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Abstract

This study addresses the inverse issue of identifying the space-dependent
heat source of the heat equation, which is stated using the optimal con-
trol framework. For the numerical solution of this class of problems, an
approach based on shifted Legendre polynomials and the associated oper-
ational matrix is presented. The approach turns the primary problem into
the solution of a system of nonlinear algebraic equations. To do this, the
temperature and heat source variables are enlarged in terms of the shifted
Legendre polynomials with unknown coefficients employed in the objective
function, inverse problem, and initial and Neumann boundary conditions.
When paired with their operational matrix, these basis functions provide
a quadratic optimization problem with linear constraints, which is then
solved using the Lagrange multipliers approach. To assess the method’s
efficacy and precision, two examples are provided.
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461 An optimal control approach for solving an inverse...

1 Introduction

Many inverse problems for the heat equation are applied to many fields of
physics and engineering, such as acoustics [19], medical imaging [10], signal
processing [35], optic [6], and radar [7]. There are approximately five major
classes of inverse heat diffusion equation problems.
(i) The problem of reverse time or conducting heat backward from the known
last-minute distribution determines the initial temperature distribution.
(ii) Inverse heat conduction is the detection of temperature or temperature
flux at one inaccessible boundary beyond the data available in the other case
that is accessible.
(iii) Identify coefficients of over-posed data at the boundaries.
(iv) Determining the shape of unknown boundaries or cracks inside the heat
conduction body.
(v) The identification of the heat source [18, 5].
The heat equation, in this research, treats the heat source as an uncertainty.
Applications in the real world where these difficulties are useful include cre-
ating the end state of melting, and freezing processes and determining the
contaminating source’s intensity. Methods such as the generalized finite dif-
ference scheme [12], the radial basis function method [28], the sparse reg-
ularization approach [25], the meshless generalized finite difference scheme
[13], the mollification regularization scheme [36], and the reproducing ker-
nel space scheme [33], have all been applied to the solution of inverse heat
source problems. In this paper, we propose a novel numerical method for ob-
taining the source parameter (or control parameter) in parabolic equations.
Iterative methods and a variational approach have recently been proposed
to numerically solve this problem [21]. These methods are computationally
expensive because they solve a direct problem at each iteration. Tikhonov
regularization is proposed in [37] as a stable optimal control solution to the
inverse heat source problem. Parameter identification for a nonlinear heat
equation in the 2D and 3D space-time domains was solved by Lin and Liu us-
ing homogenization functions as the basis [24]. The authors of [29] proposed
a perfect method to investigate inverse heat source problems in function-
ally graded materials using the homogenization function. Due to the given
conditions, a homogenization function for the boundary value problem is con-
ceived, and a family of homogenization functions is further derived. Djennadi
et al. [11] employed the expansion method and the overdetermination con-
dition to solve the inverse source fractional diffusion problem that contains
the Atangana–Baleanu–Caputo fractional derivative. In [20], for the stable
reconstruction of the heat source in the parabolic heat equation, an itera-
tive variable conjugate gradient algorithm is proposed based on a sequence
of direct problems that are solved using the boundary element method of
each iteration step. The gradient descent along with the finite difference
method to find the solution nonlinear inverse heat transfer problem in [4].
Ciofalo [9] proposed using finite volume discretization to get a solution for
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an inverse heat conduction problem. In which, with the assumption that
the thermal boundary conditions in other walls are known, the steady state
distribution of the displacement heat transfer coefficient on one slab wall is
reconstructed from the temperature distribution in the plate embedded in
the slab. With the increasing use of machine learning techniques, includ-
ing neural networks, the use of these techniques in solving inverse problems
has also attracted the attention of many researchers. Li and Hu [23] used
a multi-layer neural network to solve the Cauchy inverse problem. Phisyc-
informed neural network models are one of the powerful methods in deep
learning. Authors in [27] applied it to solve a class of inverse problems re-
lated to partial differential equations (PDEs). The authors of [15] proposed
a new method for solving large-scale inverse problems based on Bayesian in-
ference, Markov chain Monte Carlo approach, and derivative-free algorithms.
Bondarenko [8] presented a finite-difference-based method to investigate the
discrete systems of the inverse of the Sturm–Liouville problem. Huntul [16]
used the Tikhonov regularization and the nonlinear optimization for the first
time in the third-order pseudo-parabolic equation with initial and nonlocal
periodic boundary conditions derived from nonlocal integral observation for
the inverse space-dependent heat problem. Huntul [17] recovered a source in
a high-order pseudo parabolic equation using cubic spline functions. In [14],
authors solved the two-dimensional inverse time-fractional diffusion prob-
lem with nonlocal boundary conditions using a-polynomials, collocation, and
least squares methods. They calculated time using the L1 method. Wen,
Liu, and Wang [34] used the Fourier approach to find the source term and
starting data in the time-fractional diffusion equation . Abbaszadeh and
Dehghan [1] considered the inverse tempered fractional diffusion equation.
They used Crank–Nicolson temporal discretization, a modified element-free
Galerkin method, and a meshless method to solve the inverse problem.

