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Abstract

An adaptive spline is used in this work to deal with singularly perturbed
boundary value problems with layers in the interior region. To evaluate
the layer behavior in the solution, a different technique on a uniform mesh
is designed by replacing the first-order derivatives with nonstandard differ-
ences in the adaptive cubic spline. A tridiagonal solver is used to solve the
tridiagonal system of the difference scheme. The fourth-order convergence
of the approach is established. The validity of the suggested computa-
tional method is demonstrated through numerical experiments, which are
compared to other methods in the literature. Layer profile is depicted in
graphs.
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1 Introduction

A small parameter leads to singular perturbation problems (SPPs) in a va-
riety of science and engineering problems in fluid mechanics, elasticity, aero-
dynamics, magneto-hydrodynamics, optimal control, and other domains of
fluid motion [1]. WKB difficulties, the modeling of steady and unsteady vis-
cous flow problems having big Reynolds numbers, magneto-hydrodynamics
duct problems with high Hartman numbers, and so on are few notable ex-
amples. The numerical solutions to SPPs are often nontrivial because of the
rapid development or decay (boundary/interior layer behavior) of solutions
to dissipative problems. Here, we include a few references related to the in-
terior layer problems. The authors in [2, 3, 5, 11, 16, 24, 25] provided a full
theoretical, analytical, and numerical discussion of this topic. The authors
of [8, 9] provided an informative overview of SPPs on layers in their survey
publications. In [10], for the Emden–Fowler type equations, the author pro-
posed a finite element collocation technique based on cubic B-splines. Farrell
[4] provides a uniformly convergent scheme for the SPP with a turning point
problem. Geng, Qian, and Li [6] suggested an approach based on the re-
producing kernel method and the asymptotic expansion technique. Miller,
O’Riordan, and Shishkin [12] explained how to solve convection-diffusion
and reaction-diffusion problems using conventional techniques on Shishkin
meshes. Natesan, Vigo-Aguiar and Ramanujam [13] split the region into two
subdomains, the layer domain and the regular domain, and then resolved the
layer problem with the fitted operator method and the regular problem with
the finite difference technique. Navnit [14] proposed a fourth-order numerical
approach for solving an SPP using an adaptive cubic spline. The same au-
thor in [15] proposed a general scheme for the solution of nonlinear SPP using
an adaptive cubic spline. The author in [19] developed a nonuniform mesh
optimal B-spline collocation method for the numerical solution of a singular
two-point boundary value problem describing electro hydrodynamic flow of a
fluid in a circular cylindrical conduit. In [20], two B-spline collocation meth-
ods were proposed to solve a class of nonlinear derivative dependent singular
boundary value problems. Ramos [22] presented a locally analytical tech-
nique for solving SPPs with internal and boundary layers, as well as turning
points.

With this motivation, in this paper, a higher order finite difference method
on a uniform mesh for solving SPP turning point problems with an interior
layer is proposed.

2 Statement of the problem

Consider a second-order SPP of the form

εw′′(t) + P (t)w′(t) +Q(t)w(t) = f(t), −1 ≤ t ≤ 1, (1)
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with boundary conditions

w(−1) = α and w(1) = β, (2)

where 0 < ε ≪ 1 is a positive perturbation parameter, α and β are finite
constants, and P (t), Q(t), and f(t) are considered to be suitably smooth
functions. Based on the coefficient P (t), the solution to (2) has a layer or
turning point behavior. The presence of a turning point in the solution to
the problem makes it substantially more difficult to handle a boundary or
inner layer. In this paper, we examine at the situation where a problem’s
turning point results in a solution with an interior layer. Under assumptions

P (0) = 0, P ′(0) ≥ 0, Q(t) ≤ Q0 < 0, for all t ∈ D = [−1, 1],

|P ′(t)| ≥ |P ′(0)|
2

, for all t ∈ D = [−1, 1],

the given turning point problem has a solution with interior layers at t = 0.

