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Approximate Analytical Solution for
Quadratic Riccati Differential

Equation

H. Aminikhah

Abstract

In this paper, we introduce an efficient method for solving the quadratic
Riccati differential equation. In this technique, combination of Laplace trans-
form and new homotopy perturbation methods (LTNHPM) are considered

as an algorithm to the exact solution of the nonlinear Riccati equation. Un-
like the previous approach for this problem, so-called NHPM, the present
method, does not need the initial approximation to be defined as a power
series. Four examples in different cases are given to demonstrate simplicity

and efficiency of the proposed method.

Keywords: Riccati differential equation; Laplace transform method; NHPM;
LTNHPM.

1 Introduction

The quadraic Riccati differential equation, deriving its name from Jacopo
Francesco, Count Riccati (1676-1754). These kinds of differential equations
are a class of nonlinear differential equations of much importance, and play
a significant role in many fields of applied science [1]. At an early stage, the
occurrence of such differential equations in the study of Bessel functions led
to its appearance in many related applications and, to the present time, the
literature on the Riccati equation has been extensive. For several reasons, a
Riccati equation comprises of a highly significant class of nonlinear ordinary
differential equations. Firstly, this equation is closely related to ordinary
linear homogeneous differential equation of the second order. Secondly, the
solution of Riccati equation possesses a very particular structure in that the
general solution is a fractional linear function of the constant of integra-
tion. Thirdly, the solution of an Ricaati equation is involved in the reduction
of nth-order linear homogeneous ordinary differential equations. Fourthly, a
one-dimensional Schrodinger equation is closely related to Riccati differential
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equation. Solitary wave solutions of a nonlinear partial differential equation
can be expressed as a polynomial in two elementary functions satisfying a pro-
jective Riccati equation [3]. Moreover, such types of problems also arise in the
optimal control literature, and can be derived in solving a second-order lin-
ear ordinary differential equation with constant coefficients [2]. In conformity
with the general study of differential equations, much of the early works were
concerned with the study of particular classes of Riccati differential equation
with the aim of determining the solution in finite form. Many mathemati-
cians such as Jame Bernouli, Jahn Bernouli (1667-1748), Leonhard Euler
(1707-1783), Jean-le-Rondd’Alembert(1717-1783), and Adrian Marine Leg-
endre (1752-1833) contributed to the study of such differential equations [1].
Deriving analytical solution for Riccati equation in an explicit form seems to
be unlikely except for certain special situations. Of course, having known its
one particular solution, its general solution can be easily derived. Therefore,
one has to go for numerical techniques or approximate approaches for getting
its solution. Recently, Adomian’s decomposition method has been proposed
for solving Riccati differential equations [7, 8]. HPM was introduced by He
[4] and has been already used by many mathematicians and engineers to
solve various functional equations [9, 10, 5, 6, 12, 11]. Abbasbandy solved a
Riccati differential equation using He’s VIM, homotopy perturbation method
(HPM) and iterated He’s HPM and compared the accuracy of the obtained
solution to that derived by Adomian decomposition method [13, 14, 16].
Moreover, Homotopy analysis method (HAM) and a piecewise variational it-
eration method (VIM) are proposed for solving Riccati differential equations
[16]. In [15], Liao has shown that HPM equations are equivalent to HAM
equations when ℏ = −1 . Aminikhah and Hemmatnezhad [6] proposed a new
homotopy perturbation method (NHPM) to obtain the approximate solution
of ordinary Riccati differential equation. In this work, we present the solu-
tion of Riccati equation by combination of placeLaplace transform and new
homotopy perturbation methods. An important property of the proposed
method, which is clearly demonstrated in examples, is that spectral accuracy
is accessible in solving specific nonlinear Riccati differential equations which
have analytic solution functions.

2 LTNHPM for quadratic Ricatti equation

Consider the nonlinear Riccati differential equation as the following form{
u′(t) = A(t) +B(t)u(t) + C(t)u2(t), 0 ≤ t ≤ T,
u(0) = α.