In this research, we provide a numerical solution for solving the inverse
heat source issue in an optimal control setting by using orthogonal polyno-
mials. This piece is an attempt to provide a fresh strategy for addressing
the issue of the mysterious heat source. The optimal control issue is re-
duced to a set of algebraic equations in the suggested approach [26, 32, 30].
This is achieved by approximating the temperature y and the heat source
f in PI (see (1)) with the help of shifted Legendre polynomials (SLPs) and
their operational matrix with unknown coefficients. By substituting these
approximations for the objective function in the inverse problem, we are
able to determine not only the unknown coefficients but also the initial and
boundary conditions. To conclude, we utilize Lagrange multipliers to connect
the algebraic equation produced from the objective function to the algebraic
equations derived from the inverse system and the starting and boundary
conditions. Then, we can use the constrained extremum method to solve the
resulting algebraic system of equations to find the best solution. The authors
of [3] investigated the inverse heat equation problem with variable boundary
conditions using a weak solution strategy. The Legendre spectral collocation
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method was used to solve a fractional inverse heat conduction problem in
[2], where both the temperature function and the boundary heat fluxes were
unknown. Following the introduction, the article will focus on five primary
sections that together address this inverse problem. In Section 2, we present
the optimal control issue and the inverse heat source problem. In Section 3,
we describe the SLPs and their characteristics. The problem is resolved in
Section 4. In Section 5, we provide numerical examples that demonstrate the
effectiveness and precision of the suggested approach. The last part explains
the results.

2 Problem statement

Suppose the following inverse problem:
Let us supposeΘ := (0, 1)×(0, T ), T ≥ 1, one is going to find the temperature
z and the heat source f that satisfy (1); that is,

PI :



zt(x, t)− zxx(x, t) = f(x), (x, t) ∈ Θ,

z(x, 0) = ν(x), x ∈ (0, 1),

zx(0, t) = g0(t), zx(1, t) = g1(t), t ∈ (0, T ).

(1)

The second-order parabolic equation PI with sufficiently smooth functions
ν(x) (the initial condition), (Neumann boundary conditions) g0(t) and g1(t),
forms the governing equations.

Assume that the desired function measured data hϵ(x) (desired function)
and the actual data z(x, T ) := h(x) meet the following relation:

∥h(x)− hϵ(x)∥L2[0,1] ⩽ ϵ, (2)

where ϵ is the known noise level and the norm ∥ · ∥L2[0,1] of a function z(x)
is determined by

∥z(x)∥L2[0,1] =
(∫ 1

0

z2(x)dx
) 1

2

.

In the following part, we convert the problem PI into an optimal control
problem of PII and solve it using the suggested approach. The following is a
consideration of the optimal control problem:

PII : min
f∈Fad

J(z, f) :=
1

2
∥z(x, T )− hε(x) ∥2L2[0,1] +

σ

2
∥∇f ∥2L2[0,1], (3)
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where Fad has defined the set of admissible controls of the objective function
J as

Fad = {f(x) : 0 ⩽ a ≤ f ≤ b,∇f ∈ L2[0, 1]}, (4)

with the constant bounds, a, b ∈ R. Moreover, z(x, t) is the solution of (1)
for a given heat source f(x) ∈ Fad, and σ is the regularization parameter.
For noisy data hε(x), the purpose of the optimal control problem is to find
functions f(x) and z(x, t) that minimize the objective function PII and satisfy
PI.

