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An approximation method for
numerical solution of

multi-dimensional feedback delay
fractional optimal control problems by

Bernstein polynomials

E. Safaie∗ and M. H. Farahi

Abstract

In this paper, we present a new method for solving fractional optimal
control problems with delays in state and control. This method is based

upon Bernstein polynomials basis and feedback control. The main advantage
of feedback or closed-loop control is that one can monitor the effect of such
control on the system and modify the output accordingly. In this work, we
use Bernstein polynomials to transform the fractional time-varying multi-

dimensional optimal control system with both state and control delays, into
an algabric system in terms of the Bernstein coefficients approximating state
and control functions. We use Caputo derivative of degree 0 < α ≤ 1 as the
fractional derivative in our work. Finally, some numerical examples are given

to illustrate the effectiveness of this method.

Keywords: Delay fractional optimal control problem; Caputo fractional
derivative; Bernstein polynomial.

1 Introduction

The general definition of an optimal control problem requires the minimiza-
tion of a functional over an admissible set of control and state functions sub-
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ject to dynamic constraints on the states and controls. A Fractional Optimal
Control Problem (FOCP) is an optimal control problem in which either the
performance index or the differential equations governing the dynamic of the
system or both contain at least one fractional order derivative term [1, 2, 17].

Fractional Differential Equations ( FDEs ) have been the focus of many
studies due to their appearance in various applications in real-world physical
systems. For example, it has been illustrated that materials with memory
and hereditary effects and dynamical processes including gas diffusion and
heat conduction can be more adequately modeled by FDEs than integer-
order differential equations [13, 18, 20]. Some other applications of FDEs
are in behaviors of viscoelastic materials, biomechanics and electrochemical
processes ( see [3, 5] for more details ).

Most FOCPs do not have exact solutions, so in these cases approximation
methods and numerical techniques must be used. Recently, several approxi-
mation methods to solve FOCPs have been introduced [4, 14, 18].

Real life phenomena have been described more precisely by Delay Differ-
ential Equations, so Delay Fractional Optimal Control Problem ( DFOCP )
has become the focus of many researchers in the last decade. Baleanu in [6]
and Jarad in [11] analyzed the fractional variational principles for some kinds
of DFOCPs within Riemann-Liouville and Caputo fractional derivatives re-
spectively and made their corresponding Euler-Lagrange equations. In this
paper, we present a novel strategy based on Bernstein polynomials (BPs) to
solve DFOCPs. Consider the following DFOCP

Min J = 1
2

∫ 1

0
[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]dt, (1)

s.t
c
0D

α
t xi(t) = Σrj=1ai,j(t)xj(t) + Σsk=1bi,k(t)uk(t)

+Σrj=1(ad)i,j(t)xj(t− η1) + Σsk=1(bd)i,k(t)uk(t− η2), 1 ≤ i ≤ r,
(2)

xj(t) = xj,0, t ∈ [−η1, 0], 1 ≤ j ≤ r,
uk(t) = uk,0, t ∈ [−η2, 0], 1 ≤ k ≤ s, (3)

where x(t) = [x1(t) · · ·xr(t)]T and u(t) = [u1(t) · · ·us(t)]T are respectively
the state and control functions. Also, Q(t) and R(t) are respectively, r × r
and s × s semi-positive and positive definite time-varying matrices of the
state and control’s coefficients in the cost function with continuous functions
as their entries. Furthermore, ai,j(t), (ad)i,j(t), bi,k(t) and (bd)i,k(t) are
continuous functions which are respectively the coefficients of xj(t), xj(t −
η1) for (1 ≤ j ≤ r) and uk(t), uk(t − η2) for (1 ≤ k ≤ s) in the i-th
fractional differential equation (2) and η1, η2 > 0 are given constant delays.
The fractional derivative is defined in Caputo sense, i.e.

c
0D

α
t xi(t) =

{
1

Γ(1−α)
∫ t
0
(t− τ)−α d

dτ xi(τ)dτ, 0 < α < 1,

ẋi, α = 1.
(4)
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In the numerical solution of dynamical systems, polynomials or piecewise
polynomial functions are often used to present the approximate solutions [9,
10, 21]. The effectiveness of using Bernstein polynomials for solving FOCPs
have been demonstrated before [4, 14]. In the present paper, we seek an
optimal feedback control function to find the approximate solution of DFOCP
(1) - (3) by using Bernstein polynomials.

