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An adaptive meshless method of line
based on radial basis functions

J. Biazar∗ and M. Hosami

Abstract

In this paper, an adaptive meshless method of line is applied to distribute

the nodes in the spatial domain. In many cases in meshless methods, it is
also necessary for the chosen nodes to have certain smoothness properties.
The set of nodes is also required to satisfy certain constraints. In this paper,
one of these constraints is investigated. The aim of this manuscript is the

implementation of an algorithm for selection of the nodes satisfying a given
constraint, in the meshless method of line. This algorithm is applied to some
illustrative examples to show the efficiency of the algorithm and its ability to
increase the accuracy.

Keywords: Adaptive Meshless Methods; Meshless Method of Line; Radial
Basis Functions.

1 Introduction

In the last decade, application of radial basis functions (RBFs) in the mesh-
less methods, for numerical solution of various types of partial differential
equations (PDEs) has been developed [9–11]. One of the main advantages
of this method is the mesh-free property. Meshless methods do not typically
need a mesh. They need some scattered nodes in the domain that can be
selected uniformly or randomly. This is one of the important properties of
the meshless methods. An alternative meshless method is an approach that
uses a mesh to obtain a good set of nodes based on the problem options (such
as the form of equation, initial or boundary conditions). These methods are
known as adaptive meshless methods. Early researchers have incorporated
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the adaptive methods in several schemes [1, 28, 29, 34, 36]. In this paper an
adaptive method known as Equidistribution [7,14] is introduced for selecting
a set of nodes under a specified criterion on the set. The criterion is that
in the set of nodes, the ratio of the largest distance to the smallest distance
must be smaller than a given parameter k. Kautsky and Nichols introduced
an algorithm to enforce this criterion in the Equidistribution algorithm [7].
In this research, this algorithm is applied in meshless method of line to im-
prove the accuracy of the method. This paper is presented as follows. In
Section 2, radial basis functions are introduced. In Section 3, an adaptive
method is described for selecting a set of nodes and an algorithm is intro-
duced based on the given criterion. Section 4, is devoted to presenting some
illustrative examples, and comparing the numerical results of uniform and
adaptive meshes.

2 Radial basis functions to approximate a function

In this section some essential points about radial basis functions (RBFs), are
introduced. For more details, interested readers are referred to [1,9–11,19,37].
Suppose that a real function u = u(x), x ∈ Rd, should be approximated. An
approximation to u, by radial basis functions, will be defined as the following

u∗(x) =

N∑
j=1

λj φ( ∥x− xj∥ ) λj ∈ R.

Where x, xj ∈ Rd, and norm is the Euclidean norm, and φ is a RBF on Rd.
An RBF is a real valued function which is only dependent on the distance r,
between x and a point xj ∈ Rd(r = ||x−xi||). Some of important RBFs are:

φ(r) =
√
1 + ε2r2 Multiquadrics (MQ),

φ(r) = 1/(1 + ε2r2) Inverse Quadratics (IQ),

φ(r) = 1/
√
1 + ε2r2 Inverse Multiquadrics (IMQ),

φ(r) = e−ε2r2 Gaussian (GA),

where ε is called the shape parameter. N distinct nodes xj are called central
nodes. In matrix notation, the approximated function u∗(x) is denoted as
follows,

u∗(x) =
N∑
j=1

λj φ(rj) = Φt(r)λ, (1)
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where

Φ(r) = [φ(r1), φ(r2), ..., φ(rN )]t, λ = [λ1, λ2, ..., λN ]t, φ(rj) = φ(∥x− xj∥),

λ, is the vector of coefficients, that will be determined. By considering
u∗(xi) = ui, equation (1) can be presented as a system of equations Aλ = U,
where, U = [u1, u2, ..., uN ]t, and by considering φ(rij) = φ(∥xi − xj∥),

A = [Φt(r1),Φ
t(r2), ...,Φ

t(rN )]t,

where Φt(ri) = [φ(ri1) , φ(ri2), ..., φ(riN )]. By solving the system of equa-
tions Aλ = U, the unknown vector λ will be determined. There are several
factors affecting the RBF interpolation process, such as central nodes distri-
bution, shape parameter, etc. In this paper our focus is on the central nodes
distribution.