3 Shifted Legendre Polynomials (SLPs)

The orthogonal polynomials with regard to the weight function W (x) = 1
on [−1, 1] are known as Legendre polynomials of degree m and are denoted
by Lm(x) (m = 0, 1, . . .). The following recurrence formula can be used to
create these polynomials:

Lm(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x), m = 1, 2, . . . , (5)

where L0(x) = 1 and L1(x) = x. The well-known SLPs in [0, 1] can be
created by changing the variable x = 2t−1, which is expressed as Lm(t) (m =
0, 1, 2, . . . , ), by

Lm(t) =
(2m+ 1)(2t− 1)

m+ 1
Lm(t)− m

m+ 1
Lm−1(t), m = 1, 2, . . . , (6)

where L0(t) = 1 and L1(t) = 2t − 1. The explicit formula of the SLPs is as
follows [31]:

Lm(t) =

m∑
i=0

bmit
i, (7)

where Lm(0) = (−1)m, Lm(1) = 1, and

bmi = (−1)m+i (m+ i)!

(m− i)!(i!)
2 . (8)

The orthogonality condition of the SLPs with respect to the weight function
w(t) = 1 is given by ∫ 1

0

Lm(t)Ln(t)dt = hmδmn, (9)
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where δmn is Kronecker’s delta function and hm =
1

2m+ 1
. Any given func-

tion z(t) ∈ L2[0, 1] can be represented in (n+ 1) terms of the SLPs as

z(t) ≃
n∑

i=0

ziLi(t)
∆
= ZTΦn(t), (10)

where

Z = [z0 z1 . . . zn]
T
,

Φn(t)
∆
= [L0(t) L1(t) . . . Ln(t)]

T
, (11)

and

zi =
1

hi

∫ 1

0

z(t)Li(t)dt, i = 0, 1, . . . , n.

In a similar way, a two-variable function z(x, t) ∈ L2(Θ) can be expanded by
the SLPs as

z(x, t) ≃
m∑
i=0

n∑
j=0

zijLi(x)Lj(t)
∆
= ΦT

m(x)ZΦn(t), (12)

where Z = [zij ] is the matrix of coefficients with dimensions (m+1)× (n+1)
whose entries are unknown and obtained from the following equation:

zij=
1

hihj

∫ 1

0

∫ 1

0

z(x, t)Li(x)Lj(t)dxdt, (13)

for i = 0, 1, . . . ,m, j = 0, 1, . . . , n. Suppose that Φn(t) is the vector intro-
duced in (11). Then the derivative of this vector is as follows: [31]

dΦn(t)

dt
= D

(1)
t Φn(t), (14)

where D
(1)
t = [d

(1)
ij ] is called the derivative operational matrix of SLPs of

(n+ 1)-order, whose structure is as follows:

d
(1)
ij =


2(2j + 1), j = i− k,

{
k = 1, 3, . . . , n if n odd,

k = 1, 3, . . . , n− 1 if n even,

0 otherwise.

(15)
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Remark 1. Generally, the r-derivative operational matrix of SLPs of Φn(t)
can be given by [31]

drΦn(t)

dtr
= D

(r)
t Φn(t), (16)

in which D
(r)
t is obtained by r times multiplying D

(1)
t in itself.

4 Convergence analysis

In this section, the convergence analysis of SLPs expansion in two dimensions
is investigated.

Theorem 1. Suppose that z : Θ −→ R is (n + m + 1) times continuously
differentiable. If ΦT

m(x)ZΦn(t) is a unique best approximation of z, then the
following inequality holds:

∥z(x, t)− ΦT
m(x)ZΦn(t)∥L2(Θ) ⩽

∆
√
Γ(n+m+ 2)

r!(n+m+ 1− r)!
, (17)

where

∆ = max
Θ

{| ∂n+m+1

∂xn+m+1−i∂ti
z(x, t) | i = 0, 1, . . . , n+m+ 1},

Γ = max
T⩾1

{T 2n+2m−i+3, i = 0, 1, . . . , 2(n+m+ 1)}.