This paper is organized as follows. In Section 2 we give some preliminiaries
in fractional calculus. In Section 3 Bernstein polynomials are introduced and
their properties are shown in several lemmas. In Section 4, a FOCP with time
delay will be solved using BPs. Section 5 contains some numerical examples.
Finally Section 6 consists of a brief conclusion.

2 Some preliminaries in fractional calculus

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cµ,
µ ∈ R, if there exists a real number p > µ such that f(t) = tpf1(t), where
f1(t) ∈ C[0,+∞) and it is said to be in the space Cmµ iff f (m) ∈ Cµ for
m ∈ N.
Definition 2.2. The Riemann-Liouville fractional integral operator of order
α > 0 of a function f ∈ Cµ, µ > 1, is defined as:

0I
α
t f(t) =

1
Γ(α)

∫ t
0
(t− τ)α−1

f(τ)dτ,

0I
0
t f(t) = f(t).

(5)

Definition 2.3. The fractional derivative of f(t) in the Caputo sense is
defined as follows:

c
0D

α
t f(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α dn

dτn
f(τ), n−1 < α < n, n ∈ N, f ∈ Cm−1.

(6)
In [15], the following properties for f ∈ Cµ and µ ≥ −1 have been proved

1. 0I
α
t t
k = Γ(k+1)

Γ(k+1+α) t
α+k, k ∈ N ∪ {0}, t > 0,

2. c0D
α
t 0I

α
t f(t) = f(t),

3. 0I
α
t
c
0D

α
t f(t) = f(t)−

∑n−1
k=0 f(0

+) t
k

k! , t > 0,

4. c0D
β
t f(t) = 0I

α−β
t

c
0D

α
t f(t), α, β > 0.
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3 Properties of Bernstein polynomials

The Bernstein polynomial of degree n over the interval [a, b] is defined as
follows:

Bi,n

(
t− a
b− a

)
=

(
n

i

)(
t− a
b− a

)i(
b− t
b− a

)n−i
,

so, within the interval [0, 1] we have

Bi,n(t) =

(
n

i

)
ti(1− t)n−i.

Define Φm(t) = [B0,m(t) B1,m(t) · · · Bm,m(t)]
T
. To consider the vector

Φm(t − η) ( η is the given delay ) in terms of Φm(t), we state the follow-
ing lemmas.

Lemma 3.1. We can write Φm(t) = ΛTm(t), where Λ = (Υi,j)
m+1
i,j=1 is

an upper triangular (m+ 1)× (m+ 1) matrix with entry

Υi+1,j+1 =

{
(−1)j−i

(
m
i

)(
m−i
j−i
)
, i ≤ j,

0, i > j,
i, j = 0, 1, · · · ,m,

and Tm(t) = [1 t · · · tm]
T
.

Proof. [4].

Lemma 3.2. For each given constant delay η > 0, Φm(t − η) = ΩΦm(t),
where Ω is an (m+ 1)× (m+ 1) matrix in terms of η.

Proof. According to Lemma 3.1 we have

Φm(t− η) = ΛTm(t− η).

But, the right hand side of the above equation can be written as

ΛTm(t− η) = Λ


1

t− η
(t− η)2

...
(t− η)m

 = ΛΨ


1
t
t2

...
tm

 = ΛΨTm(t),

where
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Ψ =


1 0 0 · · · 0
−η 1 0 · · · 0
η2 −2η 1 · · · 0
...

...
. . .

...

(−η)m
(
m
m−1

)
(−η)m−1 · · · 1

 .

By Lemma 3.1, Tm(t) = Λ−1Φm(t), thus

Φ(t− η) = ΛΨΛ−1Φm(t) = ΩΦm(t). □ (7)

Lemma 3.3. Let L2[0, 1] be a Hilbert space with inner product ⟨f, g⟩ =∫ 1

0
f(t)g(t)dt and y ∈ L2[0, 1]. Then one can find the unique vector C =

[c0 c1 · · · cm]
T
such that

y(t) ≈
m∑
i=0

ciBi,m(t) = CTΦm(t). (8)

Proof. [12].