3 An adaptive meshless method

3.1 Meshless method of line

Method of line (MOL) is a general method for solving a PDE. In this method,
two sequential strategies will be followed: discretizing all directions except
one (usually the time direction for time-dependent PDEs) and integrating the
semi-discrete problem as a system of ODEs. By choosing RBF collocation
method (Kansa Method) [9,10] as integrator system, the method is called the
meshless method of line (MMOL). MMOL involves the following main steps:

1- Partitioning the spatial domain (In meshless method of line, this step is
reduced to choosing some center nodes xi in the spatial domain).

2- Discretizing of the problem in one direction (Usually, time direction in
time-dependent PDEs).

3- Approximating the solution u(x, tn) in each step of time by RBF-approximation
as follows

u(x, tn) =
N∑
j=1

λj φ(rj) = Φt(r)λ λj ∈ R. (2)

4- Substituting (2) in the governing equation and collocating xi. This leads
to a system of ordinary differential equation.

5- Solving the system of ODEs by suitable method, such as RK4 (In each
step of RK4, the solution of the problem in each time step is obtained).

This method is well-addressed in [4, 15].
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3.2 Adaptive meshless method of line

In each step of RK4 in MMOL, the center nodes xi can be selected by an
adaptive mesh. Adaptivity is a well-known concept in mesh generation. The
purpose of the adaption is to change the center nodes, so that to achieve
greater accuracy. As an example, if the problem was approximating a func-
tion with a rapid change in some areas of its domain, concentrating the center
nodes in these areas could improve the accuracy of the approximation. There
are several adaptive algorithms for choosing central nodes in the domain. In
this research, methods based on Equidistribution are investigated.

Definition 1. (Equidistribution). LetM is a non-negative piecewise contin-

uous function on [a, b], and c is a constant, such that n = (1/c)
∫ b

a
M(x) dx

is an integer. The mesh

Π : a = x1, x2, ..., xn = b,

is called equi-distributing (e.d.) on [a, b] with respect to M and c if∫ xi

xi−1

M(x) dx = c , j = 2...n,

and is called subequi-distributing (s.e.d.) on [a, b], with respect to M and c

if, for nc ≥
∫ b

a
M , ∫ xi

xi−1

M(x) dx ≤ c, j = 2 ... n.

A suitable algorithm to produce an e.d. mesh is given in [7]. In the definition
1, the function M, often called a monitor, is dependent on the function u. A
well-known monitor function is arc-length monitor. The arc-length monitor
is defined as the following

M(x) =
√
1 + u2x.

To find more details about the monitors and implementation of the algo-
rithm, interested readers are referred to [6, 7, 17].

In [31], Sarra introduced an adaptive algorithm which was developed to
RBF methods for interpolation problems and PDEs. He applied the method
for time dependent PDEs. The method is a combination of the meshless
Method of Line and an Equidistribution algorithm for producing a set of
center nodes, in each step. The algorithm is an e.d. one with arc-length
monitor. The method is summarized as follows:
In the adaptive algorithm, we start at time t0 with uniform nodes. To advance
the PDE in time with the adaptive grid algorithm the method is implemented
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as follows. Assume that snj , j = 1..N, is approximate solution at time tn

at distinct nodes xnj , j = 1..N . Then, the MMOL is used on these central

nodes to obtain approximations s̄n+1
j , j = 1..N, at time tn+1. Next, by an

Equidistribution based algorithm, a new set of nodes is obtained based on
the properties of s̄n+1. To obtain new central nodes, the points (xnj , s̄

n+1
j ) are

joined by straight lines and the length of the resulting polygon is computed
(Figure 1-a, 1-b). Then N equally spaced points on the polygon are found
which divide its total length into N equal parts (Figure 1-c). The new nodes
xn+1
j , j = 1..N, are found as the projection of these N equally spaced points