Proof. Maclaurin’s expansion for z(x, t) reads as follows:

z(x, t) = p(x, t) +
1

(n+m+ 1)!
(x

∂

∂x
+ t

∂

∂t
)n+m+1z(ξ0x, ξ0t), ξ0 ∈ (0, 1),

where

p(x, t) =

n+m∑
k=0

1

k!
(x

∂

∂x
+ t

∂

∂t
)
k

z(0, 0).

Thus

|z(x, t)− p(x, t)| = | 1

(n+m+ 1)!
(x

∂

∂x
+ t

∂

∂t
)n+m+1z(ξ0x, ξ0t)|, ξ0 ∈ (0, 1).

On the other hand, since ΦT
m(x)ZΦn(t) is the best approximation of z(x, t),

we obtain

∥ z − ΦT
mZΦn∥2L2(Θ) ≤∥ z − p∥2L2(Θ).
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By the definition of the L2-norm and expand (x ∂
∂x + t ∂

∂t )
n+m+1, we have

∥ z(x, t)− p(x, t) ∥2
L2(Θ)

=

∫ T

0

∫ 1

0

[
1

(n+m+ 1)!
(x

∂

∂x
+ t

∂

∂t
)n+m+1z(ξ0x, ξ0t)]

2dxdt

=

∫ T

0

∫ 1

0

[
1

(n+m+ 1)!

n+m+1∑
i=0

(
n+m+ 1

i

)
xn+m+1−iti

∂n+m+1

∂xn+m+1−i∂ti
z(ξ0x, ξ0t)]

2dxdt

≤
∆2

(n+m+ 1)!2

∫ T

0

∫ 1

0

[

n+m+1∑
i=0

(
n+m+ 1

r

)
xn+m+1−iti]2dxdt,

where(
n+m+ 1

r

)
= max

{(
n+m+ 1

i

)
; i = 0, 1, . . . , n+m+ 1

}
.

To find the upper bound for the above expression, we calculate the following
terms:∫ T

0

∫ 1

0

x2(n+m+1−i)t2idxdt =
T 1+2i

(1 + 2i)(2n+ 2m− 2i+ 3)
,

i = 0, 1, . . . , n+m+ 1,∫ T

0

∫ 1

0

x(2n+2m+1−i)ti+1dxdt =
T 2+i

(2 + i)(2n+ 2m− i+ 2)
,

i = 0, 1, . . . , n+m,

...∫ T

0

∫ 1

0

x(2+i)t2n+2m−idxdt =
T 2n+2m−i+1

(3 + i)(2n+ 2m− i+ 1)
, i = 0, 1,∫ T

0

∫ 1

0

x(1+i)t2n+2m−i+1dxdt =
T 2n+2m−i+2

(2 + i)(2n+ 2m− i+ 2)
, i = 0.

Therefore

∥ z − p∥2L2(Θ) ≤
∆2

r!2(n+m+ 1− r)!2

∫ T

0

∫ 1

0

[

n+m+1∑
i=0

xn+m+1−iti]2dxdt

=
∆2

r!2(n+m+ 1− r)!2

[ n+m+1∑
i=0

T 1+2i

(1 + 2i)(2n+ 2m− 2i+ 3)
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+

n+m∑
i=0

T 2+i

(2 + i)(2n+ 2m− i+ 2)
+ · · ·

+

1∑
i=0

T 2n+2m−i+1

(3 + i)(2n+ 2m+ 1)
+

T 2n+2m−i+2

2(2n+ 2m+ 2)

]
≤ ∆2Γ

r!2(n+m+ 1− r)!2

×
[
(n+m+ 2) + (n+m+ 1) + · · ·+ 2 + 1

]
≤ ∆2Γ

r!2(n+m+ 1− r)!2
(n+m+ 2)2,

which is the desired result.

5 Description of the presented method

Now in this section we will use numerical methods to address the problem
raised in (1) and (3). We will use numerical methods to address the problem
raised in (1) and (3) in this section. SLPs approximate the temperature and
heat source for this purpose as follows:

z(x, t) ≃ Φm(x)TZΦn(t), (18)
f(x) ≃ FTΦm(x), (19)

where Z and F are the following unknown matrices of coefficients with di-
mensions (m + 1) × (n + 1) and (m + 1) × 1, respectively, while Φm(x) and
Φn(t) in (11) have been expressed:

Z =


z00 z01 . . . z0n
z10 z11 . . . z1n

...
...

