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A two-phase variable neighborhood
search for solving nonlinear optimal

control problems
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Abstract

In this paper, a two-phase algorithm, namely IVNS, is proposed for solving

nonlinear optimal control problems. In each phase of the algorithm, we use a
variable neighborhood search (VNS), which performs a uniform distribution
in the shaking step and the successive quadratic programming, as the local
search step. In the first phase, VNS starts with a completely random initial

solution of control input values. To increase the accuracy of the solution
obtained from the phase 1, some new time nodes are added and the values
of the new control inputs are estimated by spline interpolation. Next, in
the second phase, VNS restarts by the solution constructed by the phase

1. The proposed algorithm is implemented on more than 20 well-known
benchmarks and real world problems, then the results are compared with
some recently proposed algorithms. The numerical results show that IVNS
can find the best solution on 84% of test problems. Also, to compare the

IVNS with a common VNS (when the number of time nodes is same in both
phases), a computational study is done. This study shows that IVNS needs
less computational time with respect to common VNS, when the quality of
solutions are not different significantly.
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1 Introduction

Nonlinear optimal control problems (NOCP) are dynamic optimization prob-
lems with many applications in process systems engineering, including the
design of trajectories for the optimal operation of batch and semi-batch re-
actors, economic systems, plasma physics, etc. [7].

Providing high-quality solutions with minimum computational time is the
main issue for solving NOCPs. The numerical methods, direct [29] or indirect
[46], usually have two main deficiencies, including low accuracy and conver-
gence to a poor local solution. In direct methods, the quality of solutions
depend on discretization resolution. These methods use control parametriza-
tion to convert continuous problems to discrete problems, so they may have
less accuracy. However, the adaptive strategies [8, 43] can overcome these
defects, but they may be trapped by a local optimal, yet. In the indirect
approach, the problem using Pontryagins minimum principle (PMP) is con-
verted to two boundary value problems (TBVP) and then it can be solved by
numerical methods such as shooting method [29]. These methods need the
good initial guesses that lie within the domain of convergence. Therefore,
numerical methods are not usually suitable for solving NOCPs, especially for
large-scale and multimodal models.

Metaheuristics as the global optimization methods can overcome these
problems, but they usually need more computational time, though they don’t
really need good initial guesses and deterministic rules. Several researchers
have used metaheuristics to solve optimal control problems. For instance,
Michalewicz et al. [34] applied floating-point Genetic algorithms (GA) to
solve discrete time optimal control problems, Yamashita and Shima [52] used
the classical GAs to solve the free final time optimal control problems with
terminal constraints. Abo-Hammour et al. [1] used continuous GA for solv-
ing NOCPs. Recently, Sun et al. [47] proposed a hybrid improved GA, for
solving NOCPs and applied it for chemical processes. Moreover, the other
usages of GA for optimal control problems can be found in [44, 45]. Modares
and Naghibi-Sistani [37], proposed a hybrid algorithm by integrating an im-
proved Particle Swarm Optimization (PSO) with a successive quadratic pro-
gramming (SQP), for solving NOCPs. Lopez-Cruz et al. [14], applied Differ-
ential Evolution (DE) algorithms for solving the multimodal optimal control
problems. Recently, Ghosh et al. [22] developed an ecologically inspired op-
timization technique, called Invasive Weed Optimization (IWO), for solving
optimal control problems. The other well-known metaheuristic algorithms
which are used for solving NOCPs are Genetic Programming (GP) [30], PSO
[3, 4], Ant Colony Optimization (ACO) [48] and DE [31, 50].

Based on the success of the metaheuristics for solving NOCPs mentioned
above, we propose an algorithm that use a well-known metaheuristic namely
VNS (variable neighbourhood search) to solve NOCPs. Also, achieving a
global optimal solution for NOCPs is another motivation for us to use a
VNS [35]. VNS is an intelligent and metaheuristic method for solving a set
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of combinatorial optimization and global optimization problems which uses
neighborhood changes and uniform distributions in search procedure. Un-
like many other metaheuristics, it is simple and requires few parameters [32].
Mladenović et al. [36] proposed a general VNS for solving continuous opti-
mization. Moreover, VNS was used for solving several optimization problem
[25] such as mixed integer programming [26], vertex weighted k−cardinality
tree problem [10], and scheduling problem [13].

In this paper, VNS uses a uniform distribution in the shaking step and
the SQP [39], as the local search step (similar to [37]). SQP is an iterative
algorithm for solving NLP, which uses gradient information. Furthermore,
SQP is used for solving NOCPs alone [6, 18].

For performing VNS to solve an NOCP, the time interval is uniformly
divided by using a constant number of time nodes. Next, in each of these
time nodes, the control variable is approximated by a scalar matrix of control
input values. Thus, an infinite dimensional NOCP is changed to a finite
dimensional nonlinear programming (NLP). Now, we encounter two conflict
situations: the quality of the global solution and the needed computational
time. In other words, when the number of time nodes is increased then
we expect the quality of the global solution to increase but we know that
in this situation the computational time is increased dramatically. In other
situation, we consider less number of time nodes to reduce the computational
but we may find a poor local solution. To conquer these problems, IVNS,
performs VNS in two phases. In the first phase of IVNS (exploration phase),
to decrease the computational time and to find a promising solution in the
search space, VNS uses a less number of time nodes. Next to increase the
quality of the solution obtained from Phase 1, the number of time nodes is
increased. Using the obtained solution in Phase 1, the values of the new
control inputs are estimated by spline interpolation. Next, in the second
phase of IVNS (exploitation phase), VNS uses the solution constructed by
the above procedure, as an initial solution. A computational study in our
numerical experiments shows that there is a significant difference between the
computational time of IVNS and a common VNS, that uses all time nodes
from the beginning.

