all a, b ∈ R.

(ii) tTα(t
µ) = µ tµ−α, for all µ ∈ R.

(iii) tTα(fg) = f tTα(g) + g tTα(f).

(iv) tTα(
f
g ) = g t Tα(f)−f t Tα(g)

g2 . In addition, if f is differentiable, then

tTα(f)(t) = t1−α df
dt .

In [1] T. Abdeljawad established the chain rule for conformable fractional
derivatives as following theorem.

Theorem 2. Let f : (0,∞) → R be a function such that f is differen-
tiable and also α-differentiable. Let g be a function defined in the range of f
and also differentiable; then, one has the following rule

tTα(fog)(t) = (tTαf) (g(t)) (tTαg) (t) g(t)
α−1. (3)

If t = 0, then

tTα(fog)(0) = lim
t→0+

(tTαf) (g(t)) (tTαg) (t) g(t)
α−1.

The fractional exponential function plays a very important role in the con-
formable fractional differential equations. The fractional exponential function
e

1
α tα , where 0 < α ≤ 1, is defined by the following series representation,

e
1
α tα =

∞∑
k=0

tαk

αkk!
.

Now, we list here the fractional derivatives of certain functions [7]

(i) tTα(e
1
α tα) = e

1
α tα ,
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(ii) tTα(sin
1
α t

α) = cos 1
α t

α,

(iii) tTα(cos
1
α t

α) = − sin 1
α t

α,

(iv) tTα(
1
α t

α) = 1.

On letting α = 1 in these derivatives, we get the corresponding ordinary
derivatives.

Definition 2. (Fractional Integral) [7] Let a ≥ 0 and t ≥ a. Also, let f
be a function defined on (a, t] and α ∈ (0, 1]. Then, the α-fractional integral
of f is defined by,

t I
α
a f(t) =

∫ t

a

f(x)

x1−α
dx, (4)

if the Riemann improper integral exists.

Theorem 3. (Integration by parts) [1], Let f, g : [0, b] → R be two func-
tions such that fg is differentiable. Then∫ b

0

f(t) tTα (g) (t) dα(t) = fg
∣∣b
0
−
∫ b

0

g(t) tTα (f) (t) dα(t), (5)

where dα(t) = tα−1dt.

It is interesting to observe that the α-fractional derivative and the α-
fractional integral are inverse of each other as given in [7].

Theorem 4. (Inverse property). Let α ∈ (0, 1] and f be a continuous
function such that t I

α
0 f exists. Then

tTα(t I
α
0 f)(t) = f(t), for t ≥ 0.

Definition 3. (fractional Laplace transform) [1] Let 0 < α ≤ 1 and
f : [0,∞) → R be real valued function. Then the fractional Laplace trans-
form of order α starting from a of f is defined by,

Lα{f(t)} = Fα(s) =

∫ ∞

0

e−s tα

α f(t) dα(t), (6)

where dα(t) = tα−1dt.

Fractional Laplace transform for certain functions are presented as fol-
lows [1]
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⋄ Lα{1} = 1
s , s > 0.

⋄ Lα{tp} = αp/α

s1+p/αΓ(1 +
1
α ), s > 0.

⋄ Lα{e
tα

α } = 1
s−1 , s > 1.

⋄ Lα{sin 1
α t

α} = 1
s2+1 , s > 1.

⋄ Lα{cos 1
α t

α} = s
s2+1 , s > 1.

Furthermore, using the properties of the fractional exponential function
and integration by parts, we have

Lα{tTα (f) (t)} = s Fα(s)− f(0). (7)

Next we prove a fractional version of final value theorem which will be
useful is studying stability of conformable fractional systems.

Theorem 5. (final value theorem) Let Fα(s) be the fractional Laplace trans-
form of the function f(t). If all poles of sFα(s) are in the open left-half plane,
then,

lim
t→∞

f(t) = lim
s→0

sFα(s). (8)

Proof. By using formula (7) we arrive at the following relation

lim
s→0

Lα{tTα (f) (t)} = lim
s→0

(s Fα(s)− f(0)) = lim
s→0

(s Fα(s))− f(0). (9)

Consider now the first term only. Since s is independent of t, the order of
integrating and taking the limit can be interchanged

lims→0 Lα{tTα (f) (t)} = lims→0

∫∞
0

e−s tα

α tTα (f) (t) dα(t)

=
∫∞
0

[
lims→0 e

−s tα

α

]
tTα (f) (t) dα(t)

=
∫∞
0 tTα (f) (t) dα(t).