(1)

where A(t), B(t) and C(t) are continuous and α is an arbitrary constant. By
the new homotopy technique, we construct a homotopy U : Ω× [0, 1] → R ,
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which satisfies

H(U(t), p) = U ′(t)−u0(t)+pu0(t)−p[A(t)+B(t)U(t)+C(t)U2(t)] = 0, (2)

where p ∈ [0, 1] is an embedding parameter, u0(t) is an initial approximation
of solution of equation (1). Clearly, we have from equation (2)

H(U(t), 0) = U ′(t)− u0(t) = 0, (3)

H(U(t), 1) = U ′(t)−A(t)−B(t)U(t)− C(t)U2(t) = 0 (4)

By applying Laplace transform on both sides of (2), we have

L
{
U ′(t)− u0(t) + pu0(t)− p[A(t) +B(t)U(t) + C(t)U2(t)]

}
= 0 (5)

Using the differential property of Laplace transform we have

sL{U(t)}−U(0) = L
{
u0(t)− pu0(t) + p[A(t) +B(t)U(t) + C(t)U2(t)]

}
(6)

or

L{U(t)} =
1

s

{
U(0) + L

{
u0(t)− pu0(t) + p[A(t) +B(t)U(t) + C(t)U2(t)]

}}
(7)

By applying inverse Laplace transform on both sides of (7), we have

U(t) = L−1{1
s
{U(0) + L{u0(t)− pu0(t) + p[A(t) +B(t)U(t) +C(t)U2(t)]}}}

(8)
According to the HPM, we use the embedding parameter p as a small pa-
rameter, and assume that the solutions of equation (8) can be represented as
a power series in p as U(t) =

∑∞
n=0 p

nUn . Now let us write the Eq. (8) in
the following form

∞∑
n=0

pnUn(t) =L−1

{
1

s

(
U(0) + L

{
u0(t)− pu0(t)

+ p
[
A(t) +B(t)

∞∑
n=0

pnUn(t) + C(t)(

∞∑
n=0

pnUn(t))
2
]})}

(9)

Comparing coefficients of terms with identical powers of p leads to

p0 : U0(t) = L−1
{

1
s (U(0) + L {u0(t)})

}
p1 : U1(x) = L−1

{
− 1
s

(
L
{
u0(t)−A(t)−B(t)U0(t)− C(t)U2

0 (t)
})}

pj : Uj(x) = L−1
{

1
s

(
L
{
B(t)Uj−1(t) + C(t)

∑j−1
k=0 Uk(t)Uj−k−1(t)

})}
,

j = 2, 3, . . .
(10)



24 H. Aminikhah

Suppose that the initial approximation has the form U(0) = u0(t) = α ,
therefore the exact solution may be obtained as following

u(t) = lim
p→1

U(t) = U0(t) + U1(t) + · · · (11)

3 Examples

Example 1. Consider the following quadratic Riccati differential equation
taken from [1] {

u′(t) = 16t2 − 5 + 8tu(t) + u2(t),
u(0) = 1

(12)

The exact solution of above equation was found to be of the form

u(t) = 1− 4t. (13)

To solve equation (12) by the LTNHPM, we construct the following homotopy

U ′(t)− u0(t) + p
[
u0(t) + 5− 16t2 − 8tU(t)− U2(t)

]
= 0 (14)

Applying Laplace transform on both sides of (14), we have

L
{
U ′(t)− u0(t) + p

[
u0(t) + 5− 16t2 − 8tU(t)− U2(t)

]}
= 0 (15)

Using the differential property of Laplace transform we have

sL{U(t)} − U(0) = L
{
u0(t)− p

[
u0(t) + 5− 16t2 − 8tU(t)− U2(t)

]}
(16)

or

L{U(t)} =
1

s

{
U(0) + L

{
u0(t)− p

[
u0(t) + 5− 16t2 − 8tU(t)− U2(t)