...
zm0 zm1 . . . zmn

 , F =


f0
f1
...
fm

 . (20)

Set

P(x, t) ≜ [L0(x)L0(t), . . . , Lm(x)L0(t) | · · · | L0(x)Ln(t), . . . , Lm(x)Ln(t)] . (21)

According to (21), we can express (18) as

z(x, t) ≃ Φm(x)TZΦn(t) = P(x, t) vec(Z), (22)

where

vec(Z) = [z00, . . . , zm0 | . . . | z0n, . . . , zmn]
T
.
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From (14), (22), and Remark 1, the result will be as follows:

zx(x, t) ≃ Φm(x)TD(1)T
x ZΦn(t) = P(x, t)(In+1 ⊗D(1)T

x ) vec(Z), (23)

zxx(x, t) ≃ Φm(x)TD(2)T
x ZΦn(t) = P(x, t)(In+1 ⊗D(2)T

x ) vec(Z), (24)

zt(x, t) ≃ Φm(x)TZD
(1)
t Φn(t) = P(x, t)(D

(1)T
t ⊗ Im+1) vec(Z), (25)

so that Im+1 and In+1 are identity matrices of orders m + 1 and n + 1,
respectively. Additionally, ⊗ refers to the Kronecker product [22]. Now,
(19), (24), and (25) are substituted into the first subequation of (1), and the
result is

K(x, t) vec(Z)− FTΦm(x) = 0, (26)

in which

K(x, t) ≜ P(x, t)
[
(D

(1)T
t ⊗ Im+1)− (In+1 ⊗D(2)T

x )
]
.

Thus, as to (22) and (23) and with regards to initial and Neumann boundary
conditions in (1), we have

P(x, 0) vec(Z) = ν(x),

P(0, t)(In+1 ⊗D
(1)T
x ) vec(Z) = g0(t),

P(1, t)(In+1 ⊗D
(1)T
x ) vec(Z) = g1(t).

(27)

We follow the suggested procedure by constructing an (m+1)× (n+1) alge-
braic system of equations. For this reason, we derive the following equations
from (26) and (27):

K(ξi, ηj) vec(Z)− FTΦm(ξi) = 0, i = 2, . . . ,m, j = 2, . . . , n+ 1,

P(ξi, 0) vec(Z) = ν(ξi) i = 1, . . . ,m+ 1,

P(0, ηj)(In+1 ⊗D
(1)T
x ) vec(Z) = g0(ηj), j = 2, . . . , n+ 1,

P(1, ηj)(In+1 ⊗D
(1)T
x ) vec(Z) = g1(ηj), j = 2, . . . , n+ 1,

(28)
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where a collocation scheme is defined by evaluating the outcome at the points
(ξi, ηj) in (28). We employ the shifted Legendre–Gauss–Lobatto nodes ξi (1 ≤
i ≤ m+1) and the shifted Legendre roots ηj (1 ≤ j ≤ n+1) of Ln(t) to find
suitable collocation points. It is possible to write (28) as follows:

M vec(Z)−NF̂ = Q, (29)

in which

M =


T (2 : n+ 1, :)⊗X (2 : m, :)
T (1, :)⊗X (1 : m+ 1, :)
T (2 : n+ 1, :)⊗X (1, :)

T (2 : n+ 1, :)⊗X (m+ 1, :)

 , N =


S ⊗ X (2 : m, :)

0
0
0

 ,

F̂ =

f0, . . . , fm| 0, . . . , 0︸ ︷︷ ︸
m+1

| · · · | 0, . . . , 0︸ ︷︷ ︸
m+1

T

,

Q =
[ n︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

m−1

| · · · | 0, . . . , 0︸ ︷︷ ︸
m−1

|ν(ξ1), . . . , ν(ξm+1)

|g0(η2), . . . , g0(ηn+1)|g1(η2), . . . , g1(ηn+1)
]T

,

where F̂ and Q are (m+ 1)(n+ 1)-order vectors and

S ≜


1
0
...
0

0
0
...
0

. . .

. . .

. . .
0

0
0
...
0


n×(n+1)

,

T ≜


L0(η1) L1(η1)
L0(η2) L1(η2)

. . .

. . .
Ln(η1)
Ln(η2)

...
...