(10)

Taking the integration in the last term of (10), implies that∫ ∞

0
tTα (f) (t) dα(t) = lim

t→∞
(f(t)− f(0)) . (11)

Finally, using (9) and (11), we have

lim
s→0

(s Fα(s))− f(0) = lim
t→∞

(f(t)− f(0)) .
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Neither term on the right-hand side depends on s, so we can remove the limit
and simplify, resulting in the final value theorem

lim
s→0

s Fα(s) = lim
t→∞

f(t).

3 Stability analysis of linear conformable fractional
differential system

In this section, we consider the stability of the following linear conformable
fractional differential system

tTα x(t) = Ax(t), t > 0, x(0) = x0, (12)

where x ∈ Rn, matrix A ∈ Rn×n, x0 = (x10, x20, . . . , xn0)
T , and α =

[α1, α2, . . . , αn] such that 0 < αi ≤ 1, for i = 1, 2, . . . , n.

Remark 1. If α = α1 = α2 = · · · = αn, then system (12) is called a com-
mensurate order system, otherwise system (12) indicates an in-commensurate
order system.

Definition 4. The zero solution of linear conformable fractional differen-
tial system (12) is said to be stable if, for any initial value x0, there exists
an ε > 0 such that ∥x(t)∥ ≤ ε for all t > t0. The zero solution is said to be
asymptotically stable if, in addition to being stable, ∥x(t)∥ → 0 as t→∞.

Now we state stability theorems from commensurate order system, next
produce conditions for asymptotical stability of the in-commensurate order
system.

Theorem 6. The solution to the linear commensurate order system (12)
is given by

x(t) = x0 e
1
αAtα , (13)

where the solution is assumed to be differentiable on (0,∞).

Proof. Taking the fractional Laplace transform of (12), by formula (7), we
have that

sXα(s)− sx0 = AXα(s),

so that
Xα(s) = x0(sI −A)−1. (14)

Now, by applying the fractional Laplace transform of the fractional exponen-
tial function, we obtain the claimed result.
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Definition 5. If all the eigenvalues of A satisfy

|arg(λ(A)| > π

2
, (15)

then A is said to be Hurwitz stable. If all the eigenvalues of A satisfy

|arg(λ(A)| ≥ π/2, (16)

and if |arg(λj0(A)| = π/2, λj0 only correspond to simple elementary divisor
of A, then A is said to be quasi-stable.

Theorem 7.The zero solution of the conformable fractional differential sys-
tem (12) is asymptotically stable if and only if A is a Hurwitz stable, and the
zero solution of system (12) is stable but not asymptotically stable if and only
if A is quasi-stable.

Proof. According to the relation (13), we have

x(t) = x0 e
1
αAtα .

Let A = SJS−1, J is a Jordan canonical form, where Ji, 1 ≤ i ≤ r has the
following form

Ji =



λi 1

λi
. . .

. . .
. . .

λi 1
λi


ni×ni

, λi ∈ C,

and
∑r

i=1 ni = n. Then,

e
1
αAtα = e

1
αSJS−1tα = S e

1
αJtα S−1,

e
1
αJtα = diag

(
e

1
αJ1t

α

, e
1
αJ2t

α

. . . , e
1
αJrt

α
)
,

e
1
αJjt

α

=



1 1
α t

α 1
α2

t2α

2! · · ·
1

αnj−1
t(nj−1)α

(nj−1)!

0 1 1
α t

α · · · 1
αnj−2

t(nj−2)α

(nj−2)!

0 0
. . .

. . .
...

...
... · · · 1 1

α t
α

0 0 · · · 0 1


nj×nj

e
1
αλjt

α

.

One can easily show that the stability of zero solution of system (12) is

determined by the boundedness of e
1
αAtα , or the boundedness of e

1
αJtα or the
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boundedness of all e
1
αJjt

α

j = 1, 2, . . . , r i.e., |arg(λj(A)| ≥ π/2, and when
|arg(λj(A)| = π/2, nj = 1, i.e., A is quasi-stable. Asymptotical stability of
the zero solution of system (12) is given by

lim
t→+∞

e
1
αAtα = 0,

or
lim

t→+∞
e

1
αJtα = 0,

which is equivalent to

lim
t→+∞

e
1
αJjt

α

= 0, (j = 1, 2, . . . , r).