]}}
(17)

By applying inverse Laplace transform on both sides of (17), we have

U(t) = L−1

{
1

s

(
U(0) + L

{
u0(t)− p

[
u0(t) + 5− 16t2 − 8tU(t)− U2(t)

]})}
(18)

Suppose the solution of equation (18) to have the following form

U(t) = U0(t) + pU1(t) + p2U2(t) + · · · , (19)

where Ui(t) are unknown functions which should be determined. Substituting
equation (19) into equation (18), collecting the same powers of p and equating
each coefficient of p to zero, results in
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p0 : U0(t) = L−1
{

1
s (U(0) + L {u0(t)})

}
p1 : U1(x) = L−1

{
−1
s

(
L
{
u0(t) + 5− 16t2 − 8tU0(t)− U2

0 (t)
})}

pj : Uj(x) = L−1
{

1
s

(
L
{
−8tUj−1(t) +

∑j−1
k=0 Uk(t)Uj−k−1(t)

})}
j = 2, 3, . . .

(20)
Assuming u0(t) = U(0) = 1 , and solving the above equation for Uj(t), j =
0, 1, · · · leads to the result

U0(t) = 1 + t,
U1(t) =

5t
3

(
5t2 + 3t− 3

)
,

U2(t) =
5t2

3

(
10t3 + 10t2 − 8t− 3

)
,

U3(t) =
5t3

63

(
425t4 + 595t3 − 399t2 − 399t+ 63

)
,

U4(t) =
t4

567

(
38750t5 + 69750t4 − 36000t3 − 72135t2 + 7938t+ 8505

)
,

...

Therefore we gain the solution of Eq. (12) as

u(t) = U0(t) + U1(t) + U3(t) + · · · = 1− 4t

which is exact solution.

Example 2. Consider the following quadratic Riccati differential equation
taken from [13, 7, 14, 6, 8]{

u′(t) = 1 + 2u(t)− u2(t),
u(0) = 0.

(21)

The exact solution of above equation was found to be of the form

u(t) = 1 +
√
2 tanh

[
√
2t+

1

2
log

(√
2− 1√
2 + 1

)]
(22)

The Taylor expansion of u(t) about t = 0 gives

u(t) = t+ t2 +
1

3
t3 − 1

3
t4 − 7

15
t5 − 7

45
t6 +

53

315
t7 +

71

315
t8 + · · · . (23)

To solve equation (21), by the LTNHPM, we construct the following homo-
topy

U ′(t) = u0(t)− p
[
u0(t)− 1− 2U(t) + U2(t)

]
(24)

Applying Laplace transform, we have

L
{
U ′(t)− u0(t) + pu0(t)− p[1 + 2U(t)− U2(t)]

}
= 0 (25)

Using the differential property of Laplace transform we have
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sL{U(t)} − U(0) = L
{
u0(t)− p

[
u0(t)− 1− 2U(t) + U2(t)

]}
(26)

or

L{U(t)} =
1

s

{
U(0) + L

{
u0(t)− p

[
u0(t)− 1− 2U(t) + U2(t)

]}}
(27)

By applying inverse Laplace transform on both sides of (27), we have

U(t) = L−1

{
1

s

(
U(0) + L

{
u0(t)− p

[
u0(t)− 1− 2U(t) + U2(t)

]})}
(28)

Suppose the solution of equation (28) to have the following form

U(t) = U0(t) + pU1(t) + p2U2(t) + · · · , (29)

where Ui(t) are unknown functions which should be determined. Substitut-
ing equation (29) into equation (28), collecting the same powers of p , and
equating each coefficient of p to zero, results in

p0 : U0(t) = L−1
{

1
s (U(0) + L {u0(t)})

}
p1 : U1(x) = L−1

{
− 1
s

(
L
{
u0(t)− 1− 2U0(t) + U2

0 (t)
})}

pj : Uj(x) = L−1
{

1
s

(
L
{
2Uj−1(t) +

∑j−1
k=0 Uk(t)Uj−k−1(t)

})}
, j = 2, 3, . . .