. . . ...
L0(ηn+1) L1(ηn+1) . . . Ln(ηn+1)


(n+1)×(n+1)

,

X ≜


L0(ξ1) L1(ξ1)
L0(ξ2) L1(ξ2)

. . .

. . .
Lm(ξ1)
Lm(ξ2)

...
...

. . . ...
L0(ξm+1) L1(ξm+1) . . . Lm(ξm+1)


(m+1)×(m+1)

.

Next, we approximate PII by SLPs. First, we approximate the desired func-
tion hε(x) as
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hε(x) ≃ HTΦm(x). (30)

From (14) and (19), we have

∇f(x) ≃ FTD(1)
x Φm(x). (31)

Inserting (18), (30), and (31) into (3) yields that

J(z, f) ≃ Jm,n(Z, F )

=
1

2

∫ 1

0

(Φm(x)TZΦn(T )− Φm(x)TH)(Φm(x)TZΦn(T )− Φm(x)TH)T dx

+
σ

2

∫ 1

0

(FTD
(1)
x Φm(x))(FTD

(1)
x Φm(x))T dx.

The value
∫ 1

0
(ϕm(x)TH)2dx is positive, meaning it has no influence on min-

imization and according to (9), the equation can be expressed as follows:

Jm,n(Z,F ) =
1

2
vec(Z)T (Φn(T )Φn(T )

T ⊗Υm) vec(Z)

−HT (Φn(T )
T ⊗Υm) vec(Z)

+
σ

2
F (In+1 ⊗ (D(1)

x ΥmD(1)T
x ))F, (32)

where

Υm = diag(h0, . . . , hm).

The problem of optimal control in the discussion has now become a finite
dimension optimization. We use the Lagrangian multipliers method to solve
the ensuing optimization problem. Let us clarify

J∗(z, f) ≃ J∗(Z,F,Ω) = Jm,n(Z,F ) + ΛT (M vec(Z)−NF̂ −Q), (33)

where

Λ =
[
λ1 λ2 . . . λ(m+1)×(n+1)

]T
,

which shows the vector of Lagrange multipliers as Λ. The following equations
lead to the following optimality conditions:

∂J∗(z, f)

∂ vec(Z)
= 0,

∂J∗(z, f)

∂F
= 0,

∂J∗(z, f)

∂Λ
= 0.
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The Newton iterative approach or MATLAB software tools can be used to
solve the aforementioned algebraic equation system. We can get the approx-
imate solutions z(x, t) and f(x) from (18) and (19), respectively, by figuring
out Z and F .

6 Numerical examples

This section gives two examples along with figures to illustrate how the rec-
ommended technique may be implemented successfully and to show its po-
tential. The results of the existing plan are analyzed and compared to the
solution that was found analytically and method of [37]. The rand function
is used by the MATLAB software to generate noisy data, and the value of hε

for 0 ≤ δ ≤ 1 in the collocation points {ξj}m+1
j=1 is calculated as follows:

hε = h+ δ.rand(size(h)), (34)

ε = ∥hε − h∥l2 = (
1

m+ 1

m+1∑
j=1

|hε − h|2) 1
2 . (35)

For noisy data hε(x), the goal of the optimal control problem is to find
functions f(x) and z(x, t) that minimize the following objective function and
satisfy (1):

min J(z, f) = 1

2
∥ z(x, 1)− hε(x) ∥2L2[0,1] +

σ

2
∥ f

′
(x) ∥2L2[0,1]

=
1

2

∫ 1

0

|z(x, 1)− hε(x)|2dx+
σ

2

∫ 1

0

|f
′
(x)|2dx. (36)

We take the regularization parameter σ = ε2, and, in order to observe the
convergence of the method described in numerical experiments, we calculate
the approximate error resulting from the following equation:

e(f) = ∥
∼
f −f∥L∞ , (37)

where
∼
f is the numerical approximation of the exact solution f in the collo-

cation points {ξi}m+1
i=1 .

Example 1. Consider the inverse problem with Θ = (0, 1)× (0, 1) [37]

zt(x, t)− zxx(x, t) = f(x), (x, t) ∈ Θ,

z(x, 0) = 0, x ∈ (0, 1),

zx(0, t) = zx(1, t) = 0, t ∈ (0, 1).