That is,

lim
t→+∞



1 1
α t

α 1
α2

t2α

2! · · ·
1

αnj−1
t(nj−1)α

(nj−1)!

0 1 1
α t

α · · · 1
αnj−2

t(nj−2)α

(nj−2)!

0 0
. . .

. . .
...

...
... · · · 1 1

α t
α

0 0 · · · 0 1


nj×nj

e
1
αλjt

α

= 0, ∀j = 1, 2, . . . , r,

and thus |arg(λj(A)| > π/2 (j = 1, 2, . . . , n) implying that A is a Hurwitz
matrix. The proof is complete.

Remark 2. If there is a λ0 such that |arg(λ0)| < π/2, then zero solution of
system (12) is unstable.

Remark 3. If A has zero eigenvalue, then zero solution of system (12)
is unstable.

Proof. If λ = 0, then from the proof of Theorem 7, we have

1

(j − 1)!

{(
∂

∂λ

)j−1

e
1
αλtα

}∣∣∣∣∣
λ=0

=
t(j−1)α

(j − 1)!α(j−1)
, j = 1, 2, . . . , ni, 1 ≤ i ≤ r.

It is obvious that lim
t→∞

t(j−1)α

(j−1)!α(j−1) =∞ for j ≥ 1. Thus, lim
t→∞

∥x(t)∥ =∞.

Now, we consider an in-commensurate linear conformable fractional dif-
ferential system

tTα1 x1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t),

tTα2 x2(t) = a21x1(t) + a22x2(t) + · · ·+ a2nxn(t),
...

...

tTαn xn(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t),

(17)
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where xi(0) = xi0 and 0 < αi ≤ 1 for i = 1, 2, . . . , n.

We study the stability of system (17) by applying the fractional Laplace
transforms on both sides of this system, we have

sXαi(s)− xi0 =
n∑

j=1

aijXαi(s), (18)

for i = 1, . . . , n, where Xαi(s) is the fractional Laplace transform of xi(t).
We can rewrite (18) as follows

∆(s).


Xα1(s)
Xα2(s)
...

Xαn(s)

 = x0. (19)

in which

∆(s) =


∆11(s) ∆12(s) . . . ∆1n(s)
∆21(s) ∆22(s) . . . ∆2n(s)

...
...

. . .
...

∆n1(s) ∆n2(s) · · · ∆nn(s)

 ,

where

∆ij(s) =

{
s− aii if i = j,
−aij otherwise.

and x0 = (x10, x20, . . . , xn0)
T . For simplicity, we call ∆(s) a characteristic

matrix of (17), moreover det(∆(s)) = 0 is the characteristic equation of sys-
tem (17). Now, we express the main theorem for checking the stability of
system (17).

Theorem 8. If all roots of det (∆(s)) = 0 have negative real parts, then
zero solution system of (17) is asymptotically stable.

Proof. Multiplying s on both sides of (19) gives, we have

∆(s).


sXα1(s)
sXα2(s)
...

sXαn(s)

 = sx0. (20)

if all roots of the det (∆(s)) = 0 lie in open left half complex plane (i.e.
ℜ(s) < 0), then, we consider (20) in ℜ(s) ≥ 0. In this restricted area, the
relation (20) has a unique solution sX(s) = (sXα1(s), sXα2(s), . . . , sXαn(s)).
Since lim

s→0
s = 0, so we have
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lim
s→0,ℜ(s)≥0

sXαi(s) = 0, i = 1, 2, . . . , n

which from the Theorem 5, we get

lim
t→∞

x(t) = lim
t→∞

(x1(t), x2(t), . . . , xn(t)) = lim
s→0

(sXα1(s), sXα2(s), . . . , sXαn(s)) = 0.

The above result shows that system (17) is asymptotically stable.

The inertia of a matrix is the triplet of the numbers of eigenvalues of A
with positive, negative, and zero real parts. Now, we generalize the inertia
concept for analyzing the stability of fractional linear system.

Definition 6. The inertia of the system (17) is the triple

In(α)(A) = (πn(α)(A), νn(α)(A), δn(α)(A)),

where πn(α)(A), νn(α)(A) and δn(α)(A) are, respectively, the number of roots
of det (∆(s)) = 0 with positive, negative, and zero real parts.