In Lemma 3.3 we have CT = Q−1⟨y,Φm⟩ such that

⟨y,Φm⟩ =
∫ 1

0

y(t)Φm(t)dx = [⟨y,B0,m⟩ ⟨y,B1,m⟩ · · · ⟨y,Bm,m⟩]T ,

and each entry of the matrix Q = (Qi+1,j+1)
m
i,j=0 is defined as follows:

Qi+1,j+1 =

∫ 1

0

Bi,m(t)Bj,m(t)dx =

(
m
i

)(
m
j

)
(2m+ 1)

(
2m
i+j

) .
Since the set {B0,m(t), B1,m(t), · · · , Bm,m(t)} forms a basis for the vector
space of polynomials of real coefficients and degree no more than m [7, 16],
a polynomial of degree m can be expanded in terms of a linear combination
of Bi,m(t), (i = 0, 1, · · · ,m) as follows

P (t) =
m∑
i=0

ciBi,m(t),

moreover we have

tk =
m−1∑
i=k−1

(
i
k

)(
m
k

)Bi,m(t).

Lemma 3.4.Derivatives of Pn(f) =
∑n
j=0 f(

j
n )Bj,n(t) of any order converge
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to corresponding derivatives of f . So if f ∈ Ck[0, 1] then

limn→∞(Pn(f))
(k) = f (k),

uniformly on [0, 1].

Proof. [8].

4 Fractional optimal control problem with delays in
control and state

Consider fractional delay control system (2). For each 0 ≤ i ≤ r, one can
apply the Riemann-Liouville fractional integral 0I

α
t to both sides of that

equation

xi(t)− xi(0) = Σrj=10I
α
t {ai,j(t)xj(t)}+Σsk=10I

α
t {bi,k(t)uk(t)}+

Σrj=10I
α
t {(ad)i,j(t)xj(t− η1)}+Σsk=10I

α
t {(bd)i,k(t)uk(t− η2)}.

(9)

Assume that xi(t) ≈ XT
i Φm(t) (1 ≤ i ≤ r) and uk(t) ≈ UTk Φm(t) (1 ≤ k ≤ s)

where the entries Xi = [Xi(0) · · ·Xi(m)]T and Uk = [Uk(0) · · ·Uk(m)]T are
respectively the coeffitients of xi(t) and uk(t) in approximating them by Bern-
stein polynomials of degree m just like (8). Moreover, the Bernstein approxi-
mated coefficients vectors of functions ai,j(t), bi,k(t), (ad)i,j(t) and (bd)i,k(t)
can be achieved by using equation (8). We denote the approximated vector
coefficients of these functions respectively by (Ai,j)(m+1)×1, (B

i,k)(m+1)×1,

(Ai,jd )(m+1)×1 and (Bi,kd )(m+1)×1.
By substituting the so called approximated vectors and matrices in (1), one
can find the following equations:

XT
i Φm(t)− xi,0 = Σrj=10I

α
t {((Ai,j)TΦm(t))(XT

j Φm(t))T }
+Σsk=10I

α
t {((Bi,k)TΦm(t))(UTk Φm(t))T }

+Σrj=10I
α
t {((A

i,j
d )TΦm(t))(XT

j Φm(t− η1))T }
+Σsk=10I

α
t {((B

i,k
d )TΦm(t))(UTk Φm(t− η2))T }.

(10)

Moreover, from Lemma 3.2 there exist (m + 1) × (m + 1) matrices Ω1,Ω2

where Φm(t− η1) = Ω1Φm(t) and Φm(t− η2) = Ω2Φm(t), while

Ω1 = ΛΨΛ−1,

Ω2 = ΛΨ
′
Λ−1,

and Ψ,Ψ
′
are obtained respectively in terms of η1 and η2.

As it was shown in [4], for each 1 ≤ i, j ≤ r and 1 ≤ k ≤ s, the (m+1)×(m+1)
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matrices Ãi,j , ˜Bi,k,
˜
Ai,jd and

˜
Bi,kd can be calculated such that:

(Ai,j)TΦm(t)ΦTm(t) = ΦTm(t)Ãi,j ,

(Bi,k)TΦm(t)ΦTm(t) = ΦTm(t) ˜Bi,k,

(Ai,jd )TΦm(t)ΦTm(t) = ΦTm(t)
˜
Ai,jd ,

(Bi,kd )TΦm(t)ΦTm(t) = ΦTm(t)
˜

Bi,kd .