(38)
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We attempt to approximate the heat source defined by

f(x) = π2 cos(πx). (39)

Then with f given by (39), the forward problem presented by (38) has an
analytical solution as follows:

z(x, t) =

∞∑
n=1

1− e−(nπ)2t

(nπ)2
fn cos(nπx), (40)

where fn is the Fourier coefficient as follows:

fn = 2

∫ 1

0

f(x) cos(nπx)dx. (41)

From (40), we have

h(x) = z(x, 1) =

∞∑
n=1

1− e−(nπ)2

(nπ)2
fn cos(nπx). (42)

Table 1: Comparison of errors estimate obtained for functions f in Example 1 over a
range of σ values between the proposed method and [37]

σ = 10−4 σ = 10−5 σ = 10−6

Proposed method 6.1387e− 01 6.8907e− 02 1.2413e− 02
Method of [37] 2.511e− 01 4.81e− 02 3.26e− 02

Table 1 analyzes the error behavior of the proposed method in here and
the presented method in [37] by varying the value of σ.

Table 2: Errors estimate for the functions f and z in Example 1 over a range of σ values

σ = 10−4 σ = 10−5 σ = 10−6 σ = 10−7

Eroor(f) 6.1387e− 01 6.8907e− 02 1.2413e− 02 8.3175e− 03
Eroor(z) 5.5543e− 02 6.0304e− 03 6.0868e− 04 6.3734e− 05

The approximate solutions for the functions f and z are shown in Figure
1. The approximation inaccuracy are shown in Table 2. Figure 2 depicts the
convergence of the suggested approach.
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Figure 1: Results of Example 1’s numerical solutions for functions f (left) and z (right)
for a range of σ values
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Figure 2: Convergence of the numerical solutions of Example 1 for functions f (left) and
z (right) for a range of collocation point values

Example 2. Consider the inverse problem with Θ = (0, 1)× (0, 1) [28]

zt(x, t)− zxx(x, t) = f(x), (x, t) ∈ Θ,

z(x, 0) = sin(πx), x ∈ (0, 1),

zx(1, t) = −zx(0, t) = π(e−π2t − 2), t ∈ (0, 1).

(43)

We attempt to approximate the heat source defined by

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 460–480



475 An optimal control approach for solving an inverse...

f(x) = 2π2 sin(πx). (44)

Then with f given by (44), the forward problem presented by (43) has an
analytical solution as follows:

z(x, t) = −(e−π2t − 2) sin(πx). (45)

From (45), we have

h(x) = z(x, 1) = −(e−π2

− 2) sin(πx). (46)

Table 3: Values of errors for the functions f and z with different values of σ in Example
2

σ = 10−5 σ = 10−6 σ = 10−7 σ = 10−8

Eroor(f) 4.3462e− 00 1.2586e− 00 7.4287e− 01 6.8760e− 01
Eroor(z) 9.7406e− 02 1.6259e− 02 1.7443e− 03 1.7581e− 04

Figure 3 shows the approximate solutions for the functions f and z. The
approximation error is presented in Table 3. The convergence of the proposed
method can be seen in Figure 4.
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Figure 3: Behavior of the numerical solutions for the functions f (right) and z (left) at
some different values of σ in Example 2
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Figure 4: Convergence of the numerical solutions for the functions f (right) and z (left)
at some different values of collocation points in Example 2

7 Conclusion

When it comes to finding a regular and stable solution, inverse problems
that are related to PDEs provide a significant computing challenge since it
is very difficult to do so. The scope of this work is an investigation into an
inverse space-dependent source issue for a heat equation. A shifted Legen-
dre polynomial and an optimum control strategy were used in the process of
creating a heat source. One of the most popular and efficient tools for resolv-
ing computing problems is the Legendre polynomial. The shifted Legendre
polynomials operational matrix was utilized to resolve this optimal control
problem. By applying the suggested collocation method and using an oper-
ational matrix, the issue was converted into a set of equations that can be
solved using algebra. When utilizing this method to solve an inverse prob-
lem, as demonstrated by the examples provided in the paper, a high level of
precision was achieved in the solution. The method presented here was based
on the optimal control problem and shifted Legendre polynomials. In future
work, we will try to use machine learning techniques, including deep neural
networks, to solve this problem.
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