3 Adaptive spline

With grid points ti in [a, b], consider a mesh such that {Ω : a = t0 < t1 <
t2 < · · · < tN = b, where h = ti− ti−1 for i = 1, 2, . . . , N}. A function ψ(t, τ)
interpolates w(t) at the grid points ti, depends on a variable, and leads to a
cubic spline ψ(t) in [a, b] as τ → 0, named as an adaptive spline; see [7, 23].
The function ψ(t, τ) satisfies the equation

εψ′′(t, τ)−pψ′(t, τ) =
t− ti−1

h
(εMi − pmi)+

ti − t

h
(εMi−1 − pmi−1) , (3)

where ti−1 ≤ t ≤ ti, ψ′(t, τ) = mi, and ψ′′(t, τ) = Mi. Solving (3) and using
the interpolatory conditions ψ(ti−1, τ) = wi−1 and ψ(ti, τ) = wi, we have
ψ(s, τ) = Ai + Bie

τz − h2

τ3

[
1
2τ

2z2 + τz + 1
] (

Mi − τ
hmi

)
+
h2

τ3

[
1

2
τ2(1− z)2 + τ(1−z) + 1

](
Mi−1 −

τ

h
mi−1

)
, (4)

where

Ai (e
τ − 1) = −xi + xi−1e

τ − h2

τ3

[(
τ2

2
+ τ + 1

)
− τeτ

](
Mi −

τ

h
mi

)
−h

2

τ3

[(
τ2

2
− τ + 1

)
− τ

](
Mi−1 −

τ

h
mi−1

)
,
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Bi (e
τ − 1) = xi − xi−1e

τ +
h2

τ3

[
(
τ

2
+ 1)− τeτ

]
(Mi −

τ

h
mi)

+
[
(
τ

2
− 1)− τ

]
(Mi−1 −

τ

h
mi−1),

τ = Ph
ε , and z = s−si−1

h . The spline function ψ(t, τ) on [ti, ti+1] is acquired
with replacing i by (i+ 1) in (11). Utilizing the first or second derivative
continuity conditions of ψ(t, τ) at t = ti, we get the following relationship:(

Mi+1 −
τ

h
mi+1

)[
e−τ (

τ2

2
+ τ + 1)− 1

]
+ (Mi −

τ

h
mi)

[
e−τ

(
τ2

2
− τ − 2

)
+

(
−τ

2

2
− τ + 2

)]
+
(
Mi−1 −

τ

h
mi−1

)[
e−τ − 1 + τ − τ2

2

]
= − τ

2

h3
[
e−τwi+1 −

(
1 + e−τ

)
wi + wi−1

]
. (5)

Furthermore, the below relations are given for the adaptive splines:

(i) mi−1 = −h (A1Mi−1 +A2Mi) +
1

h
(wi − wi−1) ,

(ii) mi = h (A3Mi−1 +A4Mi) +
1

h
(wi − wi−1) ,

(iii)
θ h

2τ
Mi−1 = − (A4mi−1 +A2mi) +B1

(wi − wi−1)

h
,

(iv)
θ h

2τ
Mi = (A3mi−1 +A1mi) +B2

(wi − wi−1)

h
,

where
A1 =

1

4
(1 + θ) +

θ

20
, A2 =

1

4
(1− θ)− θ

20
,

A3 =
1

4
(1 + θ)− θ

20
, A4 =

1

4
(1− θ) +

θ

20
,

B1 =
1

4
(1− θ) , B2 = −1

2
(1 + θ) , and θ = coth

(τ
2

)
− 2

τ
.

We also obtain

A2Mi+1 + (A1 +A4)Mi +A3Mi−1 =
1

h2
[wi+1 − 2wi + wi−1] . (6)

Remark: In the limiting case when τ → 0, we have

A1 = A4 =
1

3
, A2 = A3 =

1

6
, B1 =

1

2
, B2 = −1

2
, θ = 0,

θ

τ
=

1

6
,

and (8) reduces to the ordinary cubic spline scheme.
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4 Description of the procedure

At the mesh point ti, the suggested approach can be discretized by the
convection-diffusion equation (2) as

ε Mi = f(ti)− P (ti)wi
′(t)−Q(ti)w(ti). (7)

The above equations shall be replaced by (8), and by approximating the first
order derivatives of t at the mesh points t1, t2, . . . , tN−1 as

w′
i−1 ≈ −wi+1 + 4wi − 3wi−1

2h
, w′

i+1 ≈ 3wi+1 − 4wi + wi−1

2h
,

w′
i ≈

(
1 + 2ηh2Qi+1 + ηh [3Pi+1 + Pi−1]

2h

)
wi+1 − 2η [Pi+1 + Pi−1]wi

−
(
1 + 2ηh2Qi−1 − ηh [Pi+1 + 3Pi−1]

2h

)
wi−1 + η h [fi+1 − fi−1],

we get the tridiagonal system

Liwi−1 + Ci wi + Uiwi+1 =Wi for i = 1, 2, . . . , N − 1, (8)

where

Li =− ε− 3

2
A3 Pi−1 h

− (A1 +A4)Pih
[
1 + 2ηh2Qi−1 − ηh (Pi+1 + 3Pi−1)