on the polygon to the x -axis (Figure 1-d). Finally, sn+1
j is obtained by inter-

polating the values (xnj , s̄
n+1
j ). Applying this algorithm, distribute the nodes

on the spatial domain based on the approximated solution at each time step,
i.e. in step one, the nodes are distributed based on initial condition. If there
are regions of steep gradients, it is obvious that the algorithm concentrate the
nodes over these regions. In these regions, the nodes will be near together and
this fact leads to an ill-conditioned problem. Since condition number of RBF
matrix becomes very large or sometimes even close to singular. Thus, based
on the Equidistribution mesh without constraint, there is not any guarantee
to well-conditioning of the problem. Thus imposing some constraints can be
useful to overcome this deficiency. One of these constraints to control the
distribution of the nodes in the domain, is as follows

hmax

hmin
< k, (3)

where hi = xi −xi−1. On the other hand, the introduced algorithm does not
work if the constraint be applied. To apply the Equidistribution algorithm
subject to this constraint, some modifications must be done. In addition
to the investigated constraint, there are some other constraints, such as a
constraint introduced by Kautsky and Nichols which is; the ratio of the length
of successive subintervals must be less than a parameter k. In this study we
investigate the constraint (3). In the following, an algorithm due to Kautsky
and Nichols [7] will be introduced to distribute a set of nodes for which the
constraint (3) is satisfied.

3.3 An algorithm for the adaptive nodes with constraint

Suppose that (xj , sj), j = 1, 2, .., N are some data points. Our goal is to
gain a set of nodes based on the Equidistribution algorithm that satisfy the
constraint (3). Thus, an s.e.d. mesh is produced, with respect to M and c.

Theorem 1. If Π : {a = x1, x2, ..., xn = b} is an e.d. mesh on [a, b] with
respect to g and d, where
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Figure 1: Geometrical interpretation of the Equidistribution procedure

g(t) = max(M(t), p),

with
p = (1/k) max

t∈[a,b]
M(t),

and d = (1/c)
∫ b

a
g(x) dx (and n is equal to the smallest integer such that

nc ≥
∫ b

a
g), then Π is a s.e.d. on [a, b] with respect to M and c, and satisfies

in (3).

Proof. For proof and more details about the implementation of the algorithm,
see [7].

Figure 2, illustrates the effect of the constraint in the distributing of
nodes. The figure also shows the uniform adaptive nodes without constraint,
and adaptive nodes with constraint. It is obvious that the constraint omits
the huge concentration in a region.
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Figure 2: The comparison of three types of distribution for a test function

4 Numerical experiments

In this section, the algorithm is implemented on two time-dependent partial
differential equations. The method is a combination of the algorithm which
is introduced in 3.1 and Equidistribution algorithm (introduced in 3.3), re-
garding the constraint (3). In fact, the e.d. algorithm is implemented in each
step of time in meshless method of line to produce adaptive central nodes
which satisfy the constraint (3).

Example 1. Consider the Burger equation

ut + uux = υ uxx, (4)

on the interval [-1,1]. The exact solution is u(x, t) = 0.1 ea+0.5 eb +ec

ea+ eb +ec
,

where a = −(x + 0.5 + 4.95t)/(20υ), b = −(x + 0.5 + 0.75t)/(4υ), and
c = −(x + 0.625)/(2υ). The initial condition u(x, 0) and the boundary con-
ditions u(−1, t), u(1, t) are specified. By choosing υ = 0.0035, the equation
is solved by uniform and adaptive nodes. Meshless method of line combined
with adaptive algorithm is applied on equation (4). By choosing N center
nodes {x1, x2, ..., xN} in the domain [-1,1], at a constant time t, the solution
u(x, t) can be expressed in RBF-approximation as follows

u(x, t) =

N∑
j=1

λj φ(rj) = Φt(r)λ. (5)

Collocating (5) by {x1, x2, ..., xN}, leads us to the following system of equa-
tion