Therefore, by replacing the above equalities, (2) can be rewritten as follows:

XT
i Φm(t)− xi,0 = Σrj=1(0I

α
t Φ

T
m(t))(Ãi,jXj) + Σsk=1(0I

α
t Φ

T
m(t))( ˜Bi,kUk)+

Σrj=1(0I
α
t Φ

T
m(t))(

˜
Ai,jd ΩT1Xj) + Σsk=1(0I

α
t Φ

T
m(t))(

˜
Bi,jd ΩT2 Uk),

or

XT
i Φm(t)− xi,0 = Σrj=1(Ã

i,jXj)
T (0I

α
t Φm(t)) + Σsk=1(

˜Bi,kUk)
T (0I

α
t Φm(t))+

Σrj=1(
˜
Ai,jd ΩT1Xj)

T (0I
α
t Φm(t)) + Σsk=1(

˜
Bi,jd ΩT2 Uk)

T (0I
α
t Φm(t)).

(11)
where i = 1, · · · , r.

One can approximate 0I
α
t Φm(t) by Iα ×Φm(t), where Iα is an (m+ 1)×

(m+1) matrix called the operational matrix of Riemann-Liouville fractional
integral.
Infact, from Lemma 3.1, Φm(t) = ΛTm(t), so

0I
α
t Φm(t) = Λ 0I

α
t Tm(t) = Λ [0I

α
t 1 0I

α
t t · · · 0I

α
t t
m]T ,

where 0I
α
t t
j = Γ(j+1)

Γ(j+1+α) t
j+α. Therefore,

0I
α
t Tm(t) = Σ̃T̃ , (12)

where Σ̃ = (Σ̃i+1,j+1) and T̃ = (T̃i+1) are respectively (m+1)× (m+1) and
(m+ 1)× 1 matrices, which are defined as follows:

Σ̃i+1,j+1 =

{
Γ(j+1)

Γ(j+1+α) , i = j,

0, o.w,
i, j = 0, · · · ,m

and
(T̃ )i+1 = ti+α, i = 0, · · · ,m.

Also, from Lemma 3.3, since ti+α ∈ L2([0, 1]) for each integer i (0 ≤ i ≤ m),
one can find the (m+ 1)× 1 vector Pi such that

ti+α ≈ PTi Φm(t), (13)
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where Pi = Q−1⟨ti+α,Φm(t)⟩ and the entries of P̄i = ⟨ti+α,Φm(t)⟩ =
[P̄i,0 P̄i,1 · · · P̄i,m]T can be attained as

P̄i,j =

∫ 1

0

ti+αBj,m(t)dt =
m!Γ(i+ j + α+ 1)

j!Γ(i+m+ α+ 2)
, i, j = 0, · · · ,m.

Now if P is an (m+1)× (m+1) matrix of the form [P0 P1 · · ·Pm], then from
(12) and (13) we have

0I
α
t Φm(t) ≈ ΛΣ̃PTΦm(t), (14)

therefore, Iα = ΛΣ̃PT is the aforementioned operational matrix of Riemann-
Liouville fractional integral 0I

α
t .

Hence, by replacing 0I
α
t Φm(t) from (14) into (4) and writing xi,0 in terms

of BPs of degree m, equation (4) can be written as the following

XT
i Φm(t)−XT

i,0Φm(t) = Σrj=1(Ã
i,jXj)

T IαΦm(t) + Σsk=1(
˜Bi,kUk)

T IαΦm(t)

+Σrj=1(
˜
Ai,jd ΩT1Xj)

T IαΦm(t) + Σsk=1(
˜
Bi,jd ΩT2 Uk)

T IαΦm(t),
(15)

where
XT
i,0 = [Xi,0(0), · · · , Xi,0(m)]T

is the known Bernstein approximated coefficents vector of xi,0 that can be
computed using (8). By equalling the coefficents of Φm(t) from both sides of
(5), we found that

XT
i = XT

i,0 +Σrj=1X
T
j (Ã

i,j)T Iα +Σsk=1U
T
k (

˜Bi,k)T Iα

+Σrj=1X
T
j Ω1(

˜
Ai,jd )T Iα +Σsk=1U

T
k Ω2(

˜
Bi,jd )T Iα,

(16)
for i = 1, · · · , r. Equations (8) can be written in compact form as follows:

XT = Π+ UTΓ, (17)

where Π and Γ are respectively 1× (m+ 1) and (m+ 1)× (m+ 1) matrices
that can be obtained by the following

Π = XT
0 (Im+1 − (Ã+ Ãd)Iα)

−1,

and
Γ = (B̃ + B̃d)Iα(Im+1 − (Ã+ Ãd)Iα)

−1,

and Im+1 is the (m+ 1)× (m+ 1) identity matrix.

Moreover, by applying the approximations x(t) ≈ (XT )1×r(m+1)Φm(t)
and u(t) ≈ (UT )1×s(m+1)Φm(t) where XT = [XT

1 , · · · , XT
r ] and UT =

[UT1 , · · · , UTs ], the cost functional (1) can be approximated as bellow
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J = 1
2

∫ 1

0
{xT (t)Q(t)x(t) + uT (t)R(t)u(t)}dt

≈ 1
2

∫ 1

0
{XTΦm(t)(QTΦm(t)ΦTm(t)X)T + UTΦm(t)(RTΦm(t)ΦTm(t)U)T }dt,

(18)
where Q = [Qi,j ] and R = [Ri,j ] that Qi,j , Ri,j are the (m + 1) × 1 vec-
tors of Bernstein coefficents in approximating Qi,j(t) and Ri,j(t) respectively.
Therefore,

J ≈ 1

2

∫ 1

0

{XTΦm(t)(ΦTm(t)Q̃X)T + UTΦm(t)(ΦTm(t)R̃U)T }dt,

or

J ≈ 1

2

∫ 1

0

{(XTΦm(t))(XT Q̃TΦm(t)) + (UTΦm(t))(UT R̃TΦm(t))}dt, (19)

where Q̃ = [Q̃i,j ] and R̃ = [R̃i,j ]. Also Q̃i,j and R̃i,j are (m + 1) × (m + 1)
matrices that can be calculated from

(Qi,j)TΦm(t)ΦTm(t) = ΦTm(t)Q̃i,j ,

(Ri,j)TΦm(t)ΦTm(t) = ΦTm(t)R̃i,j .

Let Zi,j = H
⊗
Q̃i,j and Wi,j = H

⊗
R̃i,j , where

⊗
is the Kronecker

product and H = [Hi,j ](m+1)×(m+1) and each entry Hi,j is defined by

Hi,j =

∫ 1

0

Bi,m(t)Bj,m(t)dt,

then (19) can be rewritten in compact form as:

J ≈ 1

2
{(XTZX) + (UTWU)}, (20)

where Z = [zi,j ] and W = [wi,j ].
From (17) we know that XT = Π+ UTΓ, so the necessary condition that U
minimizes (20) and satisfy (17) is that

∂J

∂U
= XTZΓT + UTW = 0,

so
U∗T = XTZΓTW−1. (21)

The above equation gives the optimal feedback control and by replacing (21)
in (17), we can easily find the optimal state as well.

We need to mention that, since the Bernstein coefficients of positive func-
tions in L2[0, 1] are positive [7] and it was assumed that R(t) is positive def-
inite, then Ri,j is a positive vector. Also because Bi,m(t) > 0 for t ∈ (0, 1),
it’s clear that
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ΦTm(t)R̃i,j = RTi,jΦm(t)ΦTm(t) > 0, t ∈ [0, 1],

therefore R̃i,j and as the result Wi,j = H
⊗
R̃i,j are positive definite and

consequently invertible matrices.

5 Convergence of the method

In this section, we show the convergence of the presented method discussed
in this article. First we prove the following lemma.

Lemma 5.1. Let XTΦm(t) =
∑m
j=0XjBj,m(t) be the Bernstein poly-

nomial of order m that approximates the function x(t) ∈ L2[0, 1]. Then

0I
α
t (X

TΦm(t)), tends to 0I
α
t x(t) as m tends to infinity.