]
+
A2

2
Pi+1 +A3 Qi−1h

2

Ci =2ε+ 2A3 Pi−1 h− 4 (A1 +A4) Pih
2
i η[Pi+1 + Pi−1]

− 2A2 Pi+1h+ 2 (A1 +A4) Qih
2

Ui =− ε− A3

2
Pi−1 h + (A1 +A4)Pih

[
1 + 2ηh2Qi−1 + ηh (3Pi+1 + Pi−1)

]
+

3

2
A2ηPi+1h+A2Qi+1h

2

Wi = h2 [(A2 − 2η (A1 +A4) Pih) fi+1 + 2 (A1 +A4) fi]

+ h2 [(A3 + 2η (A1 +A4) Pih) fi−1] .

The tridiagonal system (10) is solved for i = 1, 2, . . . , N − 1, to obtain the
approximations w1,w2, . . . , wN−1 of the solution w(t) at t1, t2, . . . , tN−1.
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5 Truncation error

Developed local truncation error associated with the scheme in (10) is

Ti (h) =ε [1− (2 (A1 +A4) +A2 +A3)]h
2w′′ + ε (A3 −A2)h

3w′′′

+

[
A2 +A3

2
− 4ηε (A1 +A4)−

1

6
[2 (A1 +A4) +A2 +A3]

]
Pih

4w′′′

+
ε

12
[1− 6 (A2 +A3)]h

4wiv

− 1

12
(A3 −A2)

[
Piw

iv + 2 (P ′
i +Qi)w

′′′ + 6 (P ′′
i +Q′

i)w
′′

+2 (P ′′′
i + 3Q′′′

i )w′] + [2Q′′′
i w − 2f ′′′]h5 +O

(
h6

)
.

Thus for different values of A2, A3, A1 + A4 in the scheme, (10) indicates
different orders.
Remarks:
(i) If A2 = A3, for any choice of arbitrary A2,A1+A4 with (A1 +A4)+A2 =
1
2 and for any value of η , then the method is obtained for second order.
(ii) For A2 = A3 = 1

12 , (A1 +A4) =
5
12 , and η = − 1

20ε , the fourth-order
method is derived.

6 Convergence

The convergence analysis of the proposed method is discussed in this section.
The system of equations (10) in the matrix form with the boundary conditions
is

(D + F )W +G+ T (h) = 0, (9)

where

D = [−ε, 2ε, − ε] =


2ε −ε 0 0 . . . 0
−ε 2ε −ε 0 . . . 0
0 −ε 2ε −ε . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 −ε 2ε


and

F = [z̃i, ṽi, w̃i] =


ṽ1 w̃1 0 0 . . . 0
z̃2 ṽ2 w̃2 0 . . . 0
0 z̃3 ṽ3 w̃3 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 z̃N−1 ṽN−1


in which
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z̃i =− 3

2
A3 Pi−1 h − (A1 +A4)Pih

[
1 + 2ηh2Qi−1 − ηh (Pi+1 + 3Pi−1)

]
+

A2

2
Pi+1h+A3 Qi−1h

2

ṽi =2A3 Pi−1 h− 4 (A1 +A4) Pih
2η [Pi+1 + Pi−1] − 2A2 Pi+1h

+ 2 (A1 +A4) Qih
2

w̃i =− A3

2
Pi−1 h + (A1 +A4)Pih

[
1 + 2ηh2Qi−1 + ηh (3Pi+1 + Pi−1)

]
Pi

+
3

2
A2Pi+1h+A2Qi+1h

2 for all i = 1, 2, 3, 4, . . . , N − 1,

and
G = [q1 − z̃1α, q2, q3, . . . , qN−1 − w̃N−1β] ,

in which

qi =h
2 [(A2 − 2η (A1 +A4) Pih) fi+1 + 2 (A1 +A4) fi]

+ h2 [(A3 + 2η (A1 +A4) Pih) fi−1] for all i = 2, . . . , N − 1,

T (h) =0(h6), A2 = A3 =
1

12
, (A1 +A4) =

5

12
, η = − 1

20ε
,

W = [W1,W2,W3, . . . ,WN−1]
T
, T (h) = [T1, T2, . . . , TN−1]

T
,

O = [0, 0, . . . , 0]
T
.