The rest of the paper is organized as follow: in Section 2, NOCPs are
briefly introduced. In Section 3, IVNS is described. In Section 4, we provide
more than 20 NOCPs to examine the numerical behaviour of the proposed
algorithm. Results are compared with some numerical and metaheuristic
methods. A computational study is carried out in Section 5 to show the
effect of the second phase. We conclude in Section 6.
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2 Problem formulation

NOCPs are formulated as optimization problems by the performance index
as the objective function and differentiate equations as constraints that called
dynamic optimizations. There are several types of these problems e.g. track-
ing problem, terminal control problem and time minimization problem [29].
We consider nonlinear bounded continuous-time control problems in which
a vector of control functions, u, is exerted over the planning horizon [t0, tf ].
The particular problem considered is that of finding the control input vector
u(t) ∈ Rm that minimizes the performance index:

min J = ϕ(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt (1)

subject to:

ẋ(t) = f(x(t), u(t), t), (2)

c(x(t), u(t), t) = 0, (3)

d(x(t), u(t), t) ≤ 0, (4)

ψ(x(tf ), tf ) = 0, (5)

x(t0) = x0, t ∈ [t0, tf ]. (6)

where x(t) ∈ Rn denotes the state vector for the system and x0 ∈ Rn is
the initial state. The functions f : Rn+m × R → Rn, g : Rn+m × R →
R, c : Rn+m × R → Rnc , d : Rn+m × R → Rnd , ψ : Rn × R → Rnψ and
ϕ : Rn × R → R are assumed to be sufficiently smooth on appropriate open
sets. The cost function (1) must be minimized subject to dynamic (2), control
and state equality constraints (3), control and state inequality constraints (4),
the initial condition (6) and the final state constraints (5).

3 Proposed algorithm

Here, we propose IVNS for solving NOCPs. Before providing a description
of IVNS, we introduce VNS.

3.1 VNS algorithm

VNS where introduced by Mladenović and Hansen in 1997 [35] is a meta-
heuristic algorithm which uses neighborhood changes systemically idea, both
in the descent to local minima and in the escape from valleys which contain



A two-phase variable neighborhood search for solving ... 17

local minima. It explores distant neighborhoods of the current incumbent
solution, and moves from there to a new one if and only if an improvement
is necessary. Local search method is applied repeatedly to get in the neigh-
borhood to local optima [36]. Here, the implemented VNS in each phase has
the following steps:
Initialization: The time interval is divided into Nt−1 subintervals using time
nodes t0, . . . , tNt−1 and then control input values are computed (or selected
randomly) as control points. This can be done by the following stages:

1. Let tk = t0 + kh, where h =
tf−t0
Nt−1 , k = 0, 1, . . . , Nt − 1, be time nodes,

where t0 and tf are the initial and final times, respectively.

2. The corresponding control input value at each time node, tk, k =

0, . . . , Nt − 1 is an m × 1 vector, uk = [u
(k)
1 , . . . , u

(k)
m ]T , having the

following components:

u
(k)
i = uleft,i + (uright,i − uleft,i).ri, i = 1, 2, . . . ,m (7)

where ri is a random number in [0, 1] with uniform distribution and
uleft, uright ∈ Rm are the lower and the upper bound vectors of control
input values, which can be given by the problem’s definition or the
user (e.g. see the NOCPs No. 7 and 8 in Appendix, respectively).
u = [uk]

Nt−1
k=0 is called control input matrix.

Evaluation: The corresponding state matrix with the control input matrix,
u, is an n×Nt matrix, x = [xk]

Nt−1
k=0 , where xk, k = 0, 1, . . . , Nt−1, is an n×1

vector as the (k + 1)-th column of state matrix, and can approximately be
computed by the forth Runge-Kutta method on dynamic system (2) with the
initial condition (6). Without loss of generality, assume m = 1 (for general
case it can be extended easily). So, the evaluation procedure is as follows:

xk = xk−1 +
1

6
(l1 + 2l2 + 2l3 + l4), k = 1, 2, . . . , Nt − 1 (8)

where

l1 = hf(xk, uk, tk), l2 = hf(xk +
l1
2
, uk +

h

2
, tk)

l3 = hf(xk +
l2
2
, uk +

h

2
, tk), l4 = hf(xk + l3, uk + h, tk)

where uk = u(tk) and xk = x(tk), with initial condition x(t0) = x0. To
approximate the performance index, the composite Simpson’s method [5], is
used. Then, the performance index in (1), J , is approximated by J̃ as follows:

J ≃ J̃ = ϕ(xNt−1, tNt−1) +
h

3
(f0 + 4

[
Nt
2 ]−1∑
i=1

f2i+1 + 2

[
Nt
2 ]−1∑
i=0

f2i + fNt−1) (9)
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where fk = f(xk, uk, tk), k = 0, 1, . . . Nt − 1. If NOCP includes equality
or inequality constraints e.g. (3) or (4), or has final state constraints, given
by (5), then we add some penalties to the corresponding fitness value of the
solution. Finally, we assign I(u) to u as the fitness value as follows:

I(u) = J̃ +

nd∑
l=1

Nt−1∑
j=0

M1lmax{0, dl(xj , uj , tj)}+
nc∑
h=1

Nt−1∑
j=0

M2hc
2
h(xj , uj , tj)

+

nψ∑
p=1

M3pψ
2
p(xNt−1, tNt−1) (10)

where M1 = [M11, . . . ,M1nd ]
T , M2 = [M21, . . . , M2nc ]

T and M3 =
[M31, . . . ,M3nψ ]

T are big numbers, as the penalty coefficients, for ch(., ., .), h =
1, 2, . . . , nc, dl(., ., .), l = 1, 2, . . . , nd, and ψp(., .), p = 1, 2, . . . , nψ defined in
(3), (4) and (5), respectively.
The fitness value in (10), can be viewed as a nonlinear objective function
with the decision variable as u = [u0, u1, . . . , uNt−1]. This cost function with
upper and lower bounds of input signals construct a finite dimensional NLP
problem as follows:

min I(u) = I(u0, u1, . . . , uNt−1)

s.t

uleft ≤ uj ≤ uright, j = 0, 1, . . . , Nt − 1 (11)

Neighborhood: VNS uses at most kmax neighborhoods, Vr1 , . . . , Vrkmax , in
which ri, i = 1, . . . , kmax is the radii of i-th neighborhood, Vi, of the control
input matrix u.
Shaking: In this stage, using a uniform distribution, a random direction
matrix d ∈ [−1, 1]m×Nt is firstly generated and then a random solution, ū, is
selected in the k-th neighborhood, Vk, by the following equation:

ū = u+ d.α.(r + k − 1) (12)

where r ∈ [0, 1] is a random number, k is the index of neighborhood and α
is the parameter of radii.
Local search: In this stage, SQP algorithm [9, 39] is performed on the NLP
(11), using ū0 = ū, constructed in (12), as the initial solution when the
maximum number of iteration is sqpmaxiter.