Proof. By Lemma 3.3 we have

limm→∞

m∑
j=0

XjBj,m(t) = x(t). (22)

Since Bj,m(t) is a continuous function, we have

limm→∞

∫ t

0

∑m
j=0XjBj,m(τ)

(t− τ)1−α
dτ = limm→∞

m∑
j=0

Xj

∫ t

0

Bj,m(τ)

(t− τ)1−α
dτ.

By (22) and from Definition 2.2, we obtain∫ t

0

x(τ)

(t− τ)1−α
dτ = Γ(α) limm→∞

m∑
j=0

Xj 0I
α
t Bj,m(t),

or

0I
α
t x(t) = limm→∞

m∑
j=0

Xj 0I
α
t Bj,m(t) = limm→∞X

T
0It

αΦm(t). (23)

In (14), Iα = ΛΣ̃PT where the i-th column of PT is the Bernstein approx-
imated coefficients of ti+α for i = 0, · · · ,m. Now, regarding the convergence
of the Bernstein approximation of every functions in L2([0, 1]), one can write
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limn→∞P
TΦn(t) = limn→∞


∑n
j=0 Pj,0Bj,n(t)∑n
j=0 Pj,1Bj,n(t)

...∑n
j=0 Pj,mBj,n(t)

 = T̃ =


tα

t1+α

t2+α

...
tm+α

 ,

therefore, limn→∞ΛΣ̃PTΦn(t) = ΛΣ̃ limn→∞P
TΦn(t) = ΛΣ̃T̃ , or as ex-

plained in (12) and (13)

limn→∞IαΦn(t) = 0It
αΦm(t). (24)

From (23) and (24) we reach

0I
α
t x(t) = limm→∞X

T limn→∞IαΦn(t).

Given n ≥ m will complete the proof. □

Theorem 5.1. The approximated solutions x̄(t) = X̄TΦm(t) and ū(t) =
ŪTΦm(t) in which (X̄, Ū) is achieved from (17) and (21), converge to the
optimal solutions x∗(t) and u∗(t) as the degree of the Bernstein polynomials
tend to infinity.

Proof. Suppose Wm is the set of all (UT , XT )Φm(·) where X,U ∈ Rm+1

and satisfy (17), also W is the set of all (u(·), x(·)) satisfy (2) and (3).
Let Ū be the optimal solution of (20) where obtained from (21) and X̄ be
the solution of (17) obtained by replacing Ū in eqation (17). Therefore
(ŪT , X̄T )Φm(·) ∈ Wm. By the convergence property of Bernstein polyno-
mials, for (ŪT , X̄T )Φm(·), there exists a unique pair of functions (ū(·), x̄(·))
such that

(ŪT , X̄T )Φm(·) −→ (ū(·), x̄(·)) as m→∞.

Now according to Lemma 5.1 it is clear that (ū(·), x̄(·)) ∈ W . Moreover as
m→∞, then J(ŪTΦm, X̄

TΦm) −→ J̄ where J̄ is the value of cost function
(1) corresponding to the feasible solution (ū(·), x̄(·)). Now, since

W1 ⊆ · · · ⊆Wm ⊆Wm+1 ⊆ · · · ⊆W,

consequently

InfW1J1 ≥ · · · ≥ InfWmJm ≥ InfWm+1Jm+1 ≥ · · · ≥ InfWJ.

Let J∗
m = InfWmJm, so J∗

m = J(ŪTΦm, X̄
TΦm). Furthermore, the sequence

{J∗
m} is nonincreasing and bounded bellow which converges to a number

J̄ ≥ InfWJ . We want to show that J̄ = limm→∞J
∗
m = InfWJ . Given

ε > 0, let (u(·), x(·)) be an element in W such that

J(u, x) < InfWJ + ε, (25)
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by the definition of infimum, such (u(·), x(·)) ∈W exists.
Since J(u, x) is continuous, for this value of ε, there exists N(ε) so that if
m > N(ε),

|J(u, x)− J(UTΦm, XTΦm)| < ε, (26)

Now if m > N(ε), then using (25) and (26) gives

J(UTΦm, X
TΦm) < J(u, x) + ε < InfWJ + 2ε,

on the other hand

InfWJ ≤ J∗
m = InfWm

Jm ≤ J(UTΦm, XTΦm),

so
InfWJ ≤ J∗

m < InfWJ + 2ε,

or
0 ≤ J∗

m − InfWJ < 2ε,

where ε is chosen arbitrary. Thus

J̄ = limm→∞J
∗
m = InfWJ. □

6 Numerical examples

In this section we give some numerical examples and apply the method
presented in Section 4 for solving them. Our examples are solved using
Matlab2011a on an Intel Core i5-430M processor with 4 GB of DDR3 Mem-
ory. These test problems demonstrate the validity and efficiency of this tech-
nique.