Let w = [w1, w2, . . . , wN−1]
T ∼=W satisfy the equation

(D + F )w +G = 0. (10)

Let E = [e1, e2, . . . , eN−1]
T
= w−W , where ei = wi−Wi, i = 1, 2, . . . , N−1,

is the discretization error. Using (9) and (10), we obtain

(D + F )E = T (h). (11)

Let |Q(s)| ≤ ξ1 and |P (s)| ≤ ξ2, where ξ1 and ξ2 are positive constants. If
ζi,j is the (i, j)th element of F , then

|ζi,i+1| = |w̃i| ≤ ε
(
h (A2 + (A1 +A4)) ξ1 + h2A2ξ2 + 4 (A1 +A4) ηh

2ξ21
)

+
(
2h3 (A1 +A4) ηξ1ξ2

)
for all i = 1, 2, . . . , N − 2,

|ζi,i−1| = |z̃i| ≤ ε
(
h(A2 + (A1 +A4))η1 + h2A2η2 + 4 (A1 +A4) ηh

2ξ21
)

+
(
2h3 (A1 +A4) ηξ1ξ2

)
for all i = 2, 3, . . . , N − 1.

Hence, for sufficiently small h, we have

|ζi,i+1| ≤ ε for all i = 1, 2, . . . , N − 2, (12)
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|ζi,i−1| ≤ ε for all i = 2, 3, . . . , N − 1. (13)

Therefore, (D + F ) is irreducible (see [27]).
Let the sum of the values of the ith row of (D + F ) be Si. Then

Si = ε−A2h

2
(Pi+1 − 3Pi−1)+h (A1 +A4)Pi+h

2 (A2Qi−1 + 2 (A1 +A4)Qi)

+h2 (A1 +A4) ηPi (3Pi−1 + Pi+1)−2h3 (A1 +A4) ηPiQi−1 for i = 1,

Si = h2 (Qi−1 + 2 (A1 +A4)Qi +A2Qi+1)+2h3 (A1 +A4)Piη (Qi+1 −Qi−1)

for all i = 2, 3, . . . , N−2,

Si = ε+
A2h

2
(Pi−1 − 3Pi+1)−h (A1 +A4)Pi+h

2 (A2Qi−1 + 2 (A1 +A4)Qi)

−h2 (A1 +A4) ηPi (3Pi+1 + Pi−1)− 2h3 (A1 +A4) ηPiQi−1

for i = N − 1.

Let ξ1∗ = min
1≤i≤N

|P (ti)|, let ξ∗1 = max
1≤i≤N

|P (ti)|, let ξ2∗ = min
1≤i≤N

|Q(ti)|, and
let ξ∗2 = max

1≤i≤N
|Q(ti)|.

Since ε is very small and ε ∝ o(h), for suitable small h, (D + F ) is mono-
tone (see [26, 27]). Hence, (D + F )

−1
exists and (D + F )

−1 ≥ 0. Thus from
(14), we get

||E|| ≤ ||(D + F )−1||||T ||. (14)

Let (i, k)th element of (D + F )
−1 be (D + F )

−1
i,k , and define

||(D + F )−1|| = max
1≤i≤N−1

N−1∑
k=1

(D + F )
−1
i,k , and ||T (h)|| = max

1≤i≤N−1
|T (h)|.

(15)
Since (D + F )

−1
i,k ≥ 0 and

∑N−1
k=1 (D + F )

−1
i,k S̄k = 1, for all i = 1, 2, . . . , N −

1, hence

(D + F )
−1
i,1 ≤ 1

S̄1
<

1

h2 [(A2 + 2(A1 +A4)) ξ2∗ − 4(A1 +A4)ψξ21 ]
, (16)

(D + F )
−1
i,N−1 ≤ 1

S̄N − 1
<

1

h2 [(A2 + 2(A1 +A4)) ξ2∗ − 4(A1 +A4)ψξ21 ]
.

(17)
Furthermore, for all i = 2, 3, . . . , N − 2,

N−2∑
k=2

(D + F )
−1
i,k ≤ 1

min
2≤k≤N−2

S̄k
<

1

h2 [2 (A2 + (A1 +A4)) ξ2∗ ]
. (18)

By utilizing (15)–(18) and using (14), we have
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||E|| ≤ O(h4). (19)

Hence, the method given in (10) is fourth-order convergent for

A2 = A3 =
1

12
, (A1 +A4) =

5

12
, and η = − 1

20ε
.