Theorem 9.The linear conformable fractional differential system (17) is
asymptotically stable if any of the following equivalent conditions holds.
(i) The matrix A is a Hurwitz matrix.
(ii) πn(α)(A) = δn(α)(A) = 0.
(iii) All roots of the characteristic equation of system (17) satisfy |arg(s)| >
π/2.

Proof. According to Theorem 8 and Definition 5, proof can be easily ob-
tained.

4 Stability of non-linear conformable fractional
differential systems

In this section, we will mainly discuss the stability of a nonlinear conformable
fractional differential system, which can be described by

tTα X(t) = F (X(t)), t > 0, 0 < α ≤ 1, (21)

with the initial value X(0) = X0, where

F (X(t)) =


f1(x1(t), x2(t), . . . , xn(t))
f2(x1(t), x2(t), . . . , xn(t))

...
fn(x1(t), x2(t), . . . , xn(t))

 ,
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and X(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn.

Theorem 10. Let X̂(t) = (x̂1(t), x̂2(t), . . . , x̂n(t))
T is the equilibrium of

system (21), i.e. tTαX̂ = F (X̂) = 0 and J =
(
∂F
∂X

)∣∣
X=X̂

is the Jacobian

matrix at the point X̂, then the point X̂ is asymptotically stable if and only
if J is a Hurwitz matrix.

Proof. Let ζ(t) = X(t) − X̂, where ζ(t) = (ζ1(t), ζ2(t), . . . , ζn(t)) is a small
disturbance from a fixed point. Therefore

tTα ζ(t) = tTα

(
X(t)− X̂

)
, (22)

since tTα

(
X(t)− X̂

)
= tTαX(t)− tTαX̂, and tTαX̂ = 0, thus, we have

tTαζ(t) = tTαX(t) = F (X(t)) = F (ζ(t) + X̂)

= F (X̂) + Jζ(t) + higher order terms

≈ Jζ(t).

System (22) can be written as

tTαζ(t) ≈ Jζ(t), (23)

with the initial value ζ(0) = X0 − X̂. The analytical procedure of lineariza-
tion is based on the fact that if the matrix J has no purely imaginary eigen-
values, then the trajectories of the nonlinear system in the neighborhood
of the equilibrium point have the same form as the trajectories of the lin-
ear system [17]. Hence, by applying Theorem 7 the linear system (23) is
asymptotically stable if and only if all roots of the characteristic function
of J satisfy |arg(λ(J)| > π/2, which implies that the equilibrium X̂ of the
nonlinear conformable fractional system (21) is as asymptotically stable.

Remark 4. The nonlinear conformable fractional system (22) in the point
X̂ is asymptotically stable if and only if πn(α)(J) = δn(α)(J) = 0.

5 The multi-step homotopy perturbation method

The homotopy perturbation method (HPM) was proposed by He [10] in 1999.
This method has been used by many mathematicians and engineers to solve
various functional equations. Although the HPM yields a solution series
which converges very rapidly in most linear and nonlinear equations, in the
case of a large time interval t it may produce a large error. To overcome this
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shortcoming, the multi-step homotopy perturbation method (MHPM) was
presented in [5], to solve nonlinear ordinary differential equations. For the
convenience of the reader, we will first present a brief account of HPM. Let
us consider the following differential equation:

A(u)− f(r) = 0, r ∈ Ω, (24)

with boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ, (25)

where A is a general differential operator, B is a boundary operator, f(r) is
a known analytic function, and Γ is the boundary of the domain Ω.
The operator A can be generally divided into two parts L and N , where L
is linear, while N is nonlinear. Therefore Equation (24) can be written as
follows:

L(u) +N(u)− f(r) = 0. (26)

By using homotopy technique, one can construct a homotopy y(r, p) :
Ω× [0, 1] −→ R which satisfies

H(y, p) = (1−p)[L(y)+L(u0)]+p[A(y)−f(r)] = 0, p ∈ [0, 1], r ∈ Ω, (27)

which is equivalent to

H(y, p) = L(y)− L(u0) + pL(u0) + p[N(y)− f(r)] = 0, (28)

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial guess approx-
imation of Equation (24) which satisfies the boundary conditions. Clearly,
we have