SQP, is an effective and iterative algorithm for the numerical solution of
the constrained NLP problem. This technique is based on finding a solution
to the system of nonlinear equations that arise from the first-order necessary
conditions for an extremum of the NLP problem. Using an initial solution
of NLP, ūk, k = 0, 1, . . ., a sequence of solutions as ūk+1 = ūk + dk is
constructed, which dk is the optimal solution of the constructed quadratic
programming (QP) that approximates NLP in the iteration k based on ūk,
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as the search direction in the line search procedure. For the NLP (11), the
principal idea is the formulation of a QP subproblem based on a quadratic
approximation of the Lagrangian function as L(u, λ) = I(u)+λTh(u), where
the vector λ is Lagrangian multiplier and h(u) return the vector of, inequality
constraints evaluated at u. The QP is obtained by linearizing the nonlinear
functions as follows:

min
1

2
dTH(ūk)d+∇I(ūk)T d

∇h(ūk)T d+ h(ūk) ≤ 0

Similar to [18], here a finite difference approximation is applied to compute
the gradient of the cost function and the constraints, with the following
components

∂I

∂uj
=
I(...uj + δ...)− I(uj)

δ
, j = 0, 1, . . . , Nt − 1 (13)

where δ is the double precision of machine. So, the gradient vector is
∇I = [ ∂I∂u0

, . . . , ∂I
∂uNt−1

]T . Also, at each major iteration a positive definite

quasi-Newton approximation of the Hessian of the Lagrangian function, H,
is calculated using the BFGS method [39], where λi, i = 1, ...,m, is an esti-
mated of the Lagrange multipliers. The general procedure of SQP, for NLP
(11), is as follows:

1. Given an initial solution ū0. Let k = 0.

2. Construct the QP subproblem (13), based on ū0, using the approxima-
tions of the gradient and the Hessian of the the Lagrangian function.

3. Compute the new point as ūk+1 = ūk + dk, where dk is the optimal
solution of the current QP.

4. Let k=k+1 and go to step 2.

Here, in IVNS, SQP is used as the local search step, and we use the maximum
number of iterations as the main criterion for stopping SQP. In other words,
we terminate SQP when it converges either to local solution or the maximum
number of SQP’s iterations is reached.
Terminal conditions: The algorithm is terminated when the number of neigh-
borhoods reached to kmax or the difference between cost functions in two
consecutive iterations is less than ε (a given number).
VNS algorithm is given in Algorithm 1.
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Algorithm 1 VNS algorithm

{Initialization} Input the number of time nodes Nt, the maximum num-
ber of iteration for SQP, sqpmaxiter, a maximum number of neighborhood,
kmax, the parameter of radii, α defined in (12), the lower and the upper
bound vectors of control input values uleft, uright, an initial solution, u∗,
and ε. Let k = 1.
{Evaluation} Evaluate the fitness of the initial solution, u∗ and let I∗ =
I(u∗), where I(.) is defined in (10).
repeat

{Shaking} Using (12), select u in k-th neighborhood of u∗.
{Local search} Perform SQP algorithm on the NLP (11), using u as

the initial solution when the maximum number of iteration is sqpmaxiter.
Let ū be the obtained solution, Ī = I(ū) and e = |Ī − I∗|.

if Ī < I∗ then
Let u∗ = ū, I∗ = Ī and k = 1.
else
Let k = k + 1
end if

until k > kmax or e < ε
Return u∗ as the approximate solution, x∗ as the corresponding state and
the corresponding fitness I∗.

3.2 IVNS

We now give a new algorithm, IVNS, which is a two-phase direct metaheuris-
tic approach. The main idea of IVNS is to find promising solution of the
search space using the computational time as few as possible.

IVNS has two main phases (as discussed in Section 1). In the first phase,
we perform VNS (Algorithm 1) with a completely random initial solution
constructed by (7). Since the main goal in this phase is to find the promising
solution in the search space, we use a few number of time nodes.

Next, to maintain the property of the solution given in Phase 1 and to
increase the accurately of this solution, we add some additional time nodes.
Thus, we increase time nodes from Nt1 in the Phase 1 to Nt2 in the Phase
2. To use the information of the obtained solution from Phase 1 in the
construction of the initial solution for Phase 2, we use Spline interpolation to
estimate the values of the control inputs based on the curve obtained from
the Phase 1. In the second phase, VNS restarts with this solution. Finally,
IVNS is given in Algorithm 2.

Remark 3.1. As we know, there are no general theorems on convergence of
metaheuristics algorithm exist [28, 38]. Also, a specific theory on convergence
of VNS does not exist, but a simple framework for global convergence of VNS
based on attraction probabilities concept, can be found in [11]. However, we
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Algorithm 2 IVNS

Initialization Input uleft and uright.
{Phase 1} Perform VNS (Algorithm 1) with a random initial solution and
using the parameters Nt1 , sqpmaxiter, kmax, α and ε. (see Algorithm 1)
{Constructing an initial solution for Phase 2} Increase time nodes
uniformly to Nt2 and estimate the corresponding control input values by
using Spline interpolation on the obtained solution from Phase 1.
{Phase 2} Restart VNS (Algorithm 1) with the constructed initial solution
and using Nt2 , sqpmaxiter, kmax, α and ε. (see Algorithm 1)

mentioned that all metaheuristics are practical algorithms that are interesting
for their numerical behaviour, [16].

4 Numerical experiments

In this Section, to investigate the efficiency of IVNS, more than 20 well-
known and real world NOCPs, as benchmark problems, are considered. These
problems are selected with single control signal and multi control signals.

The numerical behaviour of the algorithms can be studied from two points
of view: the performance index and the final state constraints. Let J be
the value of the performance index and ψ = [ψ1, . . . , ψnψ ]

T , defined in (5),
and ϕf = ∥ψ∥2 be the vector of final state constraints and the error of ψ,
respectively. Now, the absolute errors for J and ϕf , are defined as follows:

EJ = |J − J∗|, Eψ = |ϕf − ϕ∗f | (14)

where J∗ and ϕ∗f = ∥ψ∗∥2 are the best obtained solutions among the methods,
or the exact solutions (when exist). To control the accuracy study, we now
define a new criterion, called factor, to compare the numerical behaviour of
the algorithms as follows:

Kψ = EJ + Eψ (15)

where EJ and Eψ are defined in (14). Note that Kψ shows the summation
of two important errors. Thus, based on Kψ we can study the behaviour of
algorithms on the quality and feasibility of given solutions, simultaneously.