7 Numerical examples

Three examples with internal layer behavior are examined in this part to
explain the concept computationally. These problems were chosen because
they have received considerable attention in the literature. The numerical
rate of convergence is computed using the formula given by Doolan, Miller,
and Schilders [3] as RN =

log(EN)−log(E2N)
log(2) .

Example 1. [17] Consider

εw′′(t) + 2tw′(t) = 0, t ∈ (−1, 1),

with w(−1) = −1 and w(1) = 1.

Thus w(t) = erf
(

t√
ε

)
is the exact solution to the problem.

Table 1 shows the computed solution’s maximum absolute errors (MAEs).
Figure 1 graphically depicts the numerical and exact solutions. The error
plot in the solution of this example is shown in Figure 4.

Example 2. [21] Consider

εw′′(t) + 2(2t− 1)w′(t)− 4w(t) = 0, t ∈ (0, 1),

with w(0) = 1 and w(1) = 1. Hence

w(t) = −
e

1
2ε

− (1−2t)2

2ε

(
2e

(1−2t)2

2ε
√
2πterf

(
1−2t√

2ε

)
− e

(1−2t)2

2ε
√
2πerf

(
1−2t√

2ε

)
− 2

√
ε

)
e

1
2ε

√
2πerf

(
1√
2ε

)
+ 2

√
ε

is the exact solution to the problem.
The MAE of the solution is shown in Tables 2 and 3. Figure 2 shows

the layer profile of the numerical and exact solutions. The error plot in the
solution of this example is shown in Figure 5.

Example 3. [17] Consider

εw′′ + tw′ − w = 0, −1 ≤ t ≤ 1,

with w(−1) = 1 and w(1) = 2.
The exact solution is

IJNAO, Vol. 12, No. 2, pp 355–370
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w(t) =
2
√
ε
(
t+ 3e−

t2−1
2ε

)
+

(
e

1
2ε

√
2πterf

(
1√
2ε

)
+ 3e

1
2ε

√
2πerf

(
t√
2ε

))
2e

1
2ε

√
2πerf

(
1√
2ε

)
+ 4

√
ε

.

The MAE is shown in Table 4. Figure 3 shows the layer profile of the nu-
merical and exact solutions. The error plot in the solution of this example is
shown in Figure 6.

Table 1: MAE of the solution of Example 1
ε ↓ N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

present method
2−5 1.1881(-4) 7.3536(-6) 4.5818(-7) 2.8613(-8) 1.7889(-9) 1.1198(-10)
2−6 4.8395(-4) 2.9414(-5) 1.8231(-6) 1.1455(-7) 7.1558(-9) 4.4732(-10)
2−7 0.0019(-0) 1.1881(-4) 7.3536(-6) 4.5818(-7) 2.8613(-8) 1.7890(-9)
2−8 0.0065(-0) 4.8395(-4) 2.9414(-5) 1.8231(-6) 1.1455(-7) 7.1558(-9)
2−9 0.0203(-0) 0.0019(-0) 1.1881(-4) 7.3536(-6) 4.5818(-7) 2.8613(-8)
2−10 0.0957(-0) 0.0065(-0) 4.8395(-4) 2.9414(-5) 1.8231(-6) 1.1455(-7)
RN 3.8757 3.7514 4.0403 4.0120 3.9923
Results in [17]
2−5 3.3962(-1) 4.9291(-1) 6.1199(-1) 7.0727(-1) 7.8166(-1) 8.3818(-1)
2−6 2.6635(-1) 4.2332(-1) 5.5588(-1) 6.6268(-1) 7.4724(-1) 8.1197(-1)
2−7 1.7078(-1) 3.3962(-1) 4.9291(-1) 6.1199(-1) 7.0727(-1) 7.8166(-1)
2−8 9.5121(-2) 2.6635(-1) 4.2332(-1) 5.5588(-1) 6.6268(-1) 7.4724(-1)
2−9 2.9280(-2) 1.7078(-1) 3.3962(-1) 4.9291(-1) 6.1199(-1) 7.0727(-1)
2−10 1.1065(-1) 9.5121(-2) 2.6635(-1) 4.2332(-1) 5.5588(-1) 6.6268(-1)

Total elapsed time with maximum number of subintervals 210 is 0.086497 sec.