Aλ = u, (6)

where u = [u(x1, t), u(x2, t), ..., u(xN , t)]. By substituting λ = A−1u into (5),
we have

u(x, t) = Φt(r)A−1u = V (x)u(t), (7)
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Figure 3: Plots of the approximate solution and absolute error of equation (4) at t=0.5
using 50 uniform nodes (a), adaptive nodes without constraint (b), and adaptive nodes
with constraint (c)

where V (x) = Φt(x)A−1 = [V1(x), ..., VN (x)]. By substituting (7) into the
Burger equation (4), and collocating the center nodes xi, we obtain

dui
dt

+ ui (Vx(xi)u) = υ (Vxx(xi)u) , i = 1, 2, ..., N.

This equation can be written as a system of ordinary differential equations
as

du

dt
= −u⊗ (Vx(xi)u) + υ (Vxx(xi)u) , (8)

where ⊗ denote component by component multiplication of two vectors.
Equation (8), is rewritten as

du

dt
= F (u), (9)
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Figure 4: Plots of the approximate solution and absolute error of equation (4) at t=1
using 70 uniform nodes (a), and adaptive nodes with constraint (b)

where F (u) = −u ⊗ (Vx(xi)u) + υ (Vxx(xi)u). The system of ordinary
differential equations (9) can be solved by RK4 method. In the nth step
of RK4, u(x, tn) is approximated. As mentioned before, the center nodes
{x1, x2, ..., xN} in each step can be selected adaptively. We solve the Burger
equation (4), by adaptive meshless method of line by three different distri-
bution of center nodes; uniformly distributed nodes, adaptive nodes without
constraints, and adaptive nodes with the constraint (3). Figure 3 shows the
approximate solution at t=0.5 with different center nodes. The approximate
solution by uniform nodes demonstrates that, it has the minimum accuracy in
the sharpest region of the solution. Furthermore Figure 3-b, and 3-c show the
same accuracy for two adaptive center nodes. It is important that without
constraint (3), the condition number of the RBF matrix may be very large
(close to singular) or singular, and RBF interpolation can’t work exactly.
Due to this fact, in this example at time 1, by 70 adaptive nodes without
constraint, the method is failed to obtain a solution (Table 1). The results of
using uniform nodes and adaptive nodes with constraint are shown in Figure
4. Table 1 illustrates the accuracy of the adaptive algorithm. It is known
that the value of the parameter k influence the concentration of the nodes.
Thus to illustrate the impact of the parameter k in distributing the adaptive
nodes, and in the accuracy of the results, the error norm by different values
of this parameter are investigated in Table 1.
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Table 1: The error norms of the approximate solution of Example 1

t N Distribution of nodes k ε Max error RMS error Figure
0.5 50 Uniform - 31 0.0335 0.0070 Figure 3-a

Adaptive without constraint - 31 0.0054 0.0018 Figure 3-b
Adaptive with constraint 2 31 0.0307 0.0064 -

3 31 0.0154 0.0036 -
6 31 0.0042 0.0018 Figure 3-c

0.5 70 Uniform - 31 0.0059 0.0013 -
Adaptive without constraint - 31 0.0027 0.0011 -
Adaptive with constraint 2 31 0.0023 9.65e-4 -

3 31 0.0019 8.81e-4 -
6 31 0.0022 0.0010 -

1 70 Uniform - 31 0.0650 0.0135 Figure 4-a
- 51 0.0942 0.0166 -

Adaptive without constraint - 31 NaN NaN -
- 51 NaN NaN -

Adaptive with constraint 3 31 0.3548 0.0509 -
3 51 0.0367 0.0055 Figure 4-b
6 31 0.0321 0.0067 -
6 51 0.0435 0.0087 -

Example 2. Consider the KdV equation

ut + εu ux + µuxxx = 0, (10)

with ε = 6, and µ = 1. The initial condition is

u(x, 0) = 2 sech2(x).

The exact solution is

u(x, t) = 2 sech2(x− 4t).