To solve any NOCP described in the Appendix, we must know IVNS’s
parameters including Nt1 , Nt2 , kmax, α, ε and sqpmaxiter (see Algorithm
1), and the problem’s parameters including uleft, uright andMi, i = 1, 2, 3, in
(10). To estimate the best value of these parameters, for each problem, we run
the proposed algorithm with different values of the parameters and then select
the best. In all NOCPs, we consider the parameters sqpmaxiter = 30, α =
10−3 and kmax = 10. The other parameters are given in the associated
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subsection or in Table 2. Because of the stochastic nature of the proposed
algorithm, 12 different runs were done, for each NOCP, and the best result
are reported in Table 1. The best value of each column is highlighted in the
bold. The reported numerical results for each algorithm included the value
of performance index, J , the absolute error of J and EJ , are defined in (14).
The final state constraints, ψ = [ψ1, . . . , ψnψ ]

T , the two-norm or error of the
final state constraints, ϕf , the absolute error of ϕf and Eψ, are defined in
(14), and the factor Kψ is defined in (15).

The algorithm was implemented in Matlab R2011a environment on a
Notebook with Windows 7 Ultimate, CPU 2.53 GHz and 4.00 GB RAM.
Also, to implement SQP in the proposed algorithm, as the local search, we
used ‘fmincon’ in Matlab when the ‘Algorithm’ was set to ‘SQP’.

In Subsection 4.1, the numerical results of IVNS are compared with exact
solutions. Also, for comparing IVNS with metaheuristics and numerical algo-
rithms in two Subsections 4.2 and 4.3, we consider 22 NOCPs. Their models
are described in the Appendix, which are presented in terms of equations
(1)-(6). The numerical results are summarized in Table 1. Details of these
comparisons are given in the following subsection.

4.1 Comparison with the exact solution

Consider the nonlinear system state equations [24]

ẋ1 = x32,

ẋ2 = u

The cost functional to be minimized, starting from the initial states x1(0) = 0
and x2(0) = 1, is

J = 4x1(2) + x2(2) + 4

∫ 2

0

u2(t)dt

The exact trajectories of the problem, from PMP, are x∗1(t) = 2
5 −

64
5(t+2)5

and x∗2(t) = 4
(t+2)2 , with the exact control signal u∗(t) = −8

(t+2)3 . Also the

exact value of the performance index is J∗ = 3.35. For the proposed algo-
rithm, IVNS’s parameters are set as Nt1 = 15, Nt2 = 21, ε = 10−6 and the
problem’s parameters are set as uleft = −1 and uright = − 1

4 . The IVNS’s
solution for the problem is J = 3.3418, thus, EJ = Kψ = 0.0082.

Figure 1 shows the graphs of the exact and the obtained trajectories, for
x1 and x2, and Figure 2 shows the graphs of the exact and the obtained
control signals.
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Figure 1: The exact and the obtained trajectories of (a) x1 and (b) x2, for the NOCP in
subsection 4.1

Figure 2: The exact and the obtained control signals for the NOCP in subsection 4.1

4.2 Comparison with metaheuristic algorithms

Here, six NOCPs are considered, NOCPs No. 1-6 in Appendix. The numeri-
cal results for the first NOCP is compared with hybrid improved GA, HIGA,
proposed in [47]. The NOCPs No. 2-4, in the Appendix are compared with
a metaheuristic, continuous GA and CGA, proposed in [1], which gave bet-
ter solutions than shooting method and gradient algorithm (as the indirect
methods) [29, 12], and SUMT (as the direct methods) [18]. For NOCPs No.
5 and 6 the results are compared with another metaheuristic, called IPSO,
proposed in [37]. It has been shown that, for these NOCPs, IPSO was more
accurate than some metaheuristic algorithms such as GA [42], DE [14], PSO
[27] and some numerical methods [21, 23].
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TCCR problem [47]

The first NOCP in the Appendix is a chemical process of Temperature Con-
trol for Consecutive Reaction, TCCR, which is an unconstrained two-state
variable mathematical system. The objective is to obtain the optimal tem-
perature profile that maximizes the yield of the temperature product B at
the end of operation in a batch reactor, where the reaction A → B → C
is occurred. The state variables, x1 and x2 are the concentration of A and
B, respectively, and the control variable u is the temperature. The problem
solved by HIGA [47], which was more accurate than ACO [40] and iterative
ACO [53]. From Table 1, we can see that the numerical behaviour of IVNS
is better than HIGA.

VDP problem [1, 17]

The second NOCP in the Appendix is Van Der Pol, VDP, problem which has
two state variables and one control variable. VDP problem has a final state
constraint, which is ψ = x1(tf )−x2(tf )+1 = 0. The problem solved by CGA
[1] and IVNS. From [1], the norm of final state constraint for the CGA equals
ϕ∗f = 2.67 × 10−11, however, this value for IVNS equals ϕf = 3.04 × 10−9.
So, the factor Kψ for these methods can be seen in the sixth column of the
Table 1. Note that the Kψ of IVNS, 3.01 × 10−9, is less than CGA’s Kψ,
3.0 × 10−4. From Table 1, it is seem that IVNS can achieved more suitable
solution than CGA.

CRP problem [1, 29]

The third NOCP in the Appendix is a mathematical model of Chemical Re-
actor Problem, CRP, which has two state variables and one control variable.
The control variable is the flow of a coolant through a coil inserted in the
reactor that controls the first-order irreversible exothermic reaction taking
place in the reactor. The state variables, x1 and x2, are the deviations from
the steady-state temperature and concentration, respectively. The numerical
results of IVNS and CGA are shown in the third row of Table 1. CRP prob-
lem has two final state constraints, ψ = [x1, x2]

T . From [1], the norm of final
state constraints for CGA, equals ϕ∗f = 7.57 × 10−10, when IVNS’s norm of

final state constraints is ϕf = 2.50×10−8. But, the corresponding Kψ of two
methods shows that IVNS could achieve more accurate solutions than CGA.
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FFRP problem [1, 18]

The fourth NOCP in the Appendix is Free Floating Robot Problem, FFRP,
which has six state variables and four control variables. It was solved by
CGA [1]. FFRP problem has six final state constraints, ψ = [x1− 4, x2, x3−
4, x4, x5, x6]

T . The norm of final state constraints for IVNS is ϕ∗f = 4.61 ×
10−4, however, this value, from [1], for CGA is ϕf = 4.65×10−3. From Table
1, we can see the numerical behaviour of IVNS is better than CGA, also it
is clear that the obtained values of J, EJ , ϕf , Eψ and Kψ from IVNS are
better than CGA.

CSTCR problem [37]

The fifth NOCP in the Appendix is a model of a nonlinear Continuous Stirred-
tank Chemical Reactor, CSTCR. It has two state variables x1(t) and x2(t), as
the deviation from the steady-state temperature and concentration, and one
control variable u(t), which represents the effect of the flow rate of cooling
fluid on chemical reactor. The objective is to maintain the temperature and
concentration close to steady-state values without expending large amount
of control effort. Also, this is a benchmark problem in the handbook of
test problems in local and global optimization [20], which is a multimodal
optimal control problem [2]. It involves two different local minima. The
values of the performance indices, for these solutions, equal 0.244 and 0.133.
The numerical results of IVNS, with the parameters in Table 2, are compared
with IPSO [37], and numerical methods in [2, 14]. From the results of the
fifth row of Table 1, we can see that IVNS is the best.

MSNIC problem [37]

In the sixth NOCP in the Appendix, a Mathematical System with Nonlinear
Inequality Constraint, MSNIC, is considered. It includes an inequality con-
straint, d(x, t) = x2(t) + 0.5 − 8(t − 0.5)2 ≤ 0. From the sixth row of Table
1, we can see that the obtained value of the performance index, for IVNS
is J∗ = 0.1720, which is better than IPSO’s, 0.1727, and other numerical
methods given in [23, 33].

4.3 Comparison with numerical algorithms

In this subsection, for NOCPs no. 7-22, the results of IVNS are compared
with some numerical methods such that SQP [18], SUMT [18], Bézier [21],
HPM [15], DTM [41] and ADM [19]. Usually, for these methods the final
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state constraints are not reported. But these values are reported for IVNS
in Table 1.

Comparison with Bézier [21]

The NOCP No. 7, in the Appendix, has exact solution, i.e. the exact value of
performance index equals J∗ = −5.5285 [49]. This problem has an inequality
constraint as d(x, t) = −6 − x1(t) ≤ 0. It has been solved by a numerical
method, proposed in [21], called Bézier, and the proposed algorithm, IVNS,
with the parameters in Table 2. From seventh row of Table 1, the obtained
value of the performance index from IVNS is better and more accurate than
Bézier method.

Comparison with HPM [15], DTM [41] and ADM [19]

In this subsection, the results of IVNS with the parameters given in Table 2,
are compared with HPM [15], DTM [41] and ADM [19]. For NOCP No. 8 in
the Appendix, which is a constraint nonlinear model, the numerical results
are compared with HPM. This NOCP has a final state constraint as

ψ = x− 0.5 = 0.

From [15], the norm of final state constraint for HPM is ϕf = 4.2 × 10−6,
however, this value for IVNS equals ϕ∗f = 6.83 × 10−11. From Table 1, it is
clear that the obtained values of the performance index, the norm of final
state constraint and Kψ from IVNS are better than HPM’s.

The problem No. 9 in the Appendix is a linear quadratic optimal control
which has been solved by two numerical methods, DTM [41] and ADM [19].
Using the approximate values of k(t), which is used to achieve the optimal
control signal by linear feedback control as u(t) = −k(t)x(t), the performance
index could be calculated. The exact solution, from PMP, equals J∗ = 0.1929.
From Table 1, the values of EJ and Kψ, for IVNS, with the same number of
points, Nt2 = 15, equals 0.0052, which is less than DTM and ADM methods,
(0.0087).

Comparison with SQP and SUMT

For NOCPs No. 10-22 in the Appendix, the numerical results of IVNS (the
parameters are given in Table 2) are compared with SQP and SUMT meth-
ods. All these problems are described in [18]. For SQP and SUMT, the status
of the final state constraints were not reported, so, we replaced the values of
ϕf instead of Eψ, in Table 1. Also, in computation of the factor, Kψ, the
values of Eψ for SQP and SUMT methods are considered to be zero. The
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results (given in Table 1) show that IVNS could find more accurate results
for performance index J , and the factor Kψ, perspective.

Table 1: The best of numerical results for 12 different runs of NOCPs described in

Appendix

Problem Algorithm J EJ Eψ Kψ

TCCR HIGA[47] 0.61046 2.0 × 10−5 — 2.0 × 10−5

IVNS 0.61048 0 — 0

VDP CGA [1] 1.7404 3.0 × 10−4 0 3.0 × 10−4

IVNS 1.7401 0 3.01 × 10−9 3.01 × 10−9

CRP CGA[1] 0.0163 4.0 × 10−4 0 4.0 × 10−4

IVNS 0.0159 0 2.42 × 10−8 2.42 × 10−8

FFRP CGA[1] 83.63 17.72 0.0042 17.7242
IVNS 65.91 0 0 0

CSTCR IPSO [37] 0.1354 0.0024 — 0.0024
[2] J ∈ [0.135, 0.245] 0.0020 — 0.0020
[14] J ∈ [0.1358, 0.1449] 0.0028 — 0.0028

IVNS 0.1328 2.0 × 10−4 — 2.0 × 10−4

MSNIC IPSO [37] 0.1727 0.0007 — 0.0007
[23] 0.1816 0.0096 — 0.0096
[33] 0.1769 0.0049 — 0.0049
IVNS 0.1720 0 — 0

NOCP no. 7 Bézier [21] −5.3898 0.1387 — 0.1387
IVNS −5.5082 0.0203 — 0.0203

NOCP no. 8 HPM [15] 0.2353 0.0338 4.20 × 10−6 0.0338
IVNS 0.2015 0 0 0

NOCP no. 9 DTM [41] 0.2016 0.0087 — 0.0087
ADM [19] 0.2016 0.0087 — 0.0087
IVNS 0.1877 0.0052 — 0.0052

NOCP no. 10b SUMT [18] 5.15 × 10−6 5.14 × 10−6 — 5.14 × 10−6

SQP [18] 6.57 × 10−6 6.56 × 10−6 — 6.56 × 10−6

IVNS 6.57 × 10−11 0 — 0

NOCP no. 11b SUMT [18] 1.7980 0.0791 — 0.0791
SQP [18] 1.7950 0.0761 — 0.0761
IVNS 1.7189 0 — 0

NOCP no. 12b SUMT [18] 0.1703 0.0223 — 0.0223
SQP [18] 0.2163 0.0683 — 0.0683
IVNS 0.1480 0 — 0

NOCP no. 13b SUMT [18] 3.2500 0.3507 NRa 0.3507
SQP [18] 3.2500 0.3507 NR 0.3507

IVNS 2.8993 0 7.49 × 10−10 7.49 × 10−10

NOCP no. 14b SUMT [18] −0.2490 0.001 NR 0.001
SQP [18] −0.2490 0.001 NR 0.001

IVNS −0.2500 0 2.6 × 10−10 2.6 × 10−10

NOCP no. 15b SUMT [18] 0.0167 6.0 × 10−4 NR 6.0 × 10−4

SQP [18] 0.0168 7.0 × 10−4 NR 7.0 × 10−4

IVNS 0.0161 0 3.42 × 10−9 3.42 × 10−9

NOCP no. 16b SUMT [18] 3.7700 0.4648 NR 0.4648
SQP [18] 3.7220 0.4168 NR 0.4168

IVNS 3.3052 0 3.35 × 10−8 3.35 × 10−8

NOCP no. 17b SUMT [18] 9.29 × 10−4 3.0 × 10−6 NR 3.0 × 10−6

SQP [18] 1.01 × 10−3 8.4 × 10−5 NR 8.4 × 10−5

IVNS 9.26 × 10−4 0 6.66 × 10−10 6.66 × 10−10

NOCP no. 18b SUMT [18] 2.2080 0.2079 NR 0.2079
SQP [18] 2.2120 0.2119 NR 0.2119

IVNS 2.0001 0 5.01 × 10−11 5.01 × 10−11

NOCP no. 19b SUMT [18] −8.8690 0.0002 NR 0.0002
SQP [18] −8.8690 0.0002 NR 0.0002

IVNS −8.8692 0 6.89 × 10−9 6.89 × 10−9

NOCP no. 20b SUMT [18] 0.0368 0.0042 — 0.0042
SQP [18] 0.0368 0.0042 — 0.0042
IVNS 0.0326 0 — 0

NOCP no. 21b SUMT [18] 76.83 12.11 NR 12.11
SQP [18] 77.52 12.80 NR 12.80

IVNS 64.72 0 1.46 × 10−4 1.46 × 10−4

NOCP no. 22b SUMT [18] 0.3428 0.0670 NR 0.0670
SQP [18] 0.3439 0.0681 NR 0.0681
IVNS 0.2758 0 0.0021 0.0021

a Not Reported.
b We here consider, Eψ = ϕf for IVNS, and for SQP and SUMT methods, Eψ = 0

(since the values were not reported, we consider the best possible situation for SQP and SUMT).

Table 1 shows that IVNS was 100 percent successful in point of view the
performance index, numerically. The associated values of EJ for IVNS are
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zero for all test problems. It shows that IVNS provides robust results with
respect to the other methods.

To have a more careful comparison, we computed the Gap between the
performance index’s value of the algorithms and the best obtained perfor-
mance index’s value. In other words, let J be the obtained value of the
performance index of an algorithm. Now, similar to [51], we define the Gap
as follows:

Gap(J) = |J − J
∗

J∗ | (16)

From Table 1, the mean values of Gap for IVNS, SQP and SUMT, on NOCPs
No. 10-22, are 0, 7.69e + 3 and 6.02e + 3, respectively. Thus it is obvious
that, IVNS gave more better solution in comparison with SQP and SUMT.
We believe that this is due to the fact that IVNS tries to find the global
solution but SQP and SUMT didn’t escape from a local minimum.

To compare with the CGA (as a global search algorithm), from Table
1, we see that the mean values of the Gap for CGA is 0.0981. Thus, we
can see IVNS is 100 percent better than CGA from Gap perspective. This
result shows that IVNS’s estimations of global minimal is better than CGA’s
estimation. Therefore, based on these numerical study, we can conclude that
IVNS outperforms than CGA.

The mean values of violation of the norm of the final state constraints, ϕf ,
for IVNS is 1.16 × 10−4. Therefore, it is evident that IVNS is more robust.
Also, the mean value of ϕf for IVNS and CGA are 1.53×10−4 and 1.55×10−3,
respectively, on NOCPs no. 2-4. Thus, we can say that the feasibility of the
solutions given by IVNS and CGA are competitive. Therefore, it is seen that
IVNS could provide very suitable solutions with respect to the optimality
and feasibility criteria. Also, the mean of the factor, Kψ, for IVNS equals
1.28 × 10−3. For NOCPs No. 10-22 the mean of factor for IVNS, SQP
and SUMT equals 1.76 × 10−4, 1.0768 and 1.0272, respectively. Therefore,
we can say that IVNS outperform well-known numerical methods. Since,
the computational times of the most algorithms were not reported thus we
didn’t give the computational times of IVNS in Table 1. But, the details of
the computational time of IVNS is given in Table 3 that will be discussed in
Section 5.

5 Comparison with a common VNS

The main idea for proposing a two-phase algorithm is to decrease the required
computational time in solving NOCPs. So, we focus on investigating of the
influence of the second phase in IVNS. To compare the IVNS with a common
VNS, the number of time nodes are selected same in both phases. In common
VNS, only the first phase of IVNS, which the number of time node equal
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Table 2: The parameters of IVNS for NOCPs described in the Appendix

Problem uleft uright Nt1 Nt2 ε Mi

TCCR 298 398 11 15 10−6 —
VDP -0.5 2 31 151 10−6 7
CRP -1.5 2 21 51 10−8 [1, 1]T

FFRP -15 10 31 61 10−3 [70, . . . , 70]T6×1

CSTCR 0 5 31 51 10−9 —
MSNIC -20 20 21 51 10−3 1
no. 7 -2 2 21 131 10−9 1
no. 8 -2 2 31 91 10−6 1
no. 9 -2 3 11 15 10−6 —
no. 10 -3 3 21 51 10−6 —
no. 11 -2 2 31 91 10−5 1
no. 12 -20 20 31 51 10−8 1
no. 13 -4 3 31 75 10−6 [100, 100]T

no. 14 -1 1 31 71 10−6 1000
no. 15 -2 2 21 41 10−6 [100, 100]T

no. 16 −π π 31 51 10−9 [100, 100]T

no. 17 -1 1 21 35 10−6 [10, 10]T

no. 18 -5 5 31 151 10−6 [10, 10]T

no. 19 -30 30 31 171 10−6 [100, 100]T

no. 20 -1 1 31 171 10−6 —
no. 21 -15 10 31 71 10−6 [70, . . . , 70]T6×1

no. 22 -15 10 21 91 10−6 [10, . . . , 10]T6×1

Nt2 , is applied. For these methods, 35 different runs, for each NOCP in
the Appendix, were made with the same parameters. The influence of these
methods investigated for these NOCPs on the dependent outputs consist of
performance index, J , the factor, ϕf and required computational time, Time.
The results are given in Table 3.

From Table 3, we observe that the two-phase method has no significant
effect on J, ϕf . But the two-phase method, IVNS, needs less computational
time than the common VNS, significantly (except NOCP No. 16). Therefore,
based on this computational study, we can conclude that the usage of two-
phase VNS can decrease the computational time, significantly, without loss
of quality of solution.

6 Conclusion

In this paper, a two-phase algorithm, namely IVNS, was proposed for solving
NOCPs. In each phase of the algorithm, we used a VNS, which performed
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Table 3: The best numerical results for NOCPs in Appendix, using IVNS and common

VNS

IVNS VNS
Problem J ϕf Time J ϕf Time
TCCR 0.6105 — 4.1496 0.6107 — 4.2482
VDP 1.7401 3.04× 10−9 375.69 1.7513 1.42× 10−9 413.28
CRP 0.0159 2.50× 10−8 78.09 0.0164 3.12× 10−9 112.05
FFRP 65.91 4.61× 10−4 264.62 50.31 8.17× 10−3 285.13
CSTCR 0.1328 — 48.82 0.1116 — 52.83
MSNIC 0.1720 — 10.49 0.1725 — 29.82
no. 7 −5.5082 — 42.27 −5.5012 — 65.81
no. 8 0.2015 6.83× 10−11 11.18 0.2012 4.21× 10−10 12.24
no. 9 0.1877 — 3.1278 0.1899 — 5.6636
no. 10 6.57× 10−11 — 3.7440 2.88× 10−11 — 3.9624
no. 11 1.7189 — 119.94 1.7152 — 139.55
no. 12 0.1480 — 41.38 0.1486 — 54.35
no. 13 2.8993 7.49× 10−10 39.04 2.8935 3.41× 10−9 38.36
no. 14 −0.2500 2.60× 10−10 52.61 −0.2498 1.52× 10−8 93.10
no. 15 0.0161 3.42× 10−9 124.02 0.0162 4.03× 10−10 154.65
no. 16 3.3052 3.35× 10−8 137.85 3.3051 1.03× 10−10 111.07
no. 17 9.26× 10−4 6.66× 10−10 144.16 9.81× 10−4 8.35× 10−8 178.23
no. 18 2.0001 5.01× 10−11 35.10 2.0001 2.13× 10−12 120.07
no. 19 −8.8692 6.89× 10−9 114.30 −8.8692 7.13× 10−9 129.02
no. 20 0.0326 — 42.69 0.0326 — 64.23
no. 21 64.72 1.46× 10−4 145.68 56.54 4.74× 10−3 148.01
no. 22 0.2758 0.0021 135.25 0.2765 0.0038 217.65

a uniform distribution in the shaking step and the SQP, as the local search
step. In the first phase, VNS started with a completely random initial solu-
tion of control input values. To increase the accuracy of the solution obtained
from Phase 1, the some new time nodes were added and the values of the new
control inputs were estimated by Spline interpolation. Next, in the second
phase, VNS restarted by the solution constructed by Phase 1. Finally, we im-
plemented the proposed algorithm on more than 20 well-known benchmarks
and real world problems, then the results were compared with some recently
proposed algorithms. The numerical results showed that IVNS could found
mostly better solution than other proposed algorithms. Also, to compare of
IVNS with a common VNS a computational study was done that showed
that IVNS needed less computational time with respect to a common VNS.
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search: methods and applications, 4OR, 6(4) (2008) 319–360.
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Appendix

The following NOCPs are described using eqns (1)-(6).

1. [47, 53, 40] (TCCR) ϕ = x2, t0 = 0, tf = 1, f = [−4000exp(−2500/u)
x21, 4000exp(−2500/u)x21−620000exp(−5000/u)x2]T , d = [298−u, u−
398]T , x0 = [1, 0]T .

2. [1, 17] (VDP) g = 1
2 (x

2
1 + x22 + u2), t0 = 0, tf = 5, f = [x2,−x2 + (1 −

x21)x2 + u]T , x0 = [1, 0]T , ψ = x1 − x2 + 1.

3. [1, 29] (CRP) g = 1
2 (x

2
1+x

2
2+0.1u2), t0 = 0, tf = 0.78, f = [x1−2(x1+

0.25) + (x2 + 0.5)exp(25x1/(x1 + 2)) − (x1 + 0.25)u, 0.5 − x2 − (x2 +
0.5)exp(25x1/(x1 + 2))]T , x0 = [0.05, 0]T , ψ = [x1, x2]

T .

4. [1, 18] (FFRP) g = 1
2 (u

2
1 + u22 + u23 + u24), t0 = 0, tf = 5, f =

[x2, ((u1 + u2) cosx5 − (u2 + u4) sinx5)/M, x4, ((u1 + u3) sinx5 + (u2 +
u4) cosx5)/M, x6, (D(u1+u3)−Le(u2+u4))/I]T , x0 = [0, 0, 0, 0, 0, 0]T ,
ψ = [x1 − 4, x2, x3 − 4, x4, x5, x6]

T ,M = 10, D = 5, I = 12, Le = 5.

5. [37] (CSTCR) g = x21+x
2
2+0.1u2, t0 = 0, tf = 0.78, f = [−(2+u)(x1+

0.25)+(x2+0.5)exp(25x1/(x1+2)), 0.5−x2−(x2+0.5)exp(25x1/(x1+
2))]T , x0 = [0.09, 0.09]T .

6. [37] (MSNIC) ϕ = x3, t0 = 0, tf = 1, f = [x2,−x2 + u, x21 + x22 +
0.005u2]T , d = [−(20−u)(20+u), x2+0.5−8(t−0.5)2]T , x0 = [0,−1, 0]T .