Table 2: MAE of the solution of Example 2
ε ↓ N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

present method
2−5 8.6799(-6) 5.4123(-7) 3.3837(-8) 2.1151(-9) 1.3232(-10) 8.7138(-12)
2−6 2.4578(-5) 1.5331(-6) 9.5748(-8) 5.9831(-9) 3.7396(-10) 2.3510(-11)
2−7 6.7327(-5) 4.3399(-6) 2.7061(-7) 1.6919(-8) 1.0576(-9) 6.6184(-11)
2−8 1.9559(-4) 1.2289(-5) 7.6654(-7) 4.7874(-8) 2.9916(-9) 1.8699(-10)
2−9 5.6901(-4) 3.3663(-5) 2.1700(-6) 1.3531(-7) 8.4593(-9) 5.2878(-10)
2−10 0.0015(-0) 9.7794(-5) 6.1444(-6) 3.8327(-7) 2.3937(-8) 1.4958(-9)
R−N 3.9490 3.9924 4.0028 4.0010 4.0003
Results in [18]
2−5 5.9701(-3) 3.3654(-3) 1.7391(-3) 8.7449(-4) 4.3697(-4) 2.1822(-4)
2−6 5.3525(-3) 3.2322(-3) 1.7219(-3) 8.7336(-4) 4.3719(-4) 2.1834(-4)
2−7 1.1177(-2) 2.9851(-3) 1.6827(-3) 8.6953(-4) 4.3725(-4) 2.1848(-4)
2−8 2.5867(-2) 2.6763(-3) 1.6161(-3) 8.6093(-4) 4.3668(-4) 2.1860(-4)
2−9 4.7842(-2) 5.5886(-3) 1.4925(-3) 8.4134(-4) 4.3477(-4) 2.1862(-4)
2−10 7.5829(-2) 1.2934(-2) 1.3381(-3) 8.0805(-4) 4.3046(-4) 2.1834(-4)

Total elapsed time with maximum number of subintervals 210 is 0.089720 sec.
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Table 3: MAE of the solution of Example 2
ε ↓ N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

Present method
2−6 2.4578(-5) 1.5331(-6) 9.5748(-8) 5.9831(-9) 3.7396(-10) 2.3510(-11)
2−8 1.9559(-4) 1.2289(-5) 7.6654(-7) 4.7874(-8) 2.9916(-9) 1.8699(-10)
2−10 0.0015(-3) 9.7794(-5) 6.1444(-6) 3.8327(-7) 2.3937(-8) 1.4958(-9)
2−12 4.4958(-3) 7.5528(-4) 4.8897(-5) 3.0722(-6) 1.9163(-7) 1.1969(-8)
2−14 3.4263(-3) 1.7659(-3) 3.7764(-4) 2.4449(-5) 1.5361(-6) 9.5817(-8)
RN 0.9562 2.2253 3.9492 3.9924 4.0028
Results in [21]
2−6 3.630(- 3) 1.475(-3) 5.047(- 4) 1.508(- 4) 4.146(- 4) 1.089(- 4)
2−8 3.987(- 3) 1.952(- 3) 9.168(- 4) 3.733(- 4) 1.272(- 4) 3.789(- 5)
2−10 7.147(- 3) 1.979(- 3) 9.814(- 4) 4.866(- 4) 2.297(- 4) 9.359(- 4)
2−12 5.562(- 3) 3.583(- 3) 9.837(- 4) 4.898(- 4) 2.444(- 4) 1.215(- 4)
2−14 4.045(- 3) 2.778(- 3) 1.794(- 3) 4.908(- 4) 2.446(- 4) 1.222(- 4)

Table 4: MAE of the solution of Example 3
ε ↓ N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

present method
2−5 1.3020(-5) 8.1184(-7) 5.0756(-8) 3.1727(-9) 1.9854(-10) 1.3311(-11)
2−6 3.6866(-5) 2.2996(-6) 1.4362(-7) 8.9747(-9) 5.6092(-10) 3.5138(-11)
2−7 1.0099(-4) 6.5099(-6) 4.0592(-7) 2.5378(-8) 1.5863(-09) 9.9321(-11)
2−8 2.9338(-4) 1.8433(-5) 1.1498(-6) 7.1811(-8) 4.4873(-09) 2.8046(-10)
2−9 8.5352(-4) 5.0495(-5) 3.2550(-6) 2.0296(-7) 1.2689(-08) 7.9318(-10)
2−10 2.2657(-3) 1.4669(-4) 9.2166(-6) 5.7490(-7) 3.5906(-08) 2.2437(-09)
RN 3.9491 3.9924 4.0029 4.0010 4.0003
Results in [18]
2−5 1.0203(-2) 5.5017(-3) 2.7453(-3) 1.3449(-3) 6.6344(-4) 3.2928(-4)
2−6 9.1104(-3) 5.3503(-3) 2.7665(-3) 1.3581(-3) 6.6733(-4) 3.3030(-4)
2−7 7.9110(-3) 5.1014(-3) 2.7508(-3) 1.3726(-3) 6.7246(-4) 3.3172(-4)
2−8 2.2330(-2) 4.5552(-3) 2.6751(-3) 1.3832(-3) 6.7905(-4) 3.3366(-4)
2−9 4.6794(-2) 3.9555(-3) 2.5507(-3) 1.3754(-3) 6.8632(-4) 3.3623(-4)
2−10 7.7601(-2) 1.1165(-2) 2.2776(-3) 1.3376(-3) 6.9162(-4) 3.3953(-4)
Results in [17]
2−5 1.0111(-1) 1.3778(-1) 1.6169(-1) 1.7746(-1) 1.8802(-1) 1.9520(-1)
2−6 5.3820(-2) 8.5843(-2) 1.0677(-1) 1.2048(-1) 1.2958(-1) 1.3573(-1)
2−7 2.2863(-2) 5.0556(-2) 6.8889(-2) 8.0847(-2) 8.8730(-2) 9.4011(-2)
2−8 5.6850(-3) 2.6910(-2) 4.2921(-2) 5.3386(-2) 6.0238(-2) 6.4792(-2)
2−9 2.0288(-2) 1.1431(-2) 2.5278(-2) 3.4445(-2) 4.0424(-2) 4.4365(-2)
2−10 2.9876(-2) 2.8425(-3) 1.3455(-2) 2.1461(-2) 2.6693(-2) 3.0119(-2)
Total elapsed time with maximum number of subintervals 210 is 0.090109

sec.
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Figure 1: Numerical and exact solution of Example 1 for ε = 2−10, h = 2−7.

Figure 2: Numerical and exact solution of Example 2 for ε = 2−10, h = 2−7.

Figure 3: Numerical and exact solution of Example 3 for ε = 2−10, h = 2−7.
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Figure 4: Log-Log scale for Example 1

Figure 5: Log-Log scale for Example 2

Figure 6: Log-Log scale for Example 3
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8 Conclusion

In this paper, for solving singularly perturbed two-point boundary value prob-
lems with an interior layer, a higher-order finite difference approach was
proposed. To derive the discretization equation, an adaptive cubic spline ap-
proach has been extended for a singularly perturbed boundary value problem
with interior layers. It was produced by substituting nonstandard finite dif-
ferences in the first-order derivatives of w(t). The tridiagonal solver discrete
consistent embedding was used to solve the discretization equation. Conver-
gence was evaluated in the proposed method. To demonstrate the method,
numerical problems have been solved, when ε is either small or large as com-
pared to the mesh size h. To justify the method, numerical results were
compared with the results taken by the methods given in [17, 18, 21]. For
the layer behavior, the solutions were graphically displayed, and we discov-
ered that the numerical solution closely matches the exact solution. This
technique is simple to compute and requires little computational effort.

References

1. Bender, C.M. and Orszag, S.A. Advanced mathematical methods for scien-
tists and engineers, International Series in Pure and Applied Mathematics.
McGraw-Hill Book Co., New York, 1978.

2. Brauner, C.M., Gay, B.B. and Mathieu, J. Singular perturbations and
boundary layer theory, Lecture Notes in Mathematics, Vol. 594. Springer-
Verlag, Berlin-New York, 1977.

3. Doolan, E.P., Miller, J.J.H. and Schilders, W.H.A. Uniform numerical
methods for problems with initial and boundary layers, Boole Press, Dún
Laoghaire, 1980.

4. Farrel, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan,E. and Shiskin, G.I.
Singular perturbed convection-diffusion problems with boundary and weak
interior layers, J. Comput. Appl. Math. 166 (2004) 133–151.

5. Gartland, Jr. E.C. Uniform high-order difference schemes for a singu-
larly perturbed two point boundary value problem, Math. Comput. 48 (178)
(1987) 551–564.

6. Geng, F.Z., Qian, S.P. and Li, S. A numerical method for singularly per-
turbed turning point problems with an interior layer, J. Comput. Appl.
Math. 225 (2014) 97–105.

7. Jain, M.K. Numerical solution of differential equations, finite difference
and finite element methods, 4th Edition, New Age International Publish-
ers, 2018.

IJNAO, Vol. 12, No. 2, pp 355–370



A numerical approach for singular perturbation problems with an ... 369

8. Kadalbajoo, M.K. and Reddy, Y.N. Asymptotic and numerical analysis of
singular perturbation problems, Appl. Math. Comput. 30 (1989) 223–259.

9. Kadalbajoo, M.K. and Patidar, K.C. A survey of numerical techniques for
solving singularly perturbed ordinary differential equations, Appl. Math.
Comput. 30 (2002) 457–510.

10. Khuri, S.A. and Sayfy, A. Numerical solutions for the nonlinear Emden-
Fowler type equations by a fourth-order adaptive method, Int. J. Comput.
Methods. 11 (1) (2014), 1350052–1350072.

11. Lin, P. A class of variational difference schemes for a singular perturba-
tion problem, Appl. Math. Mech. 10 (4) (1989) 353–359.

12. Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. Fitted numerical meth-
ods for singular perturbation problems. Error estimates in the maximum
norm for linear problems in one and two dimensions., World Scientific
Publishing Co., Inc., River Edge, NJ, 1996.

13. Natesan, S., Vigo-Aguiar, J. and Ramanujam, N. A numerical algorithm
for singular perturbation problems exhibiting weak boundary layers, Com-
put. Math. Appl. 45 (2003) 469–479.

14. Navnit, Jha. Computational method for nonlinear singularly perturbed
singular boundary value problems using nonpolynomial spline, J. Inf. Com-
put. Sci. 7(2) (2012) 019–096.

15. Navnit, Jha. Nonpolynomial spline finite difference scheme for nonlinear
singular boundary value problems with singular perturbation and its mech-
anization, Discrete Contin. Dyn. Syst. 2013, Dynamical systems, differen-
tial equations and applications. 9th AIMS Conference. Suppl., 355–363.

16. OMalley, R.E. Singular perturbation methods for ordinary differential
equations, Applied Mathematical Sciences, 89. Springer-Verlag, New York,
1991.

17. Phaneendra, K., Reddy, Y.N. and Soujanya, G.B.S.L. noniterative nu-
merical integration method for singular perturbation problems exhibiting
internal and twin boundary layers, Int. J. Appl. Math. Comput. 3 (2011)
9–20.

18. Phaneendra, K. and Lalu, M. Gaussian quadrature for two-point singu-
larly perturbed boundary value problems with exponential fitting Comm.
App. Math. Comp. Sci. 10 3(2019) 447–467.

19. Pradip, R. A fourth-order non-uniform mesh optimal B-spline collocation
method for solving a strongly nonlinear singular boundary value problem
describing electrohydrodynamic flow of a fluid, Appl. Numer. Math. 153
(2020) 558–574.

IJNAO, Vol. 12, No. 2, pp 355–370



370 Srinivas, Lalu and Phaneendra

20. Pradip, R. and Prasad Goura, V.M.K. B-spline collocation methods and
their convergence for a class of nonlinear derivative dependent singular
boundary value problems, Appl. Math. Comput. 341(2019) 428–450.

21. Rai, P. and Shama, K.K. Numerical method for singularly perturbed
differential-difference equations with turning point, Int. J. Pure Appl.
Math. 73(4) (2011) 451–470.

22. Ramos, J.I. A smooth locally-analytical technique for singularly perturbed
two-point boundary-value problems, Appl. Math. Comput. 163 (2005),
1123–1142.

23. Rashidinia, J. Applications of spline to numerical solution of differential
equations, M.phil dissertation, A.M.U.India, 1990.

24. Roos, H.G., Stynes, M. and Tobiska, L. Robust numerical methods for sin-
gularly perturbed differential equations. Convection-diffusion-reaction and
flow problems, Second edition. Springer Series in Computational Mathe-
matics, 24. Springer-Verlag, Berlin, 2008.

25. Smith, D.R. Singular Perturbation Theory – An Introduction with appli-
cations, Cambridge University Press, Cambridge , 1985.

26. Varga, R.S. Matrix iterative analysis. Prentice-Hall, Englewood Cliffs,
New Jersey, 1962.

27. Young, D.M. Iterative solutions of large linear systems. Academic press,
New York, 1971.

How to cite this article
E. Srinivas, M. Lalu and K. Phaneendra A numerical approach for singular
perturbation problems with an interior layer using an adaptive spline. Iranian
Journal of Numerical Analysis and Optimization, 2022; 12(2): 355-370. doi:
10.22067/ijnao.2021.73813.1076.

IJNAO, Vol. 12, No. 2, pp 355–370


	A numerical approach for singular perturbation problems with an interior layer using an adaptive spline
	E. Srinivas, M. Lalu and K. Phaneendra