(30)
Assuming u0(t) = U(0) = 0 , and solving the above equation for Uj(t), j =
0, 1, · · · leads to the result

U0(t) = 0,
U1(t) = t,
U2(t) = t2,

U3(t) =
t3

3 ,

U4(t) = − t4

3 ,

U5(t) = − 7t5

15 ,
...

(31)

Therefore we gain the solution of equation (21) as

u(t) = U0(t) + U1(t) + U3(t) + · · ·
= t+ t2 + 1

3 t
3 − 1

3 t
4 − 7

15 t
5 − 7

45 t
6 + 53

315 t
7 + · · · , (32)

and this in the limit of infinitely many terms, yields the exact solution of (21).

Example 3. Consider the following quadratic Riccati differential equation
taken from [1] {

u′(t) = et − e3t + 2e2tu(t)− etu2(t),
u(0) = 1.

(33)
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The exact solution of this equation is u(t) = et . We construct the following
homotopy

U ′(t)− u0(t) + p

[
u0(t)− ept + e3pt − 2e2ptU(t) +

∞∑
n=0

eptU2(t)

]
= 0 (34)

Applying Laplace transform on both sides of (34), we have

L

{
U ′(t)− u0(t) + p

[
u0(t)− ept + e3pt − 2e2ptU(t) +

∞∑
n=0

eptU2(t)

]}
= 0

(35)
Using the differential property of Laplace transform we have

sL{U(t)} − U(0) =L

{
u0(t)− p

[
u0(t)− ept

+ e3pt − 2e2ptU(t) +
∞∑
n=0

eptU2(t)
]}

(36)

or

L{U(t)} =
1

s

{
U(0) + L

{
u0(t)

− p
[
u0(t)− ept + e3pt − 2e2ptU(t) +

∞∑
n=0

eptU2(t)
]}}

(37)

By applying inverse Laplace transform on both sides of (37) and using the

Taylor series of eαt =
∑∞
n=0

(αt)n

n! , we have

U(t) =L−1

{
1

s

(
U(0) + L

{
u0(t)− p

[
u0(t)−

∞∑
n=0

pn
tn

n!

+

∞∑
n=0

pn
(3t)

n

n!
− 2

∞∑
n=0

pn
(2t)

n

n!
U(t) +

∞∑
n=0

pn
tn

n!
U2(t)

]})}
(38)

Suppose the solution of U can be expanded into infinite series as U(t) =∑∞
n=0 p

nUn(t) . Substituting U(t) into equation (38), collecting the same
powers of p , and equating each coefficient of p to zero, results in
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p0 : U0(t) = L−1
{

1
s (U(0) + L {u0(t)})

}
p1 : U1(x) = L−1

{
−1
s

(
L
{
u0(t)− 2U0 + U2

0

})}
p2 : U2(x) = L−1

{
−1
s

(
L
{
2t− 4tU0 − 2U1 + tU2

0 + 2U0U1

})}
p3 : U3(x) = L−1{−1

s (L{4t
2 − 4tU1 − 2U2 − 4t2U0 + 2tU0U1

+U2
1 + 2U0U2 +

1
2 t

2U2
0 })}

...

(39)

Assuming u0(t) = U(0) = 1 , and solving the above equation for Uj(t), j =
0, 1, · · · leads to the result

U0(t) = 1 + t,

U1(t) = − t3

3 ,

U2(t) = − t2

12

(
−6− 8t+ t2

)
,

U3(t) = − t3

5040

(
840− 4620t+ 504t2 − 840t3 − 240t4 + 35t5

)
...