H(y, 0) = L(y)− L(u0) = 0, (29)

H(y, 1) = A(y)− f(r)] = 0. (30)

Thus, the changing process of p from 0 to 1 is just that of y(r, p) from
u0(r) to y(r). In topology this is called deformation and L(y) − L(u0) and
A(y) − f(r) are called homotopic. If, the embedding parameter p, (0 ≤ p ≤
1) is considered as a small parameter, applying the classical perturbation
technique, we can naturally assume that the solution of Equations (27) and
(28) can be given as a power series in p, i.e.,

y = y0 + py1 + p2y2 + · · · . (31)

According to HPM, the approximation solution of Equation (24) can be ex-
pressed as a series of the power of p, i.e.

u = lim
p→1

y = y0 + y1 + y2 + · · · . (32)
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Now, consider a general systems of conformable fractional ordinary dif-
ferential equations

tTα1u1 + g1(t, u1, u2, . . . , um) = f1(t),

tTα2u2 + g2(t, u1, u2, . . . , um) = f2(t),
...

tTαmum + gm(t, u1, u2, . . . , um) = fm(t),

(33)

subject to the initial conditions

u1(t0) = c1, u2(t0) = c2, . . . um(t0) = cm. (34)

First, we write the system (33) in the operator form

L(u1) +N1(t, u1, u2, . . . , um)− f1(t) = 0,

L(u2) +N2(t, u1, u2, . . . , um)− f2(t) = 0,
...

L(um) +Nm(t, u1, u2, . . . , um)− fm(t) = 0,

(35)

subject to the initial conditions (34), where L (ul) =t Tα (ul) is a linear oper-
ator and N1, N2, . . . , Nm are the nonlinear operators. To apply the MHPM,
we first construct a homotopy for system (35) as follows

L(u1)− L(v1) + pL(v1) + p[N1(u1, u2, . . . , um)− f1(t)] = 0,

L(u2)− L(v2) + pL(v2) + p[N2(u1, u2, . . . , um)− f2(t)] = 0,
...

L(um)− L(vm) + pL(vm) + p[Nm(u1, u2, . . . , um)− fm(t)] = 0,

(36)

where v1, v2, . . . , vm are initial approximations which satisfying the given con-
ditions. Let us take the initial approximations as follows

u1,0(t) = v1(t) = u1(t0) = c1,

u2,0(t) = v2(t) = u2(t0) = c2,
...

um,0(t) = vm(t) = um(t0) = cm,

(37)

and
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u1(t) = u1,0(t) + pu1,1(t) + p2u1,2(t) + p3u1,3(t) . . . ,

u1(t) = u2,0(t) + pu2,1(t) + p2u2,2(t) + p3u2,3(t) . . . ,
...

um(t) = um,0(t) + pum,1(t) + p2um,2(t) + p3um,3(t) . . . ,

(38)

where ui,j , (i = 1, 2, . . . ,m; j = 1, 2, . . .) are functions yet to be determined.
Substituting (38) into (36) and arranging the coefficients of the same powers
of p, we get

L(u1,1) + L(v1) +N1(u1,0, u2,0, . . . , um,0)− f1 = 0, u1,1(t0) = 0,

L(u2,1) + L(v2) +N2(u1,0, u2,0, . . . , um,0)− f2 = 0, u2,1(t0) = 0,
...

L(um,1) + L(vm) +Nm(u1,0, u2,0, . . . , um,0)− fm = 0, um,1(t0) = 0,

L(u1,2) +N1(u1,1, u2,1, . . . , um,1) = 0, u1,2(t0) = 0,

L(u2,2) +N1(u1,1, u2,1, . . . , um,1) = 0, u2,2(t0) = 0,
...

L(um,2) +Nm(u1,1, u2,1, . . . , um,1) = 0, um,2(t0) = 0,
(39)

etc. We solve the above systems of equations for the unknowns ui,j , (i =
1, 2, . . . ,m; j = 1, 2, . . .) by applying the inverse operator

L−1(.) =

∫ t

0

(.) dα(t). (40)

Therefore, according to HPM the n-term approximations for the solutions of
(33) can be expressed as

ϕ1,n(t) = u1(t) = limp→1 u1(t) =
∑n−1

k=0 u1,k(t),

ϕ2,n(t) = u2(t) = limp→1 u2(t) =
∑n−1

k=0 u2,k(t),
...