The computational domain is[−10, 40]. The boundary conditions u(−10, t)
and u(40, t) are determined. This problem is solved by the same method
as the example 1. Figure 5 shows the solution of the equation (10), with
uniform and adaptive center nodes. It is obvious that, by 110 center nodes,
at t=0.5, the approximate solutions using adaptive nodes have better accu-
racy. The RMS error and Max-error of the results (Table 2), shown that the
adaptive nodes with constraint result in better accuracy. If the number of
central nodes increased up to 150, the solutions by adaptive nodes have the
same accuracy. It is predictable, because when the number of nodes is large,
the e.d. algorithm leads to nearly uniform distribution of nodes and conse-
quently, the errors of approximate solutions are close. Table 2, demonstrate
the impact of N, k, and shape parameter ε, in the accuracy of the results.
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Figure 5: Plots of the approximate solution and absolute error of equation (10) at t=0.5
using 110 uniform nodes (a), adaptive nodes without constraint (b), and adaptive nodes
with constraint (c)

Table 2: The error norms of the approximate solution of Example 2

t N Distribution of nodes k ε Max error RMS error Figure
0.5 110 Uniform - 0.8 0.1485 0.0389 Figure 5-a

Adaptive without constraint - 0.9 0.0460 0.0110 Figure 5-b
Adaptive with constraint 2 1.2 0.0295 0.0069 Figure 5-c

3 1.2 0.0295 0.0069 -
6 1.2 0.0295 0.0069 -

0.5 150 Uniform - 0.8 0.0205 0.0065 -
Adaptive without constraint - 0.8 0.0046 0.0014 -
Adaptive with constraint 2 0.8 0.0033 0.0010 -

3 0.8 0.0033 0.0010 -
6 0.8 0.0033 0.0010 -

1 150 Uniform - 0.8 0.0197 0.0094 -
- 1.1 0.0074 0.0034 -

Adaptive without constraint - 0.8 0.0045 0.0021 -
- 1.1 0.0054 0.0025 -

Adaptive with constraint 2 0.8 0.0033 0.0016 -
2 1.1 0.0030 0.0014 -
3 0.8 0.0033 0.0016 -
3 1.1 0.0030 0.0014 -
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5 Conclusion

In this paper, an Equidistribution algorithm has been applied to distribute
the central nodes in adaptive modes to RBF methods. To have some smooth-
ness properties, by the e.d. algorithm, the central nodes satisfying in a given
constraint are obtained. This method was applied to two nonlinear time-
dependent partial differential equations by MMOL. In numerical examples,
the results obtained by uniform nodes, and adaptive nodes with, and with-
out the constraint have been compared. The numerical results in Example
1, reveal that with adaptive nodes, a more accurate approximate solution
has been obtained. Our numerical experience shows that, in this example, to
achieve the accuracy as good as adaptive nodes, at least 150 uniform nodes
must be applied. Also in Example 2, with 110 uniform nodes, the obtained
results by adaptive nodes with constraint have better accuracy. With 150
center nodes a good accuracy has been obtained by three distributions. The
numerical results in the examples illustrate the efficiency of adaptive nodes
to solving some nonlinear PDEs with MMOL. The results show that apply-
ing the adaptive central nodes is more accurate in the problems with speed
gradient functions.

Acknowledgement The Authors are grateful to reviewers for their con-
structive and helpful comments, which helped to improve the paper.

References

1. Behrens, J and Iske, A. Grid-free adaptive semi-Lagrangian advection us-
ing radial basis functions, Computers & Mathematics with Applications,
43 (3–5) (2002) 319–327.

2. Belytschko, T., Krongauze, Y., Organ, D., Fleming, M. and Krysl,
P Meshless methods: An overview and recent developments, Computer
Methods in Applied Mechanics and Engineering, 139 (1996) 3–47 (spe-
cial issue on Meshless Methods).

3. Bozzini, M., Lenarduzzi, L. and Schaback, R. Adaptive interpolation by
scaled multiquadrics, Advances in Computational Mathematics, 16(4)
(2002) 375-387.