(40)

Therefore we gain the solution of equation (33) as

u(t) = U0(t) + U1(t) + U3(t) + · · ·
= 1 + t+ 1

2! t
2 + 1

3! t
3 + · · ·

=
∑∞
n=0

tn

n! = et,
(41)

which is exact solution.
Example 4. Consider the following quadratic Riccati differential equation
taken from [13, 7, 14, 6, 8]{

u′(t) = −u(t) + u2(t),
u(0) = 1

2

(42)

The exact solution of above equation was found to be of the form

u(t) =
e−t

1 + e−t
(43)

The Taylor expansion of u(t) about t = 0 gives

u(t) =
1

2
− 1

4
t+

1

48
t3 − 1

480
t5 +

17

80640
t7 − 31

1451520
t9 +

691

319334400
t11 − · · · .

(44)
To solve equation (43) by the LTNHPM, we construct the following homo-
topy:

U ′(t) = u0(t)− p
[
u0(t) + U(t)− U2(t)

]
(45)

By applying Laplace transform we get

L{U(t)} =
1

s

{
U(0) + L

{
u0(t)− p

[
u0(t) + U(t)− U2(t)

]}}
(46)
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Using inverse Laplace transform on both sides of (46), we have

U(t) = L−1

{
1

s

(
U(0) + L

{
u0(t)− p

[
u0(t) + U(t)− U2(t)

]})}
(47)

Suppose the solution of equation (47) to have the following form

U(t) = U0(t) + pU1(t) + p2U2(t) + · · · , (48)

Substituting equation (48) into equation (47), collecting the same powers of
p , and equating each coefficient of p to zero, results in

p0 : U0(t) = L−1
{

1
s (U(0) + L {u0(t)})

}
p1 : U1(x) = L−1

{
− 1
s

(
L
{
u0(t) + U0(t)− U2

0 (t)
})}

pj : Uj(x) = L−1
{

1
s

(
L
{
−Uj−1(t) +

∑j−1
k=0 Uk(t)Uj−k−1(t)

})}
, j = 2, 3, . . .

(49)
Assuming u0(t) = U(0) = 1

2 , and solving the above equation for Uj(t), j =
0, 1, · · · leads to the result

U0(t) =
1
2 (1 + t),

U1(t) =
t
12

(
−9 + t2

)
,

U2(t) =
t3

60

(
−15 + t2

)
,

U3(t) =
t3

5040

(
945− 387t2 + 17t4

)
,

U4(t) =
t5

45360

(
5103− 918t2 + 31t4

)
,

U5(t) =
t5

4989600

(
−280605 + 227205t2 − 25575t4 + 691t6

)
,

...

(50)

Therefore we gain the solution of equation (42) as

u(t) = U0(t) + U1(t) + U3(t) + · · ·
= 1

2 − 1
4 t+

1
48 t

3 − 1
480 t

5 + 17
80640 t

7 − 31
1451520 t

9 + 691
319334400 t

11 − · · · ,
(51)

this in the limit of infinitely many terms, yields the exact solution of (42).

4 Conclusion

In the present work, we proposed a combination of Laplace transform method
and homotopy perturbation method to solve nonlinear Riccati differential
equation. The new method developed in the current paper was tested on
several examples. The obtained results show that these approaches can solve
the problem effectively. Unlike the previous approach implemented by the
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present authors, so-called NHPM, the present technique, does not need the
initial approximation to be defined as a power series. In the NHPM we reach
to a set of recurrent differential equations which must be solved consecutively
to give the approximate solution of the problem. Sometimes we have to do
many computations in order to reach to the higher orders of approximation
with acceptable accuracy. Also as an advantage of the LTNHPM over decom-
position procedure of Adomian, the former method provides the solution of
the problem without calculating Adomian’s polynomials. The advantage of
the LTNHPM over numerical methods (finite difference, finite element, . . . )
and ADM is that it solves the problem without any need to discretization
of the variables. The Computations finally lead to a set of nonlinear equa-
tions with one unspecified value in each equation. The results show that the
LTNHPM is an effective mathematical tool which can play a very important
role in nonlinear sciences.
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