ϕm,n(t) = um(t) = limp→1 um(t) =
∑n−1

k=0 um,k(t),

(41)

The solution obtained by HPM is not valid for large t. A simple way of
ensuring validity of the approximations for large t is to treat the algorithm
of HPM in a sequence of intervals choosing the initial approximations as
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u1,0(t) = v1(t) = u1(t
∗) = c∗1,

u2,0(t) = v2(t) = u2(t
∗) = c∗2,

...
um,0(t) = vm(t) = um(t∗) = c∗m,

(42)

where t∗ is the left-end point of each subinterval. Now we solve (42) for the
unknowns ui,j , (i = 1, 2, . . . ,m; j = 1, 2, . . .) by applying the inverse linear
operator

L−1(.) =

∫ t

t∗
(.) dα(t). (43)

In order to carry out the iterations in every subinterval of equal length
△t, [0, t1), [t1, t2),
[t2, t3), . . . , [tj−1, t), we would need to know the values of the following

u∗
1,0(t) = u1(t

∗), u∗
2,0(t) = u2(t

∗), . . . , u∗
m,0(t) = um(t∗). (44)

But, in general, we do not have these information at our clearance except
at the initial point t∗ = t0. A simple way for obtaining the necessary values
could be by means of the previous n-term approximations ϕ1,n, ϕ2,n, . . . , ϕm,n

of the preceding subinterval given by (41), i.e.

u∗
1,0 ≃ ϕ1,n(t

∗), u∗
2,0 ≃ ϕ2,n(t

∗), . . . , u∗
m,0 ≃ ϕm,n(t

∗). (45)

6 An illustrative example

The following example is presented to illustrate the effectiveness and appli-
cability of the proposed stability criteria.

The Lotka-Volterra equations, also known as the predator-prey (or parasite-
host) equations, are a pair of first order, non-linear, differential equations
frequently used to describe the dynamics of biological systems in which two
species interact on each other, one is a predator and the other is its prey. They
were proposed independently by Alfred J. Lotka in 1925 and Vito Volterra in
1926 [9, 16]. The conformable fractional Lotka-Volterra system is described
by the following nonlinear fractional conformable differential equations [13]

tTα1x1(t) = x1(t) (r − a x1(t)− b x2(t)) ,

tTα2x2(t) = x2(t) (−d+ c x1(t)) ,
0 < α1, α2 ≤ 1, (46)

with the initial values x1(0) = x10 and x2(0) = x20 , where x1, x2 ≥ 0 are
prey and predator densities, respectively, and all constants r, a, b, c and d
are positive. This system has three equilibrium E1 = (0, 0), E2 = ( ra , 0) and
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E3 = (dc ,
cr−ad

cb ). The Jacobian matrix for equilibria E∗ = (x∗, y∗) is defined
as

Figure 1: The equilibrium point E2 of the system (46) with (α1, α2) = (0.95, 0.9) and
(r, a, b, c, d) = (1, 3, 1, 2, 2) is asymptotically stable

J =

[
r − 2ax∗ − by∗ −bx∗

cy∗ −d+ cx∗

]
. (47)

When (r, a, b, c, d) = (1, 3, 1, 2, 2) the system equilibrium points are E1 =
(0, 0), E2 = ( 13 , 0) and E3 = (1,−2). Corresponding eigenvalues for equi-
librium point E1 are λ1 = 1, λ2 = −2, since In(α)(J) = (1, 1, 0), hence the
equilibrium point E1 is unstable. For equilibrium point E2 the eigenvalues are
λ1 = −1, λ2 = −4

3 , because In(α)(J) = (0, 2, 0), thus the equilibrium point
is asymptotically stable and the equilibrium point E3 is unstable, because
In(α)(J) = (1, 1, 0). Let us consider the following parameters of the system
(46), (r, a, b, c, d) = (3, 0.5, 2, 2, 2.5), for these parameters the system (46) has
three equilibrium points E1 = (0, 0), E2 = (6, 0) and E3 = (1.25, 1.1875)
and their corresponding inertias are In(α)(J) = (1, 1, 0) for E1, E2 and
In(α)(J) = (0, 2, 0) for E3, thus the equilibrium point E3 is asymptotically
stable.