4. Cao, W., Huang, W. and Russell, R. D. A study of monitor functions for
two dimensional adaptive mesh generation, SIAM Journal on Scientific
Computing, 20(6)(1999) 1978–1994.

5. Carey, G. F. and Dinh, H. T. Grading functions and mesh redistribution,
SIAM Journalon Numerical Analysis , 22(5)(1985) 1028–1040.



An adaptive meshless method of line based on radial basis functions 57

6. Fasshauer, G. E. Mesh free Approximation Methods with MATLAB.
World Scientific Co. Pte. Ltd., Singapore, 2007.

7. Ferreira, A. J. M., Kansa, E. J., Fasshauer, G. E. and Leitao, V. M.
A. Progress on Meshless Methods, Computational Methods in Applied
Sciences, Springer 2009.

8. Hon, Y. C. Multiquadric collocation method with adaptive technique for
problems with boundary layer, International Journal of Applied Science
and Computations, 6(3) (1999) 173–184.

9. Hon, Y. C., Chen, C. S. and Schaback, R. Scientific Computing with
Radial Basis Functions. Draft version 0.0, Cambridge, 2003.

10. Hon, Y. C, Schaback, R. and Zhou, X. An adaptive greedy algorithm
for solving large RBF collocation problems, Numerical Algorithms, 32(1)
(2003)13–25.

11. Kansa, E. J. Multiquadrics-A scattered data approximation scheme with
applications to computational fuid-dynamics-I surface approximations
and partial derivative estimates, Computer and Mathematics with Ap-
pllications, 19 (1990) 127–145.

12. Kansa, E. J. Multiquadrics-A scattered data approximation scheme with
applications to computational fuid dynamics- II. Solution to parabolic,
hyperbolic and elliptic partial differential equations, Computer and Math-
ematics with Appllications, 19 (1990) 147–161.

13. Kautsky, J. and Nichols, N. K. Equi-distributing meshes with constraints,
SIAM Journal on Scientific and Statistical Computing, 1(4) (1980) 449-
511.

14. Quan, S. A meshless method of lines for the numerical solution of KdV
equation using radial basis functions, Engineering Analysis with Bound-
ary Elements, 33 (2009) 1171–1180.

15. Sanz-Serna, J. and Christie, I. A simple adaptive technique for nonlinear
wave problems, Journal of Computational Physics, 67 (1986) 348-360.

16. Sarra, S. A. Adaptive radial basis function methods for time dependent
partial differential equations, Applied Numerical Mathematics, 54 (1)
(2005) 7994.

17. Schaback, R. and Wendland, H. Adaptive greedy techniques for ap-
proximate solution of large RBF systems, Numerical Algorithms, 24(3)
(2000)239–254.

18. Schiesser, W. E. The numerical method of lines: integration of partial
differential equations, San Diego, California: Academic Press; 1991.



شعاعی پایه توابع اساس بر سازگار شبکه بدون خط روش یک

هوسمی محمد و آزار بی جعفر

کاربردي رياضي گروه رياضي، علوم دانشکده گیلان، دانشگاه

می استفاده فضایی دامنه در نقاط توزیع برای سازگار شبکه بدون خط روش یک از مقاله، این در : چکیده
خاصی همواری شرایط شده انتخاب نقاط که است لازم بسیاری موارد در شبکه، بدون های روش در شود.
بررسی ها محدودیت این از یکی مقاله، این در کند. صدق هایی محدودیت در نقاط مجموعه و باشند داشته
نقاطی انتخاب برای است شبکه بدون خط روش در الگوریتمی بردن کار به مطالعه، این از هدف شود. می
آنرا دقت، افزایش در آن توانایی و الگوریتم کارایی دادن نشان برای کنند. صدق مشخص، شرایطی در که

بریم. می کار به نمونه مثال تعدادی در

شعاعی. پایه توابع شبکه؛ بدون خط روش سازگار؛ شبکه بدون های روش : کلیدی کلمات
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