7. [21] g = 2x1, t0 = 0, tf = 3, f = [x2, u]
T , d = [−(2 − u)(2 + u),−6 −

x1]
T , x0 = [2, 0]T .
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8. [15] g = u2, t0 = 0, tf = 1, f = 1
2x

2 sinx+ u, x0 = 0, ψ = x− 0.5.

9. [41, 19] g = 1
2 (x

2 + u2), t0 = 0, tf = 1, f = −x+ u, x0 = 1.

10. [18] g = x2 cos2 u, t0 = 0, tf = π, f = sin u
2 , x0 = π

2 .

11. [18] g = 1
2 (x

2
1 + x22 + u2), t0 = 0, tf = 5, f = [x2,−x1 + (1 − x21)x2 +

u]T , d = −(x2 + 0.25), x0 = [1, 0]T .

12. [18] g = x21 + x22 + 0.005u2, t0 = 0, tf = 1, f = [x2,−x2 + u]T , d =
[−(20− u)(20 + u), 0.5 + x2 − 8(t− 0.5)2]T , x0 = [0,−1]T .

13. [18] g = 1
2u

2, t0 = 0, tf = 2, f = [x2, u]
T , x0 = [1, 1]T , ψ = [x1, x2]

T .

14. [18] g = −x2, t0 = 0, tf = 1, f = [x2, u]
T , d = −(1 − u)(1 + u), x0 =

[0, 0]T , ψ = x2.

15. [18] g = 1
2 (x

2
1+x

2
2+0.1u2), t0 = 0, tf = 0.78, f = [−2(x1+0.25)+(x2+

0.5)exp(25x1/(x1+2))−(x1+0.25)u, 0.5−x2−(x2+0.5)exp(25x1/(x1+
2))]T , x0 = [0.05, 0]T , ψ = [x1, x2]

T .

16. [18] g = 1
2u

2, t0 = 0, tf = 10, f = [cosu− x2, sinu]T , d = −(π − u)(π +
u), x0 = [3.66,−1.86]T , ψ = [x1, x2]

T .

17. [18] g = 1
2 (x

2
1 + x22), t0 = 0, tf = 0.78, f = [−2(x1 + 0.25) + (x2 +

0.5)exp(25x1/(x1+2))−(x1+0.25)u, 0.5−x2−(x2+0.5)exp(25x1/(x1+
2))]T , d = −(1− u)(1 + u), x0 = [0.05, 0]T , ψ = [x1, x2]

T .

18. [18] ϕ = x3, t0 = 0, tf = 1, f = [x2, u,
1
2u

2]T , d = x1 − 1.9, x0 =
[0, 0, 0]T , ψ = [x1, x2 + 1]T .

19. [18] ϕ = −x3, t0 = 0, tf = 5, f = [x2,−2 + u
x3
,−0.01u]T , d = −(30 −

u)(30 + u), x0 = [10,−2, 10]T , ψ = [x1, x2]
T .

20. [18] ϕ = (x1 − 1)2 + x22 + x23, g = 1
2u

2, t0 = 0, tf = 5, f = [x3 cosu, x3
sinu, sinu]T , x0 = [0, 0, 0]T .

21. [18] g = 1
2 (u

2
1+u

2
2+u

2
3+u

2
4), t0 = 0, tf = 5, f = [x2, ((u1+u3) cosx5−

(u2+u4) sinx5)/M, x4, ((u1+u3) sinx5+(u2+u4) cosx5)/M, x6, (D(u1+
u3) − Le(u2 + u4))/I]

T , x0 = [0, 0, 0, 0, 0, 0]T , ψ = [x1 − 4, x2, x3 −
4, x4, x5 − π

4 , x6]
T ,M = 10, D = 5, I = 12, Le = 5.

22. [18] g = 4.5(x23+x
2
6)+0.5(u21+u

2
2), t0 = 0, tf = 1, f = [9x4, 9x5, 9x6, 9(u1

+17.25x3), 9u2,−9(u1−27.0756x3+2x5x6)/x2]
T , x0 = [0, 22, 0, 0,−1, 0]T

, ψ = [x1 − 10, x2 − 14, x3, x4 − 2.5, x5, x6]
T .



غیرخطی بهینه کنترل مسائل حل برای متغیر همسایگی جستجوی دوفازی الگوریتم یک

حسین۳ نژاد سعید و حیدری۲ عقیله قنبری۱، رضا

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه ۱

کاربردی ریاضی گروه مشهد، نور، پیام دانشگاه ۲

کاربردی ریاضی گروه تهران، نور، پیام دانشگاه ۳

پیشنهاد غیرخطی بهینه کنترل مسائل حل برای IVNS نام به دوفازی الگوریتم یک مقاله این در : چکیده
که می�کنیم استفاده (VNS) متغیر همسایگی جستجوی روش از پیشنهادی الگوریتم فاز هر در است. شده
استفاده محلی جستجوی گام در دنباله�ای دو درجه ریزی برنامه� روش از لغزشو گام در یکنواخت توزیع از آن در
اجرا کنترل ورودی متغیرهای از تصادفی کاملا اولیه جواب یک با VNS الگوریتم اول، فاز در است. شده
و می�شوند اضافه جدیدی زمانی نقاطگره�ای اول، فاز از آمده بدست جواب دقت افزایش منظور به می�شود.
جواب با VNS دوم فاز در سپس می�شوند. زده تقریب اسپلاین درون�یابی با آنها در کنترل ورودی مقادیر
بهینه کنترل مساله ٢٠ روی پیشنهادی الگوریتم می�شود. اندازی راه مجددا اول فاز از شده ساخته جدید
اخیر پیشنهادی الگوریتم�های از برخی با عددی نتایج است. شده سازی پیاده آزمون، مسائل عنوان به واقعی،
در روش�ها سایر به نسبت بهتری عددی جواب�های پیشنهادی روش می�دهد نشان نتایج است. شده مقایسه
گره�ای نقاط تعداد (که فاز تک VNS با IVNSمقایسه برای همچنین می�دهد. ارائه کمتر محاسباتی زمان
محاسباتی زمان IVNS داد نشان مطالعه این است. شده انجام عددی آزمایش یک است) مشابه فاز دردو
نمی�کند. تغییر داری معنی صورت به آمده بدست جواب�های کیفیت که حالی در دارد، VNS به نسبت کمتری

ای. دنباله دو درجه ریزی برنامه متغیر؛ همسایگی جستجوی غیرخطی؛ بهینه کنترل مساله : کلیدی کلمات
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