Figure 1 shows that system (46) with parameters (r, a, b, c, d) = (1, 3, 1, 2, 2)
and (α1, α2) = (0.95, 0.9) is asymptotically stable in the equilibrium point
E2. From Figure 2 we can see that the system (46) is asymptotically stable
in the equilibrium point E2, with parameters (r, a, b, c, d) = (3, 0.5, 2, 2, 2.5)
and (α1, α2) = (0.95, 0.85).
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Figure 2: The equilibrium point E3 of the system (46) with (α1, α2) = (0.95, 0.85) and
(r, a, b, c, d) = (3, 0.5, 2, 2, 2.5) is asymptotically stable

In system (46) when we take a = 0, we obtain modified the fractional
conformable Lotka-Volterra system

tTα1x1(t) = rx1(t)− b x1(t)x2(t),

tTα2x2(t) = x2(t) (−d+ c x1(t)) .
(48)

System (48) has two equilibrium points: E1 = (0, 0), E2 = (dc ,
r
b ).

The Jacobian matrix of the system (48), evaluated at the equilibrium
E∗ = (x∗, y∗), is given by

J =

[
r − by∗ −bx∗

cy∗ −d+ cx∗

]
. (49)

The eigenvalues of the Jacobian matrix (48) evaluated at all equilibrium
points show that all equilibria are unstable. Since, for the equilibrium point
E1 we obtain λ1 = r and λ2 = −d, for the equilibrium point E2 we get
λ1,2 = ± i

√
rd. All these eigenvalues satisfy the condition for the system to

be unstable
(
In(α)(J) = (1, 1, 0)

)
. Figure 3 shows that the system (48) with

parameters (r, b, c, d) = (1, 1, 4, 2) and (α1, α2) = (0.97, 0.97) is unstable.
All the results are calculated by using the computer algebra package

Maple. The term-number of MHPM series solutions is fixed N = 4 and the
time step size h = 0.1, with the initial conditions (x1(0), x2(0)) = (0.2, 0.8).
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Figure 3: System (48) with (α1, α2) = (0.97, 0.97) and (r, b, c, d) = (1, 1, 4, 2)
is unstable

7 Conclusion

In this paper, we have studied the stability analysis of fractional differen-
tial systems. Fractional derivatives are described by conformable fractional
derivatives. At first, the stability conditions established by fractional ex-
ponential function for commensurate linear fractional differential systems.
Then, we proved a fractional version of final value theorem and by using this
theorem we proposed sufficient conditions on the asymptotical stability for
in-commensurate linear fractional differential system. The numerical simula-
tions of conformable fractional Lotka-Volterra system are used to illustrate
our main result. Although this paper just focuses on the linear systems and
non-linear systems but, the problems remain open for the multi-order frac-
tional differential systems, the time-delayed fractional differential systems
and distributed order fractional systems. This will be the investigation goal
of future works.
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شدني منطبق کسري هاي سيستم پايداري تحليل

شيخاني۳ رفاهي اميرحسين و خواه۱ اميني حسين رضازاده۲,۱، هادي

کاربردي رياضي گروه رياضي، علوم دانشکده گيلان، ۱دانشگاه

مهندسي هاي فناوري دانشکده آمل، نوين هاي فناوري تخصصي دانشگاه ۲

کاربردي رياضي گروه لاهيجان، واحد اسلامي آزاد دانشگاه ۳

١٣٩۵ خرداد ۴ مقاله پذیرش ،١٣٩۴ اسفند ١٩ شده اصلاح مقاله دریافت ،١٣٩۴ اردیبهشت ٣٠ مقاله دریافت

کسري مشتق شامل کسري ديفرانسيل هاي سيستم پايداري تحليل و تجزيه بررسي به مقاله، اين در : چکیده
نمايي تابع از استفاده با کسري ديفرانسيل هاي سيستم پايداري شرايط از برخي پردازيم. مي شدني منطبق
ذکرشده، فرآيند کارايي و اثربخشي دادن نشان براي علاوه به است. شده ارائه کسري لاپلاس تبديل و کسري
کنيم. مي بررسي هوموتوپي آشفتگي چندگامي روش با را لوتکا-ولترا شدني منطبق کسري دستگاه پايداري

لوتکا-ولترا دستگاه شدنی؛ منطبق کسری مشتق مجانبی؛ پايداری پايداری؛ تحليل : کلیدی کلمات
.