Example 6.1. Consider the following delay fractional optimal control prob-
lem in which 0 < α ≤ 1,

min J = 1
2

∫ 1

0
[x2(t) + 1

2u
2(t)]dt,

s.t c
0D

α
t x(t) = −x(t) + x(t− 1

3 ) + u(t)− 1
2u(t−

2
3 ), 0 ≤ t ≤ 1,

x(t) = 1, − 1
3 ≤ t ≤ 0,

u(t) = 0, − 2
3 ≤ t ≤ 0.

For α = 1, this problem has been numerically solved by applying hybrid
functions based on Legendre polynomials in [19] and the objective value
I = 0.3731 has been achieved. Whilst, in the presented method the solu-
tion has the objective value J∗ = 0.3956 for α = 1 and m = 6. Thus, our
results with m = 6 are in good agreement with the results demonstrated in
[19] for α = 1. In addition, by varying the value of α we can obtain the op-
timal control u(·) and trajectory function x(·) which are shown respectively
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Figure 1: Approximate solution of u(.) for α = 1, 0.999, 0.99 in Example 6.1

Figure 2: Approximate solution of x(.) for α = 1, 0.999, 0.99 in Example 6.1
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Table 1: The objective value and the end point of trajectory for α = 1, 0.999, 0.99 in
Example 6.1

α objective value end-point
1 0.3956 0.6775

0.999 0.3283 0.6443
0.99 0.2907 0.6249

Table 2: The objective value and the end points of trajectories for α = 1, 0.9, 0.8 in
Example 6.2

α objective value end points
1 0.7245 −0.4691 , − 0.0113
0.9 1.0291 −0.6477 , 0.3202
0.8 0.7299 −0.4324 , 0.4674

for some values of α in Fig.1 and Fig.2. Moreover, for these values of α the
objective values and the end points of optimal trajectory are shown in Table
1.

Example 6.2. Consider the following two-dimensional DFOCP in which
0 < α ≤ 1,

min J = 1
2

∫ 1

0
{[x1(t) x2(t)]

[
1 t
t t2

]
[x1(t) x2(t)]

T + (t2 + 1)u2(t)}dt,

s.t c
0D

α
t

[
x1(t)
x2(t)

]
=

[
t2 + 1 1
0 2

] [
x1(t− 1

2 )
x2(t− 1

2 )

]
+

[
1

t+ 1

]
u(t) +

[
t+ 1
t2 + 1

]
u(t− 1

4
), 0 ≤ t ≤ 1,

[x1(t) x2(t)] = [1, 1], − 1
2 ≤ t ≤ 0,

u(t) = 1, − 1
4 ≤ t ≤ 0.

This problem for α = 1 has been studied in [19], where the obtained approx-
imated cost function is I = 1.5622. Using the presented method for α = 1
and m = 6, gives the approximated cost function as J∗ = 0.7245. So we
achieved satisfactory numerical results in comparison with what have been
obtained in [19] for α = 1. Also by varying the value of α the obtained
control and trajectories functions are shown respectively in Fig.3, Fig.4 and
Fig.5. Moreover, for these values of α the objective values and the end points
of optimal trajectories are shown in Table 2.
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Figure 3: Approximate solution of u(.) for α = 1, 0.9, 0.8 in Example 6.2

Figure 4: Approximate solution of x1(.) for α = 1, 0.9, 0.8 in Example 6.2
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Figure 5: Approximate solution of x2(.) for α = 1, 0.9, 0.8 in Example 6.2

7 Conclusion

In this paper, we peresent a new method of using Bernstein polynomials
for solving DFOCP’s. We approximate the objective function and find a
feed back control which minimizes the cost function. Then by replacing the
optimal control in the constraints, we get an algabric system which can be
solved in terms of the approximate coefficents of trajectory. The convergence
of the method is extensively discussed and some test problems are included
to show the efficiency of this very easy to use and accurate